AVAGO ALM-81224 High linearity 1450 â 2750 mhz variable gain amplifier Datasheet

ALM-81224
High Linearity 1450 – 2750 MHz Variable Gain Amplifier
Data Sheet
Description
Features
Avago Technologies’ ALM-81224 is a high linearity variable-gain amplifier module for use in the 1450-2750MHz
band. Gain control is achieved using a single DC voltage
input pin. High linearity is achieved through the use of
Avago Technologies’ proprietary GaAs Enhancementmode pHEMT process1. It is housed in a miniature 6.0
x 6.0 x 1.0 mm 24-pin Molded Chip On Board (MCOB)
package. Gain changes monotonically with gain control
pin voltage. Input is fully matched. Output match can be
tuned for optimal performance at a particular frequency
band within the VGA operation frequency range using
common RF board layout. The compact footprint coupled
with high linearity and efficiency makes ALM-81224 an
ideal choice for Basestation transmitters and receivers and
Temperature Compensation Circuitry applications.
x High Linearity at low bias current
x High max gain: 23.8 dB typ
x High linearity performance: +16.5 dBm at -65 dBc ACLR
using dual-carrier W-CDMA input signal
x Fully-matched 50 Ohm input and simple output match
x Low Noise Figure
x Built-in attenuator with monotonic response
x Variable Gain range: 38 dB typ
x GaAs E-pHEMT Technology [1]
x Small package size: 6.0 x 6.0 x 1.0 mm
Typical Performances
2140 MHz @ 5 V, 383 mA (typ)
Component Image
x 23.8 dB Gain at minimum attenuation
(6.0 x 6.0 x 1.0) mm 24-lead MCOB
x +16.5 dBm output power (-65 dBc ACLR) using dualcarrier W-CDMA input signal with PAPR = 7.5 dB.
Note:
Package
marking
provides
orientation and identification
“81224 “ = Device Code
“WWYY” = Date Code identifies
month and year of
manufacturing
“XXXX” = Last 4 digit of assembly
lot number
AVAGO
81224
WWYY
XXXX
22
21
20
19
GND
1
18
RFIN
2
17
½
¾
¿
Q1/Q2
Interstage
3
16
GROUND
4
GND
5
GND
6
7
8
x Attenuator range: 38 dB with Vc_att: (0 V – 3.3 V)
x Shutdown current (Vc1, Vc2 = 0 V): < 30 PA
Applications
Note:
1. Enhancement mode technology employs positive Vgs, thereby
eliminating the need of negative gate voltage associated with
conventional depletion mode devices.
Vdd1 GND GND GND GND Vdd2
23
x P1dB: 27.4 dBm
x Basestation Transmitter, Receiver and Temperature
Compensation Circuits requiring continuously variable
gain functionality
Pin Configuration
24
x NF: 2dB @ max gain and 16 dB @ min gain
9
10
11
GND
½
¾ RFOUT
¿
15
GND
14
GND
13
GND
12
Vc_att GND Vc1 Vc2 GND Vddbias
Attention: Observe precautions for
handling electrostatic sensitive devices.
ESD Machine Model = 50 V
ESD Human Body Model = 500 V
Refer to Avago Application Note A004R:
Electrostatic Discharge, Damage and Control.
Table 1. ALM-81224 Absolute Maximum Rating [1]
Thermal Resistance
Symbol
Parameter
Units
Absolute Maximum
Vdd,max
Drain Voltage, RF output to ground V
5.5
Vctrl,max
Control Voltage [4]
V
5.5
Ids,max
Device Drain Current
mA
500
Pd
Power Dissipation [2]
W
2.75
Pin
CW RF Input Power
dBm
22
Tj
Junction Temperature
°C
150
Tstg
Storage Temperature
°C
-65 to 150
Thermal Resistance [3]
(Vd = 5.0 V, Id = 320 mA, Tc = 85°C)
Tjc = 20°C/W
Notes:
1. Operation of this device in excess of any of
these limits may cause permanent damage.
2. Ground Paddle temperature is 25° C. Derate
50 mW/°C for Tc > 95° C.
3. Thermal resistance measured using 150° C
Infra-Red Microscopy Technique.
4. Vc1/Vc2 ≤ Vdd1/Vdd2.
Table 2. Electrical Specifications
TA = 25° C, Vdd1 = Vdd2 = VBias = 5 V @ total quiescent current of 383 mA, RF performance at 2140 MHz, CW operation
unless otherwise stated.
Symbol
Parameter and Test Condition
Vdd
Supply Voltage
Units
Freq.
Min.
Typ.
Idq_total
Quiescent Supply Current
mA
290
Freq
Operating Frequency Range
MHz
1450
Max Gain
Max Gain (minimum attenuation) (1)
dB
NF
Noise Figure (minimum attenuation)
dB
OP1dB
Output Power at 1dB Gain Compression [1]
dBm
OIP3
Output Third Order Intercept Point [2]
dBm
ACLR
ACLR at linear Pout = 12 dBm with dual-carrier
W-CDMA input signal [1,3]
dBc
Ilinear_total
Total current draw at Plinear level
mA
S11
Input Return Loss, 50 : source
dB
2140
-15
S22
Output Return Loss, 50 : load
dB
2140
-10
S12
Reverse Isolation
dB
2140
40
Atten
Gain attenuation range, Vc_att: (0 V – 3.3 V)
dB
1485
1840
1960
2140
2650
–
–
–
22.2
–
383
460
2750
27.0
24.9
24.8
23.8
21.5
2
1485
1840
1960
2140
2650
–
–
–
24.7
–
28.0
27.7
28.7
27.4
28.3
44
1485
1840
1960
2140
2650
290
-67.1
-68.4
-67.6
-66.6
-67.5
–
–
–
-63.5
–
383
460
38
Notes:
1. Measured with output match tuned to frequency as specified. See Table 3 for component values.
2. OIP3 test condition: FRF1 - FRF2 = 1 MHz with input power of -8 dBm per tone measured at worst side band.
3. Peak-to-average power ratio = 7.5 dB. Measured on Agilent MXA N9020A with low-noise option. Refer to Figure 77 for CCDF.
2
Max.
5
ALM-81224 Consistency Distribution Charts
LSL
220
260
300
USL
340
380
420
460
LSL
500
540
Figure 1. Idd_total at Vdd = 5 V; LSL = 290 mA, Nominal = 383 mA,
USL= 460 mA
22
22.4
22.8
23.2
23.6
24
24.4
24.8
Figure 2. Max gain at 2140 MHz; LSL = 22.2 dB, Nominal = 23.8 dB
LSL
25
USL
26
27
28
29
Figure 3. OP1dB; LSL = 24.7 dBm, Nominal = 27.4 dBm
3
25.2
30
31
-69.5 -69 -68.5 -68 -67.5 -67 -66.5 -66 -65.5 -65 -64.5 -64 -63.5
Figure 4. ACLR (Dual-Carrier Signal) at 12 dBm output power;
Nominal = -66.6 dBc, USL = -63.5 dBc
Typical DC Performance Plots
2.4
0.21
2.1
0.18
1.8
0.15
1.5
Idd1 (A)
Icatt (mA)
TA = 25° C, Vdd = Vdd2 = VBias = 5 V @ 383 mA, RF performance tuned at 2140 MHz using demoboard of Figure 71.
CW operation unless otherwise stated. Dual Carrier Signal uses W-CDMA modulation with 7.5 dB crest factor. Refer
to Figure 77 for CCDF. Single Carrier Signal uses WCDMA Test Tone #1.
1.2
0.9
0.6
0.5
1.0
1.5
2.0
2.5 3.0
Vcatt (V)
3.5
4.0
4.5
5.0
Figure 5. Ic_att Vs Vc_att
0.30
Idd2 (A)
0.25
0.20
0.15
0.10
25° C
-40° C
85° C
0.05
0.00
0.5
1.0
1.5
2.0
2.5 3.0
Vc2 (V)
3.5
Figure 7. Idd2 Vs Vc2
Vddbias = 5 V, Vc1 = 0 V, Vdd1 = Vdd2 = 5 V, Vc_att = 0 V
4
0.00
0.0
0.5
1.0
1.5
2.0
2.5 3.0
Vc1 (V)
3.5
Figure 6. Idd1 Vs Vc1
Vddbias = 5 V, Vc2 = 0 V, Vdd1 = Vdd2 = 5 V, Vc_att = 0 V
0.35
0.0
25° C
-40° C
85° C
0.03
0.0
0.0
0.09
0.06
25° C
-40° C
85° C
0.3
0.12
4.0
4.5
5.0
4.0
4.5
5.0
Typical 1485 MHz RF Performance Plots
Application circuit and build of material can be seen in Figure 70 and Table 3 respectively.
0
0
-5
-3
-6
-15
S22 (dB)
-20
-25
-12
-30
25° C
-40° C
85° C
-35
1.0
1.5
2.0
2.5
Frequency (GHz)
3.0
3.5
4.0
Figure 8. S11 vs Freq at 1485 MHz
-18
0.5
25° C
-40° C
85° C
25
20
15
Gain (dB)
S21 (dB)
1.5
2.0
2.5
Frequency (GHz)
3.0
3.5
4.0
Figure 9. S22 vs Freq at 1485 MHz
30
10
5
30
36
25
32
20
28
15
24
10
20
Gain
Noise Figure
5
16
0
12
0
-5
8
-5
-10
4
-10
0.5
1.0
1.5
2.0
2.5
Frequency (GHz)
3.0
3.5
-15
4.0
Figure 10. S21 vs Freq at 1485 MHz
0.0
0.4
0.8
1.2
1.6 2.0
Vc_Att (V)
2.4
2.8
3.2
0
3.6
Figure 11. Gain & Noise Figure vs Vc_att at 1485 MHz at 25° C
36
30
36
25
32
25
32
20
28
20
28
15
24
15
24
10
20
Gain
Noise Figure
5
16
Gain (dB)
30
NF (dB)
Gain (dB)
1.0
10
20
Gain
Noise Figure
5
16
0
12
0
12
-5
8
-5
8
-10
4
-10
4
-15
0
3.6
-15
0.0
0.4
0.8
1.2
1.6 2.0
Vc_Att (V)
NF (dB)
0.5
25° C
-40° C
85° C
-15
-40
2.4
2.8
3.2
Figure 12. Gain & Noise Figure vs Vc_att at 1485 MHz at -40° C
5
-9
0.0
0.4
0.8
1.2
1.6 2.0
Vc_Att (V)
2.4
2.8
3.2
Figure 13. Gain & Noise Figure vs Vc_att at 1485 MHz at 85° C
0
3.6
NF (dB)
S11 (dB)
-10
48
28.0
46
27.5
44
27.0
OIP3 (dBm)
Gain (dB)
28.5
26.5
26.0
25.5
34
6
8
10 12 14 16 18 20 22 24 26 28 30
Pout (dBm)
Figure 14. Gain vs Pout at 1485 MHz
-20
-18
-16
-14
-12 -10 -8
Pin (dBm)
-6
-4
-2
0
Figure 15. OIP3 vs Pin at 1485 MHz
-35
-30
-40
-35
-45
-40
-50
ACLR (dBc)
ACLR (dBc)
25° C
-40° C
85° C
36
24.5
-55
-60
-45
-50
-55
-60
-65
25° C
-40° C
85° C
-70
25° C
-40° C
85° C
-65
-70
-75
-75
10 11 12 13 14 15 16 17 18 19 20 21 22
Pout (dBm)
10 11 12 13 14 15 16 17 18 19 20 21 22
Pout (dBm)
Figure 16. ACLR (Dual Carrier Signal) vs Pout at 1485 MHz
Figure 17. ACLR (Single Carrier Signal) vs Pout at 1485 MHz
-45
0.48
25° C
-40° C
85° C
-50
0.46
0.44
Itotal (A)
-55
ACLR (dBc)
40
38
25° C
-40° C
85° C
25.0
42
-60
-65
25° C
-40° C
85° C
0.42
0.40
0.38
0.36
-70
-75
0.34
-15
-10
-5
0
5
10
Gain (dB)
15
Figure 18. ACLR (Dual Carrier Signal) vs Gain at 1485 MHz
6
20
25
30
0.32
10 11 12 13 14 15 16 17 18 19 20 21 22
Pout (dBm)
Figure 19. Idd_total vs Pout (Dual Carrier Signal) at 1485 MHz
Typical 1840 MHz RF Performance Plots
Application circuit and build of material can be seen in Figure 70 and Table 3 respectively.
0
0
-5
-3
-6
-15
S22 (dB)
-20
-12
-25
25° C
-40° C
85° C
-30
1.0
1.5
2.0
2.5
Frequency (GHz)
3.0
3.5
4.0
Figure 20. S11 vs Freq at 1840 MHz
-18
25° C
-40° C
85° C
25
20
15
Gain (dB)
S21 (dB)
1.0
1.5
2.0
2.5
Frequency (GHz)
3.0
3.5
4.0
Figure 21. S22 vs Freq at 1840 MHz
30
10
5
30
36
25
32
20
28
15
24
10
20
Gain
Noise Figure
5
16
0
12
0
-5
8
-5
-10
4
-10
-15
0.5
1.0
1.5
2.0
2.5
Frequency (GHz)
3.0
3.5
4.0
Figure 22. S21 vs Freq at 1840 MHz
0.0
0.4
0.8
1.2
1.6 2.0
VcATT (V)
2.4
2.8
3.2
0
3.6
Figure 23. Gain & Noise Figure vs Vc_att at 1840 MHz at 25° C
36
30
36
25
32
25
32
20
28
20
28
15
24
15
24
10
20
Gain
Noise Figure
5
16
Gain (dB)
30
NF (dB)
Gain (dB)
0.5
10
5
20
Gain
Noise Figure
16
0
12
0
12
-5
8
-5
8
-10
4
-10
4
-15
0
3.6
0.0
0.4
0.8
1.2
1.6 2.0
VcATT (V)
NF (dB)
0.5
25° C
-40° C
85° C
-15
-35
2.4
2.8
3.2
Figure 24. Gain & Noise Figure vs Vc_att at 1840 MHz at -40° C
7
-9
-15
0.0
0.4
0.8
1.2
1.6 2.0
VcATT (V)
2.4
2.8
3.2
Figure 25. Gain & Noise Figure vs Vc_att at 1840 MHz at 85° C
0
3.6
NF (dB)
S11 (dB)
-10
50
25.0
48
24.5
46
24.0
44
OIP3 (dBm)
Gain (dB)
25.5
23.5
23.0
25° C
-40° C
85° C
22.0
21.5
34
32
8
10
12
14
16
18 20 22
Pout (dBm)
24
26
28
-20
30
Figure 26. Gain vs Pout at 1840 MHz
-16
-14
-12 -10 -8
Pin (dBm)
-6
-4
-2
0
-40
25° C
-40° C
85° C
-45
-45
-50
ACLR (dBc)
-50
ACLR (dBc)
-18
Figure 27. OIP3 vs Pin at 1840 MHz
-40
-55
-60
-65
-55
-60
-65
-70
-70
25° C
-40° C
85° C
-75
-75
10
11
12
13
14
15 16 17
Pout (dBm)
18
19
20
-80
21
Figure 28. ACLR (Dual Carrier Signal) vs Pout at 1840 MHz
25° C
-40° C
85° C
-45
Itotal (A)
-50
-55
-60
-65
-15 -12 -9 -6 -3 0
3 6 9 12 15 18 21 24 27
Gain (dB)
Figure 30. ACLR (Dual Carrier Signal) vs Gain at 1840 MHz
10 11 12 13 14 15 16 17 18 19 20 21 22
Pout (dBm)
Figure 29. ACLR (Single Carrier Signal) vs Pout at 1840 MHz
-40
ACLR (dBc)
25° C
-40° C
85° C
36
21.0
8
40
38
22.5
-70
42
0.43
0.42
0.41
0.40
0.39
0.38
0.37
0.36
0.35
0.34
0.33
25° C
-40° C
85° C
10
12
14
16
18
Pout (dBm)
20
Figure 31. Idd_total vs Pout (Dual Carrier Signal) at 1840 MHz
22
24
Typical 1960 MHz RF Performance Plots
0
0
-5
-3
-10
-6
-15
-9
S22 (dB)
-20
-25
-30
0.5
1.0
1.5
2.0
2.5
Frequency (GHz)
3.0
3.5
-24
4.0
Figure 32. S11 vs Freq at 1960 MHz
25° C
-40° C
85° C
25
Gain (dB)
15
10
5
1.0
1.5
2.0
2.5
Frequency (GHz)
3.0
3.5
4.0
30
36
25
32
20
28
15
24
10
20
Gain
Noise Figure
5
16
0
12
0
-5
8
-5
-10
4
-10
0.5
1.0
1.5
2.0
2.5
Frequency (GHz)
3.0
3.5
-15
4.0
Figure 34. S21 vs Freq at 1960 MHz
0.0
0.4
0.8
1.2
1.6 2.0
VcATT (V)
2.4
2.8
3.2
0
3.6
Figure 35. Gain & Noise Figure vs Vc_att at 1960 MHz at 25° C
36
30
36
25
32
25
32
20
28
20
28
15
24
15
24
10
20
Gain
Noise Figure
5
16
NF (dB)
30
Gain (dB)
S21 (dB)
20
Gain (dB)
0.5
Figure 33. S22 vs Freq at 1960 MHz
30
10
20
Gain
Noise Figure
5
16
0
12
0
12
-5
8
-5
8
-10
4
-10
4
-15
0
3.6
-15
0.0
0.4
0.8
1.2
1.6 2.0
VcATT (V)
2.4
2.8
3.2
Figure 36. Gain & Noise Figure vs Vc_att at 1960 MHz at -40° C
9
25° C
-40° C
85° C
-21
NF (dB)
-40
-15
-18
25° C
-40° C
85° C
-35
-12
0.0
0.4
0.8
1.2
1.6 2.0
VcATT (V)
2.4
2.8
3.2
Figure 37. Gain & Noise Figure vs Vc_att at 1960 MHz at 85° C
0
3.6
NF (dB)
S11 (dB)
Application circuit and build of material can be seen in Figure 70 and Table 3 respectively.
50
25.0
48
24.5
46
24.0
44
OIP3 (dBm)
Gain (dB)
25.5
23.5
23.0
22.5
25° C
-40° C
85° C
22.0
21.5
21.0
25° C
-40° C
85° C
32
8
10
12
14
16
18 20 22
Pout (dBm)
24
26
28
-20
30
-40
-40
-45
-45
-50
-50
-55
-60
-12
-10 -8
Pin (dBm)
-6
-4
-2
0
Figure 40. ACLR (Dual Carrier Signal) vs Pout at 1960 MHz
25° C
-40° C
85° C
Itotal (A)
-50
-55
-60
-65
-70
3 6 9 12 15 18 21 24 27
Gain (dB)
Figure 42. ACLR (Dual Carrier Signal) vs Gain at 1960 MHz
-60
-65
25° C
-40° C
85° C
10 11 12 13 14 15 16 17 18 19 20 21 22
Pout (dBm)
Figure 41. ACLR (Single Carrier Signal) vs Pout at 1960 MHz
-40
-45
-55
-80
10 11 12 13 14 15 16 17 18 19 20 21 22
Pout (dBm)
0
-14
-75
-75
-15 -12 -9 -6 -3
-16
-70
25° C
-40° C
85° C
-70
-75
-18
Figure 39. OIP3 vs Pin at 1960 MHz
ACLR (dBc)
ACLR (dBc)
38
34
-65
ACLR (dBc)
40
36
Figure 38. Gain vs Pout at 1960 MHz
10
42
0.43
0.42
0.41
0.40
0.39
0.38
0.37
0.36
0.35
0.34
0.33
25° C
-40° C
85° C
10
12
14
16
18
Pout (dBm)
20
Figure 43. Idd_total vs Pout (Dual Carrier Signal) at 1960 MHz
22
24
Typical 2140 MHz RF Performance Plots
Application circuit and build of material can be seen in Figure 70 and Table 3 respectively.
0
0
-5
-3
-6
-15
S22 (dB)
S11 (dB)
-10
-20
-25
1.0
1.5
2.0
2.5
Frequency (GHz)
3.0
3.5
4.0
Figure 44. S11 vs Freq at 2140 MHz
0.5
25° C
-40° C
85° C
25
15
S11 (dB)
S21 (dB)
20
10
5
0
-5
-10
0.5
1.0
1.5
2.0
2.5
Frequency (GHz)
3.0
3.5
4.0
Figure 46. S21 vs Freq at 2140 MHz
0
-5
-10
-15
-20
-25
-30
-35
-40
-45
-50
-3
20
-6
10
-9
0
S21 (dB)
30
-12
-15
0V
1V
2V
-21
0.5
1.0
1.5
2.0
2.5
Frequency (GHz)
1.5
2.0
2.5
Frequency (GHz)
3.0
3.5
4.0
0V
1V
2V
0.5
1.0
3.0
3.5
4.0
3V
3.5 V
1.5
2.0
2.5
Frequency (GHz)
Figure 47. S11 vs Freq at different Vc_att at 2140 MHz at 25° C
0
-18
1.0
Figure 45. S22 vs Freq at 2140 MHz
30
-24
25° C
-40° C
85° C
-24
0.5
S22 (dB)
-15
-21
-35
3.0
Figure 48. S22 vs Freq at different Vc_att at 2140 MHz at 25° C
11
-12
-18
25° C
-40° C
85° C
-30
-9
-20
-30
3V
3.5 V
3.5
-10
0V
1V
2V
-40
4.0
-50
0.5
1.0
1.5
3V
3.5 V
2.0
2.5
Frequency (GHz)
3.0
3.5
Figure 49. S21 vs Freq at different Vc_att at 2140 MHz at 25° C
4.0
20
32
20
32
15
28
15
28
10
24
10
24
5
20
Gain
Noise Figure
0
16
5
20
Gain
Noise Figure
0
16
-5
12
-5
12
-10
8
-10
8
-15
4
-15
4
-20
0
3.6
-20
0.0
0.4
0.8
1.2
1.6 2.0
VcATT (V)
2.4
2.8
3.2
0.0
Figure 50. Gain & Noise Figure vs Vc_att at 2140 MHz at 25° C
28
23.0
10
24
20
Gain
Noise Figure
16
Gain (dB)
23.5
15
NF (dB)
24.0
32
Gain (dB)
36
20
0
8
21.0
-15
4
20.5
0
3.6
20.0
0.8
1.2
1.6 2.0
VcATT (V)
2.4
2.8
3.2
Figure 52. Gain & Noise Figure vs Vc_att at 2140 MHz at 85° C
-40
48
-45
8
ACLR (dBc)
OIP3 (dBm)
42
40
38
10
12
14
16
18 20 22
Pout (dBm)
24
26
28
30
18
19
20
21
-55
-60
-65
25° C
-40° C
85° C
-70
-75
-20
-18
-16
-14
-12
Figure 54. OIP3 vs Pin at 2140 MHz
12
0
3.6
25° C
-40° C
85° C
-50
44
32
3.2
25° C
-40° C
85° C
46
34
2.8
Figure 53. Gain vs Pout at 2140 MHz
50
36
2.4
21.5
-10
0.4
1.6 2.0
VcATT (V)
22.0
12
0.0
1.2
22.5
-5
-20
0.8
Figure 51. Gain & Noise Figure vs Vc_att at 2140 MHz at -40° C
25
5
0.4
NF (dB)
36
Gain (dB)
25
NF (dB)
36
Gain (dB)
25
-10 -8
Pin (dBm)
-6
-4
-2
0
10
11
12
13
14
15 16 17
Pout (dBm)
Figure 55. ACLR (Dual Carrier Signal) vs Pout at 2140 MHz
-40
-40
-45
25° C
-40° C
85° C
-45
-50
-55
ACLR (dBc)
ACLR (dBc)
-50
-60
-65
-60
-70
25° C
-40° C
85° C
-75
-65
-80
10 11
12 13
14 15 16 17 18
Pout (dBm)
19 20
21 22
Figure 56. ACLR (Single Carrier Signal) vs Pout at 2140 MHz
0.41
0.40
Itotal (A)
0.39
0.38
0.37
25° C
-40° C
85° C
0.36
0.35
0.34
0.33
10
12
14
16
18
Pout (dBm)
20
Figure 58. Idd_total vs Pout (Dual Carrier Signal) at 2140 MHz
-70
-15 -12 -9 -6 -3
0
3 6 9
Gain (dB)
12 15 18 21 24
Figure 57. ACLR (Dual Carrier Signal) vs Gain at 2140 MHz
0.42
13
-55
22
24
Typical 2650 MHz RF Performance Plots
0
0
-5
-5
-10
-10
S22 (dB)
-15
-20
-25
-15
-20
-25
25° C
-40° C
85° C
-30
-35
-35
1.0
1.5
2.0
2.5
Frequency (GHz)
3.0
3.5
4.0
Figure 59. S11/S22/S21 vs Freq at 2650 MHz at 25° C
0.5
1.0
1.5
2.0
2.5
Frequency (GHz)
3.0
3.5
4.0
Figure 60. S11/S22/S21 vs Freq at 2650 MHz at -40° C
30
25
36
25
20
32
20
15
28
10
24
Gain (dB)
15
10
5
0
25° C
-40° C
85° C
-5
-10
0.5
1.0
1.5
2.0
2.5
Frequency (GHz)
3.0
3.5
4.0
Figure 61. S11/S22/S21 vs Freq at 2650 MHz at 85° C
5
20
Gain
Noise Figure
0
16
-5
12
-10
8
-15
4
-20
0.0
0.4
0.8
1.2
1.6 2.0
VcATT (V)
2.4
2.8
3.2
0
3.6
Figure 62. Gain & Noise Figure vs Vc_att at 2650 MHz at 25° C
36
20
32
20
32
15
28
15
28
10
24
10
24
20
Gain
Noise Figure
0
16
Gain (dB)
25
NF (dB)
36
Gain (dB)
25
5
5
20
Gain
Noise Figure
0
16
-5
12
-5
12
-10
8
-10
8
-15
4
-15
4
-20
0
3.6
-20
0.0
0.4
0.8
1.2
1.6 2.0
VcATT (V)
2.4
2.8
3.2
Figure 63. Gain & Noise Figure vs Vc_att at 2650MHz at -40°C
14
NF (dB)
0.5
S21 (dB)
25° C
-40° C
85° C
-30
0.0
0.4
0.8
1.2
1.6 2.0
VcATT (V)
2.4
2.8
3.2
Figure 64. Gain & Noise Figure vs Vc_att at 2650 MHz at 85° C
0
3.6
NF (dB)
S11 (dB)
Application circuit and build of material can be seen in Figure 70 and Table 3 respectively.
22.5
50
22.0
48
46
OIP3 (dBm)
Gain (dB)
21.5
21.0
20.5
25° C
-40° C
85° C
19.5
8
10
12
25° C
-40° C
85° C
34
14
16
18 20 22
Pout (dBm)
24
26
28
32
30
Figure 65. Gain vs Pout at 2650 MHz
-20
-40
-40
-45
-45
-16
-14
-12
-10 -8
Pin (dBm)
-6
-4
-2
0
-50
ACLR (dBc)
-55
-60
-65
-55
-60
-65
-70
25° C
-40° C
85° C
-70
25° C
-40° C
85° C
-75
-80
-75
10
11
12
13
14
15 16 17
Pout (dBm)
18
19
20
10 11 12 13 14 15 16 17 18 19 20 21 22
Pout (dBm)
21
Figure 67. ACLR (Dual Carrier Signal) vs Pout at 2650 MHz
Figure 68. ACLR (Single Carrier Signal) vs Pout at 2650 MHz
-40
0.41
25° C
-40° C
85° C
-45
-50
0.40
0.39
0.38
Itotal(A)
-55
-60
0.37
0.36
25° C
-40° C
85° C
0.35
-65
0.34
-70
-75
-18
Figure 66. OIP3 vs Pin at 2650 MHz
-50
ACLR (dBc)
40
36
19.0
ACLR (dBc)
42
38
20.0
0.33
-15 -12 -9 -6 -3
0
3 6 9
Gain (dB)
12 15 18 21 24
Figure 69. ACLR (Dual Carrier Signal) vs Gain at 2650 MHz
15
44
0.32
10
12
14
16
Pout (dBm)
18
20
Figure 70. Idd_total vs Pout (Dual Carrier Signal) at 2650 MHz
22
Application Circuit Description and Layout
Vdd1 = +5 V
Vdd2 = +5 V
C2
L1 2.4 pF
1.9 nH
C1
0.1 PF
C15
7.5 pF
L2
5.6 nH
~78 mA
RFin
C16
0.1 PF
C17
2.2 PF
~270 mA
C19
0.3 pF
C18
1.0 pF
C3
7.5pF
C14 RFout
L3
L4
1.0 nH
1.9 nH
C4
7.5pF
7.5 pF
C13
2.7 pF
C12 0.1 PF
C5
7.5 pF
C7
7.5 pF
C11
C9
7.5 pF
7.5 pF
0 mA
0.1 mA
40 mA
0.1 mA
Vc_att
Vc1 Vc2
Vddbias = +5 V
2.4 V 4.0 V
C17
C16
C15
L2
C1
C2
L1
RFIN
RFOUT
8 7 6 5 4 3 2 1
C14
1 2 3 4 5 6 7 8
L3 C13 L4
C4
C11
C12
C5
C6
C9
C10
C7
C8
ALM-81224
VdBIAS
VC2
VC1
VcATT
R1
GND
C3
GND
VDD2
VDD2S
VDD1
VDD1S
Figure 71. Application circuit tuned for 2140 MHz operation using 0402 size external SMT components
RO4350
DK 3.48
H 10 mil
W 0.57 mm
G 0.59 mm
JUNE '10
Figure 72. Demo board diagram of application circuit for 2140 MHz
Notes:
1. The VGA is capable of wideband operation from 1450-2750 MHz. Optimum linearity and Gain at different frequencies can be tuned by changing
the values of L3, L4, C13, C19 at the output match and L1, L2 at the supply lines. Table 3 below shows the optimum linearity tuning components.
2. Optimum linearity is achieved by varying Vc1 and Vc2. Typical current is as shown in the figure above.
3. If lower output power for the same linearity is desired, then the bias currents Idd1 and Idd2 can be reduced by reducing Vc1 and Vc2 respectively.
16
Recommended Bill of Materials
Table 3. Component Values
Description
Circuit Symbol
Freq (MHz)
Size
Value
Part Number
Manufacturer
C1, C12, C16
All
0402
0.1 PF
GRM155F51C104ZA01E
Murata
C2
All
0402
2.4 pF
GJM1555C1H2R4CB01
Murata
C3*, C4, C5, C7, C9,
C11, C14*, C15
All
0402
7.5 pF
GJM1555C1H7R5DB01
Murata
C6 , C8, C10
All
0402
NOT USED
C13
1485
0402
3.3 pF
GJM1555C1H3R3CB01
Murata
1840
0402
2.4 pF
GJM1555C1H2R4CB01
Murata
1960 / 2140
0402
2.7 pF
GJM1555C1H2R7CB01
Murata
2650
0402
2.0 pF
GJM1555C1H2R0CB01
Murata
C17
All
0603
2.2 PF
GRM21BR61A225KA01L
Murata
C18
All
0402
1.0 pF
GJM1555C1H1R0CB01
Murata
C19
1485 / 1960 / 2140
0402
0.3 pF
GJM1555C1HR30BB
Murata
1840 / 2650
0402
NOT USED
1485
0402
9.0 nH
0402CS-9N0X_LU
Coilcraft
1840 / 1960
0402
5.6 nH
0402CS-5N6X_LU
Coilcraft
2140
0402
1.9 nH
0402CS-1N9X_LU
Coilcraft
L1
2650
0402
1.0 nH
0402CS-1N0X_LU
Coilcraft
L2
1485 / 1840 / 1960 /
2140 / 2650
0402
5.6 nH
0402CS-5N6X_LU
Coilcraft
L3
1485
0402
2.2 nH
0402CS-2N2X_LU
Coilcraft
1840
0402
1.9 nH
0402CS-1N9X_LU
Coilcraft
1960 / 2140
0402
1.0 nH
0402CS-1N0X_LU
Coilcraft
2650
0402
0 ohm
RMC1/16S-JPTH
Kamaya
1485
0402
2.2 nH
0402CS-2N2X_LU
Coilcraft
1840 /1960 /2140
0402
1.9 nH
0402CS-1N9X_LU
Coilcraft
2650
0402
1.0 nH
0402CS-1N0X_LU
Coilcraft
L4
Note: * Blocking capacitor not required in actual application circuit.
17
Scattering Parameters Measurement Schematic
Vdd1 = +5 V
Vdd2 = +5 V
C2
2.4 pF
L1
C1
0.1 PF
C15
7.5 pF
L2
Reference
Plane
C16
0.1 PF
C17
2.2 PF
Reference
Plane
RFout
RFin
C4
7.5pF
C12 0.1 PF
C5
7.5 pF
C7
7.5 pF
Vc_att
C9
7.5 pF
Vc1 Vc2
C11
7.5 pF
Vddbias = +5 V
Figure 73. Scattering Parameters Measurement Schematic
Table 4. Scattering Parameters
Freq
(MHz)
L1
(nH)
L2
(nH)
S11
(dB)
S11
(ang)
S21
(dB)
S21
(ang)
S12
(dB)
S12
(ang)
S22
(dB)
S22
(ang)
1485
1840 / 1960
2140
2650
9.0
5.6
1.9
1.0
5.6
5.6
5.6
5.6
-10.72
-12.94
-11.37
-8.42
71.23
163.82
158.91
141.80
25.02
23.51
22.40
16.59
27.8
-97.11
-167.51
88.91
-59.77
-51.85
-47.88
-47.03
-92.74
160.82
108.65
30.74
-4.22
-8.02
-8.73
-3.63
73.69
156.35
-177.21
178.28
Vdd1 = +5 V
50 ohm
50 ohm
Bias
Tee
Bias
Tee
Vdd2 = +5 V
Reference
Plane
Reference
Plane
RFout
RFin
C4
7.5pF
C12 0.1 PF
C5
7.5 pF
C7
7.5 pF
Vc_att
C9
7.5 pF
Vc1 Vc2
C11
7.5 pF
Vddbias = +5 V
Figure 74. Broadband Scattering Parameters Measurement Schematic
18
Broadband Scattering Parameters
TA = 25° C, Vdd = 5 V @ 390 mA, Vc_att = 0 V.
Table 5. Broadband Scattering Parameters
Freq
(GHz)
S11
(dB)
S11
(ang)
S21
(dB)
S21
(ang)
S12
(dB)
S12
(ang)
S22
(dB)
S22
(ang)
K-Factor
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5
10.0
10.5
11.0
11.5
12.0
12.5
13.0
13.5
14.0
14.5
15.0
15.5
16.0
16.5
17.0
17.5
18.0
18.5
19.0
19.5
20.0
-0.15
-0.24
-0.24
-0.16
-0.18
-0.17
-0.22
-0.27
-0.48
-1.23
-6.72
-14.26
-10.31
-7.60
-7.46
-6.98
-6.08
-6.96
-7.40
-6.94
-5.34
-4.30
-3.82
-3.95
-3.65
-5.16
-6.01
-5.32
-4.68
-4.06
-3.75
-3.61
-3.78
-3.93
-4.32
-4.60
-4.61
-4.25
-3.02
-2.11
-2.00
-2.23
-2.42
-2.62
-2.93
-3.18
-3.19
-3.53
174.74
169.59
164.64
159.79
153.92
147.90
140.57
133.45
123.78
112.24
13.51
58.83
179.05
135.55
126.54
113.14
106.20
92.70
91.38
86.79
74.29
59.78
46.52
39.37
28.51
14.89
10.44
-1.81
-13.51
-23.94
-32.21
-40.81
-50.19
-63.35
-77.36
-88.67
-95.93
-100.75
-107.48
-122.62
-138.61
-153.52
-169.48
172.53
154.94
137.14
120.91
102.59
-19.59
-14.81
-11.82
-9.74
-8.86
-9.91
-10.88
-4.71
3.73
10.87
23.06
13.24
17.86
15.86
10.51
6.96
1.50
0.30
-2.15
-4.01
-7.97
-6.18
-4.76
-3.62
-4.87
-21.22
-31.11
-18.20
-25.98
-27.19
-26.26
-27.08
-31.32
-34.03
-31.37
-24.42
-36.68
-33.67
-29.12
-27.58
-27.70
-28.75
-32.44
-35.14
-35.55
-36.77
-38.03
-36.22
-84.29
-116.74
-134.91
-151.46
-169.28
179.40
-154.86
-132.01
-138.94
-173.28
26.34
-132.55
172.41
46.95
-36.77
-123.20
-167.60
129.20
74.05
16.42
-45.83
-50.70
152.32
78.93
-34.66
134.88
-81.49
84.23
29.14
-5.31
-48.36
-100.85
-148.93
177.13
172.05
101.35
65.06
73.09
36.49
-13.02
-65.24
-117.11
-160.80
176.56
112.11
31.96
-34.36
-87.05
-50.35
-60.20
-53.30
-60.58
-58.53
-58.85
-59.67
-52.02
-47.30
-41.80
-35.76
-37.52
-44.72
-48.79
-57.61
-64.13
-59.89
-58.49
-56.22
-54.68
-52.09
-49.44
-42.01
-39.08
-39.95
-57.29
-49.38
-46.61
-49.48
-44.98
-40.95
-37.96
-35.15
-33.61
-33.34
-32.14
-39.12
-40.46
-32.63
-31.00
-30.69
-32.05
-36.31
-39.22
-39.84
-42.48
-38.82
-34.51
-124.56
-105.89
91.20
76.12
-129.95
176.10
107.05
118.15
112.53
73.25
-4.67
144.22
39.03
8.74
-33.76
-11.53
68.31
67.22
94.83
74.14
38.20
66.89
-78.14
-148.01
103.79
-158.37
38.02
-124.71
168.14
91.97
36.99
-14.04
-80.36
-138.02
164.57
122.35
37.76
140.86
71.82
15.73
-35.48
-88.63
-126.96
-147.58
128.73
36.33
-30.65
-82.87
-2.48
-2.43
-2.47
-2.56
-2.69
-2.89
-3.35
-4.25
-5.85
-7.28
-2.49
-2.08
-10.68
-2.91
-1.62
-1.34
-1.95
-1.66
-2.20
-2.87
-3.98
-9.43
-5.67
-5.62
-3.48
-3.89
-5.57
-6.41
-5.92
-5.91
-6.27
-7.62
-9.59
-10.90
-21.71
-10.74
-8.32
-8.03
-9.38
-12.03
-11.14
-11.94
-19.64
-12.25
-15.75
-11.59
-9.27
-9.34
172.57
172.90
170.55
168.24
165.19
161.99
157.61
154.89
154.28
171.62
135.98
170.71
153.04
174.31
155.76
143.37
134.83
124.09
110.59
96.93
82.92
85.84
103.73
86.07
45.97
11.92
-22.18
-55.46
-95.79
-125.75
-149.16
-169.54
175.35
156.01
80.39
-129.03
171.47
136.71
120.68
130.92
153.69
146.97
176.08
-142.03
-150.92
-162.42
162.78
128.95
1.33
1.32
1.30
1.32
1.35
1.37
1.45
1.54
1.64
1.56
1.03
1.19
2.99
1.35
1.19
1.16
1.25
1.21
1.29
1.39
1.58
2.95
1.89
1.89
1.46
1.57
1.90
2.09
1.98
1.97
2.06
2.40
3.00
3.50
11.97
3.42
2.60
2.52
2.93
3.91
3.58
3.95
9.49
4.08
6.12
3.79
2.90
2.93
19
CCDF of Dual Carrier Signal [1]
Figure 75. CCDF
Note:
1. W-CDMA modulation with 7.5 dB crest factor.
Package Dimensions
PIN #1 IDENTIFICATION
CHAMFER 0.30 X 45°
1.00 ±0.10
6.00 ±0.10
3.80
PIN 1
0.30
0.80 Bsc
AVAGO
81224
WWYY
XXXX
6.00 ±0.10
3.8
0.30
0.10
0.60
TOP VIEW
Dimensions are in millimeters.
20
0.30
SIDE VIEW
0.10
BOTTOM VIEW
Land Pattern and Stencil Opening Dimensions
5.78
4.28
5.80
4.30
0.80
0.80
3.80
1.60
3.40
5.80
3.80
4.28
4.30
5.78
1.60
0.30
0.30
0.28
0.28
LAND PATTERN
STENCIL OPENING
5.80
0.80
5.80
3.80
3.80
4.30
0.30
0.30
COMBINATION OF LAND PATTERN & STENCIL OPENING
Notes:
1. All dimensions are in MM
2. 0.1 mm or 4 mil stencil thickness is recommended
Device Orientation
REEL
CARRIER
TAPE
USER
FEED
DIRECTION
21
COVER TAPE
AVAGO
81224
WWYY
XXXX
AVAGO
81224
WWYY
XXXX
AVAGO
81224
WWYY
XXXX
AVAGO
81224
WWYY
XXXX
Tape Dimensions
Dimensions are in millimeters.
Part Number Ordering Information
Part Number
No. of Devices
Container
ALM-81224 -BLKG
100
Antistatic Bag
ALM-81224-TR1G
3000
13” Tape/Reel
22
Reel Dimension – 13” Reel 12 mm Width
11
12 1
2
3
4
0 2
10
9
7
6
5
DATE CODE
12MM
8
EMBOSSED LETTERING
16.0 mm HEIGHT x MIN. 0.4 mm THICK.
Ø329.0±1.0
HUB
Ø100.0±0.5
6
PS
0 2
1
1112 2
3
10
4
9
8 7 6 5
MP
N
CPN
EMBOSSED LETTERING
7.5 mm HEIGHT
EMBOSSED LETTERING
7.5 mm HEIGHT
Ø16.0
ESD LOGO
N.)
(MI
11.9-15.4**
Detail "X"
12.4 +2.0*
-0.0
6
PS
RECYCLE LOGO
SEE DETAIL "X"
Ø100.0±0.5
Ø329.0±1.0
6
PS
SLOT
5.0±0.5 (3x)
R19.0±0.5
Ø12.3±0.5(3x)
BACK VIEW
For product information and a complete list of distributors, please go to our web site:
20.2 (MIN.)
1.5
EMBOSSED LINE (2x)
89.0 mm LENGTH LINES 147.0 mm
AWAY FROM CENTER POINT
FRONT VIEW
Ø13.0 +0.5
-0.2
18.4 MAX.*
www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2011 Avago Technologies. All rights reserved.
AV02-3150EN - September 19, 2011
Similar pages