MOTOROLA MHVIC910HR2 921 mhz - 960 mhz sifet rf integrated power amplifier Datasheet

Freescale Semiconductor
Technical Data
MHVIC910HR2
Rev. 5, 1/2005
Will be replaced by MHVIC910HNR2 end of Q205. N suffix indicates 260°C reflow
capable. The PFP−16 package has had lead−free terminations from its initial release.
MHVIC910HR2
921 MHz − 960 MHz SiFET
RF Integrated Power Amplifier
The MHVIC910HR2 integrated circuit is designed for GSM base stations,
uses Freescale’s newest High Voltage (26 Volts) LDMOS IC technology, and
contains a three−stage amplifier. Target applications include macrocell (driver
function) and microcell base stations (final stage). The device is in a PFP−16
Power Flat Pack package which gives excellent thermal performances through
a solderable backside contact.
• Typical GSM Performance @ Full Frequency Band
(921−960 MHz), 26 Volts
Output Power — 40 dBm (CW) @ P1dB
Power Gain — 39 dB @ P1dB
Efficiency — 48% @ P1dB
• On−Chip Matching (50 Ohm Input, DC Blocked, >5 Ohm Output)
• Integrated ESD Protection
• Usable Frequency Range — 921 to 960 MHz
• In Tape and Reel. R2 Suffix = 1,500 Units per 16 mm, 13 inch Reel.
960 MHz, 10 W, 26 V
GSM CELLULAR
RF LDMOS INTEGRATED CIRCUIT
16
1
CASE 978−03
PFP−16
Table 1. Maximum Ratings
Rating
Symbol
Value
Unit
Drain Supply Voltage
VDD
28
Vdc
Gate Supply Voltage
VGS
6
Vdc
RF Input Power
Pin
5
dBm
Case Operating Temperature
TC
− 30 to + 85
°C
Storage Temperature Range
Tstg
− 65 to + 150
°C
Operating Channel Temperature
Tch
150
°C
Symbol
Value
Unit
RθJC
2.9
°C/W
Table 2. Thermal Characteristics
Characteristic
Thermal Resistance, Junction to Case
VD1
VD2
VD3
RFin
RFout
N.C.
1
VD2
2
16
VD1
3
N.C.
15 VD3/RFout
14 VD3/RFout
GND
4
13 VD3/RFout
RFin
VGATE1
5
12 VD3/RFout
VGATE2
VGATE3
6
11 VD3/RFout
7
8
10 N.C.
9 N.C.
(Top View)
VGATE1
VGATE2
VGATE3
Figure 1. Functional Block Diagram
© Freescale Semiconductor, Inc., 2005. All rights reserved.
RF Device Data
Freescale Semiconductor
Note: Exposed backside flag is source
terminal for transistors.
Figure 2. Pin Connections
MHVIC910HR2
1
Table 3. ESD Protection Characteristics
Test Conditions
Class
Human Body Model
0 (Minimum)
Machine Model
M2 (Minimum)
Table 4. Moisture Sensitivity Level
Test Methodology
Rating
Package Peak Temperature
Unit
3
240
°C
Per JESD 22−A113, IPC/JEDEC J−STD−020
Table 5. Recommended Operating Ranges
Parameter
Symbol
Value
Unit
Drain Supply Voltage
VDD
26
Vdc
3rd Stage Quiescent Current
IDQ3
150
mA
2nd Stage Quiescent Current
IDQ2
50
mA
1st Stage Quiescent Current
IDQ1
25
mA
Table 6. Electrical Characteristics (TA = 25°C matched to a 50 Ω system, unless otherwise noted)
VDD = 26 V, VGS set for IDQ3 = 150 mA, frequency range 921−960 MHz
Characteristic
Frequency Range
Output Power @ 1 dB Compression Point
Power Gain @ P1dB
Symbol
Min
Typ
Max
Unit
fRF
921
—
960
MHz
P @ 1dB
39
40
—
dBm
G @ 1dB
38
39
—
dB
Power Added Efficiency @ 1 dB Compression Point
PAE @ 1dB
43
48
—
%
Input Return Loss @ P1dB
IRL @ 1dB
—
−15
−10
dB
GF
GV
—
—
.5
5
—
—
dB
dB
Load Stability
(VDS = 24 V to 28 V, Pout = P1dB Down to 0 dBm,
All Phase Angles)
VSWR
10:1
—
—
—
Ruggedness
(VDS = 26 V, Pout = 42 dBm, Load VSWR = 10:1,
All Phase Angles)
Ψ
Gain Flatness @ 40 dBm
Variation (TC = −30 to +85°C @ 40 dBm)
No Damage After Test
NOTE − CAUTION − MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and
packaging MOS devices should be observed.
MHVIC910HR2
2
RF Device Data
Freescale Semiconductor
1
16
2
15
3
14
4
13
5
12
VD2
C2
VD1
VD3
C3
C7
RF
INPUT
RF
OUTPUT
C6
R3
6
11
7
10
8
9
C8
C9
C4
VGS
R1
R2
C1, C2, C3, C4, C5, C8
C6
C7
C9
C5
C1
1 µF Surface Mount Chip Capacitors
4.7 pF AVX Chip Capacitor, ACCU−P (08051J4R7BBT)
47 pF AVX Chip Capacitor, ACCU−P (08055K470JBTTR)
33 pF AVX Chip Capacitor, ACCU−P (08053J330JBT)
J1, J2
J3, J4
R1, R2, R3
PCB
Header (Break−away), HDR2X10STIMCSAFU
SMA Connector 2052−1618−02 (Threaded)
100 Ω Chip Resistors (0402)
Rogers 04350, 20 mils
Figure 3. 921−960 MHz Demo Board Schematic
MHVIC910HR2
RF Device Data
Freescale Semiconductor
3
C8
VD1
VD2
VD3
C2
C3
C7
RF Input
C6
C4
R3
C5
R1
VG1
C9
RF Output
C1
MHVIC910HR2
900 MHz
R2
VG2
VG3
Freescale has begun the transition of marking Printed Circuit Boards (PCBs) with the Freescale Semiconductor
signature/logo. PCBs may have either Motorola or Freescale markings during the transition period. These changes will have
no impact on form, fit or function of the current product.
Figure 4. 921−960 MHz Demo Board Component Layout
MHVIC910HR2
4
RF Device Data
Freescale Semiconductor
TYPICAL CHARACTERISTICS
50
43
G ps, POWER GAIN (dB)
42
41
PAE, POWER ADDED EFFICIENCY (%)
TC = −30°C, IDQ3 = 150 mA
TC = +25°C, IDQ3 = 150 mA
40
TC = +25°C, IDQ3 = 120 mA
39
TC = +25°C, IDQ3 = 110 mA
38
TC = +85°C, IDQ3 = 150 mA
37
36
TC = −30°C
45
40
35
30
25
20
IDQ3 = 150 mA
f = 960 MHz
15
10
35
0
2
4
6
8
0
12
10
2
4
Pout, OUTPUT POWER (WATTS)
8
10
12
Figure 6. Power Added Efficiency
versus Output Power
43
100
TC = −30°C, IDQ3 = 150 mA
42
Gps , POWER GAIN (dB)
Pout , OUTPUT POWER (WATTS)
6
Pout, OUTPUT POWER (WATTS)
Figure 5. Power Gain versus
Output Power
+25°C
10
TC = −30°C
+85°C
1
−15
41
40
TC = +25°C, IDQ3 = 150 mA
39
TC = +25°C, IDQ3 = 120 mA
38
TC = +85°C, IDQ3 = 150 mA
37
IDQ3 = 150 mA
f = 960 MHz
36
−13
−11
−9
−7
−5
−3
−1
1
3
910
5
920
930
940
950
960
970
f, FREQUENCY (MHz)
Pin, INPUT POWER (dBm)
Figure 8. Power Gain versus Frequency
Pout = 10 W
Figure 7. Output Power versus Input Power
48
PAE, POWER ADDED EFFICIENCY (%)
43
TC = −30°C, IDQ3 = 150 mA
42
Gps , POWER GAIN (dB)
+25°C
+85°C
41
TC = +25°C, IDQ3 = 150 mA
40
39
TC = +25°C, IDQ3 = 120 mA
38
TC = +25°C, IDQ3 = 110 mA
37
TC = +85°C, IDQ3 = 150 mA
47.5
47
TC = +25°C, IDQ3 = 120 mA
46.5
46
45.5
45
TC = +25°C, IDQ3 = 150 mA
44.5
44
43.5
f = 960 MHz
43
36
910
920
930
940
950
960
f, FREQUENCY (MHz)
Figure 9. Power Gain versus Frequency
Pout = P1dB
970
910
920
930
940
950
960
970
f, FREQUENCY (MHz)
Figure 10. Power Added Efficiency versus Frequency
Pout = 10 W
MHVIC910HR2
RF Device Data
Freescale Semiconductor
5
TYPICAL CHARACTERISTICS
−12
IRL, INPUT RETURN LOSS (dB)
IRL, INPUT RETURN LOSS (dB)
−12
−14
−16
TC = +85°C
+25°C
−18
−20
−30°C
−14
−16
TC = +85°C
+25°C
−18
−20
−30°C
VDD = 26 Vdc
VDD = 26 Vdc
−22
−22
910
920
930
940
950
960
970
910
920
930
f, FREQUENCY(MHz)
Figure 11. Input Return Loss versus Frequency
Pout = 10 W
Pout = 2.0 W (RMS)
3.5
3
2.5
2
1.5
0.5 W (RMS)
1
VDD = 26 Vdc
f = 880 MHz
0.5
0.1 W (RMS)
0
150
140
160
170
960
970
180
190
−50
−55
Pout = 2.0 W (RMS)
−60
−65
0.5 W (RMS)
−70
0.1 W (RMS)
2.0 W (RMS)
−75
0.5 W (RMS)
−80
0.1 W (RMS)
−85
= 400 kHz
= 600 kHz
VDD = 26 Vdc
f = 880 MHz
−90
200
140
150
IDQ, DRAIN QUIESCENT CURRENT (mA)
160
170
180
200
190
IDQ, DRAIN QUIESCENT CURRENT (mA)
Figure 13. Error Vector Magnitude versus IDQ Total
Figure 14. Adjacent Channel Power Ratio
versus IDQ Total
8
8
7
Pout , OUTPUT POWER (WATTS)
Pout , OUTPUT POWER (WATTS)
950
Figure 12. Input Return Loss versus Frequency
Pout = P1dB
ACPR, ADJACENT CHANNEL POWER RATIO (dBc)
EVM, ERROR VECTOR MAGNITUDE (%)
4.5
4
940
f, FREQUENCY(MHz)
Pin = 1.0 mW
6
0.8 mW
5
0.6 mW
4
0.4 mW
3
2
IDQ total = 180 mA
f = 880 MHz
1
7
Pin = 1.0 mW
6
0.8 mW
5
0.6 mW
4
0.4 mW
3
2
IDQ total = 170 mA
f = 880 MHz
1
0
0
16
17
18
19
20
21
22
23
24
25
VDD, SUPPLY VOLTAGE (VOLTS)
Figure 15. Output Power versus Supply Voltage
26
16
17
18
19
20
21
22
23
24
25
26
VDD, SUPPLY VOLTAGE (VOLTS)
Figure 16. Output Power versus Supply Voltage
MHVIC910HR2
6
RF Device Data
Freescale Semiconductor
Gps
−5
35
η
−10
30
IRL
−15
20
−20
VDD = 26 Vdc
Pout = 10 W (PEP)
IDQ total = 200 mA
Two−Tone Measurement, 100 kHz Tone Spacing
IMD
−25
15
−30
10
820
840
860
880
900
920
940
−35
960
40
Gps
−5
35
η
−10
30
−15
IRL
25
20
IMD
−30
10
820
840
860
−5
Pout = 10 W (PEP), IDQ total = 200 mA
−10
Two−Tone Measurement
100 kHz Tone Spacing
30
−15
IRL
25
−20
IMD
20
−25
15
840
860
880
900
40
η
Pout
9
30
6
20
VDD = 26 Vdc
IDQ total = 180 mA
f = 880 MHz
3
920
940
0
0
0.5
1
Pout
30
6
20
VDD = 26 Vdc
IDQ total = 170 mA
f = 880 MHz
10
0
0
0.5
1
1.5
2
2.5
3
3.5
2.5
3
Pin, INPUT POWER (mW)
Figure 21. CW Performance @ 880 MHz
3.5
15
50
Gps
12
Pout , OUTPUT POWER (WATTS)
40
η, DRAIN EFFICIENCY (%), G ps , POWER GAIN (dB)
Gps
0
2
Figure 20. CW Performance @ 880 MHz
50
3
1.5
Pin, INPUT POWER (mW)
15
η
10
0
−35
960
Figure 19. Two−Tone Broadband Performance
9
−35
960
Gps
12
f, FREQUENCY (MHz)
12
940
50
−30
10
820
Pout , OUTPUT POWER (WATTS)
920
15
Pout , OUTPUT POWER (WATTS)
0
VDD = 26 Vdc
η
900
Figure 18. Two−Tone Broadband Performance
IRL, INPUT RETURN LOSS (dB)
IMD, INTERMODULATION DISTORTION (dBc)
η , DRAIN EFFICIENCY (%), G ps , POWER GAIN (dB)
45
35
880
f, FREQUENCY (MHz)
Figure 17. Two−Tone Broadband Performance
Gps
−25
15
f, FREQUENCY (MHz)
40
−20
VDD = 26 Vdc
Pout = 10 W (PEP)
IDQ total = 200 mA
Two−Tone Measurement, 100 kHz Tone Spacing
40
η
Pout
9
30
6
20
VDD = 26 Vdc
IDQ total = 160 mA
f = 880 MHz
3
10
0
0
0
0.5
1
1.5
2
2.5
3
3.5
Pin, INPUT POWER (mW)
Figure 22. CW Performance @ 880 MHz
MHVIC910HR2
RF Device Data
Freescale Semiconductor
η , DRAIN EFFICIENCY (%), G ps , POWER GAIN (dB)
25
0
7
η, DRAIN EFFICIENCY (%), G ps , POWER GAIN (dB)
40
45
IRL, INPUT RETURN LOSS (dB)
IMD, INTERMODULATION DISTORTION (dBc)
0
η, DRAIN EFFICIENCY (%), G ps , POWER GAIN (dB)
45
IRL, INPUT RETURN LOSS (dB)
IMD, INTERMODULATION DISTORTION (dBc)
η, DRAIN EFFICIENCY (%), G ps , POWER GAIN (dB)
TYPICAL CHARACTERISTICS
IMD, INTERMODULATION DISTORTION (dBc)
TYPICAL CHARACTERISTICS
−25
VDD = 26 Vdc
f1 = 880.0 MHz, f2 = 880.1 MHz
Two−Tone Measurement
100 kHz Tone Spacing
−30
−35
IDQ total = 140 mA
160 mA
170 mA
−40
180 mA
−45
−50
−55
−60
0.01
0.1
1
10
Pout, OUTPUT POWER (WATTS) PEP
Figure 23. Intermodulation Distortion versus
Output Power
MHVIC910HR2
8
RF Device Data
Freescale Semiconductor
VDD = 26 V, IDQ = 225 mA, Pout = 40 dBm
f
MHz
Zload
Ω
900
7.81 + j4.61
920
7.27 + j4.90
940
6.77 + j5.23
960
6.31 + j5.59
980
5.90 + j5.96
1000
5.53 + j6.36
Zo = 10 Ω
f = 1000 MHz
Zload
Zload = Test circuit impedance as measured
from drain to ground.
f = 900 MHz
Output
Matching
Network
Device
Under Test
Z
load
Figure 24. Series Equivalent Load Impedance
MHVIC910HR2
RF Device Data
Freescale Semiconductor
9
NOTES
MHVIC910HR2
10
RF Device Data
Freescale Semiconductor
PACKAGE DIMENSIONS
h X 45 _
A
E2
1
14 x e
16
D
e/2
D1
8
9
E1
8X
bbb
M
B
BOTTOM VIEW
E
C B
S
ÉÉ
ÇÇÇ
ÇÇÇ
ÉÉ
b1
Y
c
A A2
c1
b
DATUM
PLANE
SEATING
PLANE
H
M
ccc C
q
W
GAUGE
PLANE
W
L
C A
SECT W−W
L1
C
aaa
A1
1.000
0.039
S
NOTES:
1. CONTROLLING DIMENSION: MILLIMETER.
2. DIMENSIONS AND TOLERANCES PER ASME
Y14.5M, 1994.
3. DATUM PLANE −H− IS LOCATED AT BOTTOM OF
LEAD AND IS COINCIDENT WITH THE LEAD
WHERE THE LEAD EXITS THE PLASTIC BODY AT
THE BOTTOM OF THE PARTING LINE.
4. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD
PROTRUSION. ALLOWABLE PROTRUSION IS
0.250 PER SIDE. DIMENSIONS D AND E1 DO
INCLUDE MOLD MISMATCH AND ARE
DETERMINED AT DATUM PLANE −H−.
5. DIMENSION b DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION IS 0.127 TOTAL IN EXCESS OF THE
b DIMENSION AT MAXIMUM MATERIAL
CONDITION.
6. DATUMS −A− AND −B− TO BE DETERMINED AT
DATUM PLANE −H−.
DIM
A
A1
A2
D
D1
E
E1
E2
L
L1
b
b1
c
c1
e
h
q
aaa
bbb
ccc
MILLIMETERS
MIN
MAX
2.000
2.300
0.025
0.100
1.950
2.100
6.950
7.100
4.372
5.180
8.850
9.150
6.950
7.100
4.372
5.180
0.466
0.720
0.250 BSC
0.300
0.432
0.300
0.375
0.180
0.279
0.180
0.230
0.800 BSC
−−−
0.600
0_
7_
0.200
0.200
0.100
DETAIL Y
CASE 978−03
ISSUE B
PFP−16
MHVIC910HR2
RF Device Data
Freescale Semiconductor
11
How to Reach Us:
Home Page:
www.freescale.com
E−mail:
[email protected]
USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1−800−521−6274 or +1−480−768−2130
[email protected]
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
[email protected]
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1−8−1, Shimo−Meguro, Meguro−ku,
Tokyo 153−0064
Japan
0120 191014 or +81 3 5437 9125
[email protected]
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
[email protected]
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1−800−441−2447 or 303−675−2140
Fax: 303−675−2150
[email protected]
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2005. All rights reserved.
MHVIC910HR2
Document Number: MHVIC910HR2
Rev. 5, 1/2005
12
RF Device Data
Freescale Semiconductor
Similar pages