TI1 CD74HCU04PWR High-speed cmos logic hex inverter Datasheet

[ /Title
(CD74
HCU04
)
/Subject
(High
Speed
CMOS
Logic
Hex
Inverter
CD74HCU04
Data sheet acquired from Harris Semiconductor
SCHS127D
High-Speed CMOS Logic
Hex Inverter
February 1998 - Revised May 2004
Features
Description
• Typical Propagation Delay: 6ns at VCC = 5V,
CL = 15pF, TA = 25oC, Fastest Part in QMOS Line
The CD74HCU04 unbuffered hex inverter utilizes silicon-gate
CMOS technology to achieve operation speeds similar to
LSTTL gates, with the low power consumption of standard
CMOS integrated circuits. These devices especially are useful
in crystal oscillator and analog applications.
• Wide Operating Temperature Range . . . -55oC to 125oC
• Balanced Propagation Delay and Transition Times
• Significant Power Reduction Compared to LSTTL
Logic ICs
Ordering Information
• HCU Types
- 2-V to 6-V Operation
- High Noise Immunity: NIL = 20%, NIH = 30% of
VCC at VCC = 5V
PART NUMBER
• CMOS Input Compatibility, Il ≤ 1µA at VOL, VOH
TEMP. RANGE
(oC)
PACKAGE
CD74HCU04E
-55 to 125
14 Ld PDIP
CD74HCU04M
-55 to 125
14 Ld SOIC
CD74HCU04MT
-55 to 125
14 Ld SOIC
CD74HCU04M96
-55 to 125
14 Ld SOIC
CD74HCU04PWR
-55 to 125
14 Ld TSSOP
NOTE: When ordering, use the entire part number. The suffixes
96 and R denote tape and reel. The suffix T denotes a smallquantity reel of 250.
Pinout
CD74HCU04
(PDIP, SOIC, TSSOP)
TOP VIEW
1A 1
14 VCC
1Y 2
13 6A
2A 3
12 6Y
2Y 4
11 5A
3A 5
10 5Y
3Y 6
9 4A
GND 7
8 4Y
CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures.
Copyright
© 2004, Texas Instruments Incorporated
1
CD74HCU04
Functional Diagram
1A
1Y
2A
2Y
3A
3Y
GND
1
14
2
13
3
12
4
11
5
10
6
9
7
8
VCC
6A
6Y
5A
5Y
4A
4Y
Logic Symbol
nA
nY
Schematic Diagram
VCC
(3, 5, 9, 11, 13) 1
2 (4, 6, 8, 10, 12)
2
CD74HCU04
Absolute Maximum Ratings
Thermal Information
DC Supply Voltage, VCC
Voltages Referenced to Ground . . . . . . . . . . . . . . . . -0.5V to +7V
DC Input Diode Current, IIK
For VI < -0.5V or VI > VCC + 0.5V . . . . . . . . . . . . . . . . . . . . . .±20mA
DC Output Diode Current, IOK
For VO < -0.5V or VO > VCC + 0.5V . . . . . . . . . . . . . . . . . . . .±20mA
DC Drain Current, per Output, IO
For VO > -0.5V or VO < VCC + 0.5V . . . . . . . . . . . . . . . . . . . .±25mA
DC VCC or Ground Current, ICC . . . . . . . . . . . . . . . . . . . . . . . . .±50mA
Thermal Resistance (Typical, Note 1)
θJA (oC/W)
E (PDIP) Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
M (SOIC) Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
PW (TSSOP) Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Maximum Junction Temperature (Hermetic Package or Die) . . . 175oC
Maximum Junction Temperature (Plastic Package) . . . . . . . . 150oC
Maximum Storage Temperature Range . . . . . . . . . .-65oC to 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . 300oC
(SOIC - Lead Tips Only)
Operating Conditions
Temperature Range TA . . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC
Supply Voltage Range, VCC . . . . . . . . . . . . . . . . . . . . . . . . .2V to 6V
DC Input or Output Voltage, VI, VO . . . . . . . . . . . . . . . . . 0V to VCC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating, and operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. The package thermal impedance is calculated in accordance with JESD 51-7.
DC Electrical Specifications
TEST
CONDITIONS
PARAMETER
High Level Input
Voltage
Low Level Input
Voltage
High Level Output
Voltage
CMOS Loads
SYMBOL
VI (V)
VIH
-
VIL
Quiescent Device
Current
MAX
MIN
MAX
MIN
MAX
UNITS
2
1.7
-
1.7
-
1.7
-
V
4.5
3.6
-
3.6
-
3.6
-
V
6
4.8
-
4.8
-
4.8
-
V
-
0.3
-
0.3
-
0.3
V
0.8
-
0.8
-
0.8
V
6
-
1.1
-
1.1
-
1.1
V
-0.02
2
1.8
-
1.8
-
1.8
-
V
-0.02
4.5
4
-
4
-
4
-
V
-0.02
6
5.5
-
5.5
-
5.5
-
V
-4
4.5
3.98
-
3.84
-
3.7
-
V
-5.2
6
5.48
-
5.34
-
5.2
-
V
0.02
2
-
0.2
-
0.2
-
0.2
V
0.02
4.5
-
0.5
-
0.5
-
0.5
V
0.02
6
-
0.5
-
0.5
-
0.5
V
4
4.5
-
0.26
-
0.33
-
0.4
V
VCC or
GND
5.2
6
-
0.26
-
0.33
-
0.4
V
II
VCC or
GND
-
6
-
±0.1
-
±1
-
±1
µA
ICC
VCC or
GND
0
6
-
2
-
20
-
40
µA
VIH or
VIL
VCC or
GND
VOL
VIH or
VIL
-
MIN
-
Low Level Output
Voltage
TTL Loads
Input Leakage
Current
-
-55oC TO 125oC
2
High Level Output
Voltage
TTL Loads
Low Level Output
Voltage
CMOS Loads
IO (mA) VCC (V)
-40oC TO +85oC
4.5
VOH
-
25oC
3
CD74HCU04
Switching Specifications Input tr, tf = 6ns
PARAMETER
Propagation Delay,
Input to Output Y (Figure 1)
Transition Times (Figure 1)
Input Capacitance
Power Dissipation Capacitance
(Notes 2, 3)
25oC
-40oC TO 85oC -55oC TO 125oC
SYMBOL
TEST
CONDITIONS
tPLH, tPHL
CL = 50pF
2
-
-
70
-
90
-
105
ns
CL = 50pF
4.5
-
-
14
-
18
-
21
ns
CL = 15pF
5
-
5
-
-
-
-
-
ns
CL = 50pF
6
-
-
12
-
15
-
18
ns
CL = 50pF
2
-
-
75
-
95
18
110
ns
4.5
-
-
15
-
19
-
22
ns
6
-
-
13
-
16
-
19
ns
tTLH, tTHL
CI
-
CPD
-
VCC
(V)
MIN
TYP
MAX
MIN
MAX
MIN
MAX
UNITS
See Figure 3
5
-
14
-
-
pF
-
-
-
NOTES:
2. CPD is used to determine the dynamic power consumption, per inverter.
3. PD = VCC2 fi (CPD + CL) where fi = input frequency, CL = output load capacitance, VCC = supply voltage.
Test Circuits and Waveforms
tr = 6ns
tf = 6ns
VCC
90%
50%
10%
INPUT
GND
tTHL
tTLH
90%
50%
10%
INVERTING
OUTPUT
tPLH
tPHL
FIGURE 1. HC AND HCU TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC
ICC, VCC TO GND CURRENT (mA)
Typical Performance Curves
AMBIENT TEMPERATURE
TA = 25o C
25.0
22.5
VCC = 6V
20.0
17.5
15.0
VCC = 4.5V
12.5
10.0
7.5
5.0
VCC = 2V
2.5
0
1
2
3
4
5
VI, INPUT VOLTAGE (V)
6
FIGURE 2. TYPICAL INVERTER SUPPLY CURRENT AS FUNCTION OF INPUT VOLTAGE
4
pF
CD74HCU04
CI, INPUT CAPACITANCE (pF)
Typical Performance Curves
70
65
60
55
50
45
40
35
30
25
20
15
10
5
0
(Continued)
AMBIENT TEMPERATURE, TA = 25oC
VDD = 2V, VI 0-2V
INPUT PIN 5 CONDITIONS
VDD = 3V, VI 0-3V
VDD = 4V, VI 0-4V
VDD = 5V, VI 0-5V
VDD = 6V, VI 0-6V
1
2
3
VIN, INPUT VOLTAGE (V)
4
FIGURE 3. INPUT CAPACITANCE AS A FUNCTION OF INPUT VOLTAGE
5
5
6
PACKAGE OPTION ADDENDUM
www.ti.com
10-Jun-2014
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
CD74HCU04E
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
-55 to 125
CD74HCU04E
CD74HCU04EE4
ACTIVE
PDIP
N
14
25
Pb-Free
(RoHS)
CU NIPDAU
N / A for Pkg Type
-55 to 125
CD74HCU04E
CD74HCU04M
ACTIVE
SOIC
D
14
50
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-55 to 125
HCU04M
CD74HCU04M96
ACTIVE
SOIC
D
14
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-55 to 125
HCU04M
CD74HCU04M96E4
ACTIVE
SOIC
D
14
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-55 to 125
HCU04M
CD74HCU04M96G4
ACTIVE
SOIC
D
14
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-55 to 125
HCU04M
CD74HCU04MT
ACTIVE
SOIC
D
14
250
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-55 to 125
HCU04M
CD74HCU04PWR
ACTIVE
TSSOP
PW
14
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-55 to 125
HJU04
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
(4)
10-Jun-2014
There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5)
Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
(6)
Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF CD74HCU04 :
• Automotive: CD74HCU04-Q1
NOTE: Qualified Version Definitions:
• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
14-Jul-2012
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
CD74HCU04M96
Package Package Pins
Type Drawing
SOIC
D
14
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
2500
330.0
16.4
6.5
9.0
2.1
8.0
16.0
Q1
CD74HCU04MT
SOIC
D
14
250
330.0
16.4
6.5
9.0
2.1
8.0
16.0
Q1
CD74HCU04PWR
TSSOP
PW
14
2000
330.0
12.4
6.9
5.6
1.6
8.0
12.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
14-Jul-2012
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
CD74HCU04M96
SOIC
D
14
2500
367.0
367.0
38.0
CD74HCU04MT
SOIC
D
14
250
367.0
367.0
38.0
CD74HCU04PWR
TSSOP
PW
14
2000
367.0
367.0
35.0
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2015, Texas Instruments Incorporated
Similar pages