IRF IR2127S Current sensing single channel driver Datasheet

Data Sheet No. PD60143-O
IR2127(S) / IR2128(S)
IR21271(S) & (PbF)
CURRENT SENSING SINGLE CHANNEL DRIVER
Features
• Floating channel designed for bootstrap operation
•
Fully operational to +600V
Tolerant to negative transient voltage dV/dt immune
Application- specific gate drive range:
Motor Drive: 12 to 20V (IR2127/IR2128)
Automotive: 9 to 20V (IR21271)
Undervoltage lockout
3.3V, 5V and 15V input logic compatible
FAULT lead indicates shutdown has occured
Output in phase with input (IR2127/IR21271)
Output out of phase with input (IR2128)
•
•
•
•
•
• Avaliable in Lead-Free
Description
The IR2127/IR2128/IR21271(S) is a high voltage, high
speed power MOSFET and IGBT driver. Proprietary
HVIC and latch immune CMOS technologies enable
ruggedized monolithic construction. The logic input is
compatible with standard CMOS or LSTTL outputs,
down to 3.3V. The protection circuity detects over-current in the driven power transistor and terminates the
gate drive voltage. An open drain FAULT signal is provided to indicate that an over-current shutdown has occurred. The output driver features a high pulse current
buffer stage designed for minimum cross-conduction.
The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side or low
side configuration which operates up to 600 volts.
Product Summary
VOFFSET
600V max.
IO+/-
200 mA / 420 mA
VOUT
12 - 20V
(IR2127/IR2128)
9 - 20V
(IR21271)
VCSth
250 mV or 1.8V
ton/off (typ.)
200 & 150 ns
Packages
8-Lead PDIP
8-Lead SOIC
Typical Connection
V CC
IN
FAULT
V CC
VB
IN
HO
FAULT
CS
COM
VS
IR2127/IR21271
V CC
IN
(Refer to Lead Assignments for correct pin
configuration). This/These diagram(s) show
electrical connections only. Please refer to
our Application Notes and DesignTips for
proper circuit board layout.
www.irf.com
FAULT
V CC
VB
IN
HO
FAULT
CS
COM
VS
IR2128
1
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
Absolute Maximum Ratings
Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured
under board mounted and still air conditions.
Symbol
Definition
Min.
Max.
Units
VB
High Side Floating Supply Voltage
-0.3
625
VS
High Side Floating Offset Voltage
VB - 25
VB + 0.3
VHO
High Side Floating Output Voltage
VS - 0.3
VB + 0.3
VCC
Logic Supply Voltage
-0.3
25
VIN
Logic Input Voltage
-0.3
VCC + 0.3
VFLT
FAULT Output Voltage
-0.3
VCC + 0.3
VCS
Current Sense Voltage
VS - 0.3
VB + 0.3
—
50
dVs/dt
Allowable Offset Supply Voltage Transient
PD
Package Power Dissipation @ TA ≤ +25°C
RthJA
Thermal Resistance, Junction to Ambient
(8 Lead DIP)
—
1.0
(8 Lead SOIC)
—
0.625
(8 Lead DIP)
—
125
(8 Lead SOIC)
—
200
TJ
Junction Temperature
—
150
TS
Storage Temperature
-55
150
TL
Lead Temperature (Soldering, 10 seconds)
—
300
V
V/ns
W
°C/W
°C
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the
recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential.
Symbol
VB
Definition
High Side Floating Supply Voltage
Min.
Max.
(IR2127/IR2128)
VS + 12
VS + 20
(IR21271)
VS + 9
VS + 20
VS
High Side Floating Offset Voltage
Note 1
600
VHO
High Side Floating Output Voltage
VS
VB
VCC
Logic Supply Voltage
10
20
VIN
Logic Input Voltage
0
VCC
VFLT
FAULT Output Voltage
0
VCC
VCS
Current Sense Signal Voltage
VS
VS + 5
Ambient Temperature
-40
125
TA
Units
V
°C
Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip
DT97-3 for more details).
2
www.irf.com
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15V, CL = 1000 pF and TA = 25°C unless otherwise specified. The dynamic electrical characteristics
are measured using the test circuit shown in Figure 3.
Symbol
Definition
ton
Turn-On Propagation Delay
toff
tr
Min.
Typ. Max. Units Test Conditions
—
200
250
VS = 0V
Turn-Off Propagation Delay
—
Turn-On Rise Time
—
150
200
VS = 600V
80
130
tf
Turn-Off Fall Time
—
40
65
tbl
Start-Up Blanking Time
500
700
900
tcs
CS Shutdown Propagation Delay
—
240
360
tflt
CS to FAULT Pull-Up Propagation Delay
—
340
510
ns
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15V and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to
COM. The VO and IO parameters are referenced to V S.
Symbol
VIH
VIL
Definition
(IR2127/IR21271)
Logic “0” Input Voltage
(IR2128)
Logic “0” Input Voltage
(IR2127/IR21271)
Logic “1” Input Voltage
VCSTH+
Min.
Logic “1” Input Voltage
(IR2128)
CS Input Positive
(IR2127/IR2128)
Going Threshold
(IR21271)
3.0
Typ. Max. Units Test Conditions
—
—
V
—
180
—
VCC = 10V to 20V
0.8
250
320
mV
—
1.8
—
V
VOH
High Level Output Voltage, VBIAS - VO
—
—
100
VOL
Low Level Output Voltage, V O
—
—
100
IO = 0A
ILK
Offset Supply Leakage Current
—
—
50
VB = VS = 600V
mV
IO = 0A
IQBS
Quiescent VBS Supply Current
—
200
400
IQCC
Quiescent VCC Supply Current
—
60
120
IIN+
Logic “1” Input Bias Current
—
7.0
15
IIN-
Logic “0” Input Bias Current
—
—
1.0
VIN = 0V
ICS+
“High” CS Bias Current
—
—
1.0
VCS = 3V
ICS-
“High” CS Bias Current
VCS = 0V
—
—
1.0
VBSUV+
VBS Supply Undervoltage
Positive Going Threshold
(IR2127/IR2128)
(IR21271)
8.8
6.3
10.3
7.2
11.8
8.2
VBSUV-
VBS Supply Undervoltage
(IR2127/IR2128)
Negative Going Threshold
(IR21271)
7.5
6.0
9.0
6.8
10.6
7.7
IO+
Output High Short Circuit Pulsed Current
200
250
—
IO-
Output Low Short Circuit Pulsed Current
420
500
—
—
125
—
VIN = 0V or 5V
µA
V
mA
Ron, FLT
FAULT - Low on Resistance
www.irf.com
VIN = 5V
VO = 0V, VIN = 5V
PW ≤ 10 µs
VO = 15V, VIN = 0V
PW ≤ 10 µs
Ω
3
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
Functional Block Diagram IR2127/IR21271
VB
VCC
UV
DETECT
HV
LEVEL
SHIFT
UP
SHIFTERS
PULSE
FILTER
R
Q
BUFFER
R
S
HO
IN
PULSE
GEN
VB
VS
DELAY
PULSE
GEN
FAULT
Q
PULSE
FILTER
R
Q
DOWN
SHIFTER
R
S
+
CS
S
COM
Functional Block Diagram IR2128
VB
VCC
UV
DETECT
5V
UP
SHIFTERS
HV
LEVEL
SHIFT
PULSE
FILTER
R
Q
BUFFER
R
S
HO
IN
PULSE
GEN
VB
VS
DELAY
PULSE
GEN
FAULT
Q
R
S
PULSE
FILTER
DOWN
SHIFTER
Q
R
S
+
CS
COM
4
www.irf.com
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
Lead Definitions
Symbol
VCC
IN
FAULT
COM
VB
HO
VS
CS
Description
Logic and gate drive supply
Logic input for gate driver output (HO), in phase with HO (IR2127/IR21271)
out of phase with HO (IR2128)
Indicates over-current shutdown has occurred, negative logic
Logic ground
High side floating supply
High side gate drive output
High side floating supply return
Current sense input to current sense comparator
Lead Assignments
www.irf.com
8 Lead PDIP
8 Lead SOIC
IR2127/IR21271
IR2127S/IR21271S
8 Lead PDIP
8 Lead SOIC
IR2128
IR2128S
5
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
IN
(IR2128)
IN
(IR2128)
50%
50%
IN
(IR2127/
IR21271)
50%
50%
IN
CS
(IR2127/ t
IR21271) on
tr
toff
90%
tf
90%
FAULT
HO
10%
10%
Figure 2. Switching Time Waveform Definition
HO
Figure 1. Input/Output Timing Diagram
IN
(IR2128)
50%
50%
IN
tbl
(IR2127/
IR21271)
CS
90%
HO
FAULT
Figure 3. Start-up Blanking Time Waveform Definitions
VCSTH
VCSTH
CS
CS
tcs
HO
tflt
90%
Figure 4. CS Shutdown Waveform Definitions
6
FAULT
90%
Figure 5. CS to FAULT Waveform Definitions
www.irf.com
500
500
400
400
300
Max.
200
100
Typ
0
-50 -25
0
25
50
75
100
125
Turn-On Delay Time (ns)
Turn-On Delay Time (ns)
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
M ax.
300
200
0
10
12
14
16
18
20
Tem pe rature o(°C)
Temperature ( C)
VBIAS Supply Voltage (V)
Figure 10A Turn-On Time vs. Temperature
Figure 10B Turn-On Time vs. Supply Voltage
500
350
300
400
250
200
150
100
50
0
0
2
4
6
8
10 12 14 16 18 20
Turn-Off Delay Time (ns)
Turn-On Delay Time (ns)
T yp .
100
300
Max
200
100
Typ.
0
-50
-25
0
25
50
75
Tem perature (°C)
100
125
Temperature ( o C)
Input Voltage (V)
Figure 10C Turn-On Time vs. Input Voltage
Figure 11A Turn-Off Time vs. Temperature
400
500
Turn-Off Delay Time (ns)
Turn-Off Delay Time (ns)
350
400
300
Max.
200
100
Typ.
0
10
12
14
16
18
VBIAS Supply Voltage (V)
Figure 11B Turn-Off Time vs. Supply Voltage
www.irf.com
20
300
250
Ma x .
200
150
Typ .
100
50
0
0
2
4
6
8
10 12 14
Input V oltage (V )
16
18
20
Figure 11C Turn-OffTime vs. Input Voltage
7
500
500
400
400
Turn-On Rise Time (ns)
Turn-On Rise Time (ns)
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
300
200
Max
.
Typ
100
0
-50
-25
0
25
50
75
100
300
Max.
200
Typ.
100
0
10
125
Temperature
( o C)(°C)
Tem perature
Figure 12A Turn-On Rise Time vs. Temperature
14
16
18
200
Turn-Off Fall Time (ns)
150
100
Max.
50
Typ
0
.
-50
-25
0
25
50
75
100
125
150
100
Max.
Typ.
50
0
10
Te mperature (°C)
12
14
16
18
VBIAS Supply Voltage (V)
Figure 13A Turn-Off Fall Time vs. Temperature
Figure 13B Turn-Off Fall Time vs. Voltage
Start-Up Blanking Time (ns)
1600
1400
1200
1000
Max.
800
600
Typ
400
200
0
-50
Min.
-25
0
25
50
Temperature ( o C)
75
100
125
Figure 14A Start-Up Blanking Time vs. Temperature
Start-Up
Blanking
time (ns)
Start-Up
Blanking
Time (ns )
Temperature ( o C)
8
20
Figure 12B Turn-On Rise Time vs. Supply Voltage
200
Turn-Off Fall Time (ns)
12
VBIAS Supply Voltage (V)
20
1600
1400
1200
Max.
1000
Typ.
800
600
400
Min.
200
0
10
12
14
16
18
20
Vcc Supply Voltage (V)
Figure 14B Start-Up Blanking Time
vs Voltage
www.irf.com
500
400
300
M ax
.
Typ.
200
100
0
-50
-25
0
25
50
75
100
125
Temperature ( o C)
500
CS Shutdown Propagation Delay (ns)
CS Shutdown Propagation Delay (ns)
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
Figure 15A CS Shutdown Propagation Delay
vs. Temperature
M AX.
400
300
100
0
10
16
18
20
Figure 15B CS Shutdown Propagation Delay
vs. Voltage
CS to FAULT Pull-Up
Propagation Delay Time (ns)
Time (ns)
CS to FAULT Pull-Up
Propagation
Delay
Time (ns)
Delay Tim
e (ns)
14
800
700
600
Max.
400
300
12
Supply
Voltage(V)
VccVcc
Supply
Voltage
(V)
800
500
Typ.
200
Typ
200
100
0
-50
-25
0
25
50
75
100
700
Max.
600
500
Typ
400
300
200
100
0
125
12
14
16
VCC Supply Voltage (V)
Figure 16A CS to FAULT Pull-Up Propagation Delay
vs. Temperature
Figure 16B CS to FAULT Pull-Up Propagation Delay
vs. Voltage
10
8
8
7
7
6
6
Input Voltage (V)
Input Voltage (V)
Temperature ( o C)
5
4
Min.
3
2
1
0
-50
18
20
5
4
Min.
3
2
1
0
-25
0
25
50
75
100
125
Temperature ( o C)
12
14
16
VCC
VCCSupply
SupplyVoltage
Voltage(V)
(V)
Figure 17A Logic “1” Input Voltage (IR2127)
Logic “0” Input Voltage (IR2128)
vs Temperature
Figure 17B Logic “1” Input Voltage (IR2127)
Logic “0” Input Voltage (IR2128)
vs Voltage
www.irf.com
10
18
20
9
4
4
3.2
3.2
Input Voltage (V)
Input Voltage (V)
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
2.4
1.6
0.8
2.4
1.6
M ax
0.8
0
0
-50
-25
0
25
50
Temperature ( o C)
75
100
10
125
400
Max.
Typ.
100
Min.
0
-50
-25
0
25
50
75
100
125
Temperature ( o C)
Figure 19A CS Input Positive Going Voltage
vs Temperature (IR2127/IR2128)
0.8
0.6
0.4
Max.
0
-50
-25
0
25
50
75
100
125
Figure 20A High Level Output vs Temperature
High Level Output Voltage (V)
High Level Output Voltage (V)
20
500
400
Max.
300
200
Typ.
100
Min.
0
10
12
14
16
18
20
Supply
Voltage
Vcc Vcc
Supply
Voltage
(V) (V)
1
Temperature ( o C)
10
18
Figure 19B CS Input Positive Going Voltage
vs Voltage (IR2127/IR2128)
1
0.2
16
Figure 18B Logic “0” Input Voltage (IR2127)
Logic “1” Input Voltage (IR2128)
vs Voltage
CS Input Positive Going Voltage (mV)
CS Input Positive Going Voltage m(V)
500
200
14
VCC Supply Voltage (V)
Figure 18A Logic “0” Input Voltage (IR2127)
Logic “1” Input Voltage (IR2128)
vs Temperature
300
12
0.8
0.6
0.4
Max.
0.2
0
10
12
14
16
18
20
Vcc Supply Voltage (V)
Figure 20B High Level Output vs Voltage
www.irf.com
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
1
Low Level Output Voltage (V)
Low Level Output Voltage (V)
1
0.8
0.6
0.4
Max.
0.2
0
-50
-25
0
25
50
75
100
125
0.8
0.6
0.4
Max.
0.2
0
10
12
14
16
18
Vcc Supply Voltage (V)
Figure 21A Low Level Output vs Temperature
Figure 21B Low Level Output vs Voltage
500
400
300
200
100
Max.
0
-50
-25
0
25
50
75
100
125
Temperature (o C)
400
300
200
100
Max.
0
0
700
VBS Supply Current (uA)
800
700
600
500
M ax.
300
200
Typ.
100
0
-50
-25
0
25
50
75
100
200
300
400
500
125
600
500
M ax.
400
300
Typ.
200
100
0
10
12
14
16
18
Temperature (o C)
Vcc Supply Voltage (V)
Figure 23A VBS Supply Current
vs Temperature
Figure 23B VBS Supply Current
vs Voltage
www.irf.com
600
VB Boost Voltage (V)
800
400
100
Figure 22B Offset Supply Current
vs Voltage
Figure 22A Offset Supply Current
vs Temperature
VBS Supply Current (uA)
20
500
Offset Supply Leakage Current (uA)
Offset Supply Leakage Current (uA)
Temperature ( oC)
20
11
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
300
Vcc Supply Current (uA)
Vcc Supply Current (uA)
300
250
200
Max
.
150
Typ
.
100
50
-25
0
25
50
75
100
Max
.
100
50
Typ
0
12
14
16
18
Temperature ( oC)
Vcc Supply Voltage (V)
Figure 24A Vcc Supply Current
vs Temperature
Figure 24B Vcc Supply Current
vs Voltage
20
40
35
30
25
20
15
Max.
10
5
Typ
0
-50
-25
0
25
50
75
100
125
Logic “1” Input Bias Current (uA)
Logic “1” Input Bias Current (uA)
150
125
40
35
30
25
20
Max.
15
10
Typ
5
0
10
12
14
16
18
Temperature ( o C)
Vcc Supply Voltage (V)
Figure 25A Logic “1” Input Current
vs Temperature
Figure 25B Logic “1” Input Current
vs Voltage
5
5
4
4
3
2
Max.
1
0
-50
-25
0
25
50
75
100
125
Logic “0” Input Current (uA)
Logic “0” Input Current (uA)
200
10
0
-50
12
250
20
3
2
Max.
1
0
10
12
14
16
18
Temperature ( oC)
Vcc Supply Voltage (V)
Figure 26A Logic “0” Input Current
vs Temperature
Figure 26B Logic “0” Input Current
vs Voltage
20
www.irf.com
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
5
“High” CS Bias Current (uA)
“High” CS Bias Current (uA)
5
4
3
2
Max.
1
0
-50
-25
0
25
50
75
100
Max.
1
0
10
12
14
16
18
Vcc Supply Voltage (V)
Figure 27A “High” CS Bias Current
vs Temperature
Figure 27B “High” CS Bias Current
vs Voltage
20
5
“Low” CS Bias Current (uA)
“Low” CS Bias Current (uA)
2
Temperature ( oC)
4
3
2
Max.
1
4
3
2
Max.
1
0
0
-50
-25
0
25
50
75
100
10
125
12
14
16
18
20
Temperature (o C)
VCC Supply Voltage (V)
Figure 28A “Low” CS Bias Current
vs Temperature
Figure 28B “Low” CS Bias Current vs Voltage
15
VBS UVLO Threshold + (V)
15
VBS UVLO Threshold + (V)
3
125
5
14
13
12
4
Max.
11
Typ.
10
Min.
9
8
7
6
14
13
Max.
12
11
Typ
10
M in.
9
8
7
6
-50
-25
0
25
50
75
100
125
oC)
Temperature((°C)
Temperature
Figure 29A VBS Undervoltage Threshold (+)
vs Temperature (IR2127/IR2128)
www.irf.com
10
12
14
16
18
20
VCC Supply
Voltage
(V) (V)
Vcc Supply
Voltage
Figure 29B VBS Undervoltage Threshold (+)
vs Voltage (IR2127/IR2128)
13
15
15
14
14
VBS UVLO Threshold - (V)
VBS UVLO Threshold - (V)
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
13
12
Max.
11
10
Typ.
9
Min.
8
7
6
-50
-25
0
25
50
75
100
13
12
Max.
11
10
Typ.
9
Min.
8
7
6
10
125
12
14
16
18
20
Temperature (°C)
Temperature ( o C)
Vcc Supply Voltage (V)
Figure 30A VBS Undervoltage Threshold (-)
vs Temperature (IR2127/IR2128)
Figure 30B VBS Undervoltage Threshold (-)
vs Voltage (IR2127/IR2128)
500
Output Source Current (mA)
Output Source Current (mA)
500
400
Typ.
300
200
Min.
100
0
-50
-25
0
25
50
75
100
125
400
300
200
Typ.
100
Min.
0
10
12
14
16
18
20
Temperature ( o C)
VBIAS Supply Voltage (V)
Figure 31A Output Source Current vs Temperature
Figure 31B Output Source Current vs Voltage
800
700
Output Sink Current (mA)
Output Sink Current (mA)
800
Typ.
600
500
400
Min.
300
200
100
0
-50
600
500
400
Typ.
300
200
Min.
100
0
-25
0
25
50
75
100
125
Temperature ( oC)
Figure 32A Output Sink Current vs Temperature
14
700
10
12
14
16
18
20
VBIAS Supply Voltage (V)
Figure 32B Output Sink Current vs Voltage
www.irf.com
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
Case outlines
01-6014
01-3003 01 (MS-001AB)
8-Lead PDIP
D
DIM
B
5
A
F OOT PRINT
8
7
6
5
6
H
E
0.25 [.010]
1
2
3
A
4
6.46 [.255]
MIN
.0532
.0688
1.35
1.75
A1 .0040
e
3X 1.27 [.050]
8X 1.78 [.070]
MAX
0.25
.0098
0.10
b
.013
.020
0.33
0.51
c
.0075
.0098
0.19
0.25
D
.189
.1968
4.80
5.00
E
.1497
.1574
3.80
4.00
e
.050 BAS IC
1.27 BAS IC
.025 BAS IC
0.635 BAS IC
e1
6X
MILLIMETERS
MAX
A
8X 0.72 [.028]
INCHES
MIN
H
.2284
.2440
5.80
6.20
K
.0099
.0196
0.25
0.50
L
.016
.050
0.40
1.27
y
0°
8°
0°
8°
K x 45°
e1
A
C
y
0.10 [.004]
8X b
0.25 [.010]
A1
8X L
8X c
7
C A B
4. OUT LINE CONFORMS T O JEDE C OUTLINE MS-012AA.
NOT ES :
1. DIMENSIONING & TOLE RANCING PER AS ME Y14.5M-1994.
2. CONT ROLLING DIMENSION: MILLIME TER
3. DIMENSIONS ARE S HOWN IN MILLIMET ERS [INCHE S].
4. OUTLINE CONFORMS T O JEDEC OUT LINE MS-012AA.
8-Lead SOIC
www.irf.com
5 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS.
MOLD PROTRUSIONS NOT T O E XCEED 0.15 [.006].
6 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS.
MOLD PROTRUSIONS NOT T O E XCEED 0.25 [.010].
7 DIMENS ION IS T HE LE NGT H OF LEAD FOR SOLDERING T O
A SUBS TRAT E.
01-6027
01-0021 11 (MS-012AA)
15
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
ORDER INFORMATION
Basic Part (Non-Lead Free)
8-Lead PDIP
8-Lead SOIC
8-Lead PDIP
8-Lead SOIC
8-Lead PDIP
8-Lead SOIC
IR2127
IR2127S
IR21271
IR21271S
IR2128
IR2128S
order
order
order
order
order
order
Lead-Free Part
IR2127
IR2127S
IR21271
IR21271S
IR2128
IR2128S
8-Lead PDIP
8-Lead SOIC
8-Lead PDIP
8-Lead SOIC
8-Lead PDIP
8-Lead SOIC
IR2127
IR2127S
IR21271
IR21271S
IR2128
IR2128S
order
order
order
order
order
order
IR2127PbF
IR2127SPbF
IR21271PbF
IR21271SPbF
IR2128PbF
IR2128SPbF
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.
09/08/04
16
www.irf.com
Similar pages