PD - 96976D IRF6626 DirectFET Power MOSFET RoHS compliant containing no lead or bromide l Low Profile (<0.7 mm) l Dual Sided Cooling Compatible l Ultra Low Package Inductance l Optimized for High Frequency Switching l Ideal for CPU Core DC-DC Converters l Optimized for both Sync. FET and some Control FET applications l Low Conduction and Switching Losses l Compatible with existing Surface Mount Techniques l Typical values (unless otherwise specified) VDSS VGS RDS(on) RDS(on) 30V max ±20V max 4.0mΩ@ 10V 5.2mΩ@ 4.5V Qg Qgd Qgs2 Qrr Qoss Vgs(th) 6.7nC 1.6nC 5.4nC 13nC 1.8V tot 19nC DirectFET ISOMETRIC ST Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) SQ SX ST MQ MX MT Description The IRF6626 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of a MICRO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6626 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF6626 has been optimized for parameters that are critical in synchronous buck operating from 12 volt buss converters including Rds(on) and gate charge to minimize losses in the control FET socket. Absolute Maximum Ratings Parameter Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V VGS ID @ TA = 25°C ID @ TA = 70°C ID @ TC = 25°C IDM EAS IAR e Pulsed Drain Current Single Pulse Avalanche Energy Avalanche Current e h h k f Typical RDS(on) (mΩ) 15 ID = 16A 10 T J = 125°C 5 T J = 25°C 0 3 4 5 6 7 8 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET MOSFETs Repetitive rating; pulse width limited by max. junction temperature. www.irf.com VGS, Gate-to-Source Voltage (V) VDS Max. Units 30 ±20 16 13 72 130 24 13 V A mJ A 6.0 ID= 13A 5.0 4.0 VDS= 24V VDS= 15V 3.0 2.0 1.0 0.0 0 10 20 30 QG Total Gate Charge (nC) Fig 2. Typical On-Resistance vs. Gate Voltage Starting TJ = 25°C, L = 0.29mH, RG = 25Ω, IAS = 13A. Surface mounted on 1 in. square Cu board, steady state. TC measured with thermocouple mounted to top (Drain) of part. 1 11/17/05 IRF6626 Static @ TJ = 25°C (unless otherwise specified) Parameter Min. BVDSS Drain-to-Source Breakdown Voltage 30 ––– ––– ∆ΒVDSS/∆TJ RDS(on) Breakdown Voltage Temp. Coefficient ––– 23 ––– Static Drain-to-Source On-Resistance ––– 4.0 5.4 ––– 5.2 7.1 VGS = 0V, ID = 250µA V mV/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 16A g VGS = 4.5V, ID = 13A g VGS(th) Gate Threshold Voltage 1.35 ––– 2.35 V ∆VGS(th)/∆TJ IDSS Gate Threshold Voltage Coefficient ––– -6.0 ––– mV/°C Drain-to-Source Leakage Current ––– ––– 1.0 µA IGSS gfs Qg Conditions Typ. Max. Units ––– ––– 150 Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 Forward Transconductance 64 ––– ––– VDS = VGS, ID = 250µA VDS = 24V, VGS = 0V VDS = 24V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V S VDS = 15V, ID = 13A Total Gate Charge ––– 19 29 Qgs1 Pre-Vth Gate-to-Source Charge ––– 5.2 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 1.6 ––– Qgd Gate-to-Drain Charge ––– 6.7 Qgodr Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– 5.5 ––– Qsw ––– 8.3 ––– Qoss Output Charge ––– 13 ––– nC RG Gate Resistance ––– ––– 1.5 Ω td(on) Turn-On Delay Time ––– 13 ––– VDD = 16V, VGS = 4.5Vg ––– ID = 13A VDS = 15V nC VGS = 4.5V ID = 13A See Fig. 17 VDS = 16V, VGS = 0V tr Rise Time ––– 15 td(off) Turn-Off Delay Time ––– 17 ––– tf Fall Time ––– 4.5 ––– Ciss Input Capacitance ––– 2380 ––– Coss Output Capacitance ––– 530 ––– Crss Reverse Transfer Capacitance ––– 260 ––– Min. Typ. Max. Units ––– ––– 52 ––– ––– 130 integral reverse ns Clamped Inductive Load VGS = 0V pF VDS = 15V ƒ = 1.0MHz Diode Characteristics Parameter IS Continuous Source Current (Body Diode) ISM Pulsed Source Current Conditions MOSFET symbol A showing the VSD Diode Forward Voltage ––– ––– 1.0 V p-n junction diode. TJ = 25°C, IS = 13A, VGS = 0V g trr Reverse Recovery Time ––– 15 23 ns TJ = 25°C, IF = 13A Qrr Reverse Recovery Charge ––– 5.4 8.1 nC di/dt = 100A/µs g (Body Diode)e Notes: Repetitive rating; pulse width limited by max. junction temperature. Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com IRF6626 Absolute Maximum Ratings Max. Units 2.2 1.4 42 270 -40 to + 150 W Parameter h h k Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and Storage Temperature Range PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C TP TJ TSTG °C Thermal Resistance Parameter hl il jl kl RθJA RθJA RθJA RθJC RθJ-PCB Typ. Max. Units ––– 12.5 20 ––– 1.0 58 ––– ––– 3.0 ––– °C/W Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted Linear Derating Factor g 0.017 W/°C 100 Thermal Response ( Z thJA ) D = 0.50 0.20 0.10 0.05 0.02 0.01 10 1 τJ 0.1 R1 R1 τJ τ1 R2 R2 R3 R3 R4 R4 τA τ1 τ2 τ2 τ3 τ3 τ4 τ4 Ci= τi/Ri SINGLE PULSE Ci τi/Ri ( THERMAL RESPONSE ) 0.01 τ5 τi (sec) Ri (°C/W) R5 R5 τ5 τ 0.6677 0.000066 1.0463 0.000896 1.5612 0.004386 29.2822 0.686180 25.4550 32 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Notes: Surface mounted on 1 in. square Cu board, steady state. Used double sided cooling , mounting pad. Mounted on minimum footprint full size board with metalized TC measured with thermocouple incontact with top (Drain) of part. Rθ is measured at TJ of approximately 90°C. back and with small clip heatsink. Surface mounted on 1 in. square Cu board (still air). www.irf.com Mounted to a PCB with a thin gap filler and heat sink. (still air) Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) 3 IRF6626 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 100 10 2.5V 1 BOTTOM 10 2.5V ≤60µs PULSE WIDTH ≤60µs PULSE WIDTH Tj = 150°C Tj = 25°C 0.1 0.1 1 10 1 100 1000 0.1 Fig 4. Typical Output Characteristics 100 1000 1.5 VDS = 15V ≤60µs PULSE WIDTH ID = 16A Typical RDS(on) (Normalized) ID, Drain-to-Source Current (Α) 10 Fig 5. Typical Output Characteristics 1000 100 T J = 150°C T J = 25°C 10 T J = -40°C 1 0.1 VGS = 4.5V V GS = 10 1.0 0.5 1 2 3 4 25 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd T J = 25°C Vgs = 3.0V Vgs = 3.5V Vgs = 4.0V Vgs = 4.5V Vgs = 5.0V Vgs = 10V 20 Typical RDS(on) ( mΩ) C oss = C ds + C gd 10000 Ciss 1000 20 40 60 80 100 120 140 160 Fig 7. Normalized On-Resistance vs. Temperature Fig 6. Typical Transfer Characteristics 100000 -60 -40 -20 0 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) C, Capacitance(pF) 1 V DS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Coss 15 10 5 Crss 100 0 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs.Drain-to-Source Voltage 4 VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 0 20 40 60 80 100 ID, Drain Current (A) Fig 9. Typical On-Resistance vs. Drain Current and Gate Voltage www.irf.com IRF6626 1000 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY R DS(on) 100 100 T J = 150°C 10 T J = 25°C T J = 40°C 1 100µsec 1msec 10 10msec 1 0.1 Ta = 25°C Tj = 150°C Single Pulse VGS = 0V 0.01 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 0.01 1.4 VSD, Source-to-Drain Voltage (V) 1.00 10.00 100.00 Fig11. Maximum Safe Operating Area Fig 10. Typical Source-Drain Diode Forward Voltage 80 2.2 70 2.0 VGS(th) Gate threshold Voltage (V) ID, Drain Current (A) 0.10 VDS, Drain-to-Source Voltage (V) 60 50 40 30 20 10 1.8 1.6 ID = 50µA 1.4 1.2 1.0 0.8 0.6 0 25 50 75 100 125 -75 150 -50 -25 0 25 50 75 100 125 150 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 13. Threshold Voltage vs. Temperature Fig 12. Maximum Drain Current vs. Case Temperature EAS , Single Pulse Avalanche Energy (mJ) 100 ID TOP 5.6A 8.4A BOTTOM 13A 80 60 40 20 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 14. Maximum Avalanche Energy vs. Drain Current www.irf.com 5 IRF6626 Current Regulator Same Type as D.U.T. Id Vds Vgs 50KΩ .2µF 12V .3µF + V - DS D.U.T. Vgs(th) VGS 3mA IG ID Qgs1 Qgs2 Qgd Qgodr Current Sampling Resistors Fig 15a. Gate Charge Test Circuit Fig 15b. Gate Charge Waveform V(BR)DSS 15V DRIVER L VDS tp D.U.T V RGSG + V - DD IAS 20V tp A I AS 0.01Ω Fig 16b. Unclamped Inductive Waveforms Fig 16a. Unclamped Inductive Test Circuit LD VDS VDS 90% + VDD D.U.T VGS Pulse Width < 1µs Duty Factor < 0.1% Fig 17a. Switching Time Test Circuit 6 10% VGS td(on) tr td(off) tf Fig 17b. Switching Time Waveforms www.irf.com IRF6626 D.U.T Driver Gate Drive + + - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period P.W. + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent - Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET Substrate and PCB Layout, ST Outline (Small Size Can, T-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. G = GATE D = DRAIN S = SOURCE D G D www.irf.com S S D D 7 IRF6626 DirectFET Outline Dimension, ST Outline (Small Size Can, T-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS METRIC MAX CODE MIN 4.85 A 4.75 3.95 B 3.70 2.85 C 2.75 0.45 D 0.35 0.62 E 0.58 0.62 F 0.58 0.79 G 0.75 0.57 H 0.53 0.30 J 0.26 0.98 K 0.88 2.28 L 2.18 0.70 M 0.59 0.08 N 0.03 0.17 P 0.08 IMPERIAL MIN MAX 0.187 0.191 0.146 0.156 0.108 0.112 0.014 0.018 0.023 0.024 0.023 0.024 0.030 0.031 0.021 0.022 0.010 0.012 0.035 0.039 0.086 0.090 0.023 0.028 0.001 0.003 0.003 0.007 DirectFET Part Marking 8 www.irf.com IRF6626 DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6626). For 1000 parts on 7" reel, order IRF6626TR1 REEL DIMENSIONS STANDARD OPTION (QTY 4800) TR1 OPTION (QTY 1000) IMPERIAL IMPERIAL METRIC METRIC MIN MAX MIN CODE MAX MIN MIN MAX MAX 12.992 6.9 N.C A N.C 177.77 N.C 330.0 N.C 0.795 0.75 B N.C 19.06 20.2 N.C N.C N.C 0.504 0.53 C 0.50 0.520 13.5 12.8 13.2 12.8 0.059 0.059 D N.C 1.5 1.5 N.C N.C N.C 3.937 2.31 E N.C 58.72 100.0 N.C N.C N.C F N.C N.C 0.53 N.C N.C 0.724 18.4 13.50 G 0.488 0.47 11.9 12.4 N.C 0.567 14.4 12.01 H 0.469 0.47 11.9 N.C 11.9 0.606 15.4 12.01 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 11/05 www.irf.com 9