IRF IRGP4068DPBF Low switching loss Datasheet

PD - 97250C
IRGP4068DPbF
INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRA-LOW VF DIODE
FOR INDUCTION HEATING AND SOFT SWITCHING APPLICATIONS
IRGP4068D-EPbF
Features
•
•
•
•
•
•
•
•
•
•
Low VCE (ON) Trench IGBT Technology
Low Switching Losses
Maximum Junction temperature 175 °C
5 μS short circuit SOA
Square RBSOA
100% of the parts tested for ILM
Positive VCE (ON) Temperature co-efficient
Ultra-low VF Hyperfast Diode
Tight parameter distribution
Lead Free Package
C
VCES = 600V
IC = 48A, TC = 100°C
tSC ≥ 5μs, TJ(max) = 175°C
G
VCE(on) typ. = 1.65V
E
n-channel
Benefits
C
• Device optimized for induction heating and soft switching
applications
• High Efficiency due to Low VCE(on), Low Switching Losses
and Ultra-low VF
• Rugged transient Performance for increased reliability
• Excellent Current sharing in parallel operation
• Low EMI
C
GC
E
TO-247AC
IRGP4068DPbF
G
Gate
E
GC
TO-247AD
IRGP4068D-EPbF
C
Collector
E
Emitter
Absolute Maximum Ratings
Max.
Units
VCES
Collector-to-Emitter Voltage
Parameter
600
V
IC @ TC = 25°C
Continuous Collector Current
96
IC @ TC = 100°C
ICM
Continuous Collector Current
Pulse Collector Current, VGE = 15V
48
ILM
Clamped Inductive Load Current, VGE = 20V
IF @ TC = 160°C
IFSM
Diode Continous Forward Current
Diode Non Repetitive Peak Surge Current @ TJ = 25°C
IFRM @Tc = 100°C
Diode Repetitive Peak Forward Current at tp=10μs
VGE
Continuous Gate-to-Emitter Voltage
±20
Transient Gate-to-Emitter Voltage
±30
PD @ TC = 25°C
Maximum Power Dissipation
330
PD @ TC = 100°C
Maximum Power Dissipation
170
TJ
Operating Junction and
TSTG
Storage Temperature Range
g
144
c
192
df
A
8.0
dg
175
100
V
W
-55 to +175
°C
Soldering Temperature, for 10 sec.
300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw
10 lbf·in (1.1 N·m)
Thermal Resistance
Min.
Typ.
Max.
Units
Thermal Resistance Junction-to-Case-(each IGBT)
Parameter
–––
–––
0.45
°C/W
RθJC (Diode)
Thermal Resistance Junction-to-Case-(each Diode)
–––
–––
2.0
RθCS
Thermal Resistance, Case-to-Sink (flat, greased surface)
–––
0.24
–––
RθJA
Thermal Resistance, Junction-to-Ambient (typical socket mount)
–––
–––
40
RθJC (IGBT)
1
www.irf.com
07/27/09
IRGP4068DPbF/IRGP4068D-EPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
V(BR)CES
Collector-to-Emitter Breakdown Voltage
Parameter
600
—
—
ΔV(BR)CES/ΔTJ
Temperature Coeff. of Breakdown Voltage
—
0.30
—
—
1.65
2.14
—
2.0
—
VCE(on)
Collector-to-Emitter Saturation Voltage
Max. Units
V
Conditions
VGE = 0V, IC = 100μA
e
V/°C VGE = 0V, IC = 1mA (25°C-175°C)
IC = 48A, VGE = 15V, TJ = 25°C
V
IC = 48A, VGE = 15V, TJ = 150°C
—
2.05
—
Gate Threshold Voltage
4.0
—
6.5
V
VCE = VGE, IC = 1.4mA
gfe
ICES
Forward Transconductance
—
32
—
S
VCE = 50V, IC = 48A, PW = 80μs
Collector-to-Emitter Leakage Current
—
1.0
150
μA
VGE = 0V, VCE = 600V
—
450
1000
—
0.96
1.05
V
IF = 8.0A
—
0.81
0.86
—
—
±100
Diode Forward Voltage Drop
IGES
Gate-to-Emitter Leakage Current
CT6
CT6
4,5,6
8,9,10
IC = 48A, VGE = 15V, TJ = 175°C
VGE(th)
VFM
Ref.Fig
8,9,10,11,20
VGE = 0V, VCE = 600V, TJ = 175°C
7
IF = 8.0A, TJ = 150°C
nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Qg
Total Gate Charge (turn-on)
Parameter
—
95
Max. Units
140
Qge
Gate-to-Emitter Charge (turn-on)
—
28
42
Qgc
Gate-to-Collector Charge (turn-on)
—
35
53
Eoff
Turn-Off Switching Loss
—
1275
1481
μJ
td(off)
Turn-Off delay time
—
145
176
ns
tf
Fall time
—
35
46
Eoff
Turn-Off Switching Loss
—
1585
—
Conditions
IC = 48A
nC
VGE = 15V
Ref.Fig
18
CT1
VCC = 400V
IC = 48A, VCC = 400V, VGE = 15V
RG = 10Ω, L = 200μH,TJ = 25°C
CT4
Energy losses include tail
IC = 48A, VCC = 400V, VGE = 15V
RG = 10Ω, L = 200μH,TJ = 25°C
IC = 48A, VCC = 400V, VGE = 15V
μJ
RG = 10Ω, L = 200μH,TJ = 175°C
CT4
Energy losses include tail
td(off)
Turn-Off delay time
—
165
—
tf
Fall time
—
45
—
Cies
Input Capacitance
—
3025
—
Coes
Output Capacitance
—
245
—
Cres
Reverse Transfer Capacitance
—
90
—
RBSOA
Reverse Bias Safe Operating Area
FULL SQUARE
SCSOA
Short Circuit Safe Operating Area
5
ns
IC = 48A, VCC = 400V, VGE = 15V
WF1
RG=10Ω, L=200μH, TJ = 175°C
VGE = 0V
pF
17
VCC = 30V
f = 1.0Mhz
TJ = 175°C, IC = 192A
3
VCC = 480V, Vp =600V
CT2
Rg = 10Ω, VGE = +20V to 0V
—
—
μs
VCC = 400V, Vp =600V
Rg = 10Ω, VGE = +15V to 0V
16, CT3
WF2
Notes:
 VCC = 80% (VCES), VGE = 20V, L = 200μH, RG = 10Ω.
‚ Pulse width limited by max. junction temperature.
ƒ Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
„ fsw = 20KHz, refer to figure 19.
Sinusoidal half wave, t=10ms.
2
www.irf.com
IRGP4068DPbF/IRGP4068D-EPbF
100
350
90
300
80
250
70
200
Ptot (W)
IC (A)
60
50
40
150
30
100
20
50
10
0
0
0
25
50
75
100 125 150 175 200
0
25
50
75
100 125 150 175 200
T C (°C)
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
200
1000
180
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
160
140
IC (A)
ICE (A)
100
10
120
100
80
60
40
20
0
1
10
100
0
1000
2
4
VCE (V)
200
180
180
140
ICE (A)
ICE (A)
100
80
120
100
80
60
60
40
40
20
20
0
0
0
2
4
6
8
10
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80μs
www.irf.com
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
160
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
120
10
Fig. 4 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80μs
200
140
8
VCE (V)
Fig. 3 - Reverse Bias SOA
TJ = 175°C; VGE = 20V
160
6
0
2
4
6
8
10
VCE (V)
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 175°C; tp = 80μs
3
IRGP4068DPbF/IRGP4068D-EPbF
20
18
16
VCE (V)
14
12
ICE = 24A
ICE = 48A
10
ICE = 96A
8
6
4
2
0
5
10
15
20
VGE (V)
Fig. 8 - Typical VCE vs. VGE
TJ = -40°C
20
20
18
18
16
16
14
14
12
ICE = 24A
ICE = 48A
10
VCE (V)
VCE (V)
Fig. 7 - Typ. Diode Forward Voltage Drop
Characteristics
ICE = 96A
8
12
10
ICE = 96A
8
6
6
4
4
2
2
0
ICE = 24A
ICE = 48A
0
5
10
15
20
5
10
VGE (V)
20
VGE (V)
Fig. 9 - Typical VCE vs. VGE
TJ = 25°C
Fig. 10 - Typical VCE vs. VGE
TJ = 175°C
6000
200
180
T J = 25°C
T J = 175°C
160
5000
140
EOFF
4000
Energy (μJ)
ICE (A)
15
120
100
80
3000
2000
60
40
1000
20
0
0
0
5
10
VGE (V)
Fig. 11 - Typ. Transfer Characteristics
VCE = 50V; tp = 10μs
4
15
0
25
50
75
100
IC (A)
Fig. 12 - Typ. Energy Loss vs. IC
TJ = 175°C; L = 200μH; VCE = 400V, RG = 10Ω; VGE = 15V
www.irf.com
IRGP4068DPbF/IRGP4068D-EPbF
5000
1000
4500
EOFF
tdOFF
3500
Energy (μJ)
Swiching Time (ns)
4000
100
3000
2500
tF
2000
1500
1000
10
0
20
40
60
80
0
100
25
50
IC (A)
400
18
tdOFF
16
350
Tsc
Isc
Time (μs)
14
100
tF
300
12
250
10
200
8
150
6
100
50
4
10
0
25
50
75
100
8
125
Current (A)
Swiching Time (ns)
125
Fig. 14 - Typ. Energy Loss vs. RG
TJ = 175°C; L = 200μH; VCE = 400V, ICE = 48A; VGE = 15V
1000
10
12
14
16
18
VGE (V)
RG (Ω)
Fig. 16 - VGE vs. Short Circuit
VCC = 400V; TC = 25°C
Fig. 15 - Typ. Switching Time vs. RG
TJ = 175°C; L = 200μH; VCE = 400V, ICE = 48A; VGE = 15V
10000
16
VGE, Gate-to-Emitter Voltage (V)
Cies
1000
Coes
100
Cres
10
V CES = 300V
14
V CES = 400V
12
10
8
6
4
2
0
0
20
40
60
80
VCE (V)
Fig. 17 - Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
www.irf.com
100
Rg (Ω)
Fig. 13 - Typ. Switching Time vs. IC
TJ = 175°C; L = 200μH; VCE = 400V, RG = 10Ω; VGE = 15V
Capacitance (pF)
75
100
0
25
50
75
100
Q G, Total Gate Charge (nC)
Fig. 18 - Typical Gate Charge vs. VGE
ICE = 48A; L = 600μH
5
IRGP4068DPbF/IRGP4068D-EPbF
Repetitive Peak Current (A)
140
D=0.1
120
D=0.2
100
D=0.5
80
60
Square Pulse,
f = 20KHz
D = t/T
40
20
t
T = 50us
0
25
50
75
100
125
1.0
VGE(th) , Gate Threshold Voltage (Normalized)
160
150
IC = 1.4mA
0.9
0.8
0.7
0.6
0.5
0.4
175
25
50
75
100
125
150
175
T J , Temperature (°C)
Case Temperature (°C)
Fig 20. Typical Gate Threshold Voltage
(Normalized) vs. Junction Temperature
Fig 19. Maximum Diode Repetitive Forward
Peak Current vs. Case Temperature
Thermal Response ( Z thJC ) °C/W
1
D = 0.50
0.1
0.20
0.10
0.05
τJ
0.02
0.01
0.01
R1
R1
τJ
τ1
R2
R2
R3
R3
τC
τ
τ2
τ1
τ2
τ3
τ3
τ4
τ4
Ci= τi/Ri
Ci i/Ri
1E-005
τi (sec)
0.0248
0.000014
0.0652
0.000050
0.1537
0.001041
0.2065
0.013663
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
Ri (°C/W)
R4
R4
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 21. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
Thermal Response ( Z thJC ) °C/W
10
1
D = 0.50
0.20
0.10
0.05
0.1
0.02
0.01
τJ
0.01
0.0001
1E-006
1E-005
τJ
τ1
R2
R2
R3
R3
R4
R4
τC
τ
τ2
τ1
τ2
τ3
τ3
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
0.001
R1
R1
τ4
τ4
Ri (°C/W)
τi (sec)
0.0400
0.000030
0.7532
0.000717
0.8317
0.004860
0.3766
0.036590
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 22. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
6
www.irf.com
IRGP4068DPbF/IRGP4068D-EPbF
L
L
VC C
D UT
0
80 V
DU T
4 80V
Rg
1K
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
DIODE CLAMP /
DUT
L
4x
DC
- 5V
360V
DUT /
DRIVER
DUT
VCC
Rg
Fig.C.T.3 - S.C. SOA Circuit
R=
Fig.C.T.4 - Switching Loss Circuit
VCC
ICM
C force
400μH
D1
10K
C sense
DUT
VCC
G force
DUT
0.0075μ
Rg
E sense
E force
Fig.C.T.5 - Resistive Load Circuit
www.irf.com
Fig.C.T.6 - BVCES Filter Circuit
7
IRGP4068DPbF/IRGP4068D-EPbF
700
140
600
600
120
500
500
VCE
400
60
90% ICE
5% VCE
100
5% ICE
0
EOFF Loss
0.10
0.60
300
300
200
200
100
100
ICE (A)
300
200
40
20
0
-20
1.10
Time(µs)
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 175°C using Fig. CT.4
8
ICE
80
tf
-100
-0.40
500
400
VCE (V)
VCE (V)
400
100
600
0
0
-100
-5.00
0.00
5.00
-100
10.00
time (µS)
Fig. WF2 - Typ. S.C. Waveform
@ TJ = 25°C using Fig. CT.3
www.irf.com
IRGP4068DPbF/IRGP4068D-EPbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
(;$03/( 7+,6,6$1,5)3(
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(+
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
,5)3(
+
'$7(&2'(
<($5 :((.
/,1(+
TO-247AC package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
9
IRGP4068DPbF/IRGP4068D-EPbF
TO-247AD Package Outline
Dimensions are shown in millimeters (inches)
TO-247AD Part Marking Information
(;$03/( 7+,6,6$1,5*3%.'(
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(+
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
3$57180%(5
,17(51$7,21$/
5(&7,),(5
/2*2
+
$66(0%/<
/27&2'(
'$7(&2'(
<($5 :((.
/,1(+
TO-247AD package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 07/09
10
www.irf.com
Similar pages