ALM-81224 High Linearity 1450 – 2750 MHz Variable Gain Amplifier Data Sheet Description Features Avago Technologies’ ALM-81224 is a high linearity variable-gain amplifier module for use in the 1450-2750MHz band. Gain control is achieved using a single DC voltage input pin. High linearity is achieved through the use of Avago Technologies’ proprietary GaAs Enhancementmode pHEMT process1. It is housed in a miniature 6.0 x 6.0 x 1.0 mm 24-pin Molded Chip On Board (MCOB) package. Gain changes monotonically with gain control pin voltage. Input is fully matched. Output match can be tuned for optimal performance at a particular frequency band within the VGA operation frequency range using common RF board layout. The compact footprint coupled with high linearity and efficiency makes ALM-81224 an ideal choice for Basestation transmitters and receivers and Temperature Compensation Circuitry applications. x High Linearity at low bias current x High max gain: 23.8 dB typ x High linearity performance: +16.5 dBm at -65 dBc ACLR using dual-carrier W-CDMA input signal x Fully-matched 50 Ohm input and simple output match x Low Noise Figure x Built-in attenuator with monotonic response x Variable Gain range: 38 dB typ x GaAs E-pHEMT Technology [1] x Small package size: 6.0 x 6.0 x 1.0 mm Typical Performances 2140 MHz @ 5 V, 383 mA (typ) Component Image x 23.8 dB Gain at minimum attenuation (6.0 x 6.0 x 1.0) mm 24-lead MCOB x +16.5 dBm output power (-65 dBc ACLR) using dualcarrier W-CDMA input signal with PAPR = 7.5 dB. Note: Package marking provides orientation and identification “81224 “ = Device Code “WWYY” = Date Code identifies month and year of manufacturing “XXXX” = Last 4 digit of assembly lot number AVAGO 81224 WWYY XXXX 22 21 20 19 GND 1 18 RFIN 2 17 ½ ¾ ¿ Q1/Q2 Interstage 3 16 GROUND 4 GND 5 GND 6 7 8 x Attenuator range: 38 dB with Vc_att: (0 V – 3.3 V) x Shutdown current (Vc1, Vc2 = 0 V): < 30 PA Applications Note: 1. Enhancement mode technology employs positive Vgs, thereby eliminating the need of negative gate voltage associated with conventional depletion mode devices. Vdd1 GND GND GND GND Vdd2 23 x P1dB: 27.4 dBm x Basestation Transmitter, Receiver and Temperature Compensation Circuits requiring continuously variable gain functionality Pin Configuration 24 x NF: 2dB @ max gain and 16 dB @ min gain 9 10 11 GND ½ ¾ RFOUT ¿ 15 GND 14 GND 13 GND 12 Vc_att GND Vc1 Vc2 GND Vddbias Attention: Observe precautions for handling electrostatic sensitive devices. ESD Machine Model = 50 V ESD Human Body Model = 500 V Refer to Avago Application Note A004R: Electrostatic Discharge, Damage and Control. Table 1. ALM-81224 Absolute Maximum Rating [1] Thermal Resistance Symbol Parameter Units Absolute Maximum Vdd,max Drain Voltage, RF output to ground V 5.5 Vctrl,max Control Voltage [4] V 5.5 Ids,max Device Drain Current mA 500 Pd Power Dissipation [2] W 2.75 Pin CW RF Input Power dBm 22 Tj Junction Temperature °C 150 Tstg Storage Temperature °C -65 to 150 Thermal Resistance [3] (Vd = 5.0 V, Id = 320 mA, Tc = 85°C) Tjc = 20°C/W Notes: 1. Operation of this device in excess of any of these limits may cause permanent damage. 2. Ground Paddle temperature is 25° C. Derate 50 mW/°C for Tc > 95° C. 3. Thermal resistance measured using 150° C Infra-Red Microscopy Technique. 4. Vc1/Vc2 ≤ Vdd1/Vdd2. Table 2. Electrical Specifications TA = 25° C, Vdd1 = Vdd2 = VBias = 5 V @ total quiescent current of 383 mA, RF performance at 2140 MHz, CW operation unless otherwise stated. Symbol Parameter and Test Condition Vdd Supply Voltage Units Freq. Min. Typ. Idq_total Quiescent Supply Current mA 290 Freq Operating Frequency Range MHz 1450 Max Gain Max Gain (minimum attenuation) (1) dB NF Noise Figure (minimum attenuation) dB OP1dB Output Power at 1dB Gain Compression [1] dBm OIP3 Output Third Order Intercept Point [2] dBm ACLR ACLR at linear Pout = 12 dBm with dual-carrier W-CDMA input signal [1,3] dBc Ilinear_total Total current draw at Plinear level mA S11 Input Return Loss, 50 : source dB 2140 -15 S22 Output Return Loss, 50 : load dB 2140 -10 S12 Reverse Isolation dB 2140 40 Atten Gain attenuation range, Vc_att: (0 V – 3.3 V) dB 1485 1840 1960 2140 2650 – – – 22.2 – 383 460 2750 27.0 24.9 24.8 23.8 21.5 2 1485 1840 1960 2140 2650 – – – 24.7 – 28.0 27.7 28.7 27.4 28.3 44 1485 1840 1960 2140 2650 290 -67.1 -68.4 -67.6 -66.6 -67.5 – – – -63.5 – 383 460 38 Notes: 1. Measured with output match tuned to frequency as specified. See Table 3 for component values. 2. OIP3 test condition: FRF1 - FRF2 = 1 MHz with input power of -8 dBm per tone measured at worst side band. 3. Peak-to-average power ratio = 7.5 dB. Measured on Agilent MXA N9020A with low-noise option. Refer to Figure 77 for CCDF. 2 Max. 5 ALM-81224 Consistency Distribution Charts LSL 220 260 300 USL 340 380 420 460 LSL 500 540 Figure 1. Idd_total at Vdd = 5 V; LSL = 290 mA, Nominal = 383 mA, USL= 460 mA 22 22.4 22.8 23.2 23.6 24 24.4 24.8 Figure 2. Max gain at 2140 MHz; LSL = 22.2 dB, Nominal = 23.8 dB LSL 25 USL 26 27 28 29 Figure 3. OP1dB; LSL = 24.7 dBm, Nominal = 27.4 dBm 3 25.2 30 31 -69.5 -69 -68.5 -68 -67.5 -67 -66.5 -66 -65.5 -65 -64.5 -64 -63.5 Figure 4. ACLR (Dual-Carrier Signal) at 12 dBm output power; Nominal = -66.6 dBc, USL = -63.5 dBc Typical DC Performance Plots 2.4 0.21 2.1 0.18 1.8 0.15 1.5 Idd1 (A) Icatt (mA) TA = 25° C, Vdd = Vdd2 = VBias = 5 V @ 383 mA, RF performance tuned at 2140 MHz using demoboard of Figure 71. CW operation unless otherwise stated. Dual Carrier Signal uses W-CDMA modulation with 7.5 dB crest factor. Refer to Figure 77 for CCDF. Single Carrier Signal uses WCDMA Test Tone #1. 1.2 0.9 0.6 0.5 1.0 1.5 2.0 2.5 3.0 Vcatt (V) 3.5 4.0 4.5 5.0 Figure 5. Ic_att Vs Vc_att 0.30 Idd2 (A) 0.25 0.20 0.15 0.10 25° C -40° C 85° C 0.05 0.00 0.5 1.0 1.5 2.0 2.5 3.0 Vc2 (V) 3.5 Figure 7. Idd2 Vs Vc2 Vddbias = 5 V, Vc1 = 0 V, Vdd1 = Vdd2 = 5 V, Vc_att = 0 V 4 0.00 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Vc1 (V) 3.5 Figure 6. Idd1 Vs Vc1 Vddbias = 5 V, Vc2 = 0 V, Vdd1 = Vdd2 = 5 V, Vc_att = 0 V 0.35 0.0 25° C -40° C 85° C 0.03 0.0 0.0 0.09 0.06 25° C -40° C 85° C 0.3 0.12 4.0 4.5 5.0 4.0 4.5 5.0 Typical 1485 MHz RF Performance Plots Application circuit and build of material can be seen in Figure 70 and Table 3 respectively. 0 0 -5 -3 -6 -15 S22 (dB) -20 -25 -12 -30 25° C -40° C 85° C -35 1.0 1.5 2.0 2.5 Frequency (GHz) 3.0 3.5 4.0 Figure 8. S11 vs Freq at 1485 MHz -18 0.5 25° C -40° C 85° C 25 20 15 Gain (dB) S21 (dB) 1.5 2.0 2.5 Frequency (GHz) 3.0 3.5 4.0 Figure 9. S22 vs Freq at 1485 MHz 30 10 5 30 36 25 32 20 28 15 24 10 20 Gain Noise Figure 5 16 0 12 0 -5 8 -5 -10 4 -10 0.5 1.0 1.5 2.0 2.5 Frequency (GHz) 3.0 3.5 -15 4.0 Figure 10. S21 vs Freq at 1485 MHz 0.0 0.4 0.8 1.2 1.6 2.0 Vc_Att (V) 2.4 2.8 3.2 0 3.6 Figure 11. Gain & Noise Figure vs Vc_att at 1485 MHz at 25° C 36 30 36 25 32 25 32 20 28 20 28 15 24 15 24 10 20 Gain Noise Figure 5 16 Gain (dB) 30 NF (dB) Gain (dB) 1.0 10 20 Gain Noise Figure 5 16 0 12 0 12 -5 8 -5 8 -10 4 -10 4 -15 0 3.6 -15 0.0 0.4 0.8 1.2 1.6 2.0 Vc_Att (V) NF (dB) 0.5 25° C -40° C 85° C -15 -40 2.4 2.8 3.2 Figure 12. Gain & Noise Figure vs Vc_att at 1485 MHz at -40° C 5 -9 0.0 0.4 0.8 1.2 1.6 2.0 Vc_Att (V) 2.4 2.8 3.2 Figure 13. Gain & Noise Figure vs Vc_att at 1485 MHz at 85° C 0 3.6 NF (dB) S11 (dB) -10 48 28.0 46 27.5 44 27.0 OIP3 (dBm) Gain (dB) 28.5 26.5 26.0 25.5 34 6 8 10 12 14 16 18 20 22 24 26 28 30 Pout (dBm) Figure 14. Gain vs Pout at 1485 MHz -20 -18 -16 -14 -12 -10 -8 Pin (dBm) -6 -4 -2 0 Figure 15. OIP3 vs Pin at 1485 MHz -35 -30 -40 -35 -45 -40 -50 ACLR (dBc) ACLR (dBc) 25° C -40° C 85° C 36 24.5 -55 -60 -45 -50 -55 -60 -65 25° C -40° C 85° C -70 25° C -40° C 85° C -65 -70 -75 -75 10 11 12 13 14 15 16 17 18 19 20 21 22 Pout (dBm) 10 11 12 13 14 15 16 17 18 19 20 21 22 Pout (dBm) Figure 16. ACLR (Dual Carrier Signal) vs Pout at 1485 MHz Figure 17. ACLR (Single Carrier Signal) vs Pout at 1485 MHz -45 0.48 25° C -40° C 85° C -50 0.46 0.44 Itotal (A) -55 ACLR (dBc) 40 38 25° C -40° C 85° C 25.0 42 -60 -65 25° C -40° C 85° C 0.42 0.40 0.38 0.36 -70 -75 0.34 -15 -10 -5 0 5 10 Gain (dB) 15 Figure 18. ACLR (Dual Carrier Signal) vs Gain at 1485 MHz 6 20 25 30 0.32 10 11 12 13 14 15 16 17 18 19 20 21 22 Pout (dBm) Figure 19. Idd_total vs Pout (Dual Carrier Signal) at 1485 MHz Typical 1840 MHz RF Performance Plots Application circuit and build of material can be seen in Figure 70 and Table 3 respectively. 0 0 -5 -3 -6 -15 S22 (dB) -20 -12 -25 25° C -40° C 85° C -30 1.0 1.5 2.0 2.5 Frequency (GHz) 3.0 3.5 4.0 Figure 20. S11 vs Freq at 1840 MHz -18 25° C -40° C 85° C 25 20 15 Gain (dB) S21 (dB) 1.0 1.5 2.0 2.5 Frequency (GHz) 3.0 3.5 4.0 Figure 21. S22 vs Freq at 1840 MHz 30 10 5 30 36 25 32 20 28 15 24 10 20 Gain Noise Figure 5 16 0 12 0 -5 8 -5 -10 4 -10 -15 0.5 1.0 1.5 2.0 2.5 Frequency (GHz) 3.0 3.5 4.0 Figure 22. S21 vs Freq at 1840 MHz 0.0 0.4 0.8 1.2 1.6 2.0 VcATT (V) 2.4 2.8 3.2 0 3.6 Figure 23. Gain & Noise Figure vs Vc_att at 1840 MHz at 25° C 36 30 36 25 32 25 32 20 28 20 28 15 24 15 24 10 20 Gain Noise Figure 5 16 Gain (dB) 30 NF (dB) Gain (dB) 0.5 10 5 20 Gain Noise Figure 16 0 12 0 12 -5 8 -5 8 -10 4 -10 4 -15 0 3.6 0.0 0.4 0.8 1.2 1.6 2.0 VcATT (V) NF (dB) 0.5 25° C -40° C 85° C -15 -35 2.4 2.8 3.2 Figure 24. Gain & Noise Figure vs Vc_att at 1840 MHz at -40° C 7 -9 -15 0.0 0.4 0.8 1.2 1.6 2.0 VcATT (V) 2.4 2.8 3.2 Figure 25. Gain & Noise Figure vs Vc_att at 1840 MHz at 85° C 0 3.6 NF (dB) S11 (dB) -10 50 25.0 48 24.5 46 24.0 44 OIP3 (dBm) Gain (dB) 25.5 23.5 23.0 25° C -40° C 85° C 22.0 21.5 34 32 8 10 12 14 16 18 20 22 Pout (dBm) 24 26 28 -20 30 Figure 26. Gain vs Pout at 1840 MHz -16 -14 -12 -10 -8 Pin (dBm) -6 -4 -2 0 -40 25° C -40° C 85° C -45 -45 -50 ACLR (dBc) -50 ACLR (dBc) -18 Figure 27. OIP3 vs Pin at 1840 MHz -40 -55 -60 -65 -55 -60 -65 -70 -70 25° C -40° C 85° C -75 -75 10 11 12 13 14 15 16 17 Pout (dBm) 18 19 20 -80 21 Figure 28. ACLR (Dual Carrier Signal) vs Pout at 1840 MHz 25° C -40° C 85° C -45 Itotal (A) -50 -55 -60 -65 -15 -12 -9 -6 -3 0 3 6 9 12 15 18 21 24 27 Gain (dB) Figure 30. ACLR (Dual Carrier Signal) vs Gain at 1840 MHz 10 11 12 13 14 15 16 17 18 19 20 21 22 Pout (dBm) Figure 29. ACLR (Single Carrier Signal) vs Pout at 1840 MHz -40 ACLR (dBc) 25° C -40° C 85° C 36 21.0 8 40 38 22.5 -70 42 0.43 0.42 0.41 0.40 0.39 0.38 0.37 0.36 0.35 0.34 0.33 25° C -40° C 85° C 10 12 14 16 18 Pout (dBm) 20 Figure 31. Idd_total vs Pout (Dual Carrier Signal) at 1840 MHz 22 24 Typical 1960 MHz RF Performance Plots 0 0 -5 -3 -10 -6 -15 -9 S22 (dB) -20 -25 -30 0.5 1.0 1.5 2.0 2.5 Frequency (GHz) 3.0 3.5 -24 4.0 Figure 32. S11 vs Freq at 1960 MHz 25° C -40° C 85° C 25 Gain (dB) 15 10 5 1.0 1.5 2.0 2.5 Frequency (GHz) 3.0 3.5 4.0 30 36 25 32 20 28 15 24 10 20 Gain Noise Figure 5 16 0 12 0 -5 8 -5 -10 4 -10 0.5 1.0 1.5 2.0 2.5 Frequency (GHz) 3.0 3.5 -15 4.0 Figure 34. S21 vs Freq at 1960 MHz 0.0 0.4 0.8 1.2 1.6 2.0 VcATT (V) 2.4 2.8 3.2 0 3.6 Figure 35. Gain & Noise Figure vs Vc_att at 1960 MHz at 25° C 36 30 36 25 32 25 32 20 28 20 28 15 24 15 24 10 20 Gain Noise Figure 5 16 NF (dB) 30 Gain (dB) S21 (dB) 20 Gain (dB) 0.5 Figure 33. S22 vs Freq at 1960 MHz 30 10 20 Gain Noise Figure 5 16 0 12 0 12 -5 8 -5 8 -10 4 -10 4 -15 0 3.6 -15 0.0 0.4 0.8 1.2 1.6 2.0 VcATT (V) 2.4 2.8 3.2 Figure 36. Gain & Noise Figure vs Vc_att at 1960 MHz at -40° C 9 25° C -40° C 85° C -21 NF (dB) -40 -15 -18 25° C -40° C 85° C -35 -12 0.0 0.4 0.8 1.2 1.6 2.0 VcATT (V) 2.4 2.8 3.2 Figure 37. Gain & Noise Figure vs Vc_att at 1960 MHz at 85° C 0 3.6 NF (dB) S11 (dB) Application circuit and build of material can be seen in Figure 70 and Table 3 respectively. 50 25.0 48 24.5 46 24.0 44 OIP3 (dBm) Gain (dB) 25.5 23.5 23.0 22.5 25° C -40° C 85° C 22.0 21.5 21.0 25° C -40° C 85° C 32 8 10 12 14 16 18 20 22 Pout (dBm) 24 26 28 -20 30 -40 -40 -45 -45 -50 -50 -55 -60 -12 -10 -8 Pin (dBm) -6 -4 -2 0 Figure 40. ACLR (Dual Carrier Signal) vs Pout at 1960 MHz 25° C -40° C 85° C Itotal (A) -50 -55 -60 -65 -70 3 6 9 12 15 18 21 24 27 Gain (dB) Figure 42. ACLR (Dual Carrier Signal) vs Gain at 1960 MHz -60 -65 25° C -40° C 85° C 10 11 12 13 14 15 16 17 18 19 20 21 22 Pout (dBm) Figure 41. ACLR (Single Carrier Signal) vs Pout at 1960 MHz -40 -45 -55 -80 10 11 12 13 14 15 16 17 18 19 20 21 22 Pout (dBm) 0 -14 -75 -75 -15 -12 -9 -6 -3 -16 -70 25° C -40° C 85° C -70 -75 -18 Figure 39. OIP3 vs Pin at 1960 MHz ACLR (dBc) ACLR (dBc) 38 34 -65 ACLR (dBc) 40 36 Figure 38. Gain vs Pout at 1960 MHz 10 42 0.43 0.42 0.41 0.40 0.39 0.38 0.37 0.36 0.35 0.34 0.33 25° C -40° C 85° C 10 12 14 16 18 Pout (dBm) 20 Figure 43. Idd_total vs Pout (Dual Carrier Signal) at 1960 MHz 22 24 Typical 2140 MHz RF Performance Plots Application circuit and build of material can be seen in Figure 70 and Table 3 respectively. 0 0 -5 -3 -6 -15 S22 (dB) S11 (dB) -10 -20 -25 1.0 1.5 2.0 2.5 Frequency (GHz) 3.0 3.5 4.0 Figure 44. S11 vs Freq at 2140 MHz 0.5 25° C -40° C 85° C 25 15 S11 (dB) S21 (dB) 20 10 5 0 -5 -10 0.5 1.0 1.5 2.0 2.5 Frequency (GHz) 3.0 3.5 4.0 Figure 46. S21 vs Freq at 2140 MHz 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -50 -3 20 -6 10 -9 0 S21 (dB) 30 -12 -15 0V 1V 2V -21 0.5 1.0 1.5 2.0 2.5 Frequency (GHz) 1.5 2.0 2.5 Frequency (GHz) 3.0 3.5 4.0 0V 1V 2V 0.5 1.0 3.0 3.5 4.0 3V 3.5 V 1.5 2.0 2.5 Frequency (GHz) Figure 47. S11 vs Freq at different Vc_att at 2140 MHz at 25° C 0 -18 1.0 Figure 45. S22 vs Freq at 2140 MHz 30 -24 25° C -40° C 85° C -24 0.5 S22 (dB) -15 -21 -35 3.0 Figure 48. S22 vs Freq at different Vc_att at 2140 MHz at 25° C 11 -12 -18 25° C -40° C 85° C -30 -9 -20 -30 3V 3.5 V 3.5 -10 0V 1V 2V -40 4.0 -50 0.5 1.0 1.5 3V 3.5 V 2.0 2.5 Frequency (GHz) 3.0 3.5 Figure 49. S21 vs Freq at different Vc_att at 2140 MHz at 25° C 4.0 20 32 20 32 15 28 15 28 10 24 10 24 5 20 Gain Noise Figure 0 16 5 20 Gain Noise Figure 0 16 -5 12 -5 12 -10 8 -10 8 -15 4 -15 4 -20 0 3.6 -20 0.0 0.4 0.8 1.2 1.6 2.0 VcATT (V) 2.4 2.8 3.2 0.0 Figure 50. Gain & Noise Figure vs Vc_att at 2140 MHz at 25° C 28 23.0 10 24 20 Gain Noise Figure 16 Gain (dB) 23.5 15 NF (dB) 24.0 32 Gain (dB) 36 20 0 8 21.0 -15 4 20.5 0 3.6 20.0 0.8 1.2 1.6 2.0 VcATT (V) 2.4 2.8 3.2 Figure 52. Gain & Noise Figure vs Vc_att at 2140 MHz at 85° C -40 48 -45 8 ACLR (dBc) OIP3 (dBm) 42 40 38 10 12 14 16 18 20 22 Pout (dBm) 24 26 28 30 18 19 20 21 -55 -60 -65 25° C -40° C 85° C -70 -75 -20 -18 -16 -14 -12 Figure 54. OIP3 vs Pin at 2140 MHz 12 0 3.6 25° C -40° C 85° C -50 44 32 3.2 25° C -40° C 85° C 46 34 2.8 Figure 53. Gain vs Pout at 2140 MHz 50 36 2.4 21.5 -10 0.4 1.6 2.0 VcATT (V) 22.0 12 0.0 1.2 22.5 -5 -20 0.8 Figure 51. Gain & Noise Figure vs Vc_att at 2140 MHz at -40° C 25 5 0.4 NF (dB) 36 Gain (dB) 25 NF (dB) 36 Gain (dB) 25 -10 -8 Pin (dBm) -6 -4 -2 0 10 11 12 13 14 15 16 17 Pout (dBm) Figure 55. ACLR (Dual Carrier Signal) vs Pout at 2140 MHz -40 -40 -45 25° C -40° C 85° C -45 -50 -55 ACLR (dBc) ACLR (dBc) -50 -60 -65 -60 -70 25° C -40° C 85° C -75 -65 -80 10 11 12 13 14 15 16 17 18 Pout (dBm) 19 20 21 22 Figure 56. ACLR (Single Carrier Signal) vs Pout at 2140 MHz 0.41 0.40 Itotal (A) 0.39 0.38 0.37 25° C -40° C 85° C 0.36 0.35 0.34 0.33 10 12 14 16 18 Pout (dBm) 20 Figure 58. Idd_total vs Pout (Dual Carrier Signal) at 2140 MHz -70 -15 -12 -9 -6 -3 0 3 6 9 Gain (dB) 12 15 18 21 24 Figure 57. ACLR (Dual Carrier Signal) vs Gain at 2140 MHz 0.42 13 -55 22 24 Typical 2650 MHz RF Performance Plots 0 0 -5 -5 -10 -10 S22 (dB) -15 -20 -25 -15 -20 -25 25° C -40° C 85° C -30 -35 -35 1.0 1.5 2.0 2.5 Frequency (GHz) 3.0 3.5 4.0 Figure 59. S11/S22/S21 vs Freq at 2650 MHz at 25° C 0.5 1.0 1.5 2.0 2.5 Frequency (GHz) 3.0 3.5 4.0 Figure 60. S11/S22/S21 vs Freq at 2650 MHz at -40° C 30 25 36 25 20 32 20 15 28 10 24 Gain (dB) 15 10 5 0 25° C -40° C 85° C -5 -10 0.5 1.0 1.5 2.0 2.5 Frequency (GHz) 3.0 3.5 4.0 Figure 61. S11/S22/S21 vs Freq at 2650 MHz at 85° C 5 20 Gain Noise Figure 0 16 -5 12 -10 8 -15 4 -20 0.0 0.4 0.8 1.2 1.6 2.0 VcATT (V) 2.4 2.8 3.2 0 3.6 Figure 62. Gain & Noise Figure vs Vc_att at 2650 MHz at 25° C 36 20 32 20 32 15 28 15 28 10 24 10 24 20 Gain Noise Figure 0 16 Gain (dB) 25 NF (dB) 36 Gain (dB) 25 5 5 20 Gain Noise Figure 0 16 -5 12 -5 12 -10 8 -10 8 -15 4 -15 4 -20 0 3.6 -20 0.0 0.4 0.8 1.2 1.6 2.0 VcATT (V) 2.4 2.8 3.2 Figure 63. Gain & Noise Figure vs Vc_att at 2650MHz at -40°C 14 NF (dB) 0.5 S21 (dB) 25° C -40° C 85° C -30 0.0 0.4 0.8 1.2 1.6 2.0 VcATT (V) 2.4 2.8 3.2 Figure 64. Gain & Noise Figure vs Vc_att at 2650 MHz at 85° C 0 3.6 NF (dB) S11 (dB) Application circuit and build of material can be seen in Figure 70 and Table 3 respectively. 22.5 50 22.0 48 46 OIP3 (dBm) Gain (dB) 21.5 21.0 20.5 25° C -40° C 85° C 19.5 8 10 12 25° C -40° C 85° C 34 14 16 18 20 22 Pout (dBm) 24 26 28 32 30 Figure 65. Gain vs Pout at 2650 MHz -20 -40 -40 -45 -45 -16 -14 -12 -10 -8 Pin (dBm) -6 -4 -2 0 -50 ACLR (dBc) -55 -60 -65 -55 -60 -65 -70 25° C -40° C 85° C -70 25° C -40° C 85° C -75 -80 -75 10 11 12 13 14 15 16 17 Pout (dBm) 18 19 20 10 11 12 13 14 15 16 17 18 19 20 21 22 Pout (dBm) 21 Figure 67. ACLR (Dual Carrier Signal) vs Pout at 2650 MHz Figure 68. ACLR (Single Carrier Signal) vs Pout at 2650 MHz -40 0.41 25° C -40° C 85° C -45 -50 0.40 0.39 0.38 Itotal(A) -55 -60 0.37 0.36 25° C -40° C 85° C 0.35 -65 0.34 -70 -75 -18 Figure 66. OIP3 vs Pin at 2650 MHz -50 ACLR (dBc) 40 36 19.0 ACLR (dBc) 42 38 20.0 0.33 -15 -12 -9 -6 -3 0 3 6 9 Gain (dB) 12 15 18 21 24 Figure 69. ACLR (Dual Carrier Signal) vs Gain at 2650 MHz 15 44 0.32 10 12 14 16 Pout (dBm) 18 20 Figure 70. Idd_total vs Pout (Dual Carrier Signal) at 2650 MHz 22 Application Circuit Description and Layout Vdd1 = +5 V Vdd2 = +5 V C2 L1 2.4 pF 1.9 nH C1 0.1 PF C15 7.5 pF L2 5.6 nH ~78 mA RFin C16 0.1 PF C17 2.2 PF ~270 mA C19 0.3 pF C18 1.0 pF C3 7.5pF C14 RFout L3 L4 1.0 nH 1.9 nH C4 7.5pF 7.5 pF C13 2.7 pF C12 0.1 PF C5 7.5 pF C7 7.5 pF C11 C9 7.5 pF 7.5 pF 0 mA 0.1 mA 40 mA 0.1 mA Vc_att Vc1 Vc2 Vddbias = +5 V 2.4 V 4.0 V C17 C16 C15 L2 C1 C2 L1 RFIN RFOUT 8 7 6 5 4 3 2 1 C14 1 2 3 4 5 6 7 8 L3 C13 L4 C4 C11 C12 C5 C6 C9 C10 C7 C8 ALM-81224 VdBIAS VC2 VC1 VcATT R1 GND C3 GND VDD2 VDD2S VDD1 VDD1S Figure 71. Application circuit tuned for 2140 MHz operation using 0402 size external SMT components RO4350 DK 3.48 H 10 mil W 0.57 mm G 0.59 mm JUNE '10 Figure 72. Demo board diagram of application circuit for 2140 MHz Notes: 1. The VGA is capable of wideband operation from 1450-2750 MHz. Optimum linearity and Gain at different frequencies can be tuned by changing the values of L3, L4, C13, C19 at the output match and L1, L2 at the supply lines. Table 3 below shows the optimum linearity tuning components. 2. Optimum linearity is achieved by varying Vc1 and Vc2. Typical current is as shown in the figure above. 3. If lower output power for the same linearity is desired, then the bias currents Idd1 and Idd2 can be reduced by reducing Vc1 and Vc2 respectively. 16 Recommended Bill of Materials Table 3. Component Values Description Circuit Symbol Freq (MHz) Size Value Part Number Manufacturer C1, C12, C16 All 0402 0.1 PF GRM155F51C104ZA01E Murata C2 All 0402 2.4 pF GJM1555C1H2R4CB01 Murata C3*, C4, C5, C7, C9, C11, C14*, C15 All 0402 7.5 pF GJM1555C1H7R5DB01 Murata C6 , C8, C10 All 0402 NOT USED C13 1485 0402 3.3 pF GJM1555C1H3R3CB01 Murata 1840 0402 2.4 pF GJM1555C1H2R4CB01 Murata 1960 / 2140 0402 2.7 pF GJM1555C1H2R7CB01 Murata 2650 0402 2.0 pF GJM1555C1H2R0CB01 Murata C17 All 0603 2.2 PF GRM21BR61A225KA01L Murata C18 All 0402 1.0 pF GJM1555C1H1R0CB01 Murata C19 1485 / 1960 / 2140 0402 0.3 pF GJM1555C1HR30BB Murata 1840 / 2650 0402 NOT USED 1485 0402 9.0 nH 0402CS-9N0X_LU Coilcraft 1840 / 1960 0402 5.6 nH 0402CS-5N6X_LU Coilcraft 2140 0402 1.9 nH 0402CS-1N9X_LU Coilcraft L1 2650 0402 1.0 nH 0402CS-1N0X_LU Coilcraft L2 1485 / 1840 / 1960 / 2140 / 2650 0402 5.6 nH 0402CS-5N6X_LU Coilcraft L3 1485 0402 2.2 nH 0402CS-2N2X_LU Coilcraft 1840 0402 1.9 nH 0402CS-1N9X_LU Coilcraft 1960 / 2140 0402 1.0 nH 0402CS-1N0X_LU Coilcraft 2650 0402 0 ohm RMC1/16S-JPTH Kamaya 1485 0402 2.2 nH 0402CS-2N2X_LU Coilcraft 1840 /1960 /2140 0402 1.9 nH 0402CS-1N9X_LU Coilcraft 2650 0402 1.0 nH 0402CS-1N0X_LU Coilcraft L4 Note: * Blocking capacitor not required in actual application circuit. 17 Scattering Parameters Measurement Schematic Vdd1 = +5 V Vdd2 = +5 V C2 2.4 pF L1 C1 0.1 PF C15 7.5 pF L2 Reference Plane C16 0.1 PF C17 2.2 PF Reference Plane RFout RFin C4 7.5pF C12 0.1 PF C5 7.5 pF C7 7.5 pF Vc_att C9 7.5 pF Vc1 Vc2 C11 7.5 pF Vddbias = +5 V Figure 73. Scattering Parameters Measurement Schematic Table 4. Scattering Parameters Freq (MHz) L1 (nH) L2 (nH) S11 (dB) S11 (ang) S21 (dB) S21 (ang) S12 (dB) S12 (ang) S22 (dB) S22 (ang) 1485 1840 / 1960 2140 2650 9.0 5.6 1.9 1.0 5.6 5.6 5.6 5.6 -10.72 -12.94 -11.37 -8.42 71.23 163.82 158.91 141.80 25.02 23.51 22.40 16.59 27.8 -97.11 -167.51 88.91 -59.77 -51.85 -47.88 -47.03 -92.74 160.82 108.65 30.74 -4.22 -8.02 -8.73 -3.63 73.69 156.35 -177.21 178.28 Vdd1 = +5 V 50 ohm 50 ohm Bias Tee Bias Tee Vdd2 = +5 V Reference Plane Reference Plane RFout RFin C4 7.5pF C12 0.1 PF C5 7.5 pF C7 7.5 pF Vc_att C9 7.5 pF Vc1 Vc2 C11 7.5 pF Vddbias = +5 V Figure 74. Broadband Scattering Parameters Measurement Schematic 18 Broadband Scattering Parameters TA = 25° C, Vdd = 5 V @ 390 mA, Vc_att = 0 V. Table 5. Broadband Scattering Parameters Freq (GHz) S11 (dB) S11 (ang) S21 (dB) S21 (ang) S12 (dB) S12 (ang) S22 (dB) S22 (ang) K-Factor 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 18.5 19.0 19.5 20.0 -0.15 -0.24 -0.24 -0.16 -0.18 -0.17 -0.22 -0.27 -0.48 -1.23 -6.72 -14.26 -10.31 -7.60 -7.46 -6.98 -6.08 -6.96 -7.40 -6.94 -5.34 -4.30 -3.82 -3.95 -3.65 -5.16 -6.01 -5.32 -4.68 -4.06 -3.75 -3.61 -3.78 -3.93 -4.32 -4.60 -4.61 -4.25 -3.02 -2.11 -2.00 -2.23 -2.42 -2.62 -2.93 -3.18 -3.19 -3.53 174.74 169.59 164.64 159.79 153.92 147.90 140.57 133.45 123.78 112.24 13.51 58.83 179.05 135.55 126.54 113.14 106.20 92.70 91.38 86.79 74.29 59.78 46.52 39.37 28.51 14.89 10.44 -1.81 -13.51 -23.94 -32.21 -40.81 -50.19 -63.35 -77.36 -88.67 -95.93 -100.75 -107.48 -122.62 -138.61 -153.52 -169.48 172.53 154.94 137.14 120.91 102.59 -19.59 -14.81 -11.82 -9.74 -8.86 -9.91 -10.88 -4.71 3.73 10.87 23.06 13.24 17.86 15.86 10.51 6.96 1.50 0.30 -2.15 -4.01 -7.97 -6.18 -4.76 -3.62 -4.87 -21.22 -31.11 -18.20 -25.98 -27.19 -26.26 -27.08 -31.32 -34.03 -31.37 -24.42 -36.68 -33.67 -29.12 -27.58 -27.70 -28.75 -32.44 -35.14 -35.55 -36.77 -38.03 -36.22 -84.29 -116.74 -134.91 -151.46 -169.28 179.40 -154.86 -132.01 -138.94 -173.28 26.34 -132.55 172.41 46.95 -36.77 -123.20 -167.60 129.20 74.05 16.42 -45.83 -50.70 152.32 78.93 -34.66 134.88 -81.49 84.23 29.14 -5.31 -48.36 -100.85 -148.93 177.13 172.05 101.35 65.06 73.09 36.49 -13.02 -65.24 -117.11 -160.80 176.56 112.11 31.96 -34.36 -87.05 -50.35 -60.20 -53.30 -60.58 -58.53 -58.85 -59.67 -52.02 -47.30 -41.80 -35.76 -37.52 -44.72 -48.79 -57.61 -64.13 -59.89 -58.49 -56.22 -54.68 -52.09 -49.44 -42.01 -39.08 -39.95 -57.29 -49.38 -46.61 -49.48 -44.98 -40.95 -37.96 -35.15 -33.61 -33.34 -32.14 -39.12 -40.46 -32.63 -31.00 -30.69 -32.05 -36.31 -39.22 -39.84 -42.48 -38.82 -34.51 -124.56 -105.89 91.20 76.12 -129.95 176.10 107.05 118.15 112.53 73.25 -4.67 144.22 39.03 8.74 -33.76 -11.53 68.31 67.22 94.83 74.14 38.20 66.89 -78.14 -148.01 103.79 -158.37 38.02 -124.71 168.14 91.97 36.99 -14.04 -80.36 -138.02 164.57 122.35 37.76 140.86 71.82 15.73 -35.48 -88.63 -126.96 -147.58 128.73 36.33 -30.65 -82.87 -2.48 -2.43 -2.47 -2.56 -2.69 -2.89 -3.35 -4.25 -5.85 -7.28 -2.49 -2.08 -10.68 -2.91 -1.62 -1.34 -1.95 -1.66 -2.20 -2.87 -3.98 -9.43 -5.67 -5.62 -3.48 -3.89 -5.57 -6.41 -5.92 -5.91 -6.27 -7.62 -9.59 -10.90 -21.71 -10.74 -8.32 -8.03 -9.38 -12.03 -11.14 -11.94 -19.64 -12.25 -15.75 -11.59 -9.27 -9.34 172.57 172.90 170.55 168.24 165.19 161.99 157.61 154.89 154.28 171.62 135.98 170.71 153.04 174.31 155.76 143.37 134.83 124.09 110.59 96.93 82.92 85.84 103.73 86.07 45.97 11.92 -22.18 -55.46 -95.79 -125.75 -149.16 -169.54 175.35 156.01 80.39 -129.03 171.47 136.71 120.68 130.92 153.69 146.97 176.08 -142.03 -150.92 -162.42 162.78 128.95 1.33 1.32 1.30 1.32 1.35 1.37 1.45 1.54 1.64 1.56 1.03 1.19 2.99 1.35 1.19 1.16 1.25 1.21 1.29 1.39 1.58 2.95 1.89 1.89 1.46 1.57 1.90 2.09 1.98 1.97 2.06 2.40 3.00 3.50 11.97 3.42 2.60 2.52 2.93 3.91 3.58 3.95 9.49 4.08 6.12 3.79 2.90 2.93 19 CCDF of Dual Carrier Signal [1] Figure 75. CCDF Note: 1. W-CDMA modulation with 7.5 dB crest factor. Package Dimensions PIN #1 IDENTIFICATION CHAMFER 0.30 X 45° 1.00 ±0.10 6.00 ±0.10 3.80 PIN 1 0.30 0.80 Bsc AVAGO 81224 WWYY XXXX 6.00 ±0.10 3.8 0.30 0.10 0.60 TOP VIEW Dimensions are in millimeters. 20 0.30 SIDE VIEW 0.10 BOTTOM VIEW Land Pattern and Stencil Opening Dimensions 5.78 4.28 5.80 4.30 0.80 0.80 3.80 1.60 3.40 5.80 3.80 4.28 4.30 5.78 1.60 0.30 0.30 0.28 0.28 LAND PATTERN STENCIL OPENING 5.80 0.80 5.80 3.80 3.80 4.30 0.30 0.30 COMBINATION OF LAND PATTERN & STENCIL OPENING Notes: 1. All dimensions are in MM 2. 0.1 mm or 4 mil stencil thickness is recommended Device Orientation REEL CARRIER TAPE USER FEED DIRECTION 21 COVER TAPE AVAGO 81224 WWYY XXXX AVAGO 81224 WWYY XXXX AVAGO 81224 WWYY XXXX AVAGO 81224 WWYY XXXX Tape Dimensions Dimensions are in millimeters. Part Number Ordering Information Part Number No. of Devices Container ALM-81224 -BLKG 100 Antistatic Bag ALM-81224-TR1G 3000 13” Tape/Reel 22 Reel Dimension – 13” Reel 12 mm Width 11 12 1 2 3 4 0 2 10 9 7 6 5 DATE CODE 12MM 8 EMBOSSED LETTERING 16.0 mm HEIGHT x MIN. 0.4 mm THICK. Ø329.0±1.0 HUB Ø100.0±0.5 6 PS 0 2 1 1112 2 3 10 4 9 8 7 6 5 MP N CPN EMBOSSED LETTERING 7.5 mm HEIGHT EMBOSSED LETTERING 7.5 mm HEIGHT Ø16.0 ESD LOGO N.) (MI 11.9-15.4** Detail "X" 12.4 +2.0* -0.0 6 PS RECYCLE LOGO SEE DETAIL "X" Ø100.0±0.5 Ø329.0±1.0 6 PS SLOT 5.0±0.5 (3x) R19.0±0.5 Ø12.3±0.5(3x) BACK VIEW For product information and a complete list of distributors, please go to our web site: 20.2 (MIN.) 1.5 EMBOSSED LINE (2x) 89.0 mm LENGTH LINES 147.0 mm AWAY FROM CENTER POINT FRONT VIEW Ø13.0 +0.5 -0.2 18.4 MAX.* www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2011 Avago Technologies. All rights reserved. AV02-3150EN - September 19, 2011