TI OMAP3525DZCBC Omap3525-hirel and omap3530-hirel applications processor Datasheet

OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
1 OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
•
•
OMAP3525 and OMAP3530 Applications
Processors:
– OMAP™ 3 Architecture
– MPU Subsystem
• 600-MHz ARM Cortex™-A8 Core
• NEON™ SIMD Coprocessor
– High Performance Image, Video, Audio
(IVA2.2™) Accelerator Subsystem
• 430-MHz TMS320C64x+™ DSP Core
• Enhanced Direct Memory Access
(EDMA) Controller (128 Independent
Channels)
• Video Hardware Accelerators
– POWERVR SGX™ 2D/3D Graphics
Accelerator (OMAP3530 Device Only)
• Tile Based Architecture Delivering up to
10 MPoly/sec
• Universal Scalable Shader Engine:
Multi-threaded Engine Incorporating
Pixel and Vertex Shader Functionality
• Industry Standard API Support:
OpenGLES 1.1 and 2.0, OpenVG1.0
• Fine Grained Task Switching, Load
Balancing, and Power Management
• Programmable High Quality Image
Anti-Aliasing
– Fully Software-Compatible With C64x and
ARM9™
– Commercial and Extended Temperature
Grades
Advanced Very-Long-Instruction-Word (VLIW)
TMS320C64x+™ DSP Core
– Eight Highly Independent Functional Units
• +Six ALUs (32-/40-Bit), Each Supports
Single 32-Bit, Dual 16-Bit, or Quad 8-Bit
Arithmetic per Clock Cycle
• Two Multipliers Support Four 16 x 16-Bit
Multiplies (32-Bit Results) per Clock
Cycle or Eight 8 x 8-Bit Multiplies (16-Bit
Results) per Clock Cycle
– Load-Store Architecture With Non-Aligned
Support
– 64 32-Bit General-Purpose Registers
– Instruction Packing Reduces Code Size
– All Instructions Conditional
•
•
•
•
– Additional C64x+™ Enhancements
• Protected Mode Operation
• Exceptions Support for Error Detection
and Program Redirection
• Hardware Support for Modulo Loop
Operation
C64x+ L1/L2 Memory Architecture
– 32K-Byte L1P Program RAM/Cache (Direct
Mapped)
– 80K-Byte L1D Data RAM/Cache (2-Way
Set-Associative)
– 64K-Byte L2 Unified Mapped RAM/Cache
(4-Way Set-Associative)
– 32K-Byte L2 Shared SRAM and 16K-Byte L2
ROM
C64x+ Instruction Set Features
– Byte-Addressable (8-/16-/32-/64-Bit Data)
– 8-Bit Overflow Protection
– Bit-Field Extract, Set, Clear
– Normalization, Saturation. Bit-Counting
– Compact 16-Bit Instructions
– Additional Instructions to Support Complex
Multiplies
ARM Cortex™-A8 Core
– ARMv7 Architecture
• Trust Zone®
• Thumb®-2
• MMU Enhancements
– In-Order, Dual-Issue, Superscalar
Microprocessor Core
– NEON™ Multimedia Architecture
– Over 2x Performance of ARMv6 SIMD
– Supports Both Integer and Floating Point
SIMD
– Jazelle® RCT Execution Environment
Architecture
– Dynamic Branch Prediction with Branch
Target Address Cache, Global History
Buffer, and 8-Entry Return Stack
– Embedded Trace Macrocell (ETM) Support
for Non-Invasive Debug
ARM Cortex™-A8 Memory Architecture:
– 16K-Byte Instruction Cache (4-Way
Set-Associative)
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this document.
POWERVR SGX is a trademark of Imagination Technologies Ltd.
OMAP is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.
PRODUCT PREVIEW information concerns products in the
formative or design phase of development. Characteristic data and
other specifications are design goals. Texas Instruments reserves
the right to change or discontinue these products without notice.
Copyright © 2009, Texas Instruments Incorporated
PRODUCT PREVIEW
1.1 Features
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
•
•
•
•
PRODUCT PREVIEW
•
•
•
– 16K-Byte Data Cache (4-Way
Set-Associative)
– 256K-Byte L2 Cache
112K-Byte ROM
64K-Byte Shared SRAM
Endianess:
– ARM Instructions - Little Endian
– ARM Data – Configurable
– DSP Instruction/Data - Little Endian
External Memory Interfaces:
– SDRAM Controller (SDRC)
• 16, 32-bit Memory Controller With
1G-Byte Total Address Space
• Interfaces to Low-Power Double Data
Rate (LPDDR) SDRAM
• SDRAM Memory Scheduler (SMS) and
Rotation Engine
– General Purpose Memory Controller
(GPMC)
• 16-bit Wide Multiplexed Address/Data
Bus
• Up to 8 Chip Select Pins With 128M-Byte
Address Space per Chip Select Pin
• Glueless Interface to NOR Flash, NAND
Flash (With ECC Hamming Code
Calculation), SRAM and Pseudo-SRAM
• Flexible Asynchronous Protocol Control
for Interface to Custom Logic (FPGA,
CPLD, ASICs, etc.)
• Nonmultiplexed Address/Data Mode
(Limited 2K-Byte Address Space)
System Direct Memory Access (sDMA)
Controller (32 Logical Channels With
Configurable Priority)
Camera Image Signal Processing (ISP)
– CCD and CMOS Imager Interface
– Memory Data Input
– RAW Data Interface
– BT.601/BT.656 Digital YCbCr 4:2:2
(8-/16-Bit) Interface
– A-Law Compression and Decompression
– Preview Engine for Real-Time Image
Processing
– Glueless Interface to Common Video
Decoders
– Histogram Module/Auto-Exposure,
Auto-White Balance, and Auto-Focus
Engine
– Resize Engine
• Resize Images From 1/4x to 4x
• Separate Horizontal/Vertical Control
Display Subsystem
– Parallel Digital Output
CopyrightNote
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
•
•
•
•
•
•
•
Up to 24-Bit RGB
HD Maximum Resolution
Supports Up to 2 LCD Panels
Support for Remote Frame Buffer
Interface (RFBI) LCD Panels
– 2 10-Bit Digital-to-Analog Converters
(DACs) Supporting:
• Composite NTSC/PAL Video
• Luma/Chroma Separate Video (S-Video)
– Rotation 90-, 180-, and 270-degrees
– Resize Images From 1/4x to 8x
– Color Space Converter
– 8-bit Alpha Blending
Serial Communication
– 5 Multichannel Buffered Serial Ports
(McBSPs)
• 512 Byte Transmit/Receive Buffer
(McBSP1/3/4/5)
• 5K-Byte Transmit/Receive Buffer
(McBSP2)
• SIDETONE Core Support (McBSP2 and 3
Only) For Filter, Gain, and Mix
Operations
• Direct Interface to I2S and PCM Device
and TDM Buses
• 128 Channel Transmit/Receive Mode
– Four Master/Slave Multichannel Serial Port
Interface (McSPI) Ports
– High-Speed/Full-Speed/Low-Speed USB
OTG Subsystem (12-/8-Pin ULPI Interface)
– High-Speed/Full-Speed/Low-Speed
Multiport USB Host Subsystem
• 12-/8-Pin ULPI Interface or 6-/4-/3-Pin
Serial Interface
• Supports Transceiverless Link Logic
(TLL)
– One HDQ/1-Wire Interface
– Three UARTs (One with Infrared Data
Association [IrDA] and Consumer Infrared
[CIR] Modes)
– Three Master/Slave High-Speed
Inter-Integrated Circuit (I2C) Controllers
Removable Media Interfaces:
– Three Multimedia Card (MMC)/ Secure
Digital (SD) With Secure Data I/O (SDIO)
– One Memory Stick Pro Host Controller
– Universal Subscriber Identity Module
(USIM)
Comprehensive Power, Reset, and Clock
Management
– SmartReflex™ Technology
– Dynamic Voltage and Frequency Scaling
(DVFS)
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
•
•
•
•
•
•
•
•
•
Test Interfaces
– IEEE-1149.1 (JTAG) Boundary-Scan
Compatible
– Embedded Trace Macro Interface (ETM)
– Serial Data Transport Interface (SDTI)
12 32-bit General Purpose Timers
2 32-bit Watchdog Timers
1 32-bit Secure Watchdog Timer
1 32-bit 32-kHz Sync Timer
Up to 188 General-Purpose I/O (GPIO) Pins
(Multiplexed With Other Device Functions)
65-nm CMOS Technology
Package-On-Package (POP) Implementation
for Memory Stacking
Discrete Memory Interface (Not Available in
CBC Package)
Packages:
– 515-pin s-PBGA package (CBB Suffix),
.5mm Ball Pitch (Top), .4mm Ball Pitch
(Bottom)
– 515-pin s-PBGA package (CBC Suffix),
.65mm Ball Pitch (Top), .5mm Ball Pitch
•
•
(Bottom)
1.8-V I/O and 3.0-V (MMC1 only),
0.975-V to 1.35-V Adaptive Processor Core
Voltage,
0.975-V to 1.35-V Adaptive Core Logic Voltage
Note: These are default Operating
Performance Point (OPP) voltages and could
be optimized to lower values using
SmartReflex™ AVS.
Applications:
– Portable Navigation Devices
– Portable Media Player
– Advanced Portable Consumer Electronics
– Digital TV
– Digital Video Camera
– Portable Data Collection
– Point-of-Sale Devices
– Gaming
– Web Tablet
– Smart White Goods
– Smart Home Controllers
– Ultra Mobile Devices
PRODUCT PREVIEW
•
SPRS599 – JUNE 2009
1.2 SUPPORTS DEFENSE, AEROSPACE, AND MEDICAL APPLICATIONS
•
•
•
•
•
•
Controlled Baseline
One Assembly/Test Site
One Fabrication Site
Extended Product Life Cycle
Extended Product-Change Notification
Product Traceability
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
3
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
1.3 Description
OMAP3530 and OMAP3525 high-performance, applications processors are based on the enhanced
OMAP™ 3 architecture.
The OMAP™ 3 architecture is designed to provide best-in-class video, image, and graphics processing
sufficient to support the following:
• Streaming video
• 2D/3D mobile gaming
• Video conferencing
• High-resolution still image
PRODUCT PREVIEW
The device supports high-level operating systems (OSs), such as:
• Linux
• Windows CE
• Symbian OS
• Palm OS
This OMAP device includes state-of-the-art power-management techniques required for high-performance
mobile products.
The following subsystems are part of the device:
• Microprocessor unit (MPU) subsystem based on the ARM Cortex™-A8 microprocessor
• IVA2.2 subsystem with a C64x+ digital signal processor (DSP) core
• POWERVR SGX™ subsystem for 2D and 3D graphics acceleration to support display and gaming
effects (3530only)
• Camera image signal processor (ISP) that supports multiple formats and interfacing options connected
to a wide variety of image sensors
• Display subsystem with a wide variety of features for multiple concurrent image manipulation, and a
programmable interface supporting a wide variety of displays. The display subsystem also supports
NTSC/PAL video out.
• Level 3 (L3) and level 4 (L4) interconnects that provide high-bandwidth data transfers for multiple
initiators to the internal and external memory controllers and to on-chip peripherals
The device also offers:
• A comprehensive power and clock-management scheme that enables high-performance, low-power
operation, and ultralow-power standby features. The device also supports SmartReflex™ adaptative
voltage control. This power management technique for automatic control of the operating voltage of a
module reduces the active power consumption.
• Memory stacking feature using the package-on-package (POP) implementation (CBB and CBC
packages only)
OMAP3530 is available in a 515-pin s-PBGA package (CBB suffix) and the OMAP3525 is available in
515-pin s-PBGA (CBC suffix). Table 1-1 lists the differences between the CBB and CBC packages.
4
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 1-1. Differences Between CBB and CBC Packages
CBB PACKAGE
CBC PACKAGE
For CBB package pin assignments
seeTable 2-1, Ball Characteristics (CBB
Pkg.)
For CBC package pin assignments see
Table 2-2, Ball Characteristics (CBC Pkg.)
POP interface supported
POP interface supported
Discrete Memory Interface supported
Discrete Memory Interface not supported
Eight chip select pins available
Eight chip select pins available
Four wait pins available
Four wait pins available
UART1
CTS signal is available on 3 pins (triple
muxed): uart1_cts (AG22 / W8 / T21),
uart1_rts (AH22 / AA9), uart1_tx (F28 / Y8 /
AE7), uart1_rx (E26 / AA8)
The following signals are either available on
two (double muxed) or three pins (triple
muxed): uart1_cts (AE21 / T19 / W2),
uart1_rts (AE22 / R2), uart1_rx (H3 / H25 /
AE4), uart1_tx (L4 / G26)
UART2
The following signals are available on two
pins (double muxed): uart2_cts (AF6/AB26),
uart2_rts (AE6/AB25), uart2_tx (AF5/AA25),
uart2_rx (AE5/AD25)
The following signals are available on two
pins (double muxed): uart2_cts (Y24/P3),
uart2_rts (AA24/N3), uart2_tx (AD22/U3),
uart2_rx (AD21/W3)
McBSP3
The following signals are available on three
pins (triple muxed): mcbsp3_dx (AF6 / AB26
/ V21), mcbsp3_dr (AE6 / AB25 / U21),
mcbsp3_clkx (AF5 / AA25 / W21), and
mcbsp3_fsx (AE5 / AD25 / K26)
The following signals are available on two
pins (triple muxed): mcbsp3_dx (U17/ Y24/
P3), mcbsp3_dr (T20/ AA24 / N3),
mcbsp3_clkx (T17/ AD22 / U3), mcbsp3_fsx
(P20/ AD21 / W3)
GP Timer
The following signals are available on three
pins (triple muxed): gpt8_pwm_evt (N8 /
AD25 / V3), gpt9_pwm_evt (T8 / AB26 / Y2),
gpt10_pwm_evt (R8 / AB25 / Y3), and
gpt11_pwm_evt (P8 / AA25 / Y4)
The following signals are available on three
pins (triple muxed): gpt8_pwm_evt
(C5/AD21/V9), gpt9_pwm_evt (B4/W8/Y24),
gpt10_pwm_evt(C4/U8/AA24),
gpt11_pwm_evt(B5/V8/AD22)
McBSP4
The following signals are available on two
pins (double muxed): mcbsp4_clkx (T8/AE1),
mcbsp4_dr (R8/AD1), mcbsp4_dx (P8/AD2),
mcbsp4_fsx (N8/AC1)
The following signals are available on two
pins(double muxed): mcbsp4_clkx (B4 / V3),
mcbsp4_dr (C4 / U4), mcbsp4_dx (B5 / R3),
mcbsp4_fsx (C5 / T3)
HSUSB3_TLL
Supported
Supported
MM_FSUSB3
Pin Assignments
Package-On-Package (POP) Interface
Discrete Memory Interface
GPMC
PRODUCT PREVIEW
FEATURE
Supported
Supported
McSPI1
Four chip select pins are available
Four chip select pins are available
MMC3
The following signals are available on two
pins (double muxed): mmc3_cmd (AC3 /
AE10), and mmc3_clk (AB1 / AF10)
The following signals are available on two
pins (double muxed): mmc3_cmd (R8 / AB3),
mmc3_clk (R9 / AB2)
GPIO
A maximum of 188 GPIO pins are supported. A maximum of 188 GPIO pins are supported.
DSI
Supported
Supported
SDI
Supported
Supported
This OMAP3525 and OMAP3530 Applications Processors data manual presents the electrical and
mechanical specifications for the OMAP3525 and OMAP3530 Applications Processors. The information
contained in this data manual applies to both the commercial and extended temperature versions of the
OMAP3525 and OMAP3530 Applications Processors unless otherwise indicated. It consists of the
following sections:
• A description of the OMAP3525 and OMAP3530 terminals: assignment, electrical characteristics,
multiplexing, and functional description (Section 2)
• A presentation of the electrical characteristics requirements: power domains, operating conditions,
power consumption, and dc characteristics (Section 3)
• The clock specifications: input and output clocks, DPLL and DLL (Section 4)
• The video DAC specification (Section 5)
• The timing requirements and switching characteristics (ac timings) of the interfaces (Section 6)
• A description of thermal characteristics, device nomenclature, and mechanical data about the available
packaging (Section 7)
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
5
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
1.4 Functional Block Diagram
Figure 1-1 shows the functional block diagram of the OMAP3525/30 Applications Processor.
OMAP Applications Processor
LCD Panel
PRODUCT PREVIEW
IVA 2.2 Subsystem
TMS320DM64x+ DSP
Imaging Video and
Audio Processor
32K/32K L1$
48K L1D RAM
64K L2$
32K L2 RAM
16K L2 ROM
Video Hardware
Accelerators
64
32
Async
64
MPU
Subsystem
Camera
(Parallel)
Amp
ARM CortexA8TM Core
16K/16K L1$
Parallel
POWERVR
SGXTM
Graphics
Accelerator
(3530 only)
L2$
256K
64
64
CVBS
or
S-Video
32
32
32
Channel
System
DMA
32
32
TV
Camera
ISP
Image
Capture
Hardware
Image
Pipeline
and
Preview
Dual Output 3-Layer
Display Processor
(1xGraphics, 2xVideo)
Temporal Dithering
SDTV → QCIF Support
32
64
HS USB
Host
(with
USB
TTL)
HS
USB
OTG
32
Async
32
64
64
L3 Interconnect Network-Hierarchial, Performance, and Power Driven
32
32
64K
On-Chip
RAM
2KB
Public/
62KB
Secure
112K
On-Chip
ROM
80KB
Secure/
32KB
BOOT
64
SMS:
SDRAM
Memory
Scheduler/
Rotation
SDRC:
SDRAM
Memory
Controller
32
32
32
L4 Interconnect
GPMC:
General
Purpose
Memory
Controller
NAND/
NOR
Flash,
SRAM
External and
Stacked Memories
Peripherals:
3xUART, 3xHigh-Speed I2C,
5xMcBSP
(2x with Sidetone/Audio Buffer)
4xMcSPI, 6xGPIO,
3xHigh-Speed MMC/SDIO,
HDQ/1 Wire,
2xMailboxes
12xGPTimers, 2xWDT,
32K Sync Timer
System
Controls
PRCM
2xSmartReflexTM
Control
Module
External
Peripherals
Interfaces
Emulation
Debug: SDTI, ETM, JTAG,
CoresightTM DAP
Figure 1-1. OMAP3525/30 Functional Block Diagram
6
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Contents
2
3
OMAP3525-HiRel and OMAP3530-HiRel
Applications Processors ............................... 1
1.1
1.2
Features .............................................. 1
SUPPORTS DEFENSE, AEROSPACE, AND
MEDICAL APPLICATIONS ........................... 3
1.3
Description ............................................ 4
1.4
Functional Block Diagram ............................ 6
TERMINAL DESCRIPTION.............................. 8
2.1
Terminal Assignment ................................. 8
2.2
Ball Characteristics .................................. 12
2.3
Multiplexing Characteristics ......................... 50
2.4
Signal Description ................................... 66
6
..................................... 93
3.2
Absolute Maximum Ratings ......................... 95
3.3
Recommended Operating Conditions ............... 97
3.4
DC Electrical Characteristics ........................ 99
3.5
Core Voltage Decoupling .......................... 102
3.6
Power-up and Power-down ........................ 104
CLOCK SPECIFICATIONS ........................... 107
4.1
Input Clock Specifications ......................... 108
Power Domains
Submit Documentation Feedback
Output Clock Specifications........................ 113
4.3
DPLL and DLL Specifications ...................... 115
VIDEO DAC SPECIFICATIONS ..................... 122
5.1
5.2
Interface Description ............................... 122
Electrical Specifications Over Recommended
Operating Conditions .............................. 124
5.3
Analog Supply (vdda_dac) Noise Requirements
5.4
External Component Value Choice ................ 127
7
..
126
TIMING REQUIREMENTS AND SWITCHING
CHARACTERISTICS .................................. 128
............................
6.2
Interface Clock Specifications .....................
6.3
Timing Parameters .................................
6.4
External Memory Interfaces........................
6.5
Video Interfaces ....................................
6.6
Serial Communications Interfaces .................
6.7
Removable Media Interfaces ......................
6.8
Test Interfaces .....................................
PACKAGE CHARACTERISTICS ....................
7.1
Package Thermal Resistance ......................
7.2
Device Support.....................................
6.1
ELECTRICAL CHARACTERISTICS.................. 93
3.1
4
5
4.2
Timing Test Conditions
Contents
128
128
129
130
159
179
212
227
233
233
233
7
PRODUCT PREVIEW
1
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
2 TERMINAL DESCRIPTION
2.1 Terminal Assignment
Figure 2-1 through Figure 2-4 show the ball locations for the 515-ball plastic ball grid array (s-PBGA)
packages. Table 2-1 and Table 2-2 indicate the signal names and ball grid numbers for both packages.
AH
AG
AF
AE
AD
PRODUCT PREVIEW
AC
AB
AA
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1 2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
030-001
Figure 2-1. OMAP3525/30 Applications Processor CBB s-PBGA-N515 Package (Bottom View)
8
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
AC
AB
AA
Y
W
V
U
T
R
P
PRODUCT PREVIEW
N
M
L
K
J
H
G
F
E
D
C
B
A
23
22
21
19
20
17
18
15
16
11
13
14
12
9
10
5
7
8
6
1
3
4
2
030-002
Balls A1, A2, A22, A23, AB1, AB2, AB22, AB23, AC1, AC2, AC22, AC23, B1, B2, B22, and B23 are unused.
Figure 2-2. OMAP3525/30 Applications Processor CBB s-PBGA-N515 Package (Top View)
Submit Documentation Feedback
TERMINAL DESCRIPTION
9
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
PRODUCT PREVIEW
AF
AE
AD
AC
AB
AA
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Figure 2-3. OMAP3525/30 Applications Processor CBC s-PBGA-515 Package (Bottom View)
10
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
AA
Y
W
V
U
T
R
P
N
M
PRODUCT PREVIEW
L
K
J
H
G
F
E
D
C
B
A
21 20 19 18 17 16 15 14 13 12 11 10 9
8
7
6
5
4
3
2
1
Figure 2-4. OMAP3525/30 Applications Processor CBC s-PBGA-515 Package (Top View)
Submit Documentation Feedback
TERMINAL DESCRIPTION
11
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
2.2 Ball Characteristics
Table 2-1 and Table 2-2 describe the terminal characteristics and the signals multiplexed on each pin for
the CBB and CBC packages, respectively. The following list describes the table column headers.
1. BALL BOTTOM: Ball number(s) on the bottom side associated with each signal(s) on the bottom.
2. BALL TOP: Ball number(s) on the top side associated with each signal(s) on the top.
3. PIN NAME: Names of signals multiplexed on each ball (also notice that the name of the pin is the
signal name in mode 0).
PRODUCT PREVIEW
Note: Table 2-1 and Table 2-2 do not take into account subsystem pin multiplexing options.
Subsystem pin multiplexing options are described in Section 2.4, Signal Descriptions.
4. MODE: Multiplexing mode number.
a. Mode 0 is the primary mode; this means that when mode 0 is set, the function mapped on the pin
corresponds to the name of the pin. There is always a function mapped on the primary mode.
Notice that primary mode is not necessarily the default mode.
Note: The default mode is the mode which is automatically configured on release of the internal
GLOBAL_PWRON reset; also see the RESET REL. MODE column.
b. Modes 1 to 7 are possible modes for alternate functions. On each pin, some modes are effectively
used for alternate functions, while some modes are not used and do not correspond to a functional
configuration.
5. TYPE: Signal direction
– I = Input
– O = Output
– I/O = Input/Output
– D = Open drain
– DS = Differential
– A = Analog
Note: In the safe_mode, the buffer is configured in high-impedance.
6. BALL RESET STATE: The state of the terminal at reset (power up).
– 0: The buffer drives VOL (pulldown/pullup resistor not activated)
0(PD): The buffer drives VOL with an active pulldown resistor.
– 1: The buffer drives VOH (pulldown/pullup resistor not activated)
1(PU): The buffer drives VOH with an active pullup resistor.
– Z: High-impedance
– L: High-impedance with an active pulldown resistor
– H : High-impedance with an active pullup resistor
7. BALL RESET REL. STATE: The state of the terminal at reset release.
– 0: The buffer drives VOL (pulldown/pullup resistor not activated)
0(PD): The buffer drives VOL with an active pulldown resistor.
– 1: The buffer drives VOH (pulldown/pullup resistor not activated)
1(PU): The buffer drives VOH with an active pullup resistor.
– Z: High-impedance
– L: High-impedance with an active pulldown resistor
– H : High-impedance with an active pullup resistor
8. RESET REL. MODE: This mode is automatically configured on release of the internal
GLOBAL_PWRON reset.
9. POWER: The voltage supply that powers the terminal’s I/O buffers.
10. HYS: Indicates if the input buffer is with hysteresis.
11. BUFFER STRENGTH: Drive strength of the associated output buffer.
12. PULL U/D - TYPE: Denotes the presence of an internal pullup or pulldown resistor. Pullup and
pulldown resistors can be enabled or disabled via software.
12
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Note: The pullup/pulldown drive strength is equal to 100 µA except for CBB balls P27, P26, R27, and
R25, which the pulldown drive strength is equal to 1.8 kΩ.
13. IO CELL: IO cell information.
Note: Configuring two pins to the same input signal is not supported as it can yield unexpected results.
This can be easily prevented with the proper software configuration.
Table 2-1. Ball Characteristics (CBB Pkg.) (1)
BALL
TOP [2]
PIN
NAME [3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
REL.
MODE [8]
POWER [9]
HYS
[10]
BUFFER
STRENGTH
(mA) [11]
PULL
U/D
TYPE
[12]
IO
CELL [13]
D6
J2
sdrc_d0
0
IO
L
Z
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
C6
J1
sdrc_d1
0
IO
L
Z
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
B6
G2
sdrc_d2
0
IO
L
Z
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
C8
G1
sdrc_d3
0
IO
L
Z
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
C9
F2
sdrc_d4
0
IO
L
Z
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
A7
F1
sdrc_d5
0
IO
L
Z
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
B9
D2
sdrc_d6
0
IO
L
Z
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
A9
D1
sdrc_d7
0
IO
L
Z
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
C14
B13
sdrc_d8
0
IO
L
Z
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
B14
A13
sdrc_d9
0
IO
L
Z
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
C15
B14
sdrc_d10
0
IO
L
Z
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
B16
A14
sdrc_d11
0
IO
L
Z
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
D17
B16
sdrc_d12
0
IO
L
Z
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
C17
A16
sdrc_d13
0
IO
L
Z
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
B17
B19
sdrc_d14
0
IO
L
Z
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
D18
A19
sdrc_d15
0
IO
L
Z
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
D11
B3
sdrc_d16
0
IO
L
Z
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
B10
A3
sdrc_d17
0
IO
L
Z
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
C11
B5
sdrc_d18
0
IO
L
Z
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
D12
A5
sdrc_d19
0
IO
L
Z
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
C12
B8
sdrc_d20
0
IO
L
Z
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
A11
A8
sdrc_d21
0
IO
L
Z
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
B13
B9
sdrc_d22
0
IO
L
Z
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
D14
A9
sdrc_d23
0
IO
L
Z
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
C18
B21
sdrc_d24
0
IO
L
Z
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
A19
A21
sdrc_d25
0
IO
L
Z
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
B19
D22
sdrc_d26
0
IO
L
Z
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
B20
D23
sdrc_d27
0
IO
L
Z
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
D20
E22
sdrc_d28
0
IO
L
Z
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
A21
E23
sdrc_d29
0
IO
L
Z
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
B21
G22
sdrc_d30
0
IO
L
Z
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
C21
G23
sdrc_d31
0
IO
L
Z
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
H9
AB21
sdrc_ba0
0
O
0
0
0
VDDS_ MEM
No
4
NA
LVCMOS
H10
AC21
sdrc_ba1
0
O
0
0
0
VDDS_ MEM
No
4
NA
LVCMOS
A4
N22
sdrc_a0
0
O
0
0
0
VDDS_ MEM
No
4
NA
LVCMOS
B4
N23
sdrc_a1
0
O
0
0
0
VDDS_ MEM
No
4
NA
LVCMOS
B3
P22
sdrc_a2
0
O
0
0
0
VDDS_ MEM
No
4
NA
LVCMOS
C5
P23
sdrc_a3
0
O
0
0
0
VDDS_ MEM
No
4
NA
LVCMOS
C4
R22
sdrc_a4
0
O
0
0
0
VDDS_ MEM
No
4
NA
LVCMOS
D5
R23
sdrc_a5
0
O
0
0
0
VDDS_ MEM
No
4
NA
LVCMOS
C3
T22
sdrc_a6
0
O
0
0
0
VDDS_ MEM
No
4
NA
LVCMOS
C2
T23
sdrc_a7
0
O
0
0
0
VDDS_ MEM
No
4
NA
LVCMOS
C1
U22
sdrc_a8
0
O
0
0
0
VDDS_ MEM
No
4
NA
LVCMOS
D4
U23
sdrc_a9
0
O
0
0
0
VDDS_ MEM
No
4
NA
LVCMOS
D3
V22
sdrc_a10
0
O
0
0
0
VDDS_ MEM
No
4
NA
LVCMOS
(1)
PRODUCT PREVIEW
BALL
BOTTOM [1]
NA in this table stands for Not Applicable.
Submit Documentation Feedback
TERMINAL DESCRIPTION
13
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)
BALL
BOTTOM [1]
BALL
TOP [2]
PIN
NAME [3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
REL.
MODE [8]
POWER [9]
HYS
[10]
BUFFER
STRENGTH
(mA) [11]
PULL
U/D
TYPE
[12]
IO
CELL [13]
D2
V23
sdrc_a11
0
O
0
0
0
VDDS_ MEM
No
4
NA
LVCMOS
D1
W22
sdrc_a12
0
O
0
0
0
VDDS_ MEM
No
4
NA
LVCMOS
E2
W23
sdrc_a13
0
O
0
0
0
VDDS_ MEM
No
4
NA
LVCMOS
E1
Y22
sdrc_a14
0
O
0
0
0
VDDS_ MEM
No
4
NA
LVCMOS
H11
M22
sdrc_ncs0
0
O
1
1
0
VDDS_ MEM
No
4
NA
LVCMOS
H12
M23
sdrc_ncs1
0
O
1
1
0
VDDS_ MEM
No
4
NA
LVCMOS
A13
A11
sdrc_clk
0
IO
L
0
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
A14
B11
sdrc_nclk
0
O
1
1
0
VDDS_ MEM
No
4
NA
LVCMOS
H16
J22
sdrc_cke0
0
O
H
1
7
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
safe_mode
7
O
H
1
7
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
H17
PRODUCT PREVIEW
sdrc_cke1
0
safe_mode
7
H14
L23
sdrc_nras
0
O
1
1
0
VDDS_ MEM
No
4
NA
LVCMOS
H13
L22
sdrc_ncas
0
O
1
1
0
VDDS_ MEM
No
4
NA
LVCMOS
H15
K23
sdrc_nwe
0
O
1
1
0
VDDS_ MEM
No
4
NA
LVCMOS
B7
C1
sdrc_dm0
0
O
0
0
0
VDDS_ MEM
No
4
NA
LVCMOS
A16
A17
sdrc_dm1
0
O
0
0
0
VDDS_ MEM
No
4
NA
LVCMOS
B11
A6
sdrc_dm2
0
O
0
0
0
VDDS_ MEM
No
4
NA
LVCMOS
C20
A20
sdrc_dm3
0
O
0
0
0
VDDS_ MEM
No
4
NA
LVCMOS
A6
C2
sdrc_dqs0
0
IO
L
Z
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
A17
B17
sdrc_dqs1
0
IO
L
Z
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
A10
B6
sdrc_dqs2
0
IO
L
Z
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
A20
B20
sdrc_dqs3
0
IO
L
Z
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
N4
AC15
gpmc_a1
0
O
L
L
7
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
gpio_34
4
IO
safe_mode
7
gpmc_a2
0
O
L
L
7
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
gpio_35
4
IO
safe_mode
7
gpmc_a3
0
O
L
L
7
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
gpio_36
4
IO
safe_mode
7
gpmc_a4
0
O
L
L
7
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
gpio_37
4
IO
safe_mode
7
gpmc_a5
0
O
L
L
7
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
gpio_38
4
IO
safe_mode
7
gpmc_a6
0
O
H
H
7
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
gpio_39
4
IO
safe_mode
7
gpmc_a7
0
O
H
H
7
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
gpio_40
4
IO
safe_mode
7
gpmc_a8
0
O
H
H
7
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
gpio_41
4
IO
safe_mode
7
gpmc_a9
0
O
H
H
7
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
sys_ ndmareq2
1
I
IO
H
H
7
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
M4
L4
K4
T3
R3
N3
M3
L3
K3
14
J23
AB15
AC16
AB16
AC17
AB17
AC18
AB18
AC19
AB19
gpio_42
4
safe_mode
7
gpmc_a10
0
O
sys_ ndmareq3
1
I
gpio_43
4
IO
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)
BALL
TOP [2]
PIN
NAME [3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
REL.
MODE [8]
POWER [9]
HYS
[10]
BUFFER
STRENGTH
(mA) [11]
PULL
U/D
TYPE
[12]
IO
CELL [13]
K1
M2
safe_mode
7
gpmc_d0
L1
M1
gpmc_d1
0
IO
H
H
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
0
IO
H
H
0
VDDS_ MEM
Yes
4
PU/ PD
L2
N2
LVCMOS
gpmc_d2
0
IO
H
H
0
VDDS_ MEM
Yes
4
PU/ PD
P2
LVCMOS
N1
gpmc_d3
0
IO
H
H
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
T1
R2
gpmc_d4
0
IO
H
H
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
V1
R1
gpmc_d5
0
IO
H
H
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
V2
T2
gpmc_d6
0
IO
H
H
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
W2
T1
gpmc_d7
0
IO
H
H
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
H2
AB3
gpmc_d8
0
IO
H
H
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
gpio_44
4
IO
safe_mode
7
gpmc_d9
0
IO
H
H
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
gpio_45
4
IO
safe_mode
7
gpmc_d10
0
IO
H
H
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
gpio_46
4
IO
safe_mode
7
gpmc_d11
0
IO
H
H
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
gpio_47
4
IO
safe_mode
7
gpmc_d12
0
IO
H
H
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
gpio_48
4
IO
safe_mode
7
gpmc_d13
0
IO
H
H
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
gpio_49
4
IO
safe_mode
7
gpmc_d14
0
IO
H
H
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
gpio_50
4
IO
safe_mode
7
gpmc_d15
0
IO
H
H
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
gpio_51
4
IO
K2
P1
R1
R2
T2
W1
Y1
AC3
AB4
AC4
AB6
AC6
AB7
AC7
safe_mode
7
G4
Y2
gpmc_ncs0
0
O
1
1
0
VDDS_ MEM
No
4
NA
LVCMOS
H3
Y1
gpmc_ncs1
0
O
H
1
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
gpio_52
4
IO
H
H
7
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
H
H
7
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
H
H
7
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
H
H
7
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
V8
U8
T8
R8
NA
NA
NA
NA
safe_mode
7
gpmc_ncs2
0
O
gpio_53
4
IO
safe_mode
7
gpmc_ncs3
0
O
sys_ ndmareq0
1
I
IO
gpio_54
4
safe_mode
7
gpmc_ncs4
0
O
sys_ ndmareq1
1
I
mcbsp4_ clkx
2
IO
gpt9_pwm_evt
3
IO
gpio_55
4
IO
safe_mode
7
gpmc_ncs5
0
O
sys_ ndmareq2
1
I
mcbsp4_dr
2
I
gpt10_pwm_evt
3
IO
Submit Documentation Feedback
TERMINAL DESCRIPTION
PRODUCT PREVIEW
BALL
BOTTOM [1]
15
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)
BALL
BOTTOM [1]
P8
BALL
TOP [2]
NA
N8
NA
PRODUCT PREVIEW
T4
W2
PIN
NAME [3]
MODE [4]
TYPE [5]
IO
gpio_56
4
safe_mode
7
gpmc_ncs6
0
O
sys_ ndmareq3
1
I
mcbsp4_dx
2
IO
gpt11_pwm_evt
3
IO
gpio_57
4
IO
safe_mode
7
gpmc_ncs7
0
O
gpmc_io_dir
1
O
mcbsp4_fsx
2
IO
gpt8_pwm_evt
3
IO
gpio_58
4
IO
safe_mode
7
gpmc_clk
0
O
gpio_59
4
IO
BALL
RESET
REL.
STATE [7]
RESET
REL.
MODE [8]
POWER [9]
HYS
[10]
BUFFER
STRENGTH
(mA) [11]
PULL
U/D
TYPE
[12]
IO
CELL [13]
H
H
7
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
H
H
7
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
L
0
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
safe_mode
7
F3
W1
gpmc_nadv_ale
0
O
0
0
0
VDDS_ MEM
No
4
NA
LVCMOS
G2
V2
gpmc_noe
0
O
1
1
0
VDDS_ MEM
No
4
NA
LVCMOS
F4
V1
gpmc_nwe
0
O
1
1
0
VDDS_ MEM
No
4
NA
LVCMOS
G3
AC12
gpmc_nbe0_cle
0
O
L
0
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
gpio_60
4
IO
L
L
7
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
L
0
0
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
U3
NA
safe_mode
7
gpmc_nbe1
0
O
gpio_61
4
IO
safe_mode
H1
AB10
7
gpmc_nwp
0
O
gpio_62
4
IO
safe_mode
7
M8
AB12
gpmc_wait0
0
I
H
H
0
VDDS_ MEM
Yes
NA
PU/ PD
LVCMOS
L8
AC10
gpmc_wait1
0
I
H
H
7
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
gpio_63
4
IO
H
H
7
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
H
H
7
VDDS_ MEM
Yes
4
PU/ PD
LVCMOS
H
H
7
VDDS
Yes
8
PU/ PD
LVCMOS
H
H
7
VDDS
Yes
8
PU/ PD
LVCMOS
H
H
7
VDDS
Yes
8
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
8
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
8
PU/ PD
LVDS/ CMOS
K8
NA
J8
NA
D28
NA
D26
NA
D27
NA
E27
NA
AG22
16
BALL
RESET
STATE [6]
NA
safe_mode
7
gpmc_wait2
0
I
gpio_64
4
IO
safe_mode
7
gpmc_wait3
0
I
sys_ ndmareq1
1
I
IO
gpio_65
4
safe_mode
7
dss_pclk
0
O
gpio_66
4
IO
safe_mode
7
dss_hsync
0
O
gpio_67
4
IO
safe_mode
7
dss_vsync
0
O
gpio_68
4
IO
safe_mode
7
dss_acbias
0
O
gpio_69
4
IO
safe_mode
7
dss_data0
0
IO
uart1_cts
2
I
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
AH22
AG23
AH23
AG24
AH24
E26
F28
F27
G26
AD28
AD27
AB28
AB27
AA28
AA27
G25
BALL
TOP [2]
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
PIN
NAME [3]
MODE [4]
TYPE [5]
IO
gpio_70
4
safe_mode
7
dss_data1
0
IO
uart1_rts
2
O
IO
gpio_71
4
safe_mode
7
dss_data2
0
IO
gpio_72
4
IO
safe_mode
7
dss_data3
0
IO
gpio_73
4
IO
safe_mode
7
dss_data4
0
IO
uart3_rx_ irrx
2
I
IO
gpio_74
4
safe_mode
7
dss_data5
0
IO
uart3_tx_ irtx
2
O
IO
gpio_75
4
safe_mode
7
dss_data6
0
IO
uart1_tx
2
O
IO
gpio_76
4
safe_mode
7
dss_data7
0
IO
uart1_rx
2
I
IO
gpio_77
4
safe_mode
7
dss_data8
0
IO
gpio_78
4
IO
safe_mode
7
dss_data9
0
IO
gpio_79
4
IO
safe_mode
7
dss_data10
0
IO
gpio_80
4
IO
safe_mode
7
dss_data11
0
IO
gpio_81
4
IO
safe_mode
7
dss_data12
0
IO
gpio_82
4
IO
safe_mode
7
dss_data13
0
IO
gpio_83
4
IO
safe_mode
7
dss_data14
0
IO
gpio_84
4
IO
safe_mode
7
dss_data15
0
IO
gpio_85
4
IO
safe_mode
7
dss_data16
0
IO
gpio_86
4
IO
Submit Documentation Feedback
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
REL.
MODE [8]
POWER [9]
HYS
[10]
BUFFER
STRENGTH
(mA) [11]
PULL
U/D
TYPE
[12]
IO
CELL [13]
L
L
7
VDDS
Yes
8
PU/ PD
LVDS/ CMOS
L
L
7
VDDS
Yes
8
PU/ PD
LVDS/ CMOS
L
L
7
VDDS
Yes
8
PU/ PD
LVDS/ CMOS
L
L
7
VDDS
Yes
8
PU/ PD
LVDS/ CMOS
L
L
7
VDDS
Yes
8
PU/ PD
LVDS/ CMOS
L
L
7
VDDS
Yes
8
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
8
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
8
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
8
PU/ PD
LVCMOS
L
L
7
VDDS
=Yes
8
PU/ PD
LVDS/ CMOS
L
L
7
VDDS
Yes
8
PU/ PD
LVDS/ CMOS
L
L
7
VDDS
Yes
8
PU/ PD
LVDS/ CMOS
L
L
7
VDDS
Yes
8
PU/ PD
LVDS/ CMOS
L
L
7
VDDS
Yes
8
PU/ PD
LVDS/ CMOS
L
L
7
VDDS
Yes
8
PU/ PD
LVDS/ CMOS
L
L
7
VDDS
Yes
8
PU/ PD
LVCMOS
TERMINAL DESCRIPTION
17
PRODUCT PREVIEW
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)
BALL
BOTTOM [1]
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)
BALL
BOTTOM [1]
BALL
TOP [2]
PIN
NAME [3]
MODE [4]
safe_mode
7
H27
NA
dss_data17
gpio_87
H26
H25
PRODUCT PREVIEW
E28
J26
AC27
AC28
NA
NA
NA
NA
BALL
RESET
REL.
STATE [7]
RESET
REL.
MODE [8]
POWER [9]
HYS
[10]
BUFFER
STRENGTH
(mA) [11]
PULL
U/D
TYPE
[12]
IO
CELL [13]
0
IO
L
L
7
VDDS
Yes
8
PU/ PD
LVCMOS
4
IO
L
L
7
VDDS
Yes
8
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
8
PU/ PD
LVCMOS
H
H
7
VDDS
Yes
8
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
8
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
8
PU/ PD
LVDS/ CMOS
L
L
7
VDDS
Yes
8
PU/ PD
LVDS/ CMOS
safe_mode
7
dss_data18
0
IO
mcspi3_clk
2
IO
dss_data0
3
IO
gpio_88
4
IO
safe_mode
7
dss_data19
0
IO
mcspi3_ simo
2
IO
dss_data1
3
IO
gpio_89
4
IO
safe_mode
7
dss_data20
0
O
mcspi3_ somi
2
IO
dss_data2
3
IO
gpio_90
4
IO
safe_mode
7
dss_data21
0
O
mcspi3_cs0
2
IO
dss_data3
3
IO
gpio_91
4
IO
safe_mode
7
dss_data22
0
O
mcspi3_cs1
2
O
dss_data4
3
IO
gpio_92
4
IO
safe_mode
7
dss_data23
0
O
dss_data5
3
IO
IO
gpio_93
4
safe_mode
7
NA
tv_out2
0
O
Z
0
0
VDDADAC
NA (2)
NA
10-bit DAC
Y28
NA
tv_out1
0
O
Z
0
0
VDDADAC
NA (2)
NA
10-bit DAC
Y27
NA
tv_vfb1
0
AO
Z
NA
0
VDDADAC
NA (2)
NA
10-bit DAC
W27
NA
tv_vfb2
0
AO
Z
NA
0
VDDADAC
NA (2)
NA
10-bit DAC
W26
NA
tv_vref
0
AO
Z
NA
0
VDDADAC
NA (2)
NA
10-bit DAC
A24
NA
cam_hs
0
IO
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
gpio_94
4
IO
safe_mode
7
cam_vs
0
IO
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
gpio_95
4
IO
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
C25
C27
C23
18
NA
BALL
RESET
STATE [6]
W28
A23
(2)
NA
TYPE [5]
NA
NA
NA
NA
safe_mode
7
cam_ xclka
0
O
gpio_96
4
IO
safe_mode
7
cam_pclk
0
I
gpio_97
4
IO
safe_mode
7
cam_fld
0
IO
cam_global_reset
2
IO
gpio_98
4
IO
The drive strength is fixed regardless of the load. The driver is designed to drive 75Ω for video applications.
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
BALL
TOP [2]
AG17
NA
AH17
B24
C24
D24
A25
K28
L28
K27
L27
B25
C26
B26
B23
D25
AG19
AH19
AG18
AH18
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
PIN
NAME [3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
REL.
MODE [8]
POWER [9]
HYS
[10]
BUFFER
STRENGTH
(mA) [11]
PULL
U/D
TYPE
[12]
IO
CELL [13]
safe_mode
7
cam_d0
gpio_99
0
I
L
L
7
VDDS
Yes=
NA
PU/PD
LVDS/ CMOS
4
I
safe_mode
7
cam_d1
0
I
gpio_100
4
I
L
L
7
VDDS
Yes=
NA
PU/PD
LVDS/ CMOS
safe_mode
7
cam_d2
0
I
gpio_101
4
IO
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
safe_mode
7
cam_d3
0
I
gpio_102
4
IO
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
safe_mode
7
cam_d4
0
I
gpio_103
4
IO
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
safe_mode
7
cam_d5
0
I
gpio_104
4
IO
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
safe_mode
7
cam_d6
0
I
gpio_105
4
IO
L
L
7
VDDS
Yes
NA
PU/PD
LVDS/ CMOS
safe_mode
7
cam_d7
0
I
gpio_106
4
IO
PU/PD
LVDS/ CMOS
safe_mode
7
cam_d8
0
I
gpio_107
4
IO
PU/PD
LVDS/ CMOS
safe_mode
7
cam_d9
0
I
gpio_108
4
IO
PU/PD
LVDS/ CMOS
safe_mode
7
cam_d10
0
I
gpio_109
4
IO
safe_mode
7
cam_d11
0
I
gpio_110
4
IO
NA
VDDS
Yes
NA
8
L
L
7
VDDS
Yes
NA
8
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
I
L
L
7
VDDS
Yes
NA
PU/PD
LVDS/ CMOS
I
L
L
7
VDDS
Yes
NA
PU/PD
LVDS/ CMOS
I
L
L
7
VDDS
Yes
NA
PU/PD
LVDS/ CMOS
I
L
L
7
VDDS
Yes
NA
PU/PD
LVDS/ CMOS
7
0
I
cam_ shutter
2
O
IO
gpio_167
4
safe_mode
7
cam_ strobe
0
O
gpio_126
4
IO
safe_mode
7
gpio_112
4
safe_mode
7
Submit Documentation Feedback
7
PU/ PD
cam_wen
4
L
4
safe_mode
gpio_115
L
NA
O
7
8
Yes
IO
4
NA
VDDS
4
gpio_114
Yes
7
0
safe_mode
VDDS
L
gpio_111
7
7
L
7
4
L
NA
safe_mode
gpio_113
L
NA
cam_ xclkb
safe_mode
8
TERMINAL DESCRIPTION
19
PRODUCT PREVIEW
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)
BALL
BOTTOM [1]
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)
BALL
BOTTOM [1]
BALL
TOP [2]
PIN
NAME [3]
MODE [4]
safe_mode
7
P21
NA
mcbsp2_fsx
gpio_116
N21
R21
M21
PRODUCT PREVIEW
N28
M27
N27
N26
N25
P28
P27
P26
R27
R25
AE2
AG5
(3)
(4)
20
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
REL.
MODE [8]
POWER [9]
HYS
[10]
BUFFER
STRENGTH
(mA) [11]
PULL
U/D
TYPE
[12]
IO
CELL [13]
0
IO
L
L
7
VDDS
Yes
4 (3)
PU/ PD
LVCMOS
4
IO
L
L
7
VDDS
Yes
4 (3)
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4 (3)
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4 (3)
PU/ PD
LVCMOS
L
L
7
VDDS_MMC1
Yes
8
PU/ PD (4)
LVCMOS
L
L
7
VDDS_MMC1
Yes
8
PU/ PD (4)
LVCMOS
L
L
7
VDDS_MMC1
Yes
8
PU/ PD (4)
LVCMOS
L
L
7
VDDS_MMC1
Yes
8
PU/ PD (4)
LVCMOS
L
L
7
VDDS_MMC1
Yes
8
PU/ PD (4)
LVCMOS
L
L
7
VDDS_MMC1
Yes
8
PU/ PD (4)
LVCMOS
L
L
7
VDDS_MMC1a
No=
8
PD (4)
LVCMOS
L
L
7
VDDS_MMC1a
No=
8
PD (4)
LVCMOS
L
L
7
VDDS_MMC1a
No
8
PD (4)
LVCMOS
L
L
7
VDDS_MMC1a
No
8
PD (4)
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
H
H
7
VDDS
Yes
4
PU/ PD
LVCMOS
safe_mode
7
mcbsp2_ clkx
0
IO
gpio_117
4
IO
safe_mode
7
mcbsp2_dr
0
I
gpio_118
4
IO
safe_mode
7
mcbsp2_dx
0
IO
gpio_119
4
IO
safe_mode
7
mmc1_clk
0
O
gpio_120
4
IO
safe_mode
7
mmc1_cmd
0
IO
gpio_121
4
IO
safe_mode
7
mmc1_dat0
0
IO
gpio_122
4
IO
safe_mode
7
mmc1_dat1
0
IO
gpio_123
4
IO
safe_mode
7
mmc1_dat2
0
IO
gpio_124
4
IO
safe_mode
7
mmc1_dat3
0
IO
gpio_125
4
IO
safe_mode
7
mmc1_dat4
0
IO
gpio_126
4
IO
safe_mode
7
mmc1_dat5
0
IO
gpio_127
4
IO
safe_mode
7
mmc1_dat6
0
IO
gpio_128
4
IO
safe_mode
7
mmc1_dat7
0
IO
gpio_129
4
IO
safe_mode
7
mmc2_clk
0
O
mcspi3_clk
1
IO
IO
gpio_130
4
safe_mode
7
mmc2_ cmd
0
IO
mcspi3_ simo
1
IO
gpio_131
4
IO
The buffer strength of this IO cell is programmable (2, 4, 6, or 8 mA) according to the selected mode; the default value is described in
the above table.
The PU nominal drive strength of this IO cell is equal to 25 µA @ 1.8V and 41.6 µA @ 3.0V. The PD nominal drive strength of this IO
cell is equal to 1 mA @ 1.8V and 1.66 mA @ 3.0V.
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)
BALL
TOP [2]
PIN
NAME [3]
MODE [4]
safe_mode
7
AH5
NA
mmc2_ dat0
mcspi3_ somi
AH4
AG4
AF4
AE4
AH3
AF3
AE3
AF6
AE6
NA
NA
NA
NA
NA
NA
NA
NA
NA
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
REL.
MODE [8]
POWER [9]
HYS
[10]
BUFFER
STRENGTH
(mA) [11]
PULL
U/D
TYPE
[12]
IO
CELL [13]
0
IO
H
H
7
VDDS
Yes
4
PU/ PD
LVCMOS
1
IO
IO
H
H
7
VDDS
Yes
4
PU/ PD
LVCMOS
H
H
7
VDDS
Yes
4
PU/ PD
LVCMOS
H
H
7
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
gpio_132
4
safe_mode
7
mmc2_ dat1
0
IO
gpio_133
4
IO
safe_mode
7
mmc2_ dat2
0
IO
mcspi3_cs1
1
O
IO
gpio_134
4
safe_mode
7
mmc2_ dat3
0
IO
mcspi3_cs0
1
IO
IO
gpio_135
4
safe_mode
7
mmc2_ dat4
0
IO
mmc2_dir_dat0
1
O
mmc3_dat0
3
IO
gpio_136
4
IO
safe_mode
7
mmc2_ dat5
0
IO
mmc2_dir_dat1
1
O
cam_global_reset
2
IO
mmc3_dat1
3
IO
gpio_137
4
IO
hsusb3_tll_stp
5
IO
mm3_rxdp
6
IO
safe_mode
7
mmc2_ dat6
0
IO
mmc2_dir_ cmd
1
O
cam_ shutter
2
O
mmc3_dat2
3
IO
gpio_138
4
IO
hsusb3_tll_dir
5
IO
safe_mode
7
mmc2_ dat7
0
IO
mmc2_ clkin
1
I
mmc3_dat3
3
IO
gpio_139
4
IO
hsusb3_tll_nxt
5
IO
mm3_rxdm
6
IO
safe_mode
7
mcbsp3_dx
0
IO
uart2_cts
1
I
gpio_140
4
IO
hsusb3_tll_ data4
5
IO
safe_mode
7
mcbsp3_dr
0
I
uart2_rts
1
O
gpio_141
4
IO
hsusb3_tll_ data5
5
IO
safe_mode
7
Submit Documentation Feedback
TERMINAL DESCRIPTION
PRODUCT PREVIEW
BALL
BOTTOM [1]
21
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)
BALL
BOTTOM [1]
BALL
TOP [2]
PIN
NAME [3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
REL.
MODE [8]
POWER [9]
HYS
[10]
BUFFER
STRENGTH
(mA) [11]
PULL
U/D
TYPE
[12]
IO
CELL [13]
AF5
NA
mcbsp3_ clkx
0
IO
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
uart2_tx
1
O
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
H
H
7
VDDS
Yes
4
PU/ PD
LVCMOS
H
H
7
VDDS
Yes
4
PU/ PD
LVCMOS
H
H
7
VDDS
Yes
4
PU/ PD
LVCMOS
H
H
7
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
AE5
AB26
PRODUCT PREVIEW
AB25
AA25
AD25
AA8
AA9
W8
Y8
AE1
AD1
22
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
gpio_142
4
IO
hsusb3_tll_ data6
5
IO
safe_mode
7
mcbsp3_fsx
0
IO
uart2_rx
1
I
gpio_143
4
IO
hsusb3_tll_ data7
5
IO
safe_mode
7
uart2_cts
0
I
mcbsp3_dx
1
IO
gpt9_pwm_evt
2
IO
gpio_144
4
IO
safe_mode
7
uart2_rts
0
O
mcbsp3_dr
1
I
gpt10_pwm_evt
2
IO
gpio_145
4
IO
safe_mode
7
uart2_tx
0
O
mcbsp3_ clkx
1
IO
gpt11_pwm _evt
2
IO
gpio_146
4
IO
safe_mode
7
uart2_rx
0
I
mcbsp3_fsx
1
IO
gpt8_pwm_evt
2
IO
gpio_147
4
IO
safe_mode
7
uart1_tx
0
O
gpio_148
4
IO
safe_mode
7
uart1_rts
0
O
gpio_149
4
IO
safe_mode
7
uart1_cts
0
I
gpio_150
4
IO
hsusb3_tll_clk
5
O
safe_mode
7
uart1_rx
0
I
mcbsp1_ clkr
2
IO
mcspi4_clk
3
IO
gpio_151
4
IO
safe_mode
7
mcbsp4_ clkx
0
IO
gpio_152
4
IO
hsusb3_tll_ data1
5
IO
mm3_txse0
6
IO
safe_mode
7
mcbsp4_dr
0
I
gpio_153
4
IO
hsusb3_tll_ data0
5
IO
mm3_rxrcv
6
IO
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)
BALL
TOP [2]
PIN
NAME [3]
MODE [4]
safe_mode
7
AD2
NA
mcbsp4_dx
gpio_154
AC1
Y21
AA21
V21
U21
T21
K26
W21
H18
H19
H20
H21
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
REL.
MODE [8]
POWER [9]
HYS
[10]
BUFFER
STRENGTH
(mA) [11]
PULL
U/D
TYPE
[12]
IO
CELL [13]
0
IO
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
4
IO
hsusb3_tll_ data2
5
IO
mm3_txdat
6
IO
safe_mode
7
mcbsp4_fsx
0
IO
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
gpio_155
4
IO
hsusb3_tll_ data3
5
IO
mm3_txen_n
6
IO
safe_mode
7
mcbsp1_ clkr
0
IO
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
mcspi4_clk
1
IO
IO
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
H
H
7
VDDS
Yes
4
PU/ PD
LVCMOS
H
H
7
VDDS
Yes
4
PU/ PD
LVCMOS
H
H
7
VDDS
Yes
4
PU/ PD
LVCMOS
H
H
7
VDDS
Yes
4
PU/ PD
LVCMOS
gpio_156
4
safe_mode
7
mcbsp1_fsr
0
IO
cam_global_reset
2
IO
IO
gpio_157
4
safe_mode
7
mcbsp1_dx
0
IO
mcspi4_ simo
1
IO
mcbsp3_dx
2
IO
gpio_158
4
IO
safe_mode
7
mcbsp1_dr
0
I
mcspi4_ somi
1
IO
mcbsp3_dr
2
O
gpio_159
4
IO
safe_mode
7
mcbsp_clks
0
I
cam_ shutter
2
O
gpio_160
4
IO
uart1_cts
5
I
safe_mode
7
mcbsp1_fsx
0
IO
mcspi4_cs0
1
IO
mcbsp3_fsx
2
IO
gpio_161
4
IO
safe_mode
7
mcbsp1_ clkx
0
IO
mcbsp3_ clkx
2
IO
IO
gpio_162
4
safe_mode
7
uart3_cts_ rctx
0
IO
gpio_163
4
IO
safe_mode
7
uart3_rts_ sd
0
O
gpio_164
4
IO
safe_mode
7
uart3_rx_ irrx
0
I
gpio_165
4
IO
safe_mode
7
uart3_tx_ irtx
0
O
gpio_166
4
IO
Submit Documentation Feedback
TERMINAL DESCRIPTION
PRODUCT PREVIEW
BALL
BOTTOM [1]
23
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)
BALL
BOTTOM [1]
BALL
TOP [2]
PIN
NAME [3]
MODE [4]
safe_mode
7
T28
NA
hsusb0_clk
gpio_120
T25
NA
R28
NA
T26
NA
PRODUCT PREVIEW
T27
NA
U28
NA
U27
NA
U26
NA
U25
NA
V28
NA
V27
NA
V26
NA
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
REL.
MODE [8]
POWER [9]
HYS
[10]
BUFFER
STRENGTH
(mA) [11]
PULL
U/D
TYPE
[12]
IO
CELL [13]
0
I
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
4
IO
H
H
7
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
safe_mode
7
hsusb0_stp
0
O
gpio_121
4
IO
safe_mode
7
hsusb0_dir
0
I
gpio_122
4
IO
safe_mode
7
hsusb0_nxt
0
I
gpio_124
4
IO
safe_mode
7
hsusb0_ data0
0
IO
uart3_tx_ irtx
2
O
IO
gpio_125
4
safe_mode
7
hsusb0_ data1
0
IO
uart3_rx_ irrx
2
I
IO
gpio_130
4
safe_mode
7
hsusb0_ data2
0
IO
uart3_rts_ sd
2
O
IO
gpio_131
4
safe_mode
7
hsusb0_ data3
0
IO
uart3_cts_ rctx
2
IO
IO
gpio_169
4
safe_mode
7
hsusb0_ data4
0
IO
gpio_188
4
IO
safe_mode
7
hsusb0_ data5
0
IO
gpio_189
4
IO
safe_mode
7
hsusb0_ data6
0
IO
gpio_190
4
IO
safe_mode
7
hsusb0_ data7
0
IO
gpio_191
4
IO
safe_mode
7
K21
NA
i2c1_scl
0
IOD
H
H
0
VDDS
Yes
4
PU/ PD
Open Drain
J21
NA
i2c1_sda
0
IOD
H
H
0
VDDS
Yes
4
PU/ PD
Open Drain
AF15
NA
i2c2_scl
0
IOD
H
H
7
VDDS
Yes
4
PU/ PD
Open Drain
gpio_168
4
IO
safe_mode
7
i2c2_sda
0
IOD
H
H
7
VDDS
Yes
4
PU/ PD
Open Drain
gpio_183
4
IO
safe_mode
7
i2c3_scl
0
IOD
H
H
7
VDDS
Yes
4
PU/ PD
Open Drain
gpio_184
4
IO
safe_mode
7
i2c3_sda
0
IOD
H
H
7
VDDS
Yes
4
PU/ PD
Open Drain
gpio_185
4
IO
AE15
NA
AF14
NA
AG14
24
TYPE [5]
NA
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)
BALL
TOP [2]
AD26
NA
AE26
J25
AB3
AB4
AA4
AC2
AC3
AB1
AB2
AA3
Y2
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
PIN
NAME [3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
REL.
MODE [8]
POWER [9]
HYS
[10]
BUFFER
STRENGTH
(mA) [11]
PULL
U/D
TYPE
[12]
IO
CELL [13]
safe_mode
7
i2c4_scl
sys_ nvmode1
0
IOD
H
H
0
VDDS
Yes
4
PU/ PD
Open Drain
1
O
safe_mode
7
i2c4_sda
0
IOD
sys_ nvmode2
1
O
H
H
0
VDDS
Yes
4
PU/ PD
Open Drain
safe_mode
7
hdq_sio
0
IOD
sys_altclk
1
I
H
H
7
VDDS
Yes
4
PU/ PD
LVCMOS
i2c2_sccbe
2
O
i2c3_sccbe
3
O
gpio_170
4
IO
safe_mode
7
mcspi1_clk
0
IO
L
L
7
VDDS
Yes
4 (3)
mmc2_dat4
1
IO
PU/ PD
LVCMOS
IO
L
L
7
VDDS
Yes
4 (3)
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4 (3)
PU/ PD
LVCMOS
H
H
7
VDDS
Yes
4 (3)
PU/ PD
LVCMOS
L
H
7
VDDS
Yes
4 (3)
PU/ PD
LVCMOS
L
H
7
VDDS
Yes
4 (3)
PU/ PD
LVCMOS
H
H
7
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
gpio_171
4
safe_mode
7
mcspi1_ simo
0
IO
mmc2_dat5
1
IO
IO
gpio_172
4
safe_mode
7
mcspi1_ somi
0
IO
mmc2_dat6
1
IO
IO
gpio_173
4
safe_mode
7
mcspi1_cs0
0
IO
mmc2_dat7
1
IO
IO
gpio_174
4
safe_mode
7
mcspi1_cs1
0
O
mmc3_cmd
3
IO
IO
gpio_175
4
safe_mode
7
mcspi1_cs2
0
O
mmc3_clk
3
O
IO
gpio_176
4
safe_mode
7
mcspi1_cs3
0
O
hsusb2_tll_ data2
2
IO
hsusb2_ data2
3
IO
gpio_177
4
IO
mm2_txdat
5
IO
safe_mode
7
mcspi2_clk
0
IO
hsusb2_tll_ data7
2
IO
hsusb2_ data7
3
O
gpio_178
4
IO
safe_mode
7
mcspi2_ simo
0
IO
gpt9_pwm_evt
1
IO
hsusb2_tll_ data4
2
IO
hsusb2_ data4
3
I
gpio_179
4
IO
safe_mode
7
Submit Documentation Feedback
TERMINAL DESCRIPTION
PRODUCT PREVIEW
BALL
BOTTOM [1]
25
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)
BALL
BOTTOM [1]
BALL
TOP [2]
Y3
NA
Y4
NA
PRODUCT PREVIEW
V3
NA
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
REL.
MODE [8]
POWER [9]
HYS
[10]
BUFFER
STRENGTH
(mA) [11]
PULL
U/D
TYPE
[12]
IO
CELL [13]
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
H
H
7
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
mcspi2_ somi
0
IO
gpt10_pwm_evt
1
IO
hsusb2_tll_ data5
2
IO
hsusb2_ data5
3
O
gpio_180
4
IO
safe_mode
7
mcspi2_cs0
0
IO
gpt11_pwm_evt
1
IO
hsusb2_tll_ data6
2
IO
hsusb2_ data6
3
O
gpio_181
4
IO
safe_mode
7
mcspi2_cs1
0
O
gpt8_pwm_evt
1
IO
hsusb2_tll_ data3
2
IO
hsusb2_ data3
3
IO
gpio_182
4
IO
mm2_txen_n
5
IO
safe_mode
7
AE25
NA
sys_32k
0
I
Z
I
NA
VDDS
Yes
NA
NA
LVCMOS
AE17
NA
sys_xtalin
0
I
Z
I
NA
VDDS
NA
NA
NA
LVCMOS
AF17
NA
sys_xtalout
0
O
Z
O
NA
VDDS
NA
NA
NA
LVCMOS
AF25
NA
sys_clkreq
0
IO
0
1
0
VDDS
Yes
8
PU/ PD
LVCMOS
gpio_1
4
IO
safe_mode
7
sys_nirq
0
I
H
H
7
VDDS
Yes
4
PU/ PD
LVCMOS
gpio_0
4
IO
LVCMOS
AF26
NA
safe_mode
7
AH25
NA
sys_ nrespwron
0
I
Z
I
NA
VDDS
Yes
NA=
NA
AF24
NA
sys_ nreswarm
0
IOD
0
1 (PU)
0
VDDS
Yes
8
PU/ PD
gpio_30
4
IO
safe_mode
7
sys_boot0
0
I
gpio_2
4
IO
safe_mode
7
sys_boot1
0
I
gpio_3
4
IO
safe_mode
7
sys_boot2
0
I
gpio_4
4
IO
safe_mode
7
sys_boot3
0
I
gpio_5
4
IO
safe_mode
7
sys_boot4
0
I
mmc2_dir_dat2
1
O
IO
AH26
NA
AG26
AE14
AF18
AF19
AE21
AF21
26
PIN
NAME [3]
NA
NA
NA
NA
NA
NA
gpio_6
4
safe_mode
7
sys_boot5
0
I
mmc2_dir_dat3
1
O
IO
gpio_7
4
safe_mode
7
sys_boot6
0
I
gpio_8
4
IO
TERMINAL DESCRIPTION
LVCMOS
Open Drain
Z
Z
0
VDDS
Yes
4
PU/ PD
LVCMOS
Z
Z
0
VDDS
Yes
4
PU/ PD
LVCMOS
Z
Z
0
VDDS
Yes
4
PU/ PD
LVCMOS
Z
Z
0
VDDS
Yes
4
PU/ PD
LVCMOS
Z
Z
0
VDDS
Yes
4
PU/ PD
LVCMOS
Z
Z
0
VDDS
Yes
4
PU/ PD
LVCMOS
Z
Z
0
VDDS
Yes
4
PU/ PD
LVCMOS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)
BALL
TOP [2]
PIN
NAME [3]
MODE [4]
safe_mode
7
AF22
NA
sys_off_ mode
gpio_9
AG25
AE22
NA
NA
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
REL.
MODE [8]
POWER [9]
HYS
[10]
BUFFER
STRENGTH
(mA) [11]
PULL
U/D
TYPE
[12]
IO
CELL [13]
0
O
0
L
7
VDDS
Yes
8
PU/ PD
LVCMOS
4
IO
L
L
7
VDDS
Yes
8
PU/ PD
LVCMOS
L
L
7
VDDS
Yes
4
PU/ PD
LVCMOS
safe_mode
7
sys_clkout1
0
O
gpio_10
4
IO
safe_mode
7
sys_clkout2
0
O
gpio_186
4
IO
safe_mode
7
B1
NA
sys_ ipmcsws
0
AI
Z
AI
NA
VDDS
=NA
NA
NA
Analog
A1
NA
sys_ opmcsws
0
AO
0
AO
NA
VDDS
No
NA
NA
LVCMOS
AA17
NA
jtag_ntrst
0
I
L
L
0
VDDS
Yes
NA
PU/ PD
LVCMOS
AA13
NA
jtag_tck
0
I
L
L
0
VDDS
Yes
=NA
PU/ PD
LVCMOS
AA12
NA
jtag_rtck
0
O
L
0
0
VDDS
Yes
8
PU/ PD
LVCMOS
AA18
NA
jtag_tms_tmsc
0
IO
H
H
0
VDDS
Yes
8
PU/ PD
LVCMOS
AA20
NA
jtag_tdi
0
I
H
H
0
VDDS
Yes
=NA
PU/ PD
LVCMOS
AA19
NA
jtag_tdo
0
O
L
Z
0
VDDS
Yes
8
PU/ PD
LVCMOS
AA11
NA
jtag_emu0
0
IO
H
H
0
VDDS
Yes
8
PU/ PD
LVCMOS
gpio_11
4
IO
safe_mode
7
jtag_emu1
0
IO
H
H
0
VDDS
Yes
8
PU/ PD
LVCMOS
gpio_31
4
IO
safe_mode
7
etk_clk
0
O
H
H
4
VDDS
Yes
4
PU/ PD
LVCMOS
mcbsp5_ clkx
1
IO
O
H
H
4
VDDS
Yes
4
PU/ PD
LVCMOS
H
H
4
VDDS
Yes
4
PU/ PD
LVCMOS
H
H
4
VDDS
Yes
4
PU/ PD
LVCMOS
AA10
AF10
AE10
AF11
AG12
NA
NA
NA
NA
NA
mmc3_clk
2
hsusb1_stp
3
O
gpio_12
4
IO
IO
mm1_rxdp
5
hsusb1_tll_stp
6
I
etk_ctl
0
O
mmc3_cmd
2
IO
hsusb1_clk
3
O
gpio_13
4
IO
hsusb1_tll_clk
6
O
etk_d0
0
O
mcspi3_ simo
1
IO
mmc3_dat4
2
IO
hsusb1_ data0
3
IO
gpio_14
4
IO
mm1_rxrcv
5
IO
hsusb1_tll_ data0
6
IO
etk_d1
0
O
mcspi3_ somi
1
IO
hsusb1_ data1
3
IO
gpio_15
4
IO
mm1_txse0
5
IO
hsusb1_tll_ data1
6
IO
Submit Documentation Feedback
TERMINAL DESCRIPTION
PRODUCT PREVIEW
BALL
BOTTOM [1]
27
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)
BALL
BOTTOM [1]
BALL
TOP [2]
AH12
NA
AE13
PRODUCT PREVIEW
AE11
AH9
AF13
AH14
AF9
AG9
28
NA
NA
NA
NA
NA
NA
NA
PIN
NAME [3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
REL.
MODE [8]
POWER [9]
HYS
[10]
BUFFER
STRENGTH
(mA) [11]
PULL
U/D
TYPE
[12]
IO
CELL [13]
H
H
4
VDDS
Yes
4
PU/ PD
LVCMOS
H
H
4
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
4
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
4
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
4
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
4
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
4
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
4
VDDS
Yes
4
PU/ PD
LVCMOS
etk_d2
0
O
mcspi3_cs0
1
IO
hsusb1_ data2
3
IO
gpio_16
4
IO
mm1_txdat
5
IO
hsusb1_tll_data2
6
IO
etk_d3
0
O
mcspi3_clk
1
IO
mmc3_dat3
2
IO
hsusb1_ data7
3
IO
gpio_17
4
IO
hsusb1_tll_ data7
6
IO
etk_d4
0
O
mcbsp5_dr
1
I
mmc3_dat0
2
IO
hsusb1_ data4
3
IO
gpio_18
4
IO
hsusb1_tll_ data4
6
IO
etk_d5
0
O
mcbsp5_fsx
1
IO
mmc3_dat1
2
IO
hsusb1_ data5
3
IO
gpio_19
4
IO
hsusb1_tll_ data5
6
IO
etk_d6
0
O
mcbsp5_dx
1
IO
mmc3_dat2
2
IO
hsusb1_ data6
3
IO
gpio_20
4
IO
hsusb1_tll_ data6
6
IO
etk_d7
0
O
mcspi3_cs1
1
O
mmc3_dat7
2
IO
hsusb1_ data3
3
IO
gpio_21
4
IO
mm1_txen_n
5
IO
hsusb1_tll_ data3
6
IO
etk_d8
0
O
sys_drm_
msecure
1
O
mmc3_dat6
2
IO
hsusb1_dir
3
I
gpio_22
4
IO
hsusb1_tll_dir
6
O
etk_d9
0
O
sys_secure_indic
ator
1
O
mmc3_dat5
2
IO
hsusb1_nxt
3
I
gpio_23
4
IO
mm1_rxdm
5
IO
hsusb1_tll_nxt
6
O
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 2-1. Ball Characteristics (CBB Pkg.) (continued)
BALL
TOP [2]
AE7
NA
AF7
AG7
AH7
AG8
AH8
NA
NA
NA
NA
NA
PIN
NAME [3]
MODE [4]
TYPE [5]
BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
RESET
REL.
MODE [8]
POWER [9]
HYS
[10]
BUFFER
STRENGTH
(mA) [11]
PULL
U/D
TYPE
[12]
IO
CELL [13]
L
L
4
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
4
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
4
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
4
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
4
VDDS
Yes
4
PU/ PD
LVCMOS
L
L
4
VDDS
Yes
4
PU/ PD
LVCMOS
etk_d10
0
O
uart1_rx
2
I
hsusb2_clk
3
O
gpio_24
4
IO
hsusb2_tll_clk
6
O
etk_d11
0
O
hsusb2_stp
3
O
gpio_25
4
IO
mm2_rxdp
5
IO
hsusb2_tll_stp
6
I
etk_d12
0
O
hsusb2_dir
3
I
gpio_26
4
IO
hsusb2_tll_dir
6
O
etk_d13
0
O
hsusb2_nxt
3
I
gpio_27
4
IO
mm2_rxdm
5
IO
hsusb2_tll_nxt
6
O
etk_d14
0
O
hsusb2_ data0
3
IO
gpio_28
4
IO
mm2_rxrcv
5
IO
hsusb2_tll_ data0
6
IO
etk_d15
0
O
hsusb2_ data1
3
IO
gpio_29
4
IO
mm2_txse0
5
IO
hsusb2_tll_ data1
6
IO
Submit Documentation Feedback
TERMINAL DESCRIPTION
PRODUCT PREVIEW
BALL
BOTTOM [1]
29
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.)
BALL
BOTTOM
[1]
BALL
TOP
[2]
AE16
-
AE15
AD17
PRODUCT PREVIEW
AE18
AD16
AE17
30
-
-
-
-
MODE
[5]
TYPE
[6]
BALL
RESET
STATE
[7]
BALL
RESET
REL.
STATE
[8]
RESET
REL.
MODE
[9]
POWER
[10]
HYS
[11]
BUFFER
STRENG
TH
(mA)
[12]
PULLUP
/DOWN
TYPE
[13]
IO
CELL
[14]
L
L
7
-
Yes
4
PU100/
PD100
LVDS/
CMOS
L
L
7
-
Yes
4
PU100/
PD100
LVDS/
CMOS
L
L
7
-
Yes
4
PU100/
PD100
LVDS/
CMOS
L
L
7
-
Yes
4
PU100/
PD100
LVDS/
CMOS
L
L
7
-
Yes
4
PU100/
PD100
LVDS/
CMOS
L
L
7
-
Yes
4
PU100/
PD100
LVDS/
CMOS
cam_d0
0
I
-
2
IDS
gpio_99
4
I
safe_mode
7
-
cam_d1
0
I
-
2
IDS
gpio_100
4
I
safe_mode
7
-
-
0
IDS
gpio_112
4
I
safe_mode
7
-
-
0
IDS
gpio_114
4
I
safe_mode
7
-
-
0
IDS
gpio_113
4
I
safe_mode
7
-
-
0
IDS
gpio_115
4
I
safe_mode
7
-
-
G20
sdrc_a0
0
O
0
0
0
vdds_io
No
4 (1)
NA
LVDS/
CMOS
-
K20
sdrc_a1
0
O
0
0
0
vdds_io
No
4 (1)
NA
LVDS/
CMOS
-
J20
sdrc_a2
0
O
0
0
0
vdds_io
No
4 (1)
NA
LVDS/
CMOS
-
J21
sdrc_a3
0
O
0
0
0
vdds_io
No
4 (1)
NA
LVDS/
CMOS
-
U21
sdrc_a4
0
O
0
0
0
vdds_io
No
4 (1)
NA
LVDS/
CMOS
(1)
NA
LVDS/
CMOS
-
R20
sdrc_a5
0
O
0
0
0
vdds_io
No
4
-
M21
sdrc_a6
0
O
0
0
0
vdds_io
No
4 (1)
NA
LVDS/
CMOS
-
M20
sdrc_a7
0
O
0
0
0
vdds_io
No
4 (1)
NA
LVDS/
CMOS
-
N20
sdrc_a8
0
O
0
0
0
vdds_io
No
4 (1)
NA
LVDS/
CMOS
-
K21
sdrc_a9
0
O
0
0
0
vdds_io
No
4 (1)
NA
LVDS/
CMOS
-
Y16
sdrc_a10
0
O
0
0
0
vdds_io
No
4 (1)
NA
LVDS/
CMOS
-
N21
sdrc_a11
0
O
0
0
0
vdds_io
No
4 (1)
NA
LVDS/
CMOS
-
R21
sdrc_a12
0
O
0
0
0
vdds_io
No
4 (1)
NA
LVDS/
CMOS
-
AA15
sdrc_a13
0
O
0
0
0
vdds_io
No
4 (1)
NA
LVDS/
CMOS
-
Y12
sdrc_a14
0
O
0
0
0
vdds_io
No
4 (1)
NA
LVDS/
CMOS
-
AA18
sdrc_ba0
0
O
0
0
0
vdds_io
No
4 (1)
NA
LVDS/
CMOS
-
V20
sdrc_ba1
0
O
0
0
0
vdds_io
No
4 (1)
NA
LVDS/
CMOS
-
Y15
sdrc_cke0
0
O
H
1
7
vdds_io
Yes
4 (1)
safe_mode
7
PU100/
PD100
LVDS/
CMOS
sdrc_cke1
0
O
H
1
7
vdds_io
Yes
4 (1)
safe_mode
7
PU100/
PD100
LVDS/
CMOS
-
(1)
-
PIN
NAME
[4]
Y13
The drive strength is programmable vs the capacity load: load range = [2 pF to 6 pF] per default or [6 pF to 12 pF] according to the
selected mode.
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
BALL
TOP
[2]
-
A12
-
PIN
NAME
[4]
MODE
[5]
TYPE
[6]
BALL
RESET
STATE
[7]
BALL
RESET
REL.
STATE
[8]
RESET
REL.
MODE
[9]
POWER
[10]
HYS
[11]
BUFFER
STRENG
TH
(mA)
[12]
PULLUP
/DOWN
TYPE
[13]
IO
CELL
[14]
sdrc_clk
0
IO
L
0
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVDS/
CMOS
D1
sdrc_d0
0
IO
L
Z
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVDS/
CMOS
-
G1
sdrc_d1
0
IO
L
Z
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVDS/
CMOS
-
G2
sdrc_d2
0
IO
L
Z
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVDS/
CMOS
-
E1
sdrc_d3
0
IO
L
Z
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVDS/
CMOS
-
D2
sdrc_d4
0
IO
L
Z
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVDS/
CMOS
-
E2
sdrc_d5
0
IO
L
Z
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVDS/
CMOS
-
B3
sdrc_d6
0
IO
L
Z
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVDS/
CMOS
-
B4
sdrc_d7
0
IO
L
Z
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVDS/
CMOS
-
A10
sdrc_d8
0
IO
L
Z
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVDS/
CMOS
-
B11
sdrc_d9
0
IO
L
Z
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVDS/
CMOS
-
A11
sdrc_d10
0
IO
L
Z
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVDS/
CMOS
-
B12
sdrc_d11
0
IO
L
Z
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVDS/
CMOS
-
A16
sdrc_d12
0
IO
L
Z
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVDS/
CMOS
-
A17
sdrc_d13
0
IO
L
Z
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVDS/
CMOS
-
B17
sdrc_d14
0
IO
L
Z
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVDS/
CMOS
-
B18
sdrc_d15
0
IO
L
Z
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVDS/
CMOS
-
B7
sdrc_d16
0
IO
L
Z
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVDS/
CMOS
-
A5
sdrc_d17
0
IO
L
Z
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVDS/
CMOS
-
B6
sdrc_d18
0
IO
L
Z
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVDS/
CMOS
(1)
PU100/
PD100
LVDS/
CMOS
-
A6
sdrc_d19
0
IO
L
Z
0
vdds_io
Yes
4
-
A8
sdrc_d20
0
IO
L
Z
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVDS/
CMOS
-
B9
sdrc_d21
0
IO
L
Z
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVDS/
CMOS
-
A9
sdrc_d22
0
IO
L
Z
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVDS/
CMOS
-
B10
sdrc_d23
0
IO
L
Z
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVDS/
CMOS
-
C21
sdrc_d24
0
IO
L
Z
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVDS/
CMOS
-
D20
sdrc_d25
0
IO
L
Z
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVDS/
CMOS
-
B19
sdrc_d26
0
IO
L
Z
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVDS/
CMOS
-
C20
sdrc_d27
0
IO
L
Z
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVDS/
CMOS
-
D21
sdrc_d28
0
IO
L
Z
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVDS/
CMOS
-
E20
sdrc_d29
0
IO
L
Z
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVDS/
CMOS
-
E21
sdrc_d30
0
IO
L
Z
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVDS/
CMOS
Submit Documentation Feedback
TERMINAL DESCRIPTION
31
PRODUCT PREVIEW
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM
[1]
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM
[1]
BALL
TOP
[2]
-
G21
-
PRODUCT PREVIEW
MODE
[5]
TYPE
[6]
BALL
RESET
STATE
[7]
BALL
RESET
REL.
STATE
[8]
RESET
REL.
MODE
[9]
POWER
[10]
HYS
[11]
BUFFER
STRENG
TH
(mA)
[12]
PULLUP
/DOWN
TYPE
[13]
IO
CELL
[14]
sdrc_d31
0
IO
L
Z
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVDS/
CMOS
H1
sdrc_dm0
0
O
0
0
0
vdds_io
No
4 (1)
NA
LVDS/
CMOS
-
A14
sdrc_dm1
0
O
0
0
0
vdds_io
No
4 (1)
NA
LVDS/
CMOS
-
A4
sdrc_dm2
0
O
0
0
0
vdds_io
No
4 (1)
NA
LVDS/
CMOS
-
A18
sdrc_dm3
0
O
0
0
0
vdds_io
No
4 (1)
NA
LVDS/
CMOS
-
C2
sdrc_dqs0
0
IO
L
Z
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVDS/
CMOS
-
B15
sdrc_dqs1
0
IO
L
Z
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVDS/
CMOS
-
B8
sdrc_dqs2
0
IO
L
Z
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVDS/
CMOS
-
A19
sdrc_dqs3
0
IO
L
Z
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVDS/
CMOS
-
U20
sdrc_ncas
0
O
1
1
0
vdds_io
No
4 (1)
NA
LVDS/
CMOS
-
B13
sdrc_nclk
0
O
1
1
0
vdds_io
No
4 (1)
NA
LVDS/
CMOS
-
T21
sdrc_ncs0
0
O
1
1
0
vdds_io
No
4 (1)
NA
LVDS/
CMOS
-
T20
sdrc_ncs1
0
O
1
1
0
vdds_io
No
4 (1)
NA
LVDS/
CMOS
-
V21
sdrc_nras
0
O
1
1
0
vdds_io
No
4 (1)
NA
LVDS/
CMOS
-
Y18
sdrc_nwe
0
O
1
1
0
vdds_io
No
4 (1)
NA
LVDS/
CMOS
AE21
-
dss_data0
0
IO
L
L
7
-
No
4
-
1
ODS
PU100/
PD100
LVDS/
CMOS
uart1_cts
2
I
gpio_70
4
IO
safe_mode
7
-
dss_data1
0
IO
L
L
7
-
No
4
-
1
ODS
PU100/
PD100
LVDS/
CMOS
uart1_rts
2
O
gpio_71
4
IO
safe_mode
7
-
dss_data2
0
IO
L
L
7
-
No
4
-
1
ODS
PU100/
PD100
LVDS/
CMOS
gpio_72
4
IO
safe_mode
7
-
dss_data3
0
IO
L
L
7
-
No
4
-
1
ODS
PU100/
PD100
LVDS/
CMOS
gpio_73
4
IO
safe_mode
7
-
dss_data4
0
IO
L
L
7
-
No
4
-
1
ODS
PU100/
PD100
LVDS/
CMOS
uart3_rx_irrx
2
I
gpio_74
4
IO
safe_mode
7
-
dss_data5
0
IO
L
L
7
-
No
4
-
1
ODS
PU100/
PD100
LVDS/
CMOS
uart3_tx_irtx
2
O
gpio_75
4
IO
safe_mode
7
-
AE22
AE23
AE24
AD23
AD24
32
-
-
-
-
-
PIN
NAME
[4]
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
BALL
TOP
[2]
AC26
-
AD26
AA25
Y25
AA26
AB26
F25
AC25
AB25
G25
J2
H1
H2
-
-
-
-
-
-
-
-
-
-
-
-
PIN
NAME
[4]
MODE
[5]
TYPE
[6]
BALL
RESET
STATE
[7]
BALL
RESET
REL.
STATE
[8]
RESET
REL.
MODE
[9]
POWER
[10]
HYS
[11]
BUFFER
STRENG
TH
(mA)
[12]
PULLUP
/DOWN
TYPE
[13]
IO
CELL
[14]
L
L
7
-
NA
4
PU100/
PD100
LVDS/
CMOS
L
L
7
-
NA
4
PU100/
PD100
LVDS/
CMOS
L
L
7
-
NA
4
PU100/
PD100
LVDS/
CMOS
L
L
7
-
NA
4
PU100/
PD100
LVDS/
CMOS
L
L
7
-
NA
4
PU100/
PD100
LVDS/
CMOS
L
L
7
-
NA
4
PU100/
PD100
LVDS/
CMOS
H
H
7
vdds_io
Yes
4
PU100/
PD100
LVCMOS
L
L
7
-
NA
4
PU100/
PD100
LVDS/
CMOS
L
L
7
-
NA
4
PU100/
PD100
LVDS/
CMOS
H
H
7
vdds_io
Yes
4
PU100/
PD100
LVCMOS
L
L
7
vdds_io
Yes
4 (1)
PU100/
PD100
LVCMOS
L
L
7
vdds_io
Yes
4 (1)
PU100/
PD100
LVCMOS
L
L
7
vdds_io
Yes
4 (1)
PU100/
PD100
LVCMOS
dss_data10
0
IO
-
1
ODS
gpio_80
4
IO
safe_mode
7
-
dss_data11
0
IO
-
1
ODS
gpio_81
4
IO
safe_mode
7
-
dss_data12
0
IO
-
1
ODS
gpio_82
4
IO
safe_mode
7
-
dss_data13
0
IO
-
1
ODS
gpio_83
4
IO
safe_mode
7
-
dss_data14
0
IO
-
1
ODS
gpio_84
4
IO
safe_mode
7
-
dss_data15
0
IO
-
1
ODS
gpio_85
4
IO
safe_mode
7
-
dss_data20
0
O
-
1
O
mcspi3_somi
2
IO
dss_data2
3
IO
gpio_90
4
IO
safe_mode
7
-
dss_data22
0
O
-
1
ODS
mcspi3_cs1
2
O
dss_data4
3
IO
gpio_92
4
IO
safe_mode
7
-
dss_data23
0
O
-
1
ODS
dss_data5
3
IO
gpio_93
4
IO
safe_mode
7
-
dss_pclk
0
O
gpio_66
4
IO
hw_dbg12
5
O
safe_mode
7
-
gpmc_a1
0
O
gpio_34
4
IO
safe_mode
7
-
gpmc_a2
0
O
gpio_35
4
IO
safe_mode
7
-
gpmc_a3
0
O
gpio_36
4
IO
Submit Documentation Feedback
TERMINAL DESCRIPTION
33
PRODUCT PREVIEW
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM
[1]
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM
[1]
BALL
TOP
[2]
G2
-
F1
F2
PRODUCT PREVIEW
E1
E2
D1
D2
N1
-
-
-
-
-
L1
MODE
[5]
TYPE
[6]
safe_mode
7
-
gpmc_a4
0
O
gpio_37
4
IO
safe_mode
7
-
gpmc_a5
0
O
gpio_38
4
IO
safe_mode
7
-
gpmc_a6
0
O
gpio_39
4
IO
safe_mode
7
-
gpmc_a7
0
O
gpio_40
4
IO
safe_mode
7
-
gpmc_a8
0
O
gpio_41
4
IO
safe_mode
7
-
gpmc_a9
0
O
sys_ndmareq2
1
I
gpio_42
4
IO
safe_mode
7
-
gpmc_a10
0
O
sys_ndmareq3
1
I
gpio_43
4
IO
safe_mode
7
-
gpmc_clk
0
O
gpio_59
4
IO
BALL
RESET
STATE
[7]
BALL
RESET
REL.
STATE
[8]
RESET
REL.
MODE
[9]
POWER
[10]
HYS
[11]
BUFFER
STRENG
TH
(mA)
[12]
PULLUP
/DOWN
TYPE
[13]
IO
CELL
[14]
L
L
7
vdds_io
Yes
4 (1)
PU100/
PD100
LVCMOS
L
L
7
vdds_io
Yes
4 (1)
PU100/
PD100
LVCMOS
H
H
7
vdds_io
Yes
4 (1)
PU100/
PD100
LVCMOS
H
H
7
vdds_io
Yes
4 (1)
PU100/
PD100
LVCMOS
H
H
7
vdds_io
Yes
4 (1)
PU100/
PD100
LVCMOS
H
H
7
vdds_io
Yes
4 (1)
PU100/
PD100
LVCMOS
H
H
7
vdds_io
Yes
4 (1)
PU100/
PD100
LVCMOS
L
0
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVCMOS
safe_mode
7
-
AA2
U2
gpmc_d0
0
IO
H
H
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVCMOS
AA1
U1
gpmc_d1
0
IO
H
H
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVCMOS
AC2
V2
gpmc_d2
0
IO
H
H
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVCMOS
AC1
V1
gpmc_d3
0
IO
H
H
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVCMOS
AE5
AA3
gpmc_d4
0
IO
H
H
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVCMOS
AD6
AA4
gpmc_d5
0
IO
H
H
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVCMOS
AD5
Y3
gpmc_d6
0
IO
H
H
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVCMOS
AC5
Y4
gpmc_d7
0
IO
H
H
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVCMOS
(1)
PU100/
PD100
LVCMOS
V1
Y1
T1
U2
34
-
PIN
NAME
[4]
R1
T1
N1
P2
gpmc_d8
0
IO
gpio_44
4
IO
safe_mode
7
-
gpmc_d9
0
IO
gpio_45
4
IO
safe_mode
7
-
gpmc_d10
0
IO
gpio_46
4
IO
safe_mode
7
-
gpmc_d11
0
IO
gpio_47
4
IO
safe_mode
7
-
TERMINAL DESCRIPTION
H
H
0
vdds_io
Yes
4
H
H
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVCMOS
H
H
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVCMOS
H
H
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVCMOS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
BALL
TOP
[2]
U1
P1
P1
L2
M2
M1
J2
K2
PIN
NAME
[4]
MODE
[5]
TYPE
[6]
BALL
RESET
STATE
[7]
BALL
RESET
REL.
STATE
[8]
RESET
REL.
MODE
[9]
POWER
[10]
HYS
[11]
BUFFER
STRENG
TH
(mA)
[12]
PULLUP
/DOWN
TYPE
[13]
IO
CELL
[14]
gpmc_d12
0
IO
H
H
0
vdds_io
Yes
4 (1)
4
IO
PU100/
PD100
LVCMOS
gpio_48
safe_mode
7
-
gpmc_d13
0
IO
H
H
0
vdds_io
Yes
4 (1)
4
IO
PU100/
PD100
LVCMOS
gpio_49
safe_mode
7
-
gpmc_d14
0
IO
H
H
0
vdds_io
Yes
4 (1)
4
IO
PU100/
PD100
LVCMOS
gpio_50
safe_mode
7
-
gpmc_d15
0
IO
H
H
0
vdds_io
Yes
4 (1)
4
IO
PU100/
PD100
LVCMOS
gpio_51
safe_mode
7
-
AD10
AA9
gpmc_nadv_ale
0
O
0
0
0
vdds_io
No
4 (1)
NA
LVCMOS
K2
-
gpmc_nbe0_cle
0
O
L
0
0
vdds_io
Yes
4 (1)
LVCMOS
gpio_60
4
IO
PU100/
PD100
safe_mode
7
-
gpmc_nbe1
0
O
L
L
7
vdds_io
Yes
4 (1)
4
IO
PU100/
PD100
LVCMOS
gpio_61
J1
-
safe_mode
7
-
AD8
AA8
gpmc_ncs0
0
O
1
1
0
vdds_io
No
4 (1)
NA
LVCMOS
AD1
W1
gpmc_ncs1
0
O
H
1
0
vdds_io
Yes
4 (1)
LVCMOS
gpio_52
4
IO
PU100/
PD100
safe_mode
7
-
gpmc_ncs2
0
O
H
H
7
vdds_io
Yes
4 (1)
4
IO
PU100/
PD100
LVCMOS
gpio_53
safe_mode
7
-
gpmc_ncs3
0
O
H
H
7
vdds_io
Yes
4 (1)
1
I
PU100/
PD100
LVCMOS
sys_ndmareq0
gpio_54
4
IO
safe_mode
7
-
gpmc_ncs4
0
O
H
H
7
vdds_io
Yes
4 (1)
1
I
PU100/
PD100
LVCMOS
sys_ndmareq1
mcbsp4_clkx
2
IO
gpt9_pwm_evt
3
IO
gpio_55
4
IO
safe_mode
7
-
gpmc_ncs5
0
O
H
H
7
vdds_io
Yes
4 (1)
1
I
PU100/
PD100
LVCMOS
sys_ndmareq2
mcbsp4_dr
2
I
gpt10_pwm_evt
3
IO
gpio_56
4
IO
safe_mode
7
-
gpmc_ncs6
0
O
H
H
7
vdds_io
Yes
4 (1)
1
I
PU100/
PD100
LVCMOS
sys_ndmareq3
mcbsp4_dx
2
IO
gpt11_pwm_evt
3
IO
gpio_57
4
IO
safe_mode
7
-
gpmc_ncs7
0
O
H
H
7
vdds_io
Yes
4 (1)
1
O
PU100/
PD100
LVCMOS
gpmc_io_dir
mcbsp4_fsx
2
IO
gpt8_pwm_evt
3
IO
gpio_58
4
IO
A3
B6
B4
C4
B5
C5
-
-
-
-
-
-
Submit Documentation Feedback
TERMINAL DESCRIPTION
35
PRODUCT PREVIEW
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM
[1]
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM
[1]
BALL
TOP
[2]
safe_mode
7
-
N2
L2
gpmc_noe
0
M1
K1
gpmc_nwe
AC6
Y5
TYPE
[6]
BALL
RESET
STATE
[7]
BALL
RESET
REL.
STATE
[8]
RESET
REL.
MODE
[9]
POWER
[10]
HYS
[11]
BUFFER
STRENG
TH
(mA)
[12]
PULLUP
/DOWN
TYPE
[13]
IO
CELL
[14]
O
1
1
0
vdds_io
No
4 (1)
NA
LVCMOS
0
O
1
1
0
vdds_io
No
4 (1)
NA
LVCMOS
gpmc_nwp
0
O
L
0
0
vdds_io
Yes
4 (1)
LVCMOS
gpio_62
4
IO
PU100/
PD100
PRODUCT PREVIEW
safe_mode
7
-
Y10
gpmc_wait0
0
I
H
H
0
vdds_io
Yes
4 (1)
PU100/
PD100
LVCMOS
AC8
Y8
gpmc_wait1
0
I
H
H
7
vdds_io
Yes
4 (1)
4
IO
PU100/
PD100
LVCMOS
gpio_63
safe_mode
7
-
gpmc_wait2
0
I
H
H
7
vdds_io
Yes
4 (1)
4
IO
PU100/
PD100
LVCMOS
gpio_64
safe_mode
7
-
gpmc_wait3
0
I
H
H
7
vdds_io
Yes
4 (1)
1
I
PU100/
PD100
LVCMOS
sys_ndmareq1
gpio_65
4
IO
safe_mode
7
-
hsusb0_clk
0
I
L
L
7
vdds_io
Yes
4 (2)
4
IO
PU100/
PD100
LVCMOS
gpio_120
safe_mode
7
-
hsusb0_data0
0
IO
L
L
7
vdds_io
Yes
4 (2)
2
O
PU100/
PD100
LVCMOS
uart3_tx_irtx
gpio_125
4
IO
safe_mode
7
-
hsusb0_data1
0
IO
L
L
7
vdds_io
Yes
4 (2)
2
I
PU100/
PD100
LVCMOS
uart3_rx_irrx
gpio_130
4
IO
safe_mode
7
-
hsusb0_data2
0
IO
L
L
7
vdds_io
Yes
4 (2)
2
O
PU100/
PD100
LVCMOS
uart3_rts_sd
gpio_131
4
IO
safe_mode
7
-
hsusb0_data3
0
IO
L
L
7
vdds_io
Yes
4 (2)
2
IO
PU100/
PD100
LVCMOS
uart3_cts_rctx
gpio_169
4
IO
safe_mode
7
-
hsusb0_data4
0
IO
L
L
7
vdds_io
Yes
4 (2)
4
IO
PU100/
PD100
LVCMOS
gpio_188
safe_mode
7
-
hsusb0_data5
0
IO
L
L
7
vdds_io
Yes
4 (2)
4
IO
PU100/
PD100
LVCMOS
gpio_189
safe_mode
7
-
hsusb0_data6
0
IO
L
L
7
vdds_io
Yes
4 (2)
4
IO
PU100/
PD100
LVCMOS
gpio_190
safe_mode
7
-
hsusb0_data7
0
IO
L
L
7
vdds_io
Yes
4 (2)
4
IO
PU100/
PD100
LVCMOS
gpio_191
safe_mode
7
-
hsusb0_dir
0
I
L
L
7
vdds_io
Yes
4 (2)
4
IO
PU100/
PD100
LVCMOS
gpio_122
safe_mode
7
-
C6
W19
V20
Y20
V18
W20
W17
Y18
Y19
Y17
V19
36
MODE
[5]
AC11
B3
(2)
PIN
NAME
[4]
-
-
-
-
-
-
-
-
-
-
-
-
The capacity load range is [2 pf to 6 pF].
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
BALL
TOP
[2]
W18
-
U20
MODE
[5]
TYPE
[6]
BALL
RESET
STATE
[7]
BALL
RESET
REL.
STATE
[8]
RESET
REL.
MODE
[9]
POWER
[10]
HYS
[11]
BUFFER
STRENG
TH
(mA)
[12]
PULLUP
/DOWN
TYPE
[13]
IO
CELL
[14]
hsusb0_nxt
0
I
L
L
7
vdds_io
Yes
4 (2)
4
IO
PU100/
PD100
LVCMOS
gpio_124
safe_mode
7
-
hsusb0_stp
0
O
H
H
7
vdds_io
Yes
4 (2)
4
IO
PU100/
PD100
LVCMOS
gpio_121
safe_mode
7
-
U15
-
jtag_ntrst
0
I
L
L
0
vdds_io
Yes
NA
PU100/
PD100
LVCMOS
W13
-
jtag_rtck
0
O
L
0
0
vdds_io
Yes
4
PU100/
PD100
LVCMOS
V14
-
jtag_tck
0
I
L
L
0
vdds_io
Yes
NA
PU100/
PD100
LVCMOS
U16
-
jtag_tdi
0
I
H
H
0
vdds_io
Yes
NA
PU100/
PD100
LVCMOS
Y13
-
jtag_tdo
0
O
L
Z
0
vdds_io
Yes
4
PU100/
PD100
LVCMOS
V15
-
jtag_tms_tmsc
0
IO
H
H
0
vdds_io
Yes
4
PU100/
PD100
LVCMOS
N19
-
mmc1_clk
0
O
L
L
7
vdds_mmc1
Yes
8
1
O
PU100/
PD100
LVCMOS
gpio_120
4
IO
safe_mode
7
-
mmc1_cmd
0
IO
L
L
7
vdds_mmc1
Yes
8
1
O
PU100/
PD100
LVCMOS
gpio_121
4
IO
safe_mode
7
-
mmc1_dat0
0
IO
L
L
7
vdds_mmc1
Yes
8
1
IO
PU100/
PD100
LVCMOS
gpio_122
4
IO
safe_mode
7
-
mmc1_dat1
0
IO
L
L
7
vdds_mmc1
Yes
8
1
IO
PU100/
PD100
LVCMOS
gpio_123
4
IO
safe_mode
7
-
mmc1_dat2
0
IO
L
L
7
vdds_mmc1
Yes
8
1
IO
PU100/
PD100
LVCMOS
gpio_124
4
IO
safe_mode
7
-
mmc1_dat3
0
IO
L
L
7
vdds_mmc1
Yes
8
1
IO
PU100/
PD100
LVCMOS
gpio_125
4
IO
safe_mode
7
-
mmc1_dat4
0
IO
L
L
7
vdds_mmc1a
No
8
PU/PD (3)
LVCMOS
-
2
IO
gpio_126
4
IO
safe_mode
7
-
mmc1_dat5
0
IO
L
L
7
vdds_mmc1a
No
8
PU/PD (3)
LVCMOS
-
2
O
gpio_127
4
IO
safe_mode
7
-
mmc1_dat6
0
IO
L
L
7
vdds_mmc1a
No
8
PU/PD (3)
LVCMOS
-
2
O
gpio_128
4
IO
safe_mode
7
-
L18
M19
M18
K18
N20
M20
P17
P18
(3)
-
PIN
NAME
[4]
-
-
-
-
-
-
-
-
The PU nominal drive strength of this IO cell is equal to 25 µA @ 1.8 V and 41.6 µA @ 3.0 V.
The PD nominal drive strength of this IO cell is equal to 1 mA @ 1.8 V and 1.66 mA @ 3.0 V.
Submit Documentation Feedback
TERMINAL DESCRIPTION
37
PRODUCT PREVIEW
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM
[1]
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM
[1]
BALL
TOP
[2]
P19
-
TYPE
[6]
BALL
RESET
STATE
[7]
BALL
RESET
REL.
STATE
[8]
RESET
REL.
MODE
[9]
POWER
[10]
HYS
[11]
BUFFER
STRENG
TH
(mA)
[12]
PULLUP
/DOWN
TYPE
[13]
IO
CELL
[14]
mmc1_dat7
0
IO
L
L
7
vdds_mmc1a
No
8
PU/PD (3)
LVCMOS
-
2
O
gpio_129
4
IO
safe_mode
7
-
PRODUCT PREVIEW
-
i2c1_scl
0
IOD
H
H
0
vdds_io
Yes
3
PU100/
PD100
Open Drain
J24
-
i2c1_sda
0
IOD
H
H
0
vdds_io
Yes
3
PU100/
PD100
Open Drain
C2
-
i2c2_scl
0
IOD
H
H
7
vdds_io
Yes
3
gpio_168
4
IO
PU100/
PD100
LVCMOS
Open Drain
safe_mode
7
-
i2c2_sda
0
IOD
gpio_183
4
IO
PU100/
PD100
LVCMOS
Open Drain
safe_mode
7
-
i2c3_scl
0
IOD
gpio_184
4
IO
PU100/
PD100
LVCMOS
Open Drain
safe_mode
7
-
i2c3_sda
0
IOD
gpio_185
4
IO
PU100/
PD100
LVCMOS
Open Drain
safe_mode
7
-
mcbsp1_clkr
0
IO
mcspi4_clk
1
IO
-
2
I
gpio_156
4
IO
safe_mode
7
-
mcbsp1_clkx
0
IO
mcbsp3_clkx
2
IO
gpio_162
4
IO
safe_mode
7
-
mcbsp1_dr
0
I
mcspi4_somi
1
IO
mcbsp3_dr
2
I
gpio_159
4
IO
safe_mode
7
-
mcbsp1_dx
0
IO
mcspi4_simo
1
IO
mcbsp3_dx
2
IO
gpio_158
4
IO
safe_mode
7
-
mcbsp1_fsr
0
IO
-
1
I
cam_global_reset
2
IO
gpio_157
4
IO
safe_mode
7
-
mcbsp1_fsx
0
IO
mcspi4_cs0
1
IO
mcbsp3_fsx
2
IO
gpio_161
4
IO
safe_mode
7
-
mcbsp2_clkx
0
IO
gpio_117
4
IO
safe_mode
7
-
AB4
AC4
U19
T17
T20
U17
V17
P20
R18
38
MODE
[5]
J25
C1
(4)
PIN
NAME
[4]
-
-
-
-
-
-
-
-
-
-
4
4
H
H
7
vdds_io
Yes
3
4
4
H
H
7
vdds_io
Yes
3
4
4
H
H
7
vdds_io
Yes
3
4
4
L
L
7
vdds_io
Yes
4 (2)
PU100/
PD100
LVCMOS
L
L
7
vdds_io
Yes
4 (2)
PU100/
PD100
LVCMOS
L
L
7
vdds_io
Yes
4 (2)
PU100/
PD100
LVCMOS
L
L
7
vdds_io
Yes
4 (2)
PU100/
PD100
LVCMOS
L
L
7
vdds_io
Yes
4 (2)
PU100/
PD100
LVCMOS
L
L
7
vdds_io
Yes
4 (2)
PU100/
PD100
LVCMOS
L
L
7
vdds_io
Yes
4 (4)
PU100/
PD100
LVCMOS
The buffer strength of this IO cell is programmable (2, 4, 6, or 8 mA) according to the selected mode; the default value is described in
the above table.
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
BALL
TOP
[2]
T18
-
R19
U18
P9
R7
R9
P8
P7
W7
V8
W8
U8
-
-
-
-
-
-
-
-
-
-
-
PIN
NAME
[4]
MODE
[5]
TYPE
[6]
BALL
RESET
STATE
[7]
BALL
RESET
REL.
STATE
[8]
RESET
REL.
MODE
[9]
POWER
[10]
HYS
[11]
BUFFER
STRENG
TH
(mA)
[12]
PULLUP
/DOWN
TYPE
[13]
IO
CELL
[14]
mcbsp2_dr
0
I
L
L
7
vdds_io
Yes
4 (4)
4
IO
PU100/
PD100
LVCMOS
gpio_118
safe_mode
7
-
mcbsp2_dx
0
IO
L
L
7
vdds_io
Yes
4 (4)
4
IO
PU100/
PD100
LVCMOS
gpio_119
safe_mode
7
-
mcbsp2_fsx
0
IO
L
L
7
vdds_io
Yes
4 (4)
4
IO
PU100/
PD100
LVCMOS
gpio_116
safe_mode
7
-
mcspi1_clk
0
IO
L
L
7
vdds_io
Yes
4 (4)
1
IO
PU100/
PD100
LVCMOS
mmc2_dat4
gpio_171
4
IO
safe_mode
7
-
mcspi1_cs0
0
IO
H
H
7
vdds_io
Yes
4 (4)
1
IO
PU100/
PD100
LVCMOS
mmc2_dat7
gpio_174
4
IO
safe_mode
7
-
mcspi1_cs2
0
O
H
H
7
vdds_io
Yes
4 (4)
3
O
PU100/
PD100
LVCMOS
mmc3_clk
gpio_176
4
IO
safe_mode
7
-
mcspi1_simo
0
IO
L
L
7
vdds_io
Yes
4 (4)
1
IO
PU100/
PD100
LVCMOS
mmc2_dat5
gpio_172
4
IO
safe_mode
7
-
mcspi1_somi
0
IO
L
L
7
vdds_io
Yes
4 (4)
1
IO
PU100/
PD100
LVCMOS
mmc2_dat6
gpio_173
4
IO
safe_mode
7
-
mcspi2_clk
0
IO
L
L
7
vdds_io
Yes
4 (2)
2
IO
PU100/
PD100
LVCMOS
hsusb2_tll_data7
hsusb2_data7
3
O
gpio_178
4
IO
safe_mode
7
-
mcspi2_cs0
0
IO
H
H
7
vdds_io
Yes
4 (2)
1
IO
PU100/
PD100
LVCMOS
gpt11_pwm_evt
hsusb2_tll_data6
2
IO
hsusb2_data6
3
O
gpio_181
4
IO
safe_mode
7
-
mcspi2_simo
0
IO
L
L
7
vdds_io
Yes
4 (2)
1
IO
PU100/
PD100
LVCMOS
gpt9_pwm_evt
hsusb2_tll_data4
2
IO
hsusb2_data4
3
I
gpio_179
4
IO
safe_mode
7
-
mcspi2_somi
0
IO
L
L
7
vdds_io
Yes
4 (2)
1
IO
PU100/
PD100
LVCMOS
gpt10_pwm_evt
hsusb2_tll_data5
2
IO
hsusb2_data5
3
O
gpio_180
4
IO
safe_mode
7
-
Submit Documentation Feedback
TERMINAL DESCRIPTION
39
PRODUCT PREVIEW
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM
[1]
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM
[1]
BALL
TOP
[2]
W10
-
R10
T10
PRODUCT PREVIEW
T9
U10
U9
V10
R2
H3
L4
Y24
AA24
AD21
40
-
-
-
-
-
-
-
-
-
-
-
-
PIN
NAME
[4]
MODE
[5]
TYPE
[6]
BALL
RESET
STATE
[7]
BALL
RESET
REL.
STATE
[8]
RESET
REL.
MODE
[9]
POWER
[10]
HYS
[11]
BUFFER
STRENG
TH
(mA)
[12]
PULLUP
/DOWN
TYPE
[13]
IO
CELL
[14]
mmc2_clk
0
O
L
L
7
vdds_io
Yes
4 (2)
1
IO
PU100/
PD100
LVCMOS
mcspi3_clk
gpio_130
4
IO
safe_mode
7
-
mmc2_cmd
0
IO
H
H
7
vdds_io
Yes
4 (2)
1
IO
PU100/
PD100
LVCMOS
mcspi3_simo
gpio_131
4
IO
safe_mode
7
-
mmc2_dat0
0
IO
H
H
7
vdds_io
Yes
4 (2)
1
IO
PU100/
PD100
LVCMOS
mcspi3_somi
gpio_132
4
IO
safe_mode
7
-
mmc2_dat1
0
IO
H
H
7
vdds_io
Yes
4 (2)
4
IO
PU100/
PD100
LVCMOS
gpio_133
safe_mode
7
-
mmc2_dat2
0
IO
H
H
7
vdds_io
Yes
4 (2)
1
O
PU100/
PD100
LVCMOS
mcspi3_cs1
gpio_134
4
IO
safe_mode
7
-
mmc2_dat3
0
IO
H
H
7
vdds_io
Yes
4 (2)
1
IO
PU100/
PD100
LVCMOS
mcspi3_cs0
gpio_135
4
IO
safe_mode
7
-
mmc2_dat4
0
IO
L
L
7
vdds_io
Yes
4 (2)
1
O
PU100/
PD100
LVCMOS
mmc2_dir_dat0
mmc3_dat0
3
IO
gpio_136
4
IO
safe_mode
7
-
uart1_rts
0
O
L
L
7
vdds_io
Yes
4 (2)
1
O
PU100/
PD100
LVCMOS
gpio_149
4
IO
safe_mode
7
-
uart1_rx
0
I
L
L
7
vdds_io
Yes
4 (2)
2
IO
PU100/
PD100
LVCMOS
mcbsp1_clkr
mcspi4_clk
3
IO
gpio_151
4
IO
safe_mode
7
-
uart1_tx
0
O
L
L
7
vdds_io
Yes
4 (2)
1
O
PU100/
PD100
LVCMOS
gpio_148
4
IO
safe_mode
7
-
uart2_cts
0
I
H
H
7
vdds_io
Yes
4
1
IO
PU100/
PD100
LVCMOS
mcbsp3_dx
gpt9_pwm_evt
2
IO
gpio_144
4
IO
safe_mode
7
-
uart2_rts
0
O
H
H
7
vdds_io
Yes
4
1
I
PU100/
PD100
LVCMOS
mcbsp3_dr
gpt10_pwm_evt
2
IO
gpio_145
4
IO
safe_mode
7
-
uart2_rx
0
I
H
H
7
vdds_io
Yes
4
1
IO
PU100/
PD100
LVCMOS
mcbsp3_fsx
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
AD22
F23
F24
H24
G24
J23
AD15
W16
F3
D3
C3
E3
E4
G3
BALL
TOP
[2]
-
-
-
-
-
-
-
-
-
-
-
-
-
-
PIN
NAME
[4]
MODE
[5]
TYPE
[6]
gpt8_pwm_evt
2
IO
gpio_147
4
IO
safe_mode
7
-
uart2_tx
0
O
mcbsp3_clkx
1
IO
gpt11_pwm_evt
2
IO
gpio_146
4
IO
safe_mode
7
-
uart3_cts_rctx
0
IO
gpio_163
4
IO
safe_mode
7
-
uart3_rts_sd
0
O
gpio_164
4
IO
safe_mode
7
-
uart3_rx_irrx
0
I
gpio_165
4
IO
safe_mode
7
-
uart3_tx_irtx
0
O
gpio_166
4
IO
safe_mode
7
-
hdq_sio
0
IOD
sys_altclk
1
I
i2c2_sccbe
2
O
i2c3_sccbe
3
O
gpio_170
4
IO
safe_mode
7
-
i2c4_scl
0
IOD
sys_nvmode1
1
O
safe_mode
7
-
i2c4_sda
0
IOD
sys_nvmode2
1
O
safe_mode
7
-
sys_boot0
0
I
gpio_2
4
IO
safe_mode
7
-
sys_boot1
0
I
gpio_3
4
IO
safe_mode
7
-
sys_boot2
0
I
gpio_4
4
IO
safe_mode
7
-
sys_boot3
0
I
gpio_5
4
IO
safe_mode
7
-
sys_boot4
0
I
mmc2_dir_dat2
1
O
gpio_6
4
IO
safe_mode
7
-
sys_boot5
0
I
mmc2_dir_dat3
1
O
gpio_7
4
IO
safe_mode
7
-
Submit Documentation Feedback
BALL
RESET
STATE
[7]
BALL
RESET
REL.
STATE
[8]
RESET
REL.
MODE
[9]
POWER
[10]
HYS
[11]
BUFFER
STRENG
TH
(mA)
[12]
PULLUP
/DOWN
TYPE
[13]
IO
CELL
[14]
H
H
7
vdds_io
Yes
4
PU100/
PD100
LVCMOS
H
H
7
vdds_io
Yes
4
PU100/
PD100
LVCMOS
H
H
7
vdds_io
Yes
4
PU100/
PD100
LVCMOS
H
H
7
vdds_io
Yes
4
PU100/
PD100
LVCMOS
H
H
7
vdds_io
Yes
4
PU100/
PD100
LVCMOS
H
H
7
vdds_io
Yes
4
PU100/
PD100
LVCMOS
Open Drain
H
H
0
vdds_io
Yes
3
PU100/
PD100
LVCMOS
Open Drain
PU100/
PD100
LVCMOS
Open Drain
4
4
H
H
0
vdds_io
Yes
3
4
4
Z
Z
0
vdds_io
Yes
4
PU100/
PD100
LVCMOS
Z
Z
0
vdds_io
Yes
4
PU100/
PD100
LVCMOS
Z
Z
0
vdds_io
Yes
4
PU100/
PD100
LVCMOS
Z
Z
0
vdds_io
Yes
4
PU100/
PD100
LVCMOS
Z
Z
0
vdds_io
Yes
4
PU100/
PD100
LVCMOS
Z
Z
0
vdds_io
Yes
4
PU100/
PD100
LVCMOS
TERMINAL DESCRIPTION
41
PRODUCT PREVIEW
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM
[1]
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM
[1]
BALL
TOP
[2]
D4
-
AE14
W11
W15
PRODUCT PREVIEW
V16
-
-
-
MODE
[5]
TYPE
[6]
BALL
RESET
STATE
[7]
BALL
RESET
REL.
STATE
[8]
RESET
REL.
MODE
[9]
POWER
[10]
HYS
[11]
BUFFER
STRENG
TH
(mA)
[12]
PULLUP
/DOWN
TYPE
[13]
IO
CELL
[14]
Z
Z
0
vdds_io
Yes
4
PU100/
PD100
LVCMOS
L
L
7
vdds_io
Yes
4
PU100/
PD100
LVCMOS
L
L
7
vdds_io
Yes
4 (2)
PU100/
PD100
LVCMOS
0
1
0
vdds_io
Yes
4
PU100/
PD100
LVCMOS
H
H
7
vdds_io
Yes
4
PU100/
PD100
LVCMOS
sys_boot6
0
I
gpio_8
4
IO
safe_mode
7
-
sys_clkout1
0
O
gpio_10
4
IO
safe_mode
7
-
sys_clkout2
0
O
gpio_186
4
IO
safe_mode
7
-
sys_clkreq
0
IO
gpio_1
4
IO
safe_mode
7
-
sys_nirq
0
I
gpio_0
4
IO
-
safe_mode
7
V13
-
sys_nrespwron
0
I
Z
I
NA
vdds_io
Yes
NA
NA
LVCMOS
AD7
AA5
sys_nreswarm
0
IOD
0
1 (PU)
0
vdds_io
Yes
4
gpio_30
4
IO
PU100/
PD100
LVCMOS
Open Drain
safe_mode
7
-
sys_off_mode
0
O
0
L
7
vdds_io
Yes
4
4
IO
PU100/
PD100
LVCMOS
gpio_9
-
V12
-
safe_mode
7
AF19
-
sys_xtalin
0
I
Z
I
NA
vdds_io
Yes
NA
NA
LVCMOS
AF20
-
sys_xtalout
0
O
Z
O
NA
vdds_io
Yes
NA
NA
LVCMOS
B1
-
sys_ipmcsws
0
AI
Z
NA
NA
vdds_io
No
NA
NA
Analog
A2
-
sys_opmcsws
0
AO
0
NA
NA
vdds_io
No
NA
NA
Analog
W26
-
tv_out1
0
AO
Z
0
0
vdda_dac
No
8
NA
10-bit DAC
V26
-
tv_out2
0
AO
Z
0
0
vdda_dac
No
8
NA
10-bit DAC
W25
-
tv_vfb1
0
O
Z
NA
0
vdda_dac
No
2
NA
10-bit DAC
U24
-
tv_vfb2
0
O
Z
NA
0
vdda_dac
No
2
NA
10-bit DAC
V23
-
tv_vref
0
I
Z
NA
0
vdda_dac
No
NA
NA
10-bit DAC
AE20
-
sys_32k
0
I
Z
I
NA
vdds_io
Yes
NA
NA
LVCMOS
A24
-
cam_d2
0
I
L
L
7
vdds_io
Yes
4 (2)
LVCMOS
-
1
I
PU100/
PD100
gpio_101
4
IO
hw_dbg4
5
O
safe_mode
7
-
cam_d3
0
I
L
L
7
vdds_io
Yes
4 (2)
1
I
PU100/
PD100
LVCMOS
gpio_102
4
IO
hw_dbg5
5
O
safe_mode
7
-
cam_d4
0
I
L
L
7
vdds_io
Yes
4 (2)
1
I
PU100/
PD100
LVCMOS
gpio_103
4
IO
hw_dbg6
5
O
safe_mode
7
-
cam_d5
0
I
L
L
7
vdds_io
Yes
4 (2)
1
O
PU100/
PD100
LVCMOS
gpio_104
4
IO
hw_dbg7
5
O
safe_mode
7
-
B24
D24
C24
42
-
PIN
NAME
[4]
-
-
-
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
BALL
TOP
[2]
D25
-
E26
B23
C23
C26
D26
C25
E25
P25
P26
N25
N26
D23
-
-
-
-
-
-
-
-
-
-
-
-
PIN
NAME
[4]
MODE
[5]
TYPE
[6]
BALL
RESET
STATE
[7]
BALL
RESET
REL.
STATE
[8]
RESET
REL.
MODE
[9]
POWER
[10]
HYS
[11]
BUFFER
STRENG
TH
(mA)
[12]
PULLUP
/DOWN
TYPE
[13]
IO
CELL
[14]
cam_d10
0
I
L
L
7
vdds_io
Yes
4 (2)
1
O
PU100/
PD100
LVCMOS
gpio_109
4
IO
hw_dbg8
5
O
safe_mode
7
-
cam_d11
0
I
L
L
7
vdds_io
Yes
4 (2)
4
IO
PU100/
PD100
LVCMOS
gpio_110
hw_dbg9
5
O
safe_mode
7
-
cam_fld
0
IO
L
L
7
vdds_io
Yes
4 (2)
2
IO
PU100/
PD100
LVCMOS
cam_global_reset
gpio_98
4
IO
hw_dbg3
5
O
safe_mode
7
-
cam_hs
0
IO
L
L
7
vdds_io
Yes
4 (2)
1
O
PU100/
PD100
LVCMOS
gpio_94
4
IO
hw_dbg0
5
O
safe_mode
7
-
cam_pclk
0
I
L
L
7
vdds_io
Yes
4 (2)
4
IO
PU100/
PD100
LVCMOS
gpio_97
hw_dbg2
5
O
safe_mode
7
-
cam_strobe
0
O
L
L
7
vdds_io
Yes
4 (2)
4
IO
PU100/
PD100
LVCMOS
gpio_126
hw_dbg11
5
O
safe_mode
7
-
cam_xclka
0
O
L
L
7
vdds_io
Yes
4 (2)
4
IO
PU100/
PD100
LVCMOS
gpio_96
safe_mode
7
-
cam_xclkb
0
O
L
L
7
vdds_io
Yes
4 (2)
4
IO
PU100/
PD100
LVCMOS
gpio_111
safe_mode
7
-
cam_d6
0
I
L
L
7
vdds_csib
NA
4
4
IO
PU100/
PD100
SubLVDS
gpio_105
safe_mode
7
-
cam_d7
0
I
L
L
7
vdds_csib
NA
4
4
IO
PU100/
PD100
SubLVDS
gpio_106
safe_mode
7
-
cam_d8
0
I
L
L
7
vdds_csib
NA
4
4
IO
PU100/
PD100
SubLVDS
gpio_107
safe_mode
7
-
cam_d9
0
I
L
L
7
vdds_csib
NA
4
4
IO
PU100/
PD100
SubLVDS
gpio_108
safe_mode
7
-
cam_vs
0
IO
L
L
7
vdds_io
Yes
4 (2)
1
O
PU100/
PD100
LVCMOS
gpio_95
4
IO
hw_dbg1
5
O
safe_mode
7
-
Submit Documentation Feedback
TERMINAL DESCRIPTION
43
PRODUCT PREVIEW
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM
[1]
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM
[1]
BALL
TOP
[2]
A23
-
F26
G26
PRODUCT PREVIEW
H25
H26
J26
L25
L26
M24
M26
N24
44
-
-
-
-
-
-
-
-
-
-
PIN
NAME
[4]
MODE
[5]
TYPE
[6]
BALL
RESET
STATE
[7]
BALL
RESET
REL.
STATE
[8]
RESET
REL.
MODE
[9]
POWER
[10]
HYS
[11]
BUFFER
STRENG
TH
(mA)
[12]
PULLUP
/DOWN
TYPE
[13]
IO
CELL
[14]
cam_wen
0
I
L
L
7
vdds_io
Yes
4 (2)
2
O
PU100/
PD100
LVCMOS
cam_shutter
gpio_167
4
IO
hw_dbg10
5
O
safe_mode
7
-
dss_acbias
0
O
L
L
7
vdds_io
Yes
8
4
IO
PU100/
PD100
LVCMOS
gpio_69
safe_mode
7
-
dss_data6
0
IO
L
L
7
vdds_io
Yes
8
2
O
PU100/
PD100
LVCMOS
uart1_tx
gpio_76
4
IO
hw_dbg14
5
O
safe_mode
7
-
dss_data7
0
IO
L
L
7
vdds_io
Yes
8
2
I
PU100/
PD100
LVCMOS
uart1_rx
gpio_77
4
IO
hw_dbg15
5
O
safe_mode
7
-
dss_data8
0
IO
L
L
7
vdds_io
Yes
8
4
IO
PU100/
PD100
LVCMOS
gpio_78
hw_dbg16
5
O
safe_mode
7
-
dss_data9
0
IO
L
L
7
vdds_io
Yes
8
4
IO
PU100/
PD100
LVCMOS
gpio_79
hw_dbg17
5
O
safe_mode
7
-
dss_data16
0
IO
L
L
7
vdds_io
Yes
8
4
IO
PU100/
PD100
LVCMOS
gpio_86
safe_mode
7
-
dss_data17
0
IO
L
L
7
vdds_io
Yes
8
4
IO
PU100/
PD100
LVCMOS
gpio_87
safe_mode
7
-
dss_data18
0
IO
L
L
7
vdds_io
Yes
8
1
O
PU100/
PD100
LVCMOS
mcspi3_clk
2
IO
dss_data0
3
IO
gpio_88
4
IO
safe_mode
7
-
dss_data19
0
IO
L
L
7
vdds_io
Yes
8
1
O
PU100/
PD100
LVCMOS
mcspi3_simo
2
IO
dss_data1
3
IO
gpio_89
4
IO
safe_mode
7
-
dss_data21
0
O
L
L
7
vdds_io
Yes
8
1
O
PU100/
PD100
LVCMOS
mcspi3_cs0
2
IO
dss_data3
3
IO
gpio_91
4
IO
safe_mode
7
-
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
BALL
TOP
[2]
K24
-
M25
R8
T8
V9
T19
AB2
AB3
AC3
-
-
-
-
-
-
-
-
PIN
NAME
[4]
MODE
[5]
TYPE
[6]
BALL
RESET
STATE
[7]
BALL
RESET
REL.
STATE
[8]
RESET
REL.
MODE
[9]
POWER
[10]
HYS
[11]
BUFFER
STRENG
TH
(mA)
[12]
PULLUP
/DOWN
TYPE
[13]
IO
CELL
[14]
H
H
7
vdds_io
Yes
4
PU100/
PD100
LVCMOS
H
H
7
vdds_io
Yes
4
PU100/
PD100
LVCMOS
H
H
7
vdds_io
Yes
4 (4)
PU100/
PD100
LVCMOS
H
H
7
vdds_io
Yes
4 (2)
PU100/
PD100
LVCMOS
L
L
7
vdds_io
Yes
4 (2)
PU100/
PD100
LVCMOS
L
L
7
vdds_io
Yes
4 (2)
PU100/
PD100
LVCMOS
H
H
4
vdds_io
Yes
4 (2)
PU100/
PD100
LVCMOS
H
H
4
vdds_io
Yes
4 (2)
PU100/
PD100
LVCMOS
H
H
4
vdds_io
Yes
4 (2)
PU100/
PD100
LVCMOS
dss_hsync
0
O
gpio_67
4
IO
hw_dbg13
5
O
safe_mode
7
-
dss_vsync
0
O
gpio_68
4
IO
safe_mode
7
-
mcspi1_cs1
0
O
-
1
I
mmc3_cmd
3
IO
gpio_175
4
IO
safe_mode
7
-
mcspi1_cs3
0
O
hsusb2_tll_data2
2
IO
hsusb2_data2
3
IO
gpio_177
4
IO
mm2_txdat
5
IO
safe_mode
7
-
mcspi2_cs1
0
O
gpt8_pwm_evt
1
IO
hsusb2_tll_data3
2
IO
hsusb2_data3
3
IO
gpio_182
4
IO
mm2_txen_n
5
IO
safe_mode
7
-
mcbsp_clks
0
I
cam_shutter
2
O
gpio_160
4
IO
uart1_cts
5
I
safe_mode
7
-
etk_clk
0
O
mcbsp5_clkx
1
IO
mmc3_clk
2
O
hsusb1_stp
3
O
gpio_12
4
IO
mm1_rxdp
5
IO
hsusb1_tll_stp
6
I
hw_dbg0
7
O
etk_ctl
0
O
mmc3_cmd
2
IO
hsusb1_clk
3
O
gpio_13
4
IO
hsusb1_tll_clk
6
O
hw_dbg1
7
O
etk_d0
0
O
mcspi3_simo
1
IO
mmc3_dat4
2
IO
hsusb1_data0
3
IO
gpio_14
4
IO
mm1_rxrcv
5
IO
hsusb1_tll_data0
6
IO
hw_dbg2
7
O
Submit Documentation Feedback
TERMINAL DESCRIPTION
45
PRODUCT PREVIEW
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM
[1]
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM
[1]
BALL
TOP
[2]
AD4
-
AD3
PRODUCT PREVIEW
AA3
Y3
AB1
AE3
AD2
AA4
46
-
-
-
-
-
-
-
PIN
NAME
[4]
MODE
[5]
TYPE
[6]
BALL
RESET
STATE
[7]
BALL
RESET
REL.
STATE
[8]
RESET
REL.
MODE
[9]
POWER
[10]
HYS
[11]
BUFFER
STRENG
TH
(mA)
[12]
PULLUP
/DOWN
TYPE
[13]
IO
CELL
[14]
etk_d1
0
O
H
H
4
vdds_io
Yes
4 (2)
1
IO
PU100/
PD100
LVCMOS
mcspi3_somi
hsusb1_data1
3
IO
gpio_15
4
IO
mm1_txse0
5
IO
hsusb1_tll_data1
6
IO
hw_dbg3
7
O
etk_d2
0
O
H
H
4
vdds_io
Yes
4 (2)
1
IO
PU100/
PD100
LVCMOS
mcspi3_cs0
hsusb1_data2
3
IO
gpio_16
4
IO
mm1_txdat
5
IO
hsusb1_tll_data2
6
IO
hw_dbg4
7
O
etk_d3
0
O
H
H
4
vdds_io
Yes
4 (2)
1
IO
PU100/
PD100
LVCMOS
mcspi3_clk
mmc3_dat3
2
IO
hsusb1_data7
3
IO
gpio_17
4
IO
hsusb1_tll_data7
6
IO
hw_dbg5
7
O
etk_d4
0
O
L
L
4
vdds_io
Yes
4 (2)
1
I
PU100/
PD100
LVCMOS
mcbsp5_dr
mmc3_dat0
2
IO
hsusb1_data4
3
IO
gpio_18
4
IO
hsusb1_tll_data4
6
IO
hw_dbg6
7
O
etk_d5
0
O
L
L
4
vdds_io
Yes
4 (2)
1
IO
PU100/
PD100
LVCMOS
mcbsp5_fsx
mmc3_dat1
2
IO
hsusb1_data5
3
IO
gpio_19
4
IO
hsusb1_tll_data5
6
IO
hw_dbg7
7
O
etk_d6
0
O
L
L
4
vdds_io
Yes
4 (2)
1
IO
PU100/
PD100
LVCMOS
mcbsp5_dx
mmc3_dat2
2
IO
hsusb1_data6
3
IO
gpio_20
4
IO
hsusb1_tll_data6
6
IO
hw_dbg8
7
O
etk_d7
0
O
L
L
4
vdds_io
Yes
4 (2)
1
O
PU100/
PD100
LVCMOS
mcspi3_cs1
mmc3_dat7
2
IO
hsusb1_data3
3
IO
gpio_21
4
IO
mm1_txen_n
5
IO
hsusb1_tll_data3
6
IO
hw_dbg9
7
O
etk_d8
0
O
L
L
4
vdds_io
Yes
4 (2)
1
O
PU100/
PD100
LVCMOS
sys_drm_msecure
mmc3_dat6
2
IO
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
V2
AE4
AF6
AE6
AF7
AF9
AE9
Y15
Y14
BALL
TOP
[2]
-
-
-
-
-
-
-
-
-
PIN
NAME
[4]
MODE
[5]
TYPE
[6]
hsusb1_dir
3
I
gpio_22
4
IO
hsusb1_tll_dir
6
O
hw_dbg10
7
O
etk_d9
0
O
sys_secure_indicator
1
O
mmc3_dat5
2
IO
hsusb1_nxt
3
I
gpio_23
4
IO
mm1_rxdm
5
IO
hsusb1_tll_nxt
6
O
hw_dbg11
7
O
etk_d10
0
O
uart1_rx
2
I
hsusb2_clk
3
O
gpio_24
4
IO
hsusb2_tll_clk
6
O
hw_dbg12
7
O
etk_d11
0
O
hsusb2_stp
3
O
gpio_25
4
IO
mm2_rxdp
5
IO
hsusb2_tll_stp
6
I
hw_dbg13
7
O
etk_d12
0
O
hsusb2_dir
3
I
gpio_26
4
IO
hsusb2_tll_dir
6
O
hw_dbg14
7
O
etk_d13
0
O
hsusb2_nxt
3
I
gpio_27
4
IO
mm2_rxdm
5
IO
hsusb2_tll_nxt
6
O
hw_dbg15
7
O
etk_d14
0
O
hsusb2_data0
3
IO
gpio_28
4
IO
mm2_rxrcv
5
IO
hsusb2_tll_data0
6
IO
hw_dbg16
7
O
etk_d15
0
O
hsusb2_data1
3
IO
gpio_29
4
IO
mm2_txse0
5
IO
hsusb2_tll_data1
6
IO
hw_dbg17
7
O
jtag_emu0
0
IO
gpio_11
4
IO
safe_mode
7
-
jtag_emu1
0
IO
gpio_31
4
IO
safe_mode
7
-
Submit Documentation Feedback
BALL
RESET
STATE
[7]
BALL
RESET
REL.
STATE
[8]
RESET
REL.
MODE
[9]
POWER
[10]
HYS
[11]
BUFFER
STRENG
TH
(mA)
[12]
PULLUP
/DOWN
TYPE
[13]
IO
CELL
[14]
L
L
4
vdds_io
Yes
4 (2)
PU100/
PD100
LVCMOS
L
L
4
vdds_io
Yes
4 (2)
PU100/
PD100
LVCMOS
L
L
4
vdds_io
Yes
4 (2)
PU100/
PD100
LVCMOS
L
L
4
vdds_io
Yes
4 (2)
PU100/
PD100
LVCMOS
L
L
4
vdds_io
Yes
4 (2)
PU100/
PD100
LVCMOS
L
L
4
vdds_io
Yes
4 (2)
PU100/
PD100
LVCMOS
L
L
4
vdds_io
Yes
4 (2)
PU100/
PD100
LVCMOS
H
H
0
vdds_io
Yes
4
PU100/
PD100
LVCMOS
H
H
0
vdds_io
Yes
4
PU100/
PD100
LVCMOS
TERMINAL DESCRIPTION
47
PRODUCT PREVIEW
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM
[1]
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM
[1]
BALL
TOP
[2]
U3
-
N3
PRODUCT PREVIEW
P3
W3
V3
U4
R3
T3
M3
48
-
-
-
-
-
-
-
-
PIN
NAME
[4]
MODE
[5]
TYPE
[6]
BALL
RESET
STATE
[7]
BALL
RESET
REL.
STATE
[8]
RESET
REL.
MODE
[9]
POWER
[10]
HYS
[11]
BUFFER
STRENG
TH
(mA)
[12]
PULLUP
/DOWN
TYPE
[13]
IO
CELL
[14]
mcbsp3_clkx
0
IO
L
L
7
vdds_io
Yes
4 (2)
1
O
PU100/
PD100
LVCMOS
uart2_tx
gpio_142
4
IO
hsusb3_tll_data6
5
IO
safe_mode
7
-
mcbsp3_dr
0
I
L
L
7
vdds_io
Yes
4 (2)
1
O
PU100/
PD100
LVCMOS
uart2_rts
gpio_141
4
IO
hsusb3_tll_data5
5
IO
safe_mode
7
-
mcbsp3_dx
0
IO
L
L
7
vdds_io
Yes
4 (2)
1
I
PU100/
PD100
LVCMOS
uart2_cts
gpio_140
4
IO
hsusb3_tll_data4
5
IO
safe_mode
7
-
mcbsp3_fsx
0
IO
L
L
7
vdds_io
Yes
4 (2)
1
I
PU100/
PD100
LVCMOS
uart2_rx
gpio_143
4
IO
hsusb3_tll_data7
5
IO
safe_mode
7
-
mcbsp4_clkx
0
IO
L
L
7
vdds_io
Yes
4 (2)
1
I
PU100/
PD100
LVCMOS
gpio_152
4
IO
hsusb3_tll_data1
5
IO
mm3_txse0
6
IO
safe_mode
7
-
mcbsp4_dr
0
I
L
L
7
vdds_io
Yes
4 (2)
1
I
PU100/
PD100
LVCMOS
gpio_153
4
IO
hsusb3_tll_data0
5
IO
mm3_rxrcv
6
IO
safe_mode
7
-
mcbsp4_dx
0
IO
L
L
7
vdds_io
Yes
4 (2)
1
O
PU100/
PD100
LVCMOS
gpio_154
4
IO
hsusb3_tll_data2
5
IO
mm3_txdat
6
IO
safe_mode
7
-
mcbsp4_fsx
0
IO
L
L
7
vdds_io
Yes
4 (2)
1
O
PU100/
PD100
LVCMOS
gpio_155
4
IO
hsusb3_tll_data3
5
IO
mm3_txen_n
6
IO
safe_mode
7
-
mmc2_dat5
0
IO
L
L
7
vdds_io
Yes
4 (2)
1
O
PU100/
PD100
LVCMOS
mmc2_dir_dat1
cam_global_reset
2
IO
mmc3_dat1
3
IO
gpio_137
4
IO
hsusb3_tll_stp
5
I
mm3_rxdp
6
IO
safe_mode
7
-
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
BALL
TOP
[2]
L3
-
K3
W2
-
-
PIN
NAME
[4]
MODE
[5]
TYPE
[6]
BALL
RESET
STATE
[7]
BALL
RESET
REL.
STATE
[8]
RESET
REL.
MODE
[9]
POWER
[10]
HYS
[11]
BUFFER
STRENG
TH
(mA)
[12]
PULLUP
/DOWN
TYPE
[13]
IO
CELL
[14]
mmc2_dat6
0
IO
L
L
7
vdds_io
Yes
4 (2)
1
O
PU100/
PD100
LVCMOS
mmc2_dir_cmd
cam_shutter
2
O
mmc3_dat2
3
IO
gpio_138
4
IO
hsusb3_tll_dir
5
O
safe_mode
7
-
mmc2_dat7
0
IO
L
L
7
vdds_io
Yes
4 (2)
1
I
PU100/
PD100
LVCMOS
mmc2_clkin
mmc3_dat3
3
IO
gpio_139
4
IO
hsusb3_tll_nxt
5
IO
mm3_rxdm
6
IO
safe_mode
7
-
uart1_cts
0
I
L
L
7
vdds_io
Yes
4 (2)
1
I
PU100/
PD100
LVCMOS
gpio_150
4
IO
hsusb3_tll_clk
5
O
safe_mode
7
-
AF4
-
pop_gpmc_A9
AF12
-
pop_dpd_f_gpmc_nbeo_cl
e
AC16
-
vss_csi2
AD18
-
VDDS_CSI2
L19
-
vss_csib
AC19
-
VSS_DSI
AD19
-
VDDS_DSI
L20
-
VDDS_CSIb
K23
-
pbias_mmc1a
AB24
-
VDDS_SDI
AE25
-
pop_gpmc_a7
Y26
-
vss
Submit Documentation Feedback
TERMINAL DESCRIPTION
49
PRODUCT PREVIEW
Table 2-2. Ball Characteristics (CBC Pkg.) (continued)
BALL
BOTTOM
[1]
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
2.3 Multiplexing Characteristics
Table 2-3 and Table 2-4 provide a description of the OMAP3525 and OMAP3530 multiplexing on the CBB
and CBC packages, respectively.
Note: Table 2-3 and Table 2-4 do not take into account subsystem pin multiplexing options. Subsystem
pin multiplexing options are described in Section 2.4, Signal Description.
Table 2-3. Multiplexing Characteristics (CBB Pkg.) (1)
Ball
Top
Mode 0
Mode 1
Mode 2
Mode 3
Mode 4
Mode 5
Mode 6
Mode 7
D6
J2
sdrc_d0
-
-
-
-
-
-
-
C6
J1
sdrc_d1
-
-
-
-
-
-
-
B6
G2
sdrc_d2
-
-
-
-
-
-
-
C8
G1
sdrc_d3
-
-
-
-
-
-
-
C9
F2
sdrc_d4
-
-
-
-
-
-
-
A7
F1
sdrc_d5
-
-
-
-
-
-
-
B9
D2
sdrc_d6
-
-
-
-
-
-
-
A9
D1
sdrc_d7
-
-
-
-
-
-
-
C14
B13
sdrc_d8
-
-
-
-
-
-
-
B14
A13
sdrc_d9
-
-
-
-
-
-
-
C15
B14
sdrc_d10
-
-
-
-
-
-
-
PRODUCT PREVIEW
Ball
Bottom
(1)
50
B16
A14
sdrc_d11
-
-
-
-
-
-
-
D17
B16
sdrc_d12
-
-
-
-
-
-
-
C17
A16
sdrc_d13
-
-
-
-
-
-
-
B17
B19
sdrc_d14
-
-
-
-
-
-
-
D18
A19
sdrc_d15
-
-
-
-
-
-
-
D11
B3
sdrc_d16
-
-
-
-
-
-
-
B10
A3
sdrc_d17
-
-
-
-
-
-
-
C11
B5
sdrc_d18
-
-
-
-
-
-
-
D12
A5
sdrc_d19
-
-
-
-
-
-
-
C12
B8
sdrc_d20
-
-
-
-
-
-
-
A11
A8
sdrc_d21
-
-
-
-
-
-
-
B13
B9
sdrc_d22
-
-
-
-
-
-
-
D14
A9
sdrc_d23
-
-
-
-
-
-
-
C18
B21
sdrc_d24
-
-
-
-
-
-
-
A19
A21
sdrc_d25
-
-
-
-
-
-
-
B19
D22
sdrc_d26
-
-
-
-
-
-
-
B20
D23
sdrc_d27
-
-
-
-
-
-
-
D20
E22
sdrc_d28
-
-
-
-
-
-
-
A21
E23
sdrc_d29
-
-
-
-
-
-
-
B21
G22
sdrc_d30
-
-
-
-
-
-
-
C21
G23
sdrc_d31
-
-
-
-
-
-
-
H9
AB21
sdrc_ba0
-
-
-
-
-
-
-
H10
AC21
sdrc_ba1
-
-
-
-
-
-
-
A4
N22
sdrc_a0
-
-
-
-
-
-
-
B4
N 23
sdrc_a1
-
-
-
-
-
-
-
B3
P22
sdrc_a2
-
-
-
-
-
-
-
C5
P23
sdrc_a3
-
-
-
-
-
-
-
C4
R22
sdrc_a4
-
-
-
-
-
-
-
NA in table stands for Not Applicable.
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Ball
Bottom
Ball
Top
Mode 0
Mode 1
Mode 2
Mode 3
Mode 4
Mode 5
Mode 6
Mode 7
D5
R23
sdrc_a5
-
-
-
-
-
-
-
C3
T22
sdrc_a6
-
-
-
-
-
-
-
C2
T23
sdrc_a7
-
-
-
-
-
-
-
C1
U22
sdrc_a8
-
-
-
-
-
-
-
D4
U23
sdrc_a9
-
-
-
-
-
-
-
D3
V22
sdrc_a10
-
-
-
-
-
-
-
D2
V23
sdrc_a11
-
-
-
-
-
-
-
D1
W22
sdrc_a12
-
-
-
-
-
-
-
E2
W23
sdrc_a13
-
-
-
-
-
-
-
E1
Y22
sdrc_a14
-
-
-
-
-
-
-
H11
M22
sdrc_ncs0
-
-
-
-
-
-
-
H12
M23
sdrc_ncs1
-
-
-
-
-
-
-
A13
A11
sdrc_clk
-
-
-
-
-
-
-
A14
B11
sdrc_nclk
-
-
-
-
-
-
-
H16
J22
sdrc_cke0
-
-
-
-
-
-
safe_mode
H17
J23
sdrc_cke1
-
-
-
-
-
-
safe_mode
H14
L23
sdrc_nras
-
-
-
-
-
-
-
H13
L22
sdrc_ncas
-
-
-
-
-
-
-
H15
K23
sdrc_nwe
-
-
-
-
-
-
-
B7
C1
sdrc_dm0
-
-
-
-
-
-
-
A16
A17
sdrc_dm1
-
-
-
-
-
-
-
B11
A6
sdrc_dm2
-
-
-
-
-
-
-
C20
A20
sdrc_dm3
-
-
-
-
-
-
-
A6
C2
sdrc_dqs0
-
-
-
-
-
-
-
A17
B17
sdrc_dqs1
-
-
-
-
-
-
-
A10
B6
sdrc_dqs2
-
-
-
-
-
-
-
A20
B20
sdrc_dqs3
-
-
-
-
-
-
-
N4
AC15
gpmc_a1
-
-
-
gpio_34
-
-
safe_mode
M4
AB15
gpmc_a2
-
-
-
gpio_35
-
-
safe_mode
L4
AC16
gpmc_a3
-
-
-
gpio_36
-
-
safe_mode
K4
AB16
gpmc_a4
-
-
-
gpio_37
-
-
safe_mode
T3
AC17
gpmc_a5
-
-
-
gpio_38
-
-
safe_mode
R3
AB17
gpmc_a6
-
-
-
gpio_39
-
-
safe_mode
N3
AC18
gpmc_a7
-
-
-
gpio_40
-
-
safe_mode
M3
AB18
gpmc_a8
-
-
-
gpio_41
-
-
safe_mode
L3
AC19
gpmc_a9
sys_
ndmareq2
-
-
gpio_42
-
-
safe_mode
K3
AB19
gpmc_a10
sys_
ndmareq3
-
-
gpio_43
-
-
safe_mode
K1
M2
gpmc_d0
-
-
-
-
-
-
-
L1
M1
gpmc_d1
-
-
-
-
-
-
-
L2
N2
gpmc_d2
-
-
-
-
-
-
-
P2
N1
gpmc_d3
-
-
-
-
-
-
-
T1
R2
gpmc_d4
-
-
-
-
-
-
-
V1
R1
gpmc_d5
-
-
-
-
-
-
-
V2
T2
gpmc_d6
-
-
-
-
-
-
-
W2
T1
gpmc_d7
-
-
-
-
-
-
-
Submit Documentation Feedback
TERMINAL DESCRIPTION
51
PRODUCT PREVIEW
Table 2-3. Multiplexing Characteristics (CBB Pkg.) (continued)
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 2-3. Multiplexing Characteristics (CBB Pkg.) (continued)
Ball
Top
Mode 0
Mode 1
Mode 2
Mode 3
Mode 4
Mode 5
Mode 6
Mode 7
H2
AB3
gpmc_d8
-
-
-
gpio_44
-
-
safe_mode
K2
AC3
gpmc_d9
-
-
-
gpio_45
-
-
safe_mode
P1
AB4
gpmc_d10
-
-
-
gpio_46
-
-
safe_mode
R1
AC4
gpmc_d11
-
-
-
gpio_47
-
-
safe_mode
R2
AB6
gpmc_d12
-
-
-
gpio_48
-
-
safe_mode
T2
AC6
gpmc_d13
-
-
-
gpio_49
-
-
safe_mode
W1
AB7
gpmc_d14
-
-
-
gpio_50
-
-
safe_mode
Y1
AC7
gpmc_d15
-
-
-
gpio_51
-
-
safe_mode
G4
Y2
gpmc_ncs0
-
-
-
-
-
-
-
H3
Y1
gpmc_ncs1
-
-
-
gpio_52
-
-
safe_mode
V8
NA
gpmc_ncs2
-
-
-
gpio_53
-
-
safe_mode
U8
NA
gpmc_ncs3
sys_
ndmareq0
-
-
gpio_54
-
-
safe_mode
T8
NA
gpmc_ncs4
sys_
ndmareq1
mcbsp4_clkx
gpt9_pwm_
evt
gpio_55
-
-
safe_mode
R8
NA
gpmc_ncs5
sys_
ndmareq2
mcbsp4_dr
gpt10_pwm_
evt
gpio_56
-
-
safe_mode
P8
NA
gpmc_ncs6
sys_
ndmareq3
mcbsp4_dx
gpt11_pwm_
evt
gpio_57
-
-
safe_mode
N8
NA
gpmc_ncs7
gpmc_io_dir
mcbsp4_fsx
gpt8_pwm_
evt
gpio_58
-
-
safe_mode
T4
W2
gpmc_clk
-
-
-
gpio_59
-
-
safe_mode
F3
W1
gpmc_nadv_
ale
-
-
-
-
-
-
-
G2
V2
gpmc_noe
-
-
-
-
-
-
-
PRODUCT PREVIEW
Ball
Bottom
52
F4
V1
gpmc_nwe
-
-
-
-
-
-
-
G3
AC12
gpmc_nbe0_
cle
-
-
-
gpio_60
-
-
safe_mode
U3
NA
gpmc_nbe1
-
-
-
gpio_61
-
-
safe_mode
safe_mode
H1
AB10
gpmc_nwp
-
-
-
gpio_62
-
-
M8
AB12
gpmc_wait0
-
-
-
-
-
-
-
L8
AC10
gpmc_wait1
-
-
-
gpio_63
-
-
safe_mode
K8
NA
gpmc_wait2
-
-
-
gpio_64
-
-
safe_mode
J8
NA
gpmc_wait3
sys_
ndmareq1
-
-
gpio_65
-
-
safe_mode
D28
NA
dss_pclk
-
-
-
gpio_66
-
-
safe_mode
D26
NA
dss_hsync
-
-
-
gpio_67
-
-
safe_mode
D27
NA
dss_vsync
-
-
-
gpio_68
-
-
safe_mode
E27
NA
dss_acbias
-
-
-
gpio_69
-
-
safe_mode
AG22
NA
dss_data0
-
uart1_cts
-
gpio_70
-
-
safe_mode
AH22
NA
dss_data1
-
uart1_rts
-
gpio_71
-
-
safe_mode
AG23
NA
dss_data2
-
-
-
gpio_72
-
-
safe_mode
AH23
NA
dss_data3
-
-
-
gpio_73
-
-
safe_mode
AG24
NA
dss_data4
-
uart3_rx_irrx
-
gpio_74
-
-
safe_mode
AH24
NA
dss_data5
-
uart3_tx_irtx
-
gpio_75
-
-
safe_mode
E26
NA
dss_data6
-
uart1_tx
-
gpio_76
-
-
safe_mode
F28
NA
dss_data7
-
uart1_rx
-
gpio_77
-
-
safe_mode
F27
NA
dss_data8
-
-
-
gpio_78
-
-
safe_mode
G26
NA
dss_data9
-
-
-
gpio_79
-
-
safe_mode
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Ball
Bottom
Ball
Top
Mode 0
Mode 1
Mode 2
Mode 3
Mode 4
Mode 5
Mode 6
Mode 7
AD28
NA
dss_data10
-
-
-
gpio_80
-
-
safe_mode
AD27
NA
dss_data11
-
-
-
gpio_81
-
-
safe_mode
AB28
NA
dss_data12
-
-
-
gpio_82
-
-
safe_mode
AB27
NA
dss_data13
-
-
-
gpio_83
-
-
safe_mode
AA28
NA
dss_data14
-
-
-
gpio_84
-
-
safe_mode
AA27
NA
dss_data15
-
-
-
gpio_85
-
-
safe_mode
G25
NA
dss_data16
-
-
-
gpio_86
-
-
safe_mode
H27
NA
dss_data17
-
-
-
gpio_87
-
-
safe_mode
H26
NA
dss_data18
-
mcspi3_clk
dss_data0
gpio_88
-
-
safe_mode
H25
NA
dss_data19
-
mcspi3_simo
dss_data1
gpio_89
-
-
safe_mode
E28
NA
dss_data20
-
mcspi3_somi
dss_data2
gpio_90
-
-
safe_mode
J26
NA
dss_data21
-
mcspi3_cs0
dss_data3
gpio_91
-
-
safe_mode
AC27
NA
dss_data22
-
mcspi3_cs1
dss_data4
gpio_92
-
-
safe_mode
AC28
NA
dss_data23
-
-
dss_data5
gpio_93
-
-
safe_mode
W28
NA
tv_out2
-
-
-
-
-
-
-
Y28
NA
tv_out1
-
-
-
-
-
-
-
Y27
NA
tv_vfb1
-
-
-
-
-
-
-
W27
NA
tv_vfb2
-
-
-
-
-
-
-
W26
NA
tv_vref
-
-
-
-
-
-
-
A24
NA
cam_hs
-
-
-
gpio_94
-
-
safe_mode
A23
NA
cam_vs
-
-
-
gpio_95
-
-
safe_mode
C25
NA
cam_xclka
-
-
-
gpio_96
-
-
safe_mode
C27
NA
cam_pclk
-
-
-
gpio_97
-
-
safe_mode
C23
NA
cam_fld
-
cam_global_
reset
-
gpio_98
-
-
safe_mode
AG17
NA
cam_d0
-
-
-
gpio_99
-
-
safe_mode
AH17
NA
cam_d1
-
-
-
gpio_100
-
-
safe_mode
B24
NA
cam_d2
-
-
-
gpio_101
-
-
safe_mode
C24
NA
cam_d3
-
-
-
gpio_102
-
-
safe_mode
D24
NA
cam_d4
-
-
-
gpio_103
-
-
safe_mode
A25
NA
cam_d5
-
-
-
gpio_104
-
-
safe_mode
K28
NA
cam_d6
-
-
-
gpio_105
-
-
safe_mode
L28
NA
cam_d7
-
-
-
gpio_106
-
-
safe_mode
K27
NA
cam_d8
-
-
-
gpio_107
-
-
safe_mode
L27
NA
cam_d9
-
-
-
gpio_108
-
-
safe_mode
B25
NA
cam_d10
-
-
-
gpio_109
-
-
safe_mode
C26
NA
cam_d11
-
-
-
gpio_110
-
-
safe_mode
B26
NA
cam_xclkb
-
-
-
gpio_111
-
-
safe_mode
B23
NA
cam_wen
-
cam_shutter
-
gpio_167
-
-
safe_mode
D25
NA
cam_strobe
-
-
-
gpio_126
-
-
safe_mode
AG19
NA
-
-
-
-
gpio_112
-
-
safe_mode
AH19
NA
-
-
-
-
gpio_113
-
-
safe_mode
AG18
NA
-
-
-
-
gpio_114
-
-
safe_mode
AH18
NA
-
-
-
-
gpio_115
-
-
safe_mode
P21
NA
mcbsp2_fsx
-
-
-
gpio_116
-
-
safe_mode
N21
NA
mcbsp2_clkx
-
-
-
gpio_117
-
-
safe_mode
R21
NA
mcbsp2_dr
-
-
-
gpio_118
-
-
safe_mode
Submit Documentation Feedback
TERMINAL DESCRIPTION
53
PRODUCT PREVIEW
Table 2-3. Multiplexing Characteristics (CBB Pkg.) (continued)
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 2-3. Multiplexing Characteristics (CBB Pkg.) (continued)
Ball
Bottom
Ball
Top
Mode 0
Mode 1
Mode 2
Mode 3
Mode 4
Mode 5
Mode 6
Mode 7
M21
NA
mcbsp2_dx
-
-
-
gpio_119
-
-
safe_mode
PRODUCT PREVIEW
54
N28
NA
mmc1_clk
-
-
-
gpio_120
-
-
safe_mode
M27
NA
mmc1_cmd
-
-
-
gpio_121
-
-
safe_mode
N27
NA
mmc1_dat0
-
-
-
gpio_122
-
-
safe_mode
N26
NA
mmc1_dat1
-
-
-
gpio_123
-
-
safe_mode
N25
NA
mmc1_dat2
-
-
-
gpio_124
-
-
safe_mode
P28
NA
mmc1_dat3
-
-
-
gpio_125
-
-
safe_mode
P27
NA
mmc1_dat4
-
-
-
gpio_126
-
-
safe_mode
P26
NA
mmc1_dat5
-
-
-
gpio_127
-
-
safe_mode
R27
NA
mmc1_dat6
-
-
-
gpio_128
-
-
safe_mode
R25
NA
mmc1_dat7
-
-
-
gpio_129
-
-
safe_mode
AE2
NA
mmc2_clk
mcspi3_clk
-
-
gpio_130
-
-
safe_mode
AG5
NA
mmc2_cmd
mcspi3_simo
-
-
gpio_131
-
-
safe_mode
AH5
NA
mmc2_dat0
mcspi3_somi
-
-
gpio_132
-
-
safe_mode
AH4
NA
mmc2_dat1
-
-
-
gpio_133
-
-
safe_mode
AG4
NA
mmc2_dat2
mcspi3_cs1
-
-
gpio_134
-
-
safe_mode
AF4
NA
mmc2_dat3
mcspi3_cs0
-
-
gpio_135
-
-
safe_mode
AE4
NA
mmc2_dat4
mmc2_dir_
dat0
-
mmc3_dat0
gpio_136
-
-
safe_mode
AH3
NA
mmc2_dat5
mmc2_dir_
dat1
cam_global_
reset
mmc3_dat1
gpio_137
hsusb3_tll_
stp
mm3_rxdp
safe_mode
AF3
NA
mmc2_dat6
mmc2_dir_
cmd
cam_shutter
mmc3_dat2
gpio_138
hsusb3_tll_
dir
-
safe_mode
AE3
NA
mmc2_dat7
mmc2_clkin
-
mmc3_dat3
gpio_139
hsusb3_tll_
nxt
mm3_rxdm
safe_mode
AF6
NA
mcbsp3_dx
uart2_cts
-
-
gpio_140
hsusb3_tll_
data4
-
safe_mode
AE6
NA
mcbsp3_dr
uart2_rts
-
-
gpio_141
hsusb3_tll_
data5
-
safe_mode
AF5
NA
mcbsp3_clkx
uart2_tx
-
-
gpio_142
hsusb3_tll_
data6
-
safe_mode
AE5
NA
mcbsp3_fsx
uart2_rx
-
-
gpio_143
hsusb3_tll_
data7
-
safe_mode
AB26
NA
uart2_cts
mcbsp3_dx
gpt9_pwm_
evt
-
gpio_144
-
-
safe_mode
AB25
NA
uart2_rts
mcbsp3_dr
gpt10_pwm_
evt
-
gpio_145
-
-
safe_mode
AA25
NA
uart2_tx
mcbsp3_clkx gpt11_pwm_
evt
-
gpio_146
-
-
safe_mode
AD25
NA
uart2_rx
mcbsp3_fsx
gpt8_pwm_
evt
-
gpio_147
-
-
safe_mode
AA8
NA
uart1_tx
-
-
-
gpio_148
-
-
safe_mode
AA9
NA
uart1_rts
-
-
-
gpio_149
-
-
safe_mode
W8
NA
uart1_cts
-
-
-
gpio_150
hsusb3_tll_
clk
-
safe_mode
Y8
NA
uart1_rx
-
mcbsp1_clkr
mcspi4_clk
gpio_151
-
-
safe_mode
AE1
NA
mcbsp4_clkx
-
-
-
gpio_152
hsusb3_tll_
data1
mm3_txse0
safe_mode
AD1
NA
mcbsp4_dr
-
-
-
gpio_153
hsusb3_tll_
data0
mm3_rxrcv
safe_mode
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Ball
Bottom
Ball
Top
Mode 0
Mode 1
Mode 2
Mode 3
Mode 4
Mode 5
Mode 6
Mode 7
AD2
NA
mcbsp4_dx
-
-
-
gpio_154
hsusb3_tll_
data2
mm3_txdat
safe_mode
AC1
NA
mcbsp4_fsx
-
-
-
gpio_155
hsusb3_tll_
data3
mm3_txen_n
safe_mode
Y21
NA
mcbsp1_clkr
mcspi4_clk
-
-
gpio_156
-
-
safe_mode
AA21
NA
mcbsp1_fsr
-
cam_global_
reset
-
gpio_157
-
-
safe_mode
V21
NA
mcbsp1_dx
mcspi4_simo
mcbsp3_dx
-
gpio_158
-
-
safe_mode
U21
NA
mcbsp1_dr
mcspi4_somi
mcbsp3_dr
-
gpio_159
-
-
safe_mode
T21
NA
mcbsp_clks
-
cam_shutter
-
gpio_160
uart1_cts
-
safe_mode
K26
NA
mcbsp1_fsx
mcspi4_cs0
mcbsp3_fsx
-
gpio_161
-
-
safe_mode
W21
NA
mcbsp1_clkx
-
mcbsp3_clkx
-
gpio_162
-
-
safe_mode
H18
NA
uart3_cts_rct
x
-
-
-
gpio_163
-
-
safe_mode
H19
NA
uart3_rts_sd
-
-
-
gpio_164
-
-
safe_mode
H20
NA
uart3_rx_irrx
-
-
-
gpio_165
-
-
safe_mode
H21
NA
uart3_tx_irtx
-
-
-
gpio_166
-
-
safe_mode
T28
NA
hsusb0_clk
-
-
-
gpio_120
-
-
safe_mode
T25
NA
hsusb0_stp
-
-
-
gpio_121
-
-
safe_mode
R28
NA
hsusb0_dir
-
-
-
gpio_122
-
-
safe_mode
T26
NA
hsusb0_nxt
-
-
-
gpio_124
-
-
safe_mode
T27
NA
hsusb0_
data0
-
uart3_tx_irtx
-
gpio_125
-
-
safe_mode
U28
NA
hsusb0_
data1
-
uart3_rx_irrx
-
gpio_130
-
-
safe_mode
U27
NA
hsusb0_
data2
-
uart3_rts_sd
-
gpio_131
-
-
safe_mode
U26
NA
hsusb0_
data3
-
uart3_cts_
rctx
-
gpio_169
-
-
safe_mode
U25
NA
hsusb0_
data4
-
-
-
gpio_188
-
-
safe_mode
V28
NA
hsusb0_
data5
-
-
-
gpio_189
-
-
safe_mode
V27
NA
hsusb0_
data6
-
-
-
gpio_190
-
-
safe_mode
V26
NA
hsusb0_
data7
-
-
-
gpio_191
-
-
safe_mode
K21
NA
i2c1_scl
-
-
-
-
-
-
-
J21
NA
i2c1_sda
-
-
-
-
-
-
-
AF15
NA
i2c2_scl
-
-
-
gpio_168
-
-
safe_mode
AE15
NA
i2c2_sda
-
-
-
gpio_183
-
-
safe_mode
AF14
NA
i2c3_scl
-
-
-
gpio_184
-
-
safe_mode
AG14
NA
i2c3_sda
-
-
-
gpio_185
-
-
safe_mode
AD26
NA
i2c4_scl
sys_
nvmode1
-
-
-
-
-
safe_mode
AE26
NA
i2c4_sda
sys_
nvmode2
-
-
-
-
-
safe_mode
J25
NA
hdq_sio
sys_altclk
i2c2_sccbe
i2c3_sccbe
gpio_170
-
-
safe_mode
AB3
NA
mcspi1_clk
mmc2_dat4
-
-
gpio_171
-
-
safe_mode
AB4
NA
mcspi1_simo
mmc2_dat5
-
-
gpio_172
-
-
safe_mode
AA4
NA
mcspi1_somi
mmc2_dat6
-
-
gpio_173
-
-
safe_mode
Submit Documentation Feedback
TERMINAL DESCRIPTION
55
PRODUCT PREVIEW
Table 2-3. Multiplexing Characteristics (CBB Pkg.) (continued)
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 2-3. Multiplexing Characteristics (CBB Pkg.) (continued)
Ball
Top
Mode 0
Mode 1
Mode 2
Mode 3
Mode 4
Mode 5
Mode 6
Mode 7
AC2
NA
mcspi1_cs0
mmc2_dat7
-
-
gpio_174
-
-
safe_mode
AC3
NA
mcspi1_cs1
-
-
mmc3_cmd
gpio_175
-
-
safe_mode
AB1
NA
mcspi1_cs2
-
-
mmc3_clk
gpio_176
-
-
safe_mode
AB2
NA
mcspi1_cs3
-
hsusb2_tll_
data2
hsusb2_
data2
gpio_177
mm2_txdat
-
safe_mode
AA3
NA
mcspi2_clk
-
hsusb2_tll_
data7
hsusb2_
data7
gpio_178
-
-
safe_mode
Y2
NA
mcspi2_simo
gpt9_pwm_
evt
hsusb2_tll_
data4
hsusb2_
data4
gpio_179
-
-
safe_mode
Y3
NA
mcspi2_somi gpt10_pwm_
evt
hsusb2_tll_
data5
hsusb2_
data5
gpio_180
-
-
safe_mode
Y4
NA
mcspi2_cs0
gpt11_pwm_
evt
hsusb2_tll_
data6
hsusb2_
data6
gpio_181
-
-
safe_mode
V3
NA
mcspi2_cs1
gpt8_pwm_
evt
hsusb2_tll_
data3
hsusb2_
data3
gpio_182
mm2_txen_n
-
safe_mode
AE25
NA
sys_32k
-
-
-
-
-
-
-
AE17
NA
sys_xtalin
-
-
-
-
-
-
-
AF17
NA
sys_xtalout
-
-
-
-
-
-
-
AF25
NA
sys_clkreq
-
-
-
gpio_1
-
-
safe_mode
PRODUCT PREVIEW
Ball
Bottom
56
AF26
NA
sys_nirq
-
-
-
gpio_0
-
-
safe_mode
AH25
NA
sys_nrespwr
on
-
-
-
-
-
-
-
AF24
NA
sys_nreswar
m
-
-
-
gpio_30
-
-
safe_mode
AH26
NA
sys_boot0
-
-
-
gpio_2
-
-
safe_mode
AG26
NA
sys_boot1
-
-
-
gpio_3
-
-
safe_mode
AE14
NA
sys_boot2
-
-
-
gpio_4
-
-
safe_mode
AF18
NA
sys_boot3
-
-
-
gpio_5
-
-
safe_mode
AF19
NA
sys_boot4
mmc2_dir_
dat2
-
-
gpio_6
-
-
safe_mode
AE21
NA
sys_boot5
mmc2_dir_
dat3
-
-
gpio_7
-
-
safe_mode
AF21
NA
sys_boot6
-
-
-
gpio_8
-
-
safe_mode
AF22
NA
sys_off_
mode
-
-
-
gpio_9
-
-
safe_mode
AG25
NA
sys_clkout1
-
-
-
gpio_10
-
-
safe_mode
AE22
NA
sys_clkout2
-
-
-
gpio_186
-
-
safe_mode
B1
NA
sys_ipmcsws
-
-
-
-
-
-
-
A1
NA
sys_
opmcsws
-
-
-
-
-
-
-
AA17
NA
jtag_ntrst
-
-
-
-
-
-
-
AA13
NA
jtag_tck
-
-
-
-
-
-
-
AA12
NA
jtag_rtck
-
-
-
-
-
-
-
AA18
NA
jtag_tms_
tmsc
-
-
-
-
-
-
-
AA20
NA
jtag_tdi
-
-
-
-
-
-
-
AA19
NA
jtag_tdo
-
-
-
-
-
-
-
AA11
NA
jtag_emu0
-
-
-
gpio_11
-
-
safe_mode
AA10
NA
jtag_emu1
-
-
-
gpio_31
-
-
safe_mode
AF10
NA
etk_clk
mcbsp5_clkx
mmc3_clk
hsusb1_stp
gpio_12
mm1_rxdp
hsusb1_tll_
stp
-
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Ball
Bottom
Ball
Top
Mode 0
Mode 1
Mode 2
Mode 3
Mode 4
Mode 5
Mode 6
Mode 7
AE10
NA
etk_ctl
-
mmc3_cmd
hsusb1_clk
gpio_13
-
hsusb1_tll_
clk
-
AF11
NA
etk_d0
mcspi3_simo
mmc3_dat4
hsusb1_
data0
gpio_14
mm1_rxrcv
hsusb1_tll_
data0
-
AG12
NA
etk_d1
mcspi3_somi
-
hsusb1_
data1
gpio_15
mm1_txse0
hsusb1_tll_
data1
-
AH12
NA
etk_d2
mcspi3_cs0
-
hsusb1_
data2
gpio_16
mm1_txdat
hsusb1_tll_
data2
-
AE13
NA
etk_d3
mcspi3_clk
mmc3_dat3
hsusb1_
data7
gpio_17
-
hsusb1_tll_
data7
-
AE11
NA
etk_d4
mcbsp5_dr
mmc3_dat0
hsusb1_
data4
gpio_18
-
hsusb1_tll_
data4
-
AH9
NA
etk_d5
mcbsp5_fsx
mmc3_dat1
hsusb1_
data5
gpio_19
-
hsusb1_tll_
data5
-
AF13
NA
etk_d6
mcbsp5_dx
mmc3_dat2
hsusb1_
data6
gpio_20
-
hsusb1_tll_
data6
-
AH14
NA
etk_d7
mcspi3_cs1
mmc3_dat7
hsusb1_
data3
gpio_21
mm1_txen_n
hsusb1_tll_
data3
-
AF9
NA
etk_d8
sys_drm_
msecure
mmc3_dat6
hsusb1_dir
gpio_22
-
hsusb1_tll_
dir
-
AG9
NA
etk_d9
sys_secure_
indicator
mmc3_dat5
hsusb1_nxt
gpio_23
mm1_rxdm
hsusb1_tll_
nxt
-
AE7
NA
etk_d10
-
uart1_rx
hsusb2_clk
gpio_24
-
hsusb2_tll_
clk
-
AF7
NA
etk_d11
-
-
hsusb2_stp
gpio_25
mm2_rxdp
hsusb2_tll_
stp
-
AG7
NA
etk_d12
-
-
hsusb2_dir
gpio_26
-
hsusb2_tll_
dir
-
AH7
NA
etk_d13
-
-
hsusb2_nxt
gpio_27
mm2_rxdm
hsusb2_tll_
nxt
-
AG8
NA
etk_d14
-
-
hsusb2_
data0
gpio_28
mm2_rxrcv
hsusb2_tll_
data0
-
AH8
NA
etk_d15
-
-
hsusb2_
data1
gpio_29
mm2_txse0
hsusb2_tll_
data1
-
PRODUCT PREVIEW
Table 2-3. Multiplexing Characteristics (CBB Pkg.) (continued)
Table 2-4. Multiplexing Characteristics (CBC Pkg.)
Ball
Bottom
Ball Top
Mode 0
Mode 1
Mode 2
Mode 3
Mode 4
Mode 5
Mode 6
Mode 7
AE16
-
cam_d0
-
-
-
-
gpio_99
-
safe_mode
AE15
-
cam_d1
-
-
-
-
gpio_100
-
safe_mode
AD17
-
-
-
-
-
-
gpio_112
-
safe_mode
AE18
-
-
-
-
-
-
gpio_114
-
safe_mode
AD16
-
-
-
-
-
-
gpio_113
-
safe_mode
AE17
-
-
-
-
-
-
gpio_115
-
safe_mode
-
G20
sdrc_a0
-
-
-
-
-
-
-
-
K20
sdrc_a1
-
-
-
-
-
-
-
-
J20
sdrc_a2
-
-
-
-
-
-
-
-
J21
sdrc_a3
-
-
-
-
-
-
-
-
U21
sdrc_a4
-
-
-
-
-
-
-
-
R20
sdrc_a5
-
-
-
-
-
-
-
-
M21
sdrc_a6
-
-
-
-
-
-
-
-
M20
sdrc_a7
-
-
-
-
-
-
-
Submit Documentation Feedback
TERMINAL DESCRIPTION
57
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 2-4. Multiplexing Characteristics (CBC Pkg.) (continued)
PRODUCT PREVIEW
Ball
Bottom
Ball Top
Mode 0
Mode 1
Mode 2
Mode 3
Mode 4
Mode 5
Mode 6
Mode 7
-
N20
sdrc_a8
-
-
-
-
-
-
-
-
K21
sdrc_a9
-
-
-
-
-
-
-
-
Y16
sdrc_a10
-
-
-
-
-
-
-
-
N21
sdrc_a11
-
-
-
-
-
-
-
-
R21
sdrc_a12
-
-
-
-
-
-
-
-
AA15
sdrc_a13
-
-
-
-
-
-
-
-
Y12
sdrc_a14
-
-
-
-
-
-
-
-
AA18
sdrc_ba0
-
-
-
-
-
-
-
-
V20
sdrc_ba1
-
-
-
-
-
-
-
-
Y15
sdrc_cke0
-
-
-
-
-
-
safe_mode
-
Y13
sdrc_cke1
-
-
-
-
-
-
safe_mode
-
A12
sdrc_clk
-
-
-
-
-
-
-
-
D1
sdrc_d0
-
-
-
-
-
-
-
-
G1
sdrc_d1
-
-
-
-
-
-
-
-
G2
sdrc_d2
-
-
-
-
-
-
-
-
E1
sdrc_d3
-
-
-
-
-
-
-
-
D2
sdrc_d4
-
-
-
-
-
-
-
-
E2
sdrc_d5
-
-
-
-
-
-
-
-
B3
sdrc_d6
-
-
-
-
-
-
-
-
B4
sdrc_d7
-
-
-
-
-
-
-
-
A10
sdrc_d8
-
-
-
-
-
-
-
-
B11
sdrc_d9
-
-
-
-
-
-
-
-
A11
sdrc_d10
-
-
-
-
-
-
-
-
B12
sdrc_d11
-
-
-
-
-
-
-
-
A16
sdrc_d12
-
-
-
-
-
-
-
-
A17
sdrc_d13
-
-
-
-
-
-
-
-
B17
sdrc_d14
-
-
-
-
-
-
-
-
B18
sdrc_d15
-
-
-
-
-
-
-
-
B7
sdrc_d16
-
-
-
-
-
-
-
-
A5
sdrc_d17
-
-
-
-
-
-
-
-
B6
sdrc_d18
-
-
-
-
-
-
-
-
A6
sdrc_d19
-
-
-
-
-
-
-
-
A8
sdrc_d20
-
-
-
-
-
-
-
-
B9
sdrc_d21
-
-
-
-
-
-
-
-
A9
sdrc_d22
-
-
-
-
-
-
-
-
B10
sdrc_d23
-
-
-
-
-
-
-
-
C21
sdrc_d24
-
-
-
-
-
-
-
-
D20
sdrc_d25
-
-
-
-
-
-
-
-
B19
sdrc_d26
-
-
-
-
-
-
-
-
C20
sdrc_d27
-
-
-
-
-
-
-
-
D21
sdrc_d28
-
-
-
-
-
-
-
–
E20
sdrc_d29
-
-
-
-
-
-
-
-
E21
sdrc_d30
-
-
-
-
-
-
-
-
G21
sdrc_d31
-
-
-
-
-
-
-
-
H1
sdrc_dm0
-
-
-
-
-
-
-
-
A14
sdrc_dm1
-
-
-
-
-
-
-
58
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 2-4. Multiplexing Characteristics (CBC Pkg.) (continued)
Ball Top
Mode 0
Mode 1
Mode 2
Mode 3
Mode 4
Mode 5
Mode 6
-
A4
sdrc_dm2
-
-
-
-
-
-
-
A18
sdrc_dm3
-
-
-
-
-
-
-
-
C2
sdrc_dqs0
-
-
-
-
-
-
-
-
B15
sdrc_dqs1
-
-
-
-
-
-
-
-
B8
sdrc_dqs2
-
-
-
-
-
-
-
-
A19
sdrc_dqs3
-
-
-
-
-
-
-
-
U20
sdrc_ncas
-
-
-
-
-
-
-
-
B13
sdrc_nclk
-
-
-
-
-
-
-
-
T21
sdrc_ncs0
-
-
-
-
-
-
-
-
T20
sdrc_ncs1
-
-
-
-
-
-
-
-
V21
sdrc_nras
-
-
-
-
-
-
-
-
Y18
sdrc_nwe
-
-
-
-
-
-
-
AE21
-
dss_data0
dx0
uart1_cts
-
gpio_70
-
-
safe_mode
AE22
-
dss_data1
dy0
uart1_rts
-
gpio_71
-
-
safe_mode
AE23
-
dss_data2
dx1
-
-
gpio_72
-
-
safe_mode
AE24
-
dss_data3
dy1
-
-
gpio_73
-
-
safe_mode
AC26
-
dss_data10
-
-
-
gpio_80
-
-
safe_mode
AD26
-
dss_data11
-
-
-
gpio_81
-
-
safe_mode
AA25
-
dss_data12
-
-
-
gpio_82
-
-
safe_mode
Y25
-
dss_data13
-
-
-
gpio_83
-
-
safe_mode
AA26
-
dss_data14
-
-
-
gpio_84
-
-
safe_mode
AB26
-
dss_data15
-
-
-
gpio_85
-
-
safe_mode
F25
-
dss_data20
-
mcspi3_so
mi
dss_data2
gpio_90
-
-
safe_mode
AC25
-
dss_data22
-
mcspi3_cs1
dss_data4
gpio_92
-
-
safe_mode
AB25
-
dss_data23
-
-
dss_data5
gpio_93
-
-
safe_mode
G25
-
dss_pclk
-
-
-
gpio_66
hw_dbg12
-
safe_mode
J2
AA13
gpmc_a1
-
-
-
gpio_34
-
-
safe_mode
H1
-
gpmc_a2
-
-
-
gpio_35
-
-
safe_mode
H2
-
gpmc_a3
-
-
-
gpio_36
-
-
safe_mode
G2
-
gpmc_a4
-
-
-
gpio_37
-
-
safe_mode
F1
-
gpmc_a5
-
-
-
gpio_38
-
-
safe_mode
F2
-
gpmc_a6
-
-
-
gpio_39
-
-
safe_mode
E1
-
gpmc_a7
-
-
-
gpio_40
-
-
safe_mode
E2
-
gpmc_a8
-
-
-
gpio_41
-
-
safe_mode
D1
-
gpmc_a9
sys_ndmare q2
-
gpio_42
-
-
safe_mode
D2
-
gpmc_a10
sys_ndmare q3
-
gpio_43
-
-
safe_mode
N1
-
gpmc_clk
-
-
-
gpio_59
-
-
safe_mode
AA2
-
gpmc_d0
-
-
-
-
-
-
-
AA1
-
gpmc_d1
-
-
-
-
-
-
-
AC2
-
gpmc_d2
-
-
-
-
-
-
-
AC1
-
gpmc_d3
-
-
-
-
-
-
-
AE5
-
gpmc_d4
-
-
-
-
-
-
-
AD6
-
gpmc_d5
-
-
-
-
-
-
-
AD5
-
gpmc_d6
-
-
-
-
-
-
-
Submit Documentation Feedback
Mode 7
TERMINAL DESCRIPTION
59
PRODUCT PREVIEW
Ball
Bottom
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 2-4. Multiplexing Characteristics (CBC Pkg.) (continued)
PRODUCT PREVIEW
Ball
Bottom
Ball Top
Mode 0
Mode 1
Mode 2
Mode 3
Mode 4
Mode 5
Mode 6
Mode 7
AC5
-
gpmc_d7
-
-
-
-
-
-
-
V1
-
gpmc_d8
-
-
-
gpio_44
-
-
safe_mode
Y1
-
gpmc_d9
-
-
-
gpio_45
-
-
safe_mode
T1
-
gpmc_d10
-
-
-
gpio_46
-
-
safe_mode
U2
-
gpmc_d11
-
-
-
gpio_47
-
-
safe_mode
U1
-
gpmc_d12
-
-
-
gpio_48
-
-
safe_mode
P1
-
gpmc_d13
-
-
-
gpio_49
-
-
safe_mode
L2
-
gpmc_d14
-
-
-
gpio_50
-
-
safe_mode
M2
-
gpmc_d15
-
-
-
gpio_51
-
-
safe_mode
AD10
-
gpmc_nadv
_ale
-
-
-
-
-
-
-
K2
-
gpmc_nbe0
_cle
-
-
-
gpio_60
-
-
safe_mode
J1
-
gpmc_nbe1
-
-
-
gpio_61
-
-
safe_mode
AD8
-
gpmc_ncs0
-
-
-
-
-
-
-
AD1
-
gpmc_ncs1
-
-
-
gpio_52
-
-
safe_mode
A3
-
gpmc_ncs2
-
-
-
gpio_53
-
-
safe_mode
B6
-
gpmc_ncs3
sys_ndmare q0
-
gpio_54
-
-
safe_mode
B4
-
gpmc_ncs4
sys_ndmare mcbsp4_clk
q1
x
gpt9_pwm_
evt
gpio_55
-
-
safe_mode
C4
-
gpmc_ncs5
sys_ndmare mcbsp4_dr
q2
gpt10_pwm
_evt
gpio_56
-
-
safe_mode
B5
-
gpmc_ncs6
sys_ndmare mcbsp4_dx
q3
gpt11_pwm
_evt
gpio_57
-
-
safe_mode
C5
-
gpmc_ncs7
gpmc_io_dir mcbsp4_fsx gpt8_pwm_
evt
gpio_58
-
-
safe_mode
N2
-
gpmc_noe
-
-
-
-
-
-
-
M1
-
gpmc_nwe
-
-
-
-
-
-
-
AC6
-
gpmc_nwp
-
-
-
gpio_62
-
-
safe_mode
AC11
-
gpmc_wait0 -
-
-
-
-
-
-
AC8
-
gpmc_wait1 -
-
-
gpio_63
-
-
safe_mode
B3
-
gpmc_wait2 -
-
-
gpio_64
-
-
safe_mode
C6
-
gpmc_wait3 sys_ndmare q1
-
gpio_65
-
-
safe_mode
W19
-
hsusb0_clk
-
-
-
gpio_120
-
-
safe_mode
V20
-
hsusb0_dat
a0
-
uart3_tx_irtx -
gpio_125
-
-
safe_mode
Y20
-
hsusb0_dat
a1
-
uart3_rx_irr
x
-
gpio_130
-
-
safe_mode
V18
-
hsusb0_dat
a2
-
uart3_rts_s
d
-
gpio_131
-
-
safe_mode
W20
-
hsusb0_dat
a3
-
uart3_cts_rc tx
gpio_169
-
-
safe_mode
W17
-
hsusb0_dat
a4
-
-
-
gpio_188
-
-
safe_mode
Y18
-
hsusb0_dat
a5
-
-
-
gpio_189
-
-
safe_mode
Y19
-
hsusb0_dat
a6
-
-
-
gpio_190
-
-
safe_mode
60
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Ball
Bottom
Ball Top
Mode 0
Mode 1
Mode 2
Mode 3
Mode 4
Mode 5
Mode 6
Mode 7
Y17
-
hsusb0_dat
a7
-
-
-
gpio_191
-
-
safe_mode
V19
-
hsusb0_dir
-
-
-
gpio_122
-
-
safe_mode
W18
-
hsusb0_nxt
-
-
-
gpio_124
-
-
safe_mode
U20
-
hsusb0_stp
-
-
-
gpio_121
-
-
safe_mode
U15
-
jtag_ntrst
-
-
-
-
-
-
-
W13
-
jtag_rtck
-
-
-
-
-
-
-
V14
-
jtag_tck
-
-
-
-
-
-
-
U16
-
jtag_tdi
-
-
-
-
-
-
-
Y13
-
jtag_tdo
-
-
-
-
-
-
-
V15
-
jtag_tms_tm sc
-
-
-
-
-
-
AE19
-
vdd_dsi
-
-
-
-
-
-
-
K20
-
vdd_sram_c ore
-
-
-
-
-
-
N9
-
vdd_sram_
mpu_iva
-
-
-
-
-
-
-
K14
-
vdd_wkup
-
-
-
-
-
-
-
-
vdd_sram_e mu
-
-
-
-
-
-
N19
-
mmc1_clk
ms_clk
-
-
gpio_120
-
-
safe_mode
L18
-
mmc1_cmd
ms_bs
-
-
gpio_121
-
-
safe_mode
M19
-
mmc1_dat0
ms_dat0
-
-
gpio_122
-
-
safe_mode
M18
-
mmc1_dat1
ms_dat1
-
-
gpio_123
-
-
safe_mode
K18
-
mmc1_dat2
ms_dat2
-
-
gpio_124
-
-
safe_mode
N20
-
mmc1_dat3
ms_dat3
-
-
gpio_125
-
-
safe_mode
M20
-
mmc1_dat4
-
-
-
gpio_126
-
-
safe_mode
P17
-
mmc1_dat5
-
-
-
gpio_127
-
-
safe_mode
P18
-
mmc1_dat6
-
-
-
gpio_128
-
-
safe_mode
P19
-
mmc1_dat7
-
-
-
gpio_129
-
-
safe_mode
J25
-
i2c1_scl
-
-
-
-
-
-
-
J24
-
i2c1_sda
-
-
-
-
-
-
-
C2
-
i2c2_scl
-
-
-
gpio_168
-
-
safe_mode
C1
-
i2c2_sda
-
-
-
gpio_183
-
-
safe_mode
AB4
-
i2c3_scl
-
-
-
gpio_184
-
-
safe_mode
AC4
-
i2c3_sda
-
-
-
gpio_185
-
-
safe_mode
U19
-
mcbsp1_clk
r
mcspi4_clk
-
-
gpio_156
-
-
safe_mode
T17
-
mcbsp1_clk
x
-
mcbsp3_clk
x
-
gpio_162
-
-
safe_mode
T20
-
mcbsp1_dr
mcspi4_so
mi
mcbsp3_dr
-
gpio_159
-
-
safe_mode
U17
-
mcbsp1_dx
mcspi4_sim
o
mcbsp3_dx
-
gpio_158
-
-
safe_mode
V17
-
mcbsp1_fsr
-
cam_global
_reset
-
gpio_157
-
-
safe_mode
P20
-
mcbsp1_fsx mcspi4_cs0
mcbsp3_fsx -
gpio_161
-
-
safe_mode
R18
-
mcbsp2_clk
x
-
-
-
gpio_117
-
-
safe_mode
T18
-
mcbsp2_dr
-
-
-
gpio_118
-
-
safe_mode
Submit Documentation Feedback
TERMINAL DESCRIPTION
61
PRODUCT PREVIEW
Table 2-4. Multiplexing Characteristics (CBC Pkg.) (continued)
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 2-4. Multiplexing Characteristics (CBC Pkg.) (continued)
PRODUCT PREVIEW
Ball
Bottom
Ball Top
Mode 0
Mode 1
Mode 2
Mode 3
Mode 4
Mode 5
Mode 6
Mode 7
R19
-
mcbsp2_dx
-
-
-
gpio_119
-
-
safe_mode
U18
-
mcbsp2_fsx -
-
-
gpio_116
-
-
safe_mode
P9
-
mcspi1_clk
mmc2_dat4
-
-
gpio_171
-
-
safe_mode
R7
-
mcspi1_cs0
mmc2_dat7
-
-
gpio_174
-
-
safe_mode
R9
-
mcspi1_cs2
-
-
mmc3_clk
gpio_176
-
-
safe_mode
P8
-
mcspi1_sim
o
mmc2_dat5
-
-
gpio_172
-
-
safe_mode
P7
-
mcspi1_so
mi
mmc2_dat6
-
-
gpio_173
-
-
safe_mode
W10
-
mmc2_clk
mcspi3_clk
-
-
gpio_130
-
-
safe_mode
R10
-
mmc2_cmd
mcspi3_sim
o
-
-
gpio_131
-
-
safe_mode
T10
-
mmc2_dat0
mcspi3_so
mi
-
-
gpio_132
-
-
safe_mode
T9
-
mmc2_dat1
-
-
-
gpio_133
-
-
safe_mode
U10
-
mmc2_dat2
mcspi3_cs1
-
-
gpio_134
-
-
safe_mode
U9
-
mmc2_dat3
mcspi3_cs0
-
-
gpio_135
-
-
safe_mode
V10
-
mmc2_dat4
mmc2_dir_d at0
mmc3_dat0
gpio_136
-
-
safe_mode
R2
-
uart1_rts
-
-
-
gpio_149
-
-
safe_mode
H3
-
uart1_rx
-
mcbsp1_clk
r
mcspi4_clk
gpio_151
-
-
safe_mode
L4
-
uart1_tx
-
-
-
gpio_148
-
-
safe_mode
Y24
-
uart2_cts
mcbsp3_dx
gpt9_pwm_
evt
-
gpio_144
-
-
safe_mode
AA24
-
uart2_rts
mcbsp3_dr
gpt10_pwm
_evt
-
gpio_145
-
-
safe_mode
AD21
-
uart2_rx
mcbsp3_fsx gpt8_pwm_
evt
-
gpio_147
-
-
safe_mode
AD22
-
uart2_tx
mcbsp3_clk
x
gpt11_pwm
_evt
-
gpio_146
-
-
safe_mode
F23
-
uart3_cts_rc tx
-
-
gpio_163
-
-
safe_mode
F24
-
uart3_rts_s
d
-
-
-
gpio_164
-
-
safe_mode
H24
-
uart3_rx_irr
x
-
-
-
gpio_165
-
-
safe_mode
G24
-
uart3_tx_irtx -
-
-
gpio_166
-
-
safe_mode
J23
-
hdq_sio
sys_altclk
i2c2_sccbe
i2c3_sccbe
gpio_170
-
-
safe_mode
AD15
-
i2c4_scl
sys_nvmod
e1
-
-
-
-
-
safe_mode
W16
-
i2c4_sda
sys_nvmod
e2
-
-
-
-
-
safe_mode
F3
-
sys_boot0
-
-
-
gpio_2
-
-
safe_mode
D3
-
sys_boot1
-
-
-
gpio_3
-
-
safe_mode
C3
-
sys_boot2
-
-
-
gpio_4
-
-
safe_mode
E3
-
sys_boot3
-
-
-
gpio_5
-
-
safe_mode
E4
-
sys_boot4
mmc2_dir_d at2
-
gpio_6
-
-
safe_mode
G3
-
sys_boot5
mmc2_dir_d at3
-
gpio_7
-
-
safe_mode
D4
-
sys_boot6
-
-
gpio_8
-
-
safe_mode
62
TERMINAL DESCRIPTION
-
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 2-4. Multiplexing Characteristics (CBC Pkg.) (continued)
Ball Top
Mode 0
Mode 1
Mode 2
Mode 3
Mode 4
Mode 5
Mode 6
Mode 7
AE14
-
sys_clkout1
-
-
-
gpio_10
-
-
safe_mode
W11
-
sys_clkout2
-
-
-
gpio_186
-
-
safe_mode
W15
-
sys_clkreq
-
-
-
gpio_1
-
-
safe_mode
V16
-
sys_nirq
-
-
-
gpio_0
-
-
safe_mode
V13
-
sys_nrespw
ron
-
-
-
-
-
-
-
AD7
-
sys_nreswa
rm
-
-
-
gpio_30
-
-
safe_mode
V12
-
sys_off_mo
de
-
-
-
gpio_9
-
-
safe_mode
AF19
-
sys_xtalin
-
-
-
-
-
-
-
D6
-
bg_testout
-
-
-
-
-
-
-
N18
-
pbias_mmc
1
-
-
-
-
-
-
-
K23
-
pbias_mmc
1a
-
-
-
-
-
-
-
B1
-
sys_ipmcsw s
-
-
-
-
-
-
A2
-
sys_opmcs
ws
-
-
-
-
-
-
-
W26
-
tv_out1
-
-
-
-
-
-
-
V26
-
tv_out2
-
-
-
-
-
-
-
W25
-
tv_vfb1
-
-
-
-
-
-
-
U24
-
tv_vfb2
-
-
-
-
-
-
-
V23
-
tv_vref
-
-
-
-
-
-
-
AE20
-
sys_32k
-
-
-
-
-
-
-
A24
-
cam_d2
-
-
-
gpio_101
hw_dbg4
-
safe_mode
B24
-
cam_d3
-
-
-
gpio_102
hw_dbg5
-
safe_mode
D24
-
cam_d4
-
-
-
gpio_103
hw_dbg6
-
safe_mode
C24
-
cam_d5
-
-
-
gpio_104
hw_dbg7
-
safe_mode
D25
-
cam_d10
-
-
-
gpio_109
hw_dbg8
-
safe_mode
E26
-
cam_d11
-
-
-
gpio_110
hw_dbg9
-
safe_mode
B23
-
cam_fld
-
cam_global
_reset
-
gpio_98
hw_dbg3
-
safe_mode
C23
-
cam_hs
-
-
-
gpio_94
hw_dbg0
-
safe_mode
C26
-
cam_pclk
-
-
-
gpio_97
hw_dbg2
-
safe_mode
D26
-
cam_strobe
-
-
-
gpio_126
hw_dbg11
-
safe_mode
C25
-
cam_xclka
-
-
-
gpio_96
-
-
safe_mode
E25
-
cam_xclkb
-
-
-
gpio_111
-
-
safe_mode
P25
-
cam_d6
-
-
-
gpio_105
-
-
safe_mode
P26
-
cam_d7
-
-
-
gpio_106
-
-
safe_mode
N25
-
cam_d8
-
-
-
gpio_107
-
-
safe_mode
N26
-
cam_d9
-
-
-
gpio_108
-
-
safe_mode
D23
-
cam_vs
-
-
-
gpio_95
hw_dbg1
-
safe_mode
A23
-
cam_wen
-
cam_shutter -
gpio_167
hw_dbg10
-
safe_mode
F26
-
dss_acbias
-
-
-
gpio_69
-
-
safe_mode
G26
-
dss_data6
-
uart1_tx
-
gpio_76
hw_dbg14
-
safe_mode
H25
-
dss_data7
-
uart1_rx
-
gpio_77
hw_dbg15
-
safe_mode
H26
-
dss_data8
-
-
-
gpio_78
hw_dbg16
-
safe_mode
Submit Documentation Feedback
TERMINAL DESCRIPTION
PRODUCT PREVIEW
Ball
Bottom
63
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 2-4. Multiplexing Characteristics (CBC Pkg.) (continued)
PRODUCT PREVIEW
Ball
Bottom
Ball Top
Mode 0
Mode 1
Mode 2
Mode 3
Mode 4
Mode 5
Mode 6
Mode 7
J26
-
dss_data9
-
-
-
gpio_79
hw_dbg17
-
safe_mode
L25
-
dss_data16
-
-
-
gpio_86
-
-
safe_mode
L26
-
dss_data17
-
-
-
gpio_87
-
-
safe_mode
M24
-
dss_data18
-
mcspi3_clk
dss_data0
gpio_88
-
-
safe_mode
M26
-
dss_data19
-
mcspi3_sim
o
dss_data1
gpio_89
-
-
safe_mode
N24
-
dss_data21
-
mcspi3_cs0
dss_data3
gpio_91
-
-
safe_mode
K24
-
dss_hsync
-
-
-
gpio_67
hw_dbg13
-
safe_mode
M25
-
dss_vsync
-
-
-
gpio_68
-
-
safe_mode
R8
-
mcspi1_cs1
-
-
mmc3_cmd
gpio_175
-
-
safe_mode
T8
-
mcspi1_cs3
-
hsusb2_tll_
data2
hsusb2_dat
a2
gpio_177
mm2_txdat
-
safe_mode
V9
-
mcspi2_cs1
gpt8_pwm_
evt
hsusb2_tll_
data3
hsusb2_dat
a3
gpio_182
mm2_txen_
n
-
safe_mode
T19
-
mcbsp_clks
-
cam_shutter -
gpio_160
uart1_cts
-
safe_mode
AB2
-
etk_clk
mcbsp5_clk
x
mmc3_clk
hsusb1_stp
gpio_12
mm1_rxdp
hsusb1_tll_
stp
hw_dbg0
AB3
-
etk_ctl
-
mmc3_cmd
hsusb1_clk
gpio_13
-
hsusb1_tll_
clk
hw_dbg1
AC3
-
etk_d0
mcspi3_sim
o
mmc3_dat4
hsusb1_dat
a0
gpio_14
mm1_rxrcv
hsusb1_tll_
data0
hw_dbg2
AD4
-
etk_d1
mcspi3_so
mi
-
hsusb1_dat
a1
gpio_15
mm1_txse0
hsusb1_tll_
data1
hw_dbg3
AD3
-
etk_d2
mcspi3_cs0
-
hsusb1_dat
a2
gpio_16
mm1_txdat
hsusb1_tll_
data2
hw_dbg4
AA3
-
etk_d3
mcspi3_clk
mmc3_dat3
hsusb1_dat
a7
gpio_17
-
hsusb1_tll_
data7
hw_dbg5
Y3
-
etk_d4
mcbsp5_dr
mmc3_dat0
hsusb1_dat
a4
gpio_18
-
hsusb1_tll_
data4
hw_dbg6
AB1
-
etk_d5
mcbsp5_fsx mmc3_dat1
hsusb1_dat
a5
gpio_19
-
hsusb1_tll_
data5
hw_dbg7
AE3
-
etk_d6
mcbsp5_dx
mmc3_dat2
hsusb1_dat
a6
gpio_20
-
hsusb1_tll_
data6
hw_dbg8
AD2
-
etk_d7
mcspi3_cs1
mmc3_dat7
hsusb1_dat
a3
gpio_21
mm1_txen_
n
hsusb1_tll_
data3
hw_dbg9
AA4
-
etk_d8
sys_drm_m
secure
mmc3_dat6
hsusb1_dir
gpio_22
-
hsusb1_tll_
dir
hw_dbg10
V2
-
etk_d9
sys_secure
_indicator
mmc3_dat5
hsusb1_nxt
gpio_23
mm1_rxdm
hsusb1_tll_
nxt
hw_dbg11
AE4
-
etk_d10
-
uart1_rx
hsusb2_clk
gpio_24
-
hsusb2_tll_
clk
hw_dbg12
AF6
-
etk_d11
-
-
hsusb2_stp
gpio_25
mm2_rxdp
hsusb2_tll_
stp
hw_dbg13
AE6
-
etk_d12
-
-
hsusb2_dir
gpio_26
-
hsusb2_tll_
dir
hw_dbg14
AF7
-
etk_d13
-
-
hsusb2_nxt
gpio_27
mm2_rxdm
hsusb2_tll_
nxt
hw_dbg15
AF9
-
etk_d14
-
-
hsusb2_dat
a0
gpio_28
mm2_rxrcv
hsusb2_tll_
data0
hw_dbg16
AE9
-
etk_d15
-
-
hsusb2_dat
a1
gpio_29
mm2_txse0
hsusb2_tll_
data1
hw_dbg17
Y15
-
jtag_emu0
-
-
-
gpio_11
-
-
safe_mode
Y14
-
jtag_emu1
-
-
-
gpio_31
-
-
safe_mode
64
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Ball
Bottom
Ball Top
Mode 0
Mode 1
Mode 2
Mode 3
Mode 4
Mode 5
Mode 6
Mode 7
U3
-
mcbsp3_clk
x
uart2_tx
-
-
gpio_142
hsusb3_tll_
data6
-
safe_mode
N3
-
mcbsp3_dr
uart2_rts
-
-
gpio_141
hsusb3_tll_
data5
-
safe_mode
P3
-
mcbsp3_dx
uart2_cts
-
-
gpio_140
hsusb3_tll_
data4
-
safe_mode
W3
-
mcbsp3_fsx uart2_rx
-
-
gpio_143
hsusb3_tll_
data7
-
safe_mode
V3
-
mcbsp4_clk
x
-
-
-
gpio_152
hsusb3_tll_
data1
mm3_txse0
safe_mode
U4
-
mcbsp4_dr
-
-
-
gpio_153
hsusb3_tll_
data0
mm3_rxrcv
safe_mode
R3
-
mcbsp4_dx
-
-
-
gpio_154
hsusb3_tll_
data2
mm3_txdat
safe_mode
T3
-
mcbsp4_fsx -
-
-
gpio_155
hsusb3_tll_
data3
mm3_txen_
n
safe_mode
M3
-
mmc2_dat5
mmc2_dir_d cam_global
at1
_reset
mmc3_dat1
gpio_137
hsusb3_tll_
stp
mm3_rxdp
safe_mode
L3
-
mmc2_dat6
mmc2_dir_c cam_shutter mmc3_dat2
md
gpio_138
hsusb3_tll_
dir
-
safe_mode
K3
-
mmc2_dat7
mmc2_clkin
-
mmc3_dat3
gpio_139
hsusb3_tll_
nxt
mm3_rxdm
safe_mode
W2
-
uart1_cts
-
-
-
gpio_150
hsusb3_tll_
clk
-
safe_mode
Submit Documentation Feedback
TERMINAL DESCRIPTION
65
PRODUCT PREVIEW
Table 2-4. Multiplexing Characteristics (CBC Pkg.) (continued)
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
2.4 Signal Description
PRODUCT PREVIEW
Many signals are available on multiple pins according to the software configuration of the pin multiplexing
options.
1. SIGNAL NAME: The signal name
2. DESCRIPTION: Description of the signal
3. TYPE: Type = Ball type for this specific function:
– I = Input
– O = Output
– Z = High-impedance
– D = Open Drain
– DS = Differential
– A = Analog
4. BALL BOTTOM: Associated ball(s) bottom
5. BALL TOP: Associated ball(s) top
6. SUBSYSTEM PIN MULTIPLEXING: Contains a list of the pin multiplexing options at the
module/subsystem level. The pin function is selected at the module/system level.
Note: The Subsystem Multiplexing Signals are not described in Table 2-1 through Table 2-4.
2.4.1
External Memory Interfaces
Table 2-5. External Memory Interfaces – GPMC Signals Description
SIGNAL
NAME [1]
DESCRIPTION [2]
TYPE
[3]
BALL
BOTTOM
(CBB
Pkg.) [4]
BALL
TOP
(CBB
Pkg.) [5]
BALL BOTTOM
(CBC Pkg.) [4]
BALL TOP
(CBC Pkg.) [5]
SUBSYSTEM
PIN
MULTIPLEXIN
G
[6]
gpmc_a1
General-purpose memory
address bit 1
O
N4 / K1
AC15 / M2
J2 / AA2
AA13 / U2
gpmc_a17/
gpmc_d0
gpmc_a2
General-purpose memory
address bit 2
O
M4 / L1
AB15 / M1
H1 / AA1
AA14 / U1
gpmc_a18/
gpmc_d1
gpmc_a3
General-purpose memory
address bit 3
O
L4 / L2
AC16 / N2
H2 / AC2
AA17 / V2
gpmc_a19/
gpmc_d2
gpmc_a4
General-purpose memory
address bit 4
O
K4 / P2
AB16 / N1
G2 / AC1
Y17 / V1
gpmc_a20/
gpmc_d3
gpmc_a5
General-purpose memory
address bit 5
O
T3 / T1
AC17 / R2
F1 / AE5
AA19 / AA3
gpmc_a21/
gpmc_d4
gpmc_a6
General-purpose memory
address bit 6
O
R3 / V1
AB17 / R1
F2 / AD6
AF24 / AA4
gpmc_a22/
gpmc_d5
gpmc_a7
General-purpose memory
address bit 7
O
N3 / V2
AC18 / T2
E1 / AD5
Y19 / Y3
gpmc_a23/
gpmc_d6
gpmc_a8
General-purpose memory
address bit 8
O
M3 / W2
AB18 / T1
E2 / AC5
W2 / Y4
gpmc_a24/
gpmc_d7
gpmc_a9
General-purpose memory
address bit 9
O
L3 / H2
AC19 /
AB3
D1 / V1
Y2 / R1
gpmc_a25/
gpmc_d8
gpmc_a10
General-purpose memory
address bit 10
O
K3 / K2
AB19 /
AC3
D2 / Y1
T1
gpmc_a26/
gpmc_d9
gpmc_a11
General-purpose memory
address bit 11
O
P1
AB4
T1
N1
gpmc_d10
gpmc_a12
General-purpose memory
address bit 12
O
R1
AC4
U2
P2
gpmc_d11
gpmc_a13
General-purpose memory
address bit 13
O
R2
AB6
U1
P1
gpmc_d12
gpmc_a14
General-purpose memory
address bit 14
O
T2
AC6
P1
M1
gpmc_d13
66
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 2-5. External Memory Interfaces – GPMC Signals Description (continued)
DESCRIPTION [2]
TYPE
[3]
BALL
BOTTOM
(CBB
Pkg.) [4]
BALL
TOP
(CBB
Pkg.) [5]
BALL BOTTOM
(CBC Pkg.) [4]
BALL TOP
(CBC Pkg.) [5]
SUBSYSTEM
PIN
MULTIPLEXIN
G
[6]
gpmc_a15
General-purpose memory
address bit 15
O
W1
AB7
L2
J2
gpmc_d14
gpmc_a16
General-purpose memory
address bit 16
O
Y1
AC7
M2
K2
gpmc_d15
gpmc_a17
General-purpose memory
address bit 17
O
N4
AC15
J2
AA13
gpmc_a1
gpmc_a18
General-purpose memory
address bit 18
O
M4
AB15
H1
AA14
gpmc_a2
gpmc_a19
General-purpose memory
address bit 19
O
L4
AC16
H2
AA17
gpmc_a3
gpmc_a20
General-purpose memory
address bit 20
O
K4
AB16
G2
Y17
gpmc_a4
gpmc_a21
General-purpose memory
address bit 21
O
T3
AC17
F1
AA19
gpmc_a5
gpmc_a22
General-purpose memory
address bit 22
O
R3
AB17
F2
AF24
gpmc_a6
gpmc_a23
General-purpose memory
address bit 23
O
N3
AC18
E1
Y19
gpmc_a7
gpmc_a24
General-purpose memory
address bit 24
O
M3
AB18
E2
W2
gpmc_a8
gpmc_a25
General-purpose memory
address bit 25
O
L3
AC19
D1
Y2
gpmc_a9
gpmc_a26
General-purpose memory
address bit 26
O
K3
AB19
D2
-
gpmc_a10
gpmc_d0
GPMC Data bit 0
IO
K1
M2
AA1
U2
gpmc_a1/
gpmc_d0
gpmc_d1
GPMC Data bit 1
IO
L1
M1
AA1
U1
gpmc_a2/
gpmc_d1
gpmc_d2
GPMC Data bit 2
IO
L2
N2
AC2
V2
gpmc_a3/
gpmc_d2
gpmc_d3
GPMC Data bit 3
IO
P2
N1
AC1
V1
gpmc_a4/
gpmc_d3
gpmc_d4
GPMC Data bit 4
IO
T1
R2
AE5
AA3
gpmc_a5/
gpmc_d4
gpmc_d5
GPMC Data bit 5
IO
V1
R1
AD6
AA4
gpmc_a6/
gpmc_d5
gpmc_d6
GPMC Data bit 6
IO
V2
T2
AD5
Y3
gpmc_a7
/gpmc_d6
gpmc_d7
GPMC Data bit 7
IO
W2
T1
AC5
Y4
gpmc_a8/
gpmc_d7
gpmc_d8
GPMC Data bit 8
IO
H2
AB3
V1
R1
gpmc_a9/
gpmc_d8
gpmc_d9
GPMC Data bit 9
IO
K2
AC3
Y1
T1
gpmc_a10/
gpmc_d9
gpmc_d10
GPMC Data bit 10
IO
P1
AB4
T1
N1
gpmc_a11/
gpmc_d10
gpmc_d11
GPMC Data bit 11
IO
R1
AC4
U2
P2
gpmc_a12/
gpmc_d11
gpmc_d12
GPMC Data bit 12
IO
R2
AB6
U1
P1
gpmc_a13/
gpmc_d12
gpmc_d13
GPMC Data bit 13
IO
T2
AC6
P1
M1
gpmc_a14/
gpmc_d13
Submit Documentation Feedback
TERMINAL DESCRIPTION
PRODUCT PREVIEW
SIGNAL
NAME [1]
67
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 2-5. External Memory Interfaces – GPMC Signals Description (continued)
SIGNAL
NAME [1]
DESCRIPTION [2]
TYPE
[3]
BALL
BOTTOM
(CBB
Pkg.) [4]
BALL
TOP
(CBB
Pkg.) [5]
BALL BOTTOM
(CBC Pkg.) [4]
BALL TOP
(CBC Pkg.) [5]
SUBSYSTEM
PIN
MULTIPLEXIN
G
[6]
PRODUCT PREVIEW
gpmc_d14
GPMC Data bit 14
IO
W1
AB7
L2
J2
gpmc_a15/
gpmc_d14
gpmc_d15
GPMC Data bit 15
IO
Y1
AC7
M2
K2
gpmc_a16/
gpmc_d15
gpmc_ncs0
GPMC Chip Select bit 0
O
G4
Y2
AD8
AA8
-
gpmc_ncs1
GPMC Chip Select bit 1
O
H3
Y1
AD1
W1
-
gpmc_ncs2
GPMC Chip Select bit 2
O
V8
NA
A3
-
-
gpmc_ncs3
GPMC Chip Select bit 3
O
U8
NA
B6
-
-
gpmc_ncs4
GPMC Chip Select bit 4
O
T8
NA
B4
-
-
gpmc_ncs5
GPMC Chip Select bit 5
O
R8
NA
C4
-
-
gpmc_ncs6
GPMC Chip Select bit 6
O
P8
NA
B5
-
-
gpmc_ncs7
GPMC Chip Select bit 7
O
N8
NA
C5
-
-
gpmc_io_dir
GPMC IO direction control for
use with external transceivers
O
N8
NA
C5
-
-
gpmc_clk
GPMC clock
O
T4
W2
N1
L1
-
gpmc_nadv_al
e
Address Valid or Address Latch
Enable
O
F3
W1
AD10
AA9
-
gpmc_noe
Output Enable
O
G2
V2
N2
L2
-
gpmc_nwe
Write Enable
O
F4
V1
M1
K1
-
gpmc_nbe0_cl
e
Lower Byte Enable. Also used for
Command Latch Enable
O
G3
AC12
K2
-
-
gpmc_nbe1
Upper Byte Enable
O
U3
NA
J1
-
-
gpmc_nwp
Flash Write Protect
O
H1
AB10
AC6
Y5
-
gpmc_wait0
External indication of wait
I
M8
AB12
AC11
Y10
-
gpmc_wait1
External indication of wait
I
L8
AC10
AC8
Y8
-
gpmc_wait2
External indication of wait
I
K8
NA
B3
-
-
gpmc_wait3
External indication of wait
I
J8
NA
C6
-
-
Table 2-6. External Memory Interfaces – SDRC Signals Description
SIGNAL
NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL TOP
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL TOP
(CBC Pkg.)
sdrc_d0
SDRAM data bit 0
IO
D6
J2
-
D1
sdrc_d1
SDRAM data bit 1
IO
C6
J1
-
G1
sdrc_d2
SDRAM data bit 2
IO
B6
G2
-
G2
sdrc_d3
SDRAM data bit 3
IO
C8
G1
-
E1
sdrc_d4
SDRAM data bit 4
IO
C9
F2
-
D2
sdrc_d5
SDRAM data bit 5
IO
A7
F1
-
E2
sdrc_d6
SDRAM data bit 6
IO
B9
D2
-
B3
sdrc_d7
SDRAM data bit 7
IO
A9
D1
-
B4
sdrc_d8
SDRAM data bit 8
IO
C14
B13
-
A10
sdrc_d9
SDRAM data bit 9
IO
B14
A13
-
B11
sdrc_d10
SDRAM data bit 10
IO
C15
B14
-
A11
sdrc_d11
SDRAM data bit 11
IO
B16
A14
-
B12
sdrc_d12
SDRAM data bit 12
IO
D17
B16
-
A16
sdrc_d13
SDRAM data bit 13
IO
C17
A16
-
A17
(1)
68
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
SIGNAL
NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL TOP
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL TOP
(CBC Pkg.)
sdrc_d14
SDRAM data bit 14
IO
B17
B19
-
B17
sdrc_d15
SDRAM data bit 15
IO
D18
A19
-
B18
sdrc_d16
SDRAM data bit 16
IO
D11
B3
-
B7
sdrc_d17
SDRAM data bit 17
IO
B10
A3
-
A5
sdrc_d18
SDRAM data bit 18
IO
C11
B5
-
B6
sdrc_d19
SDRAM data bit 19
IO
D12
A5
-
A6
sdrc_d20
SDRAM data bit 20
IO
C12
B8
-
A8
sdrc_d21
SDRAM data bit 21
IO
A11
A8
–
B9
sdrc_d22
SDRAM data bit 22
IO
B13
B9
-
A9
sdrc_d23
SDRAM data bit 23
IO
D14
A9
-
B10
sdrc_d24
SDRAM data bit 24
IO
C18
B21
-
C21
sdrc_d25
SDRAM data bit 25
IO
A19
A21
-
D20
sdrc_d26
SDRAM data bit 26
IO
B19
D22
-
B19
sdrc_d27
SDRAM data bit 27
IO
B20
D23
-
C20
sdrc_d28
SDRAM data bit 28
IO
D20
E22
-
D21
sdrc_d29
SDRAM data bit 29
IO
A21
E23
-
E20
sdrc_d30
SDRAM data bit 30
IO
B21
G22
-
E21
sdrc_d31
SDRAM data bit 31
IO
C21
G23
-
G21
sdrc_ba0
SDRAM bank select 0
O
H9
AB21
-
AA18
sdrc_ba1
SDRAM bank select 1
O
H10
AC21
-
V20
sdrc_a0
SDRAM address bit 0
O
A4
N22
-
G20
sdrc_a1
SDRAM address bit 1
O
B4
N23
-
K20
sdrc_a2
SDRAM address bit 2
O
B3
P22
-
J20
sdrc_a3
SDRAM address bit 3
O
C5
P23
-
J21
sdrc_a4
SDRAM address bit 4
O
C4
R22
-
U21
sdrc_a5
SDRAM address bit 5
O
D5
R23
-
R20
sdrc_a6
SDRAM address bit 6
O
C3
T22
-
M21
sdrc_a7
SDRAM address bit 7
O
C2
T23
-
M20
sdrc_a8
SDRAM address bit 8
O
C1
U22
-
N20
sdrc_a9
SDRAM address bit 9
O
D4
U23
-
K21
sdrc_a10
SDRAM address bit 10
O
D3
V22
-
Y16
sdrc_a11
SDRAM address bit 11
O
D2
V23
-
N21
sdrc_a12
SDRAM address bit 12
O
D1
W22
-
R21
sdrc_a13
SDRAM address bit 13
O
E2
W23
-
AA15
sdrc_a14
SDRAM address bit 14
O
E1
Y22
-
Y12
sdrc_ncs0
Chip select 0
O
H11
M22
-
T21
sdrc_ncs1
Chip select 1
O
H12
M23
-
T20
sdrc_clk
Clock
IO
A13
A11
-
A12
sdrc_nclk
Clock Invert
O
A14
B11
-
B13
sdrc_cke0
Clock Enable 0
O
H16
J22
-
Y15
sdrc_cke1
Clock Enable 1
O
H17
J23
-
Y13
sdrc_nras
SDRAM Row Access
O
H14
L23
-
V21
sdrc_ncas
SDRAM column address
strobe
O
H13
L22
-
U20
sdrc_nwe
SDRAM write enable
O
H15
K23
-
Y18
sdrc_dm0
Data Mask 0
O
B7
C1
-
H1
sdrc_dm1
Data Mask 1
O
A16
A17
-
A14
Submit Documentation Feedback
TERMINAL DESCRIPTION
PRODUCT PREVIEW
Table 2-6. External Memory Interfaces – SDRC Signals Description (continued)
69
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 2-6. External Memory Interfaces – SDRC Signals Description (continued)
SIGNAL
NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL TOP
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL TOP
(CBC Pkg.)
O
B11
A6
-
A4
A18
sdrc_dm2
Data Mask 2
sdrc_dm3
Data Mask 3
O
C20
A20
-
sdrc_dqs0
Data Strobe 0
IO
A6
C2
-
C2
sdrc_dqs1
Data Strobe 1
IO
A17
B17
-
B15
sdrc_dqs2
Data Strobe 2
IO
A10
B6
-
B8
sdrc_dqs3
Data Strobe 3
IO
A20
B20
-
A19
PRODUCT PREVIEW
70
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
2.4.2
SPRS599 – JUNE 2009
Video Interfaces
SIGNAL NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
A24
C23
cam_hs
Camera Horizontal Synchronization
IO
cam_vs
Camera Vertical Synchronization
IO
A23
D23
cam_xclka
Camera Clock Output a
O
C25
C25
cam_xclkb
Camera Clock Output b
O
B26
E25
cam_d0
Camera digital image data bit 0
I
AG17
AE16
cam_d1
Camera digital image data bit 1
I
AH17
AE15
cam_d2
Camera digital image data bit 2
I
B24
A24
cam_d3
Camera digital image data bit 3
I
C24
B24
cam_d4
Camera digital image data bit 4
I
D24
D24
cam_d5
Camera digital image data bit 5
I
A25
C24
cam_d6
Camera digital image data bit 6
I
K28
P25
cam_d7
Camera digital image data bit 7
I
L28
P26
cam_d8
Camera digital image data bit 8
I
K27
N25
cam_d9
Camera digital image data bit 9
I
L27
N26
cam_d10
Camera digital image data bit 10
I
B25
D25
cam_d11
Camera digital image data bit 11
E26
cam_fld
Camera field identification
cam_pclk
Camera pixel clock
cam_wen
Camera Write Enable
I
B23
A23
cam_strobe
Flash strobe control signal
O
D25
D26
cam_global_reset
Global reset is used strobe
synchronization
IO
C23 / AH3 / AA21
V17 / B23
cam_shutter
Mechanical shutter control signal
O
B23 / AF3 / T21
A23 / T19
(1)
I
C26
IO
C23
B23
I
C27
C26
PRODUCT PREVIEW
Table 2-7. Video Interfaces – CAM Signals Description
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).
Table 2-8. Video Interfaces – DSS Signals Description
SIGNAL NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
G25
dss_pclk
LCD Pixel Clock
O
D28
dss_hsync
LCD Horizontal Synchronization
O
D26
K24
dss_vsync
LCD Vertical Synchronization
O
D27
M25
dss_acbias
AC bias control (STN) or pixel data enable (TFT) output
O
E27
F26
dss_data0
LCD Pixel Data bit 0
IO
AG22 / H26
AE21 / M24
dss_data1
LCD Pixel Data bit 1
IO
AH22 / H25
AE22 / M26
dss_data2
LCD Pixel Data bit 2
IO
AG23 / E28
AE23 / F25
dss_data3
LCD Pixel Data bit 3
IO
AH23 / J26
AE24 / N24
dss_data4
LCD Pixel Data bit 4
IO
AG24 / AC27
AD23 / AC25
dss_data5
LCD Pixel Data bit 5
IO
AH24 / AC28
AD24/ AB25
dss_data6
LCD Pixel Data bit 6
IO
E26
G26
dss_data7
LCD Pixel Data bit 7
IO
F28
H25
dss_data8
LCD Pixel Data bit 8
IO
F27
H26
dss_data9
LCD Pixel Data bit 9
IO
G26
J26
dss_data10
LCD Pixel Data bit 10
IO
AD28
AC26
dss_data11
LCD Pixel Data bit 11
IO
AD27
AD26
(1)
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).
Submit Documentation Feedback
TERMINAL DESCRIPTION
71
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 2-8. Video Interfaces – DSS Signals Description (continued)
SIGNAL NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
AA25
PRODUCT PREVIEW
dss_data12
LCD Pixel Data bit 12
IO
AB28
dss_data13
LCD Pixel Data bit 13
IO
AB27
Y25
dss_data14
LCD Pixel Data bit 14
IO
AA28
AA26
dss_data15
LCD Pixel Data bit 15
IO
AA27
AB26
dss_data16
LCD Pixel Data bit 16
IO
G25
L25
dss_data17
LCD Pixel Data bit 17
IO
H27
L26
dss_data18
LCD Pixel Data bit 18
IO
H26
M24
dss_data19
LCD Pixel Data bit 19
IO
H25
M26
dss_data20
LCD Pixel Data bit 20
O
E28
F25
dss_data21
LCD Pixel Data bit 21
O
J26
N24
dss_data22
LCD Pixel Data bit 22
O
AC27
AC25
dss_data23
LCD Pixel Data bit 23
O
AC28
AB25
Table 2-9. Video Interfaces – RFBI Signals Description
SIGNAL
NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
SUBSYSTEM PIN
MULTIPLEXING (2)
rfbi_a0
RFBI command/data control
O
E27
F26
dss_acbias
rfbi_cs0
1st LCD chip select
O
D26
K24
dss_hsync
rfbi_da0
RFBI data bus 0
IO
AG22
AE21
dss_data0
rfbi_da1
RFBI data bus 1
IO
AH22
AE22
dss_data1
rfbi_da2
RFBI data bus 2
IO
AG23
AE23
dss_data2
rfbi_da3
RFBI data bus 3
IO
AH23
AE24
dss_data3
rfbi_da4
RFBI data bus 4
IO
AG24
AD23
dss_data4
rfbi_da5
RFBI data bus 5
IO
AH24
AD24
dss_data5
rfbi_da6
RFBI data bus 6
IO
E26
G26
dss_data6
rfbi_da7
RFBI data bus 7
IO
F28
H25
dss_data7
rfbi_da8
RFBI data bus 8
IO
F27
H26
dss_data8
rfbi_da9
RFBI data bus 9
IO
G26
J26
dss_data9
rfbi_da10
RFBI data bus 10
IO
AD28
AC26
dss_data10
rfbi_da11
RFBI data bus 11
IO
AD27
AD26
dss_data11
rfbi_da12
RFBI data bus 12
IO
AB28
AA25
dss_data12
rfbi_da13
RFBI data bus 13
IO
AB27
Y25
dss_data13
rfbi_da14
RFBI data bus 14
IO
AA28
AA26
dss_data14
rfbi_da15
RFBI data bus 15
IO
AA27
AB26
dss_data15
rfbi_rd
Read enable for RFBI
O
D28
G25
dss_pclk
rfbi_wr
Write Enable for RFBI
O
D27
M25
dss_vsync
rfbi_te_vsync0
tearing effect removal and Vsync input
from 1st LCD
I
G25
L25
dss_data16
rfbi_hsync0
Hsync for 1st LCD
I
H27
L26
dss_data17
(1)
(2)
72
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).
The subsystem pin multiplexing options are not described in Table 2-1 and Table 2-3
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 2-10. Video Interfaces – TV Signals Description
SIGNAL NAME
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
W26
tv_out1
TV analog output Composite: tv_out1
O
Y28
tv_out2
TV analog output S-VIDEO: tv_out2
O
W28
V26
tv_vfb1
tv_vfb1: Feedback through external
resistor=to composite
AO
Y27
W25
tv_vfb2
tv_vfb2: Feedback through external
resistor=to S-VIDEO
AO
W27
U24
tv_vref
External capacitor
AO
W26
V23
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).
PRODUCT PREVIEW
(1)
DESCRIPTION
Submit Documentation Feedback
TERMINAL DESCRIPTION
73
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
2.4.3
www.ti.com
Serial Communication Interfaces
Table 2-11. Serial Communication Interfaces – HDQ/1-Wire Signals Description
SIGNAL NAME
hdq_sio
(1)
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
IOD
J25
J23
Bidirectional HDQ 1-Wire control and data
Interface. Output is open drain.
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).
Table 2-12. Serial Communication Interfaces – I2C Signals Description
SIGNAL NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
INTER-INTEGRATED CIRCUIT INTERFACE (I2C1)
PRODUCT PREVIEW
i2c1_scl
I2C Master Serial clock. Output is open
drain.
IOD
K21
J25
i2c1_sda
I2C Serial Bidirectional Data. Output is open
drain.
IOD
J21
J24
INTER-INTEGRATED CIRCUIT INTERFACE (I2C3)
i2c3_scl
I2C Master Serial clock. Output is open
drain.
IOD
AF14
C2
i2c3_sda
I2C Serial Bidirectional Data. Output is open
drain.
IOD
AG14
C1
i2c3_sccbe
Serial Camera Control Bus Enable
O
J25
J23
INTER-INTEGRATED CIRCUIT INTERFACE (I2C2)
i2c2_scl
I2C Master Serial clock. Output is open
drain.
IOD
AF15
AB4
i2c2_sda
I2C Serial Bidirectional Data. Output is open
drain.
IOD
AE15
AC4
i2c2_sccbe
Serial Camera Control Bus Enable
O
J25
J23
(1)
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).
Table 2-13. Serial Communication Interfaces – SmartReflex Signals Description (1)
SIGNAL NAME
DESCRIPTION
TYPE (2)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
INTER-INTEGRATED CIRCUIT INTERFACE (I2C4)
i2c4_scl
I2C Master Serial clock. Output is open
drain.
IOD
AD26
AD15
i2c4_sda
I2C Serial Bidirectional Data. Output is open
drain.
IOD
AE26
W16
(1)
(2)
For more information on SmartReflex voltage control, see the PRCM chapter of the OMAP35x Technical Reference Manual (TRM)
[literature number SPRUFA5].
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog).
Table 2-14. Serial Communication Interfaces – McBSP LP Signals Description
SIGNAL NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
MULTICHANNEL SERIAL (McBSP LP 1)
mcbsp1_dr
Received serial data
I
U21
T20
mcbsp1_clkr
Receive Clock
IO
Y8 / Y21
U19 / H3
mcbsp1_fsr
Receive frame synchronization
IO
AA21
V17
mcbsp1_dx
Transmitted serial data
IO
V21
U17
mcbsp1_clkx
Transmit clock
IO
W21
T17
(1)
74
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 2-14. Serial Communication Interfaces – McBSP LP Signals Description (continued)
SIGNAL NAME
DESCRIPTION
mcbsp1_fsx
Transmit frame synchronization
mcbsp_clks
External clock input (shared by McBSP1, 2,
3, 4, and 5)
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
IO
K26
P20
I
T21
T19
I
R21
T18
MULTICHANNEL SERIAL (McBSP LP 2)
mcbsp2_dr
Received serial data
mcbsp2_dx
Transmitted serial data
IO
M21
R19
mcbsp2_clkx
Combined serial clock
IO
N21
R18
mcbsp2_fsx
Combined frame synchronization
IO
P21
U18
mcbsp3_dr
Received serial data
I
AE6 / AB25 / U21
T20 / AA24 / N3
mcbsp3_dx
Transmitted serial data
IO
AF6 / AB26 / V21
U17 / Y24 / P3
mcbsp3_clkx
Combined serial clock
IO
AF5 / AA25 / W21
T17 / AD22 / U3
mcbsp3_fsx
Combined frame synchronization
IO
AE5 / AD25 / K26
P20 / AD21 / W3
I
R8 / AD1
C4 / U4
PRODUCT PREVIEW
MULTICHANNEL SERIAL (McBSP LP 3)
MULTICHANNEL SERIAL (McBSP LP 4)
mcbsp4_dr
Received serial data
mcbsp4_dx
Transmitted serial data
IO
P8 / AD2
B5 / R3
mcbsp4_clkx
Combined serial clock
IO
T8 / AE1
B4 / V3
mcbsp4_fsx
Combined frame synchronization
IO
N8 / AC1
C5 / T3
MULTICHANNEL SERIAL (McBSP LP 5)
mcbsp5_dr
Received serial data
I
AE11
Y3
mcbsp5_dx
Transmitted serial data
IO
AF13
AE3
mcbsp5_clkx
Combined serial clock
IO
AF10
AB2
mcbsp5_fsx
Combined frame synchronization
IO
AH9
AB1
Table 2-15. Serial Communication Interfaces – McSPI Signals Description
SIGNAL NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
MULTICHANNEL SERIAL PORT INTERFACE (McSPI1)
mcspi1_clk
SPI Clock
IO
AB3
P9
mcspi1_simo
Slave data in, master data out
IO
AB4
P8
mcspi1_somi
Slave data out, master data in
IO
AA4
P7
mcspi1_cs0
SPI Enable 0, polarity configured by
software
IO
AC2
R7
mcspi1_cs1
SPI Enable 1, polarity configured by
software
O
AC3
R8
mcspi1_cs2
SPI Enable 2, polarity configured by
software
O
AB1
R9
mcspi1_cs3
SPI Enable 3, polarity configured by
software
O
AB2
T8
(1)
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)
Submit Documentation Feedback
TERMINAL DESCRIPTION
75
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 2-15. Serial Communication Interfaces – McSPI Signals Description (continued)
SIGNAL NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
MULTICHANNEL SERIAL PORT INTERFACE (McSPI2)
mcspi2_clk
SPI Clock
IO
AA3
W7
mcspi2_simo
Slave data in, master data out
IO
Y2
W8
mcspi2_somi
Slave data out, master data in
IO
Y3
U8
mcspi2_cs0
SPI Enable 0, polarity configured by
software
IO
Y4
V8
mcspi2_cs1
SPI Enable 1, polarity configured by
software
O
V3
V9
MULTICHANNEL SERIAL PORT INTERFACE (McSPI3)
PRODUCT PREVIEW
mcspi3_clk
SPI Clock
IO
H26 / AE2 / AE13
W10 / M24 / AA3
mcspi3_simo
Slave data in, master data out
IO
H25 / AG5 / AF11
R10 / M26 / AC3
mcspi3_somi
Slave data out, master data in
IO
E28 / AH5 / AG12
F25 / T10 / AD4
mcspi3_cs0
SPI Enable 0, polarity configured by
software
IO
J26 / AF4 / AH12
U9 / N24 / AD3
mcspi3_cs1
SPI Enable 1, polarity configured by
software
O
AC27 / AG4 / AH14
AC25 / U10 / AD2
Y8 / Y21
U19 / H3
U17
MULTICHANNEL SERIAL PORT INTERFACE (McSPI4)
mcspi4_clk
SPI Clock
IO
mcspi4_simo
Slave data in, master data out
IO
V21
mcspi4_somi
Slave data out, master data in
IO
U21
T20
mcspi4_cs0
SPI Enable 0, polarity configured by
software
IO
K26
P20
Table 2-16. Serial Communication Interfaces – UARTs Signals Description
SIGNAL NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART1)
uart1_cts
UART1 Clear To Send
I
AG22 / W8 / T21
AE21 / T19 / W2
uart1_rts
UART1 Request To Send
O
AH22 / AA9
AE22 / R2
uart1_rx
UART1 Receive data
I
F28 / Y8 / AE7
H3 / H25 / AE4
uart1_tx
UART1 Transmit data
O
E26 / AA8
L4 / G26
UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART2)
uart2_cts
UART2 Clear To Send
I
AF6 / AB26
Y24
uart2_rts
UART2 Request To Send
O
AE6 / AB25
AA24
uart2_rx
UART2 Receive data
I
AE5 / AD25
AD21
uart2_tx
UART2 Transmit data
O
AF5 / AA25
AD22
H18 / U26
W20 / F23
UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER (UART3) / IrDA
uart3_cts_rctx
UART3 Clear To Send (input), Remote
TX (output)
IO
uart3_rts_sd
UART3 Request To Send, IR enable
O
H19 / U27
V18 / F24
uart3_rx_irrx
UART3 Receive data, IR and Remote
RX
I
AG24 / H20 / U28
AD23 / Y20 / H24
uart3_tx_irtx
UART3 Transmit data, IR TX
O
AH24 / H21 / T27
AD24 / V20 / G24
(1)
76
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 2-17. Serial Communication Interfaces – USB Signals Description
SIGNAL NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
hsusb0_clk
Dedicated for external transceiver 60-MHz clock input from
PHY
I
T28
W19
hsusb0_stp
Dedicated for external transceiver Stop signal
O
T25
U20
hsusb0_dir
Dedicated for external transceiver Data direction control from
PHY
I
R28
V19
hsusb0_nxt
Dedicated for external transceiver Next signal from PHY
I
T26
W18
hsusb0_data0
Dedicated for external transceiver Bidirectional data bus
IO
T27
V20
hsusb0_data1
Dedicated for external transceiver Bidirectional data bus
IO
U28
Y20
hsusb0_data2
Dedicated for external transceiver Bidirectional data bus
IO
U27
V18
hsusb0_data3
Dedicated for external transceiver Bidirectional data bus
IO
U26
W20
hsusb0_data4
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
U25
W17
hsusb0_data5
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
V28
Y18
hsusb0_data6
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
V27
Y19
hsusb0_data7
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
V26
Y17
mm3_rxdm
Vminus receive data (not used in 3- or 4-pin configurations)
IO
AE3
AE3
mm3_rxdp
Vplus receive data (not used in 3- or 4-pin configurations)
IO
AH3
M3
mm3_rxrcv
Differential receiver signal input (not used in 3-pin mode)
IO
AD1
U4
mm3_txse0
Single-ended zero. Used as VM in 4-pin VP_VM mode.
IO
AE1
V3
mm3_txdat
USB data. Used as VP in 4-pin VP_VM mode.
IO
AD2
R3
mm3_txen_n
Transmit enable
IO
AC1
T3
mm2_rxdm
Vminus receive data (not used in 3- or 4-pin configurations)
IO
AH7
AF7
mm2_rxdp
Vplus receive data (not used in 3- or 4-pin configurations)
IO
AF7
AF6
mm2_rxrcv
Differential receiver signal input (not used in 3-pin mode)
IO
AG8
AF9
mm2_txse0
Single-ended zero. Used as VM in 4-pin VP_VM mode.
IO
AH8
AE9
mm2_txdat
USB data. Used as VP in 4-pin VP_VM mode.
IO
AB2
T8
mm2_txen_n
Transmit enable
IO
V3
V9
mm1_rxdm
Vminus receive data (not used in 3- or 4-pin configurations)
IO
AG9
V2
mm1_rxdp
Vplus receive data (not used in 3- or 4-pin configurations)
IO
AF10
AB2
mm1_rxrcv
Differential receiver signal input (not used in 3-pin mode)
IO
AF11
AC3
mm1_txse0
Single-ended zero. Used as VM in 4-pin VP_VM mode.
IO
AG12
AD4
mm1_txdat
USB data. Used as VP in 4-pin VP_VM mode.
IO
AH12
AD3
mm1_txen_n
Transmit enable
IO
AH14
AD2
hsusb3_tll_clk
Dedicated for external transceiver 60-MHz clock input from
PHY
O
W8
W2
hsusb3_tll_stp
Dedicated for external transceiver Stop signal
I
AH3
M3
hsusb3_tll_dir
dedicated for external transceiver Data direction control from
PHY
O
AF3
L3
hsusb3_tll_nxt
Dedicated for external transceiver Next signal from PHY
O
AE3
K3
hsusb3_tll_data0
Dedicated for external transceiver Bidirectional data bus
IO
AD1
U4
PRODUCT PREVIEW
HIGH-SPEED UNIVERSAL SERIAL BUS INTERFACE (HSUSB0)
MM_FSUSB3
MM_FSUSB2
MM_FSUSB1
HSUSB3_TLL
(1)
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)
Submit Documentation Feedback
TERMINAL DESCRIPTION
77
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 2-17. Serial Communication Interfaces – USB Signals Description (continued)
SIGNAL NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
hsusb3_tll_data1
Dedicated for external transceiver Bidirectional data bus
IO
AE1
V3
hsusb3_tll_data2
Dedicated for external transceiver Bidirectional data bus
IO
AD2
R3
hsusb3_tll_data3
Dedicated for external transceiver Bidirectional data bus
IO
AC1
T3
hsusb3_tll_data4
Dedicated for external transceiver Bidirectional data bus
IO
AF6
P3
hsusb3_tll_data5
Dedicated for external transceiver Bidirectional data bus
IO
AE6
N3
hsusb3_tll_data6
Dedicated for external transceiver Bidirectional data bus
IO
AF5
U3
hsusb3_tll_data7
Dedicated for external transceiver Bidirectional data bus
IO
AE5
W3
hsusb2_clk
Dedicated for external transceiver 60-MHz clock input from
PHY
O
AE7
AE4
hsusb2_stp
Dedicated for external transceiver Stop signal
O
AF7
AF6
hsusb2_dir
Dedicated for external transceiver Data direction control from
PHY
I
AG7
AE6
hsusb2_nxt
Dedicated for external transceiver Next signal from PHY
I
AH7
AF7
hsusb2_data0
Dedicated for external transceiver Bidirectional data bus
IO
AG8
AF9
hsusb2_data1
Dedicated for external transceiver Bidirectional data bus
IO
AH8
AE9
hsusb2_data2
Dedicated for external transceiver Bidirectional data bus
IO
AB2
T8
hsusb2_data3
Dedicated for external transceiver Bidirectional data bus
IO
V3
V9
hsusb2_data4
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
Y2
W8
hsusb2_data5
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
Y3
U8
hsusb2_data6
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
Y4
V8
hsusb2_data7
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
AA3
W7
hsusb2_tll_clk
Dedicated for external transceiver 60-MHz clock input from
PHY
O
AE7
AE4
hsusb2_tll_stp
Dedicated for external transceiver Stop signal
I
AF7
AF6
hsusb2_tll_dir
Dedicated for external transceiver data direction control from
PHY
O
AG7
AE6
hsusb2_tll_nxt
Dedicated for external transceiver Next signal from PHY
O
AH7
AF7
hsusb2_tll_data0
Dedicated for external transceiver Bidirectional data bus
IO
AG8
AF9
hsusb2_tll_data1
Dedicated for external transceiver Bidirectional data bus
IO
AH8
AE9
hsusb2_tll_data2
Dedicated for external transceiver Bidirectional data bus
IO
AB2
T8
hsusb2_tll_data3
Dedicated for external transceiver Bidirectional data bus
IO
V3
V9
hsusb2_tll_data4
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
Y2
W8
hsusb2_tll_data5
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
Y3
U8
hsusb2_tll_data6
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
Y4
V8
hsusb2_tll_data7
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
AA3
W7
hsusb1_clk
Dedicated for external transceiver 60-MHz clock input from
PHY
O
AE10
AB3
hsusb1_stp
Dedicated for external transceiver Stop signal
O
AF10
AB2
hsusb1_dir
Dedicated for external transceiver data direction control from
PHY
I
AF9
AA4
HSUSB2
PRODUCT PREVIEW
HSUSB2_TLL
HSUSB1
78
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
SIGNAL NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
AG9
V2
hsusb1_nxt
Dedicated for external transceiver Next signal from PHY
I
hsusb1_data0
Dedicated for external transceiver Bidirectional data bus
IO
AF11
AC3
hsusb1_data1
Dedicated for external transceiver Bidirectional data bus
IO
AG12
AD4
hsusb1_data2
Dedicated for external transceiver Bidirectional data bus
IO
AH12
AD3
hsusb1_data3
Dedicated for external transceiver Bidirectional data bus
IO
AH14
AD2
hsusb1_data4
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
AE11
Y3
hsusb1_data5
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
AH9
AB1
hsusb1_data6
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
AF13
AE3
hsusb1_data7
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
AE13
AA7
hsusb1_tll_clk
Dedicated for external transceiver 60-MHz clock input from
PHY
O
AE10
AB3
hsusb1_tll_stp
Dedicated for external transceiver Stop signal
I
AF10
AB2
hsusb1_tll_dir
Dedicated for external transceiver data direction control from
PHY
O
AF9
AA4
hsusb1_tll_nxt
Dedicated for external transceiver Next signal from PHY
O
AG9
V2
hsusb1_tll_data0
Dedicated for external transceiver Bidirectional data bus
IO
AF11
AC3
hsusb1_tll_data1
Dedicated for external transceiver Bidirectional data bus
IO
AG12
AD4
hsusb1_tll_data2
Dedicated for external transceiver Bidirectional data bus
IO
AH12
AD3
hsusb1_tll_data3
Dedicated for external transceiver Bidirectional data bus
IO
AH14
AD2
hsusb1_tll_data4
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
AE11
Y3
hsusb1_tll_data5
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
AH9
AB1
hsusb1_tll_data6
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
AF13
AE3
hsusb1_tll_data7
Dedicated for external transceiver Bidirectional data bus
additional signals for 12-pin ULPI operation
IO
AE13
AA3
PRODUCT PREVIEW
Table 2-17. Serial Communication Interfaces – USB Signals Description (continued)
HSUSB1_TLL
Submit Documentation Feedback
TERMINAL DESCRIPTION
79
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
2.4.4
www.ti.com
Removable Media Interfaces
Table 2-18. Removable Media Interfaces – MMC/SDIO Signals Description
SIGNAL NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
N19
MULTIMEDIA MEMORY CARD (MMC1) / SECURE DIGITAL IO (SDIO1)
PRODUCT PREVIEW
mmc1_clk
MMC/SD Output Clock
O
N28
mmc1_cmd
MMC/SD command signal
IO
M27
L18
mmc1_dat0
MMC/SD Card Data bit 0 / SPI Serial Input
IO
N27
M19
mmc1_dat1
MMC/SD Card Data bit 1
IO
N26
M18
mmc1_dat2
MMC/SD Card Data bit 2
IO
N25
K18
mmc1_dat3
MMC/SD Card Data bit 3
IO
P28
N20
mmc1_dat4
MMC/SD Card Data bit 4
IO
P27
M20
mmc1_dat5
MMC/SD Card Data bit 5
IO
P26
P17
mmc1_dat6
MMC/SD Card Data bit 6
IO
R27
P18
mmc1_dat7
MMC/SD Card Data bit 7
IO
R25
P19
MULTIMEDIA MEMORY CARD (MMC2) / SECURE DIGITAL IO (SDIO2)
mmc2_clk
MMC/SD Output Clock
O
AE2
W10
mmc2_dir_dat0
Direction control for DAT0 signal case an external
transceiver used
O
AE4
V10
mmc2_dir_dat1
Direction control for DAT1 and DAT3 signals case an
external transceiver used
O
AH3
M3
mmc2_dir_dat2
Direction control for DAT2 signal case an external
transceiver used
O
AF19
E4
mmc2_dir_dat3
Direction control for DAT4, DAT5, DAT6, and DAT7 signals
case an external transceiver used
O
AE21
G3
mmc2_clkin
MMC/SD input Clock
I
AE3
K3
mmc2_dat0
MMC/SD Card Data bit 0
IO
AH5
T10
mmc2_dat1
MMC/SD Card Data bit 1
IO
AH4
T9
mmc2_dat2
MMC/SD Card Data bit 2
IO
AG4
U10
mmc2_dat3
MMC/SD Card Data bit 3
IO
AF4
U9
mmc2_dat4
MMC/SD Card Data bit 4
IO
AE4 / AB3
P9 / V10
mmc2_dat5
MMC/SD Card Data bit 5
IO
AH3 / AB4
P8
mmc2_dat6
MMC/SD Card Data bit 6
IO
AF3 / AA4
P7
mmc2_dat7
MMC/SD Card Data bit 7
IO
AE3 / AC2
R7
mmc2_dir_cmd
Direction control for CMD signal case an external
transceiver is used
O
AF3
L3
mmc2_cmd
MMC/SD command signal
IO
AG5
R10
MULTIMEDIA MEMORY CARD (MMC3) / SECURE DIGITAL IO (SDIO3)
mmc3_clk
MMC/SD Output Clock
O
AB1 / AF10
R9 / AB2
mmc3_cmd
MMC/SD command signal
IO
AC3 / AE10
R8 / AB3
mmc3_dat0
MMC/SD Card Data bit 0 / SPI Serial Input
IO
AE4 / AE11
V10 / Y3
mmc3_dat1
MMC/SD Card Data bit 1
IO
AH3 / AH9
AB1
mmc3_dat2
MMC/SD Card Data bit 2
IO
AF3 / AF13
AE3
mmc3_dat3
MMC/SD Card Data bit 3
IO
AE3 / AE13
AA3
mmc3_dat4
MMC/SD Card Data bit 4
IO
AF11
AC3
mmc3_dat5
MMC/SD Card Data bit 5
IO
AG9
V2
mmc3_dat6
MMC/SD Card Data bit 6
IO
AF9
AA4
mmc3_dat7
MMC/SD Card Data bit 7
IO
AH14
AD2
(1)
80
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
2.4.5
SPRS599 – JUNE 2009
Test Interfaces
(1)
SIGNAL NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
etk_ctl
ETK trace ctl
O
AE10
AB2
etk_clk
ETK trace clock
O
AF10
AB3
etk_d0
ETK data 0
O
AF11
AC3
etk_d1
ETK data 1
O
AG12
AD4
etk_d2
ETK data 2
O
AH12
AD3
etk_d3
ETK data 3
O
AE13
AA3
etk_d4
ETK data 4
O
AE11
Y3
etk_d5
ETK data 5
O
AH9
AB1
etk_d6
ETK data 6
O
AF13
AE3
etk_d7
ETK data 7
O
AH14
AD2
etk_d8
ETK data 8
O
AF9
AA4
etk_d9
ETK data 9
O
AG9
V2
etk_d10
ETK data 10
O
AE7
AE4
etk_d11
ETK data 11
O
AF7
AF6
etk_d12
ETK data 12
O
AG7
AE6
etk_d13
ETK data 13
O
AH7
AF7
etk_d14
ETK data 14
O
AG8
AF9
etk_d15
ETK data 15
O
AH8
AE9
PRODUCT PREVIEW
Table 2-19. Test Interfaces – ETK Signals Description
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)
Submit Documentation Feedback
TERMINAL DESCRIPTION
81
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 2-20. Test Interfaces – JTAG Signals Description
(1)
SIGNAL NAME
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
jtag_ntrst
Test Reset
I
AA17
U15
jtag_tck
Test Clock
I
AA13
V14
jtag_rtck
ARM Clock Emulation
O
AA12
W13
jtag_tms_tmsc
Test Mode Select
IO
AA18
V15
jtag_tdi
Test Data Input
I
AA20
U16
jtag_tdo
Test Data Output
O
AA19
Y13
jtag_emu0
Test emulation 0
IO
AA11
Y15
jtag_emu1
Test emulation 1
IO
AA10
Y14
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)
PRODUCT PREVIEW
Table 2-21. Test Interfaces – SDTI Signals Description
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
SUBSYSTEM
SIGNAL
MULTIPLEXING (2)
Serial clock dual edge
O
AF7 / AA11 / AG8
AF6 / Y15 / AF9
etk_d11 / jtag_emu0 /
etk_d14
sdti_txd0
Serial data out (System Trace
messages)
O
AG7 / AA10 / AA11
AE6 / Y14 / Y15
etk_d12 / jtag_emu1 /
jtag_emu0
sdti_txd1
Serial data out (System Trace
messages)
O
AH7 / AA10
AF7 / Y14
etk_d13 / jtag_emu1
sdti_txd2
Serial data out (System Trace
messages)
O
AG8
AF9
etk_d14
sdti_txd3
Serial data out (System Trace
messages)
O
AH8
AE9
etk_d15
SIGNAL
NAME
sdti_clk
(1)
(2)
DESCRIPTION
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)
The subsystem pin multiplexing options are not described in Table 2-1 and Table 2-3
Table 2-22. Test Interfaces – HWDBG Signals Description
(1)
82
SIGNAL NAME
DESCRIPTION
TYPE (1)
hw_dbg0
Debug signal 0
hw_dbg1
Debug signal 1
hw_dbg2
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
O
A24 / AF10
C23/AB2
O
A23 / AE10
D23/AB3
Debug signal 2
O
C27/ AF11
C26/AC3
hw_dbg3
Debug signal 3
O
C23 / AG12
B23/AD4
hw_dbg4
Debug signal 4
O
B24 / AH12
A24/AD3
hw_dbg5
Debug signal 5
O
C24 / AE13
B24/AA3
hw_dbg6
Debug signal 6
O
D24 / AE11
D24/Y3
hw_dbg7
Debug signal 7
O
A25 / AH9
C24/AB1
hw_dbg8
Debug signal 8
O
B25 / AF13
D25/AE3
hw_dbg9
Debug signal 9
O
C26 / AH14
E26/AD2
hw_dbg10
Debug signal 10
O
B23 / AF9
A23/AA4
hw_dbg11
Debug signal 11
O
D25 / AG9
D26/V2
hw_dbg12
Debug signal 12
O
D28 / AE7
G25/AE4
hw_dbg13
Debug signal 13
O
D26 / AF7
K24/AF6
hw_dbg14
Debug signal 14
O
E26 / AG7
G26/AE6
hw_dbg15
Debug signal 15
O
F28 / AH7
H25/AF7
hw_dbg16
Debug signal 16
O
F27 / AG8
H26/AF9
hw_dbg17
Debug signal 17
O
G26 / AH8
J26/AE9
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
2.4.6
SPRS599 – JUNE 2009
Miscellaneous
Table 2-23. Miscellaneous – GP Timer Signals Description
DESCRIPTION
TYPE (1)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
gpt8_pwm_evt
PWM or event for GP
timer 8
IO
N8 / AD25 / V3
C5 / AD21/ V9
gpt9_pwm_evt
PWM or event for GP
timer 9
IO
T8 / AB26 / Y2
B4 / W8 / Y24
gpt10_pwm_evt
PWM or event for GP
timer 10
IO
R8 / AB25 / Y3
C4 / U8 / AA24
gpt11_pwm_evt
PWM or event for GP
timer 11
IO
P8 / AA25 / Y4
B5 / V8 / AD22
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)
PRODUCT PREVIEW
(1)
SIGNAL NAME
Table 2-24. Miscellaneous - Reserved Pins
SIGNAL NAME
DESCRIPTION
TYPE
BALL BOTTOM
(CBB Pkg.)
rsv01
Reserved pin. Leave unconnected
NA
AH20
Submit Documentation Feedback
TERMINAL DESCRIPTION
83
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
2.4.7
www.ti.com
General-Purpose IOs
Table 2-25. General-Purpose IOs Signals Description (1)
PRODUCT PREVIEW
(1)
(2)
84
SIGNAL NAME
DESCRIPTION
TYPE (2)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
gpio_0
General-purpose IO 0
IO
AF26
V16
gpio_1
General-purpose IO 1
IO
AF25
W15
gpio_2
General-purpose IO 2
IO
AH26
F3
gpio_3
General-purpose IO 3
IO
AG26
D3
gpio_4
General-purpose IO 4
IO
AE14
C3
gpio_5
General-purpose IO 5
IO
AF18
E3
gpio_6
General-purpose IO 6
IO
AF19
E4
gpio_7
General-purpose IO 7
IO
AE21
G3
gpio_8
General-purpose IO 8
IO
AF21
D4
gpio_9
General-purpose IO 9
IO
AF22
V12
gpio_10
General-purpose IO 10
IO
AG25
AE14
gpio_11
General-purpose IO 11
IO
AA11
Y15
gpio_12
General-purpose IO 12
IO
AF10
AB2
gpio_13
General-purpose IO 13
IO
AE10
AB3
gpio_14
General-purpose IO 14
IO
AF11
AC3
gpio_15
General-purpose IO 15
IO
AG12
AD4
gpio_16
General-purpose IO 16
IO
AH12
AD3
gpio_17
General-purpose IO 17
IO
AE13
AA3
gpio_18
General-purpose IO 18
IO
AE11
Y3
gpio_19
General-purpose IO 19
IO
AH9
AB1
gpio_20
General-purpose IO 20
IO
AF13
AE3
gpio_21
General-purpose IO 21
IO
AH14
AA2
gpio_22
General-purpose IO 22
IO
AF9
AA4
gpio_23
General-purpose IO 23
IO
AG9
V2
gpio_24
General-purpose IO 24
IO
AE7
AE4
gpio_25
General-purpose IO 25
IO
AF7
AF6
gpio_26
General-purpose IO 26
IO
AG7
AE6
gpio_27
General-purpose IO 27
IO
AH7
AF7
gpio_28
General-purpose IO 28
IO
AG8
AF9
gpio_29
General-purpose IO 29
IO
AH8
AE9
gpio_30
General-purpose IO 30
IO
AF24
AD7
gpio_31
General-purpose IO 31
IO
AA10
Y14
gpio_34
General-purpose IO 34
IO
N4
J2
gpio_35
General-purpose IO 35
IO
M4
H1
gpio_36
General-purpose IO 36
IO
L4
H2
gpio_37
General-purpose IO 37
IO
K4
G2
gpio_38
General-purpose IO 38
IO
T3
F1
gpio_39
General-purpose IO 39
IO
R3
F2
gpio_40
General-purpose IO 40
IO
N3
E1
gpio_41
General-purpose IO 41
IO
M3
E2
gpio_42
General-purpose IO 42
IO
L3
D1
gpio_43
General-purpose IO 43
IO
K3
D2
gpio_44
General-purpose IO 44
IO
H2
V1
NA in table stands for Not Applicable.
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
SIGNAL NAME
DESCRIPTION
TYPE (2)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
gpio_45
General-purpose IO 45
IO
K2
Y1
gpio_46
General-purpose IO 46
IO
P1
T1
gpio_47
General-purpose IO 47
IO
R1
U2
gpio_48
General-purpose IO 48
IO
R2
U1
gpio_49
General-purpose IO 49
IO
T2
P1
gpio_50
General-purpose IO 50
IO
W1
L2
gpio_51
General-purpose IO 51
IO
Y1
M2
gpio_52
General-purpose IO 52
IO
H3
AD1
gpio_53
General-purpose IO 53
IO
V8
A3
gpio_54
General-purpose IO 54
IO
U8
B6
gpio_55
General-purpose IO 55
IO
T8
B4
gpio_56
General-purpose IO 56
IO
R8
C4
gpio_57
General-purpose IO 57
IO
P8
B5
gpio_58
General-purpose IO 58
IO
N8
C5
gpio_59
General-purpose IO 59
IO
T4
N1
gpio_60
General-purpose IO 60
IO
G3
K2
gpio_61
General-purpose IO 61
IO
U3
J1
gpio_62
General-purpose IO 62
IO
H1
AC6
gpio_63
General-purpose IO 63
IO
L8
AC8
gpio_64
General-purpose IO 64
IO
K8
B3
gpio_65
General-purpose IO 65
IO
J8
C6
gpio_66
General-purpose IO 66
IO
D28
G25
gpio_67
General-purpose IO 67
IO
D26
K24
gpio_68
General-purpose IO 68
IO
D27
M25
gpio_69
General-purpose IO 69
IO
E27
F26
gpio_70
General-purpose IO 70
IO
AG22
AE21
gpio_71
General-purpose IO 71
IO
AH22
AE22
gpio_72
General-purpose IO 72
IO
AG23
AE23
gpio_73
General-purpose IO 73
IO
AH23
AE24
gpio_74
General-purpose IO 74
IO
AG24
AD23
gpio_75
General-purpose IO 75
IO
AH24
AD24
gpio_76
General-purpose IO 76
IO
E26
G26
gpio_77
General-purpose IO 77
IO
F28
H25
gpio_78
General-purpose IO 78
IO
F27
H26
gpio_79
General-purpose IO 79
IO
G26
J26
gpio_80
General-purpose IO 80
IO
AD28
AC26
gpio_81
General-purpose IO 81
IO
AD27
AD26
gpio_82
General-purpose IO 82
IO
gpio_83
General-purpose IO 83
IO
Y25
gpio_84
General-purpose IO 84
IO
AA26
gpio_85
General-purpose IO 85
IO
AB26
gpio_86
General-purpose IO 86
IO
G25
gpio_87
General-purpose IO 87
IO
H27
L26
gpio_88
General-purpose IO 88
IO
H26
M24
gpio_89
General-purpose IO 89
IO
H25
M26
gpio_90
General-purpose IO 90
IO
E28
F25
Submit Documentation Feedback
PRODUCT PREVIEW
Table 2-25. General-Purpose IOs Signals Description (continued)
AA25
L25
TERMINAL DESCRIPTION
85
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 2-25. General-Purpose IOs Signals Description (continued)
PRODUCT PREVIEW
86
SIGNAL NAME
DESCRIPTION
TYPE (2)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
gpio_91
General-purpose IO 91
IO
J26
N24
gpio_92
General-purpose IO 92
IO
AC27
AC25
gpio_93
General-purpose IO 93
IO
AC28
AB25
gpio_94
General-purpose IO 94
IO
A24
C23
gpio_95
General-purpose IO 95
IO
A23
D23
gpio_96
General-purpose IO 96
IO
C25
C25
gpio_97
General-purpose IO 97
IO
C27
C26
gpio_98
General-purpose IO 98
IO
C23
B23
gpio_99
General-purpose IO 99
I
AG17
AE16
gpio_100
General-purpose IO 100
I
AH17
AE15
gpio_101
General-purpose IO 101
IO
B24
A24
gpio_102
General-purpose IO 102
IO
C24
B24
gpio_103
General-purpose IO 103
IO
D24
D24
gpio_104
General-purpose IO 104
IO
A25
C24
gpio_105
General-purpose IO 105
IO
K28
P25
gpio_106
General-purpose IO 106
IO
L28
P26
gpio_107
General-purpose IO 107
IO
K27
N25
gpio_108
General-purpose IO 108
IO
L27
N26
gpio_109
General-purpose IO 109
IO
B25
D25
gpio_110
General-purpose IO 110
IO
C26
E26
gpio_111
General-purpose IO 111
IO
B26
E25
gpio_112
General-purpose IO 112
I
AG19
AD17
gpio_113
General-purpose IO 113
I
AH19
AD16
gpio_114
General-purpose IO 114
I
AG18
AE18
gpio_115
General-purpose IO 115
I
AH18
AE17
gpio_116
General-purpose IO 116
IO
P21
U18
gpio_117
General-purpose IO 117
IO
N21
R18
gpio_118
General-purpose IO 118
IO
R21
T18
gpio_119
General-purpose IO 119
IO
M21
R19
gpio_120
General-purpose IO 120
IO
N28 / T28
W19 / N19
gpio_121
General-purpose IO 121
IO
M27 / T25
U20 / L18
gpio_122
General-purpose IO 122
IO
N27 / R28
V19 / M19
gpio_123
General-purpose IO 123
IO
N26
M18
gpio_124
General-purpose IO 124
IO
N25 / T26
W18 / K18
gpio_125
General-purpose IO 125
IO
P28 / T27
V20 / N20
gpio_126
General-purpose IO 126
IO
D25 / P27
M20 / D26
gpio_127
General-purpose IO 127
IO
P26
P17
gpio_128
General-purpose IO 128
IO
R27
P18
gpio_129
General-purpose IO 129
IO
R25
P19
gpio_130
General-purpose IO 130
IO
AE2 / U28
Y20 / W10
gpio_131
General-purpose IO 131
IO
AG5 / U27
V18 / R10
gpio_132
General-purpose IO 132
IO
AH5
T10
gpio_133
General-purpose IO 133
IO
AH4
T9
gpio_134
General-purpose IO 134
IO
AG4
U10
gpio_135
General-purpose IO 135
IO
AF4
U9
gpio_136
General-purpose IO 136
IO
AE4
V10
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
SIGNAL NAME
DESCRIPTION
TYPE (2)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
gpio_137
General-purpose IO 137
IO
AH3
-
gpio_138
General-purpose IO 138
IO
AF3
-
gpio_139
General-purpose IO 139
IO
AE3
-
gpio_140
General-purpose IO 140
IO
AF6
-
gpio_141
General-purpose IO 141
IO
AE6
-
gpio_142
General-purpose IO 142
IO
AF5
-
gpio_143
General-purpose IO 143
IO
AE5
-
gpio_144
General-purpose IO 144
IO
AB26
Y24
gpio_145
General-purpose IO 145
IO
AB25
AA24
gpio_146
General-purpose IO 146
IO
AA25
AD22
gpio_147
General-purpose IO 147
IO
AD25
AD21
gpio_148
General-purpose IO 148
IO
AA8
L4
gpio_149
General-purpose IO 149
IO
AA9
R2
gpio_150
General-purpose IO 150
IO
W8
-
gpio_151
General-purpose IO 151
IO
Y8
H3
gpio_152
General-purpose IO 152
IO
AE1
-
gpio_153
General-purpose IO 153
IO
AD1
-
gpio_154
General-purpose IO 154
IO
AD2
-
gpio_155
General-purpose IO 155
IO
AC1
-
gpio_156
General-purpose IO 156
IO
Y21
U19
gpio_157
General-purpose IO 157
IO
AA21
V17
gpio_158
General-purpose IO 158
IO
V21
U17
gpio_159
General-purpose IO 159
IO
U21
T20
gpio_160
General-purpose IO 160
IO
T21
T19
gpio_161
General-purpose IO 161
IO
K26
P20
gpio_162
General-purpose IO 162
IO
W21
T17
gpio_163
General-purpose IO 163
IO
H18
F23
gpio_164
General-purpose IO 164
IO
H19
F24
gpio_165
General-purpose IO 165
IO
H20
H24
gpio_166
General-purpose IO 166
IO
H21
G24
gpio_167
General-purpose IO 167
IO
B23
A23
gpio_168
General-purpose IO 168
IO
AF15
C2
gpio_169
General-purpose IO 169
IO
U26
W20
gpio_170
General-purpose IO 170
IO
J25
J23
gpio_171
General-purpose IO 171
IO
AB3
P9
gpio_172
General-purpose IO 172
IO
AB4
P8
gpio_173
General-purpose IO 173
IO
AA4
P7
gpio_174
General-purpose IO 174
IO
AC2
R7
gpio_175
General-purpose IO 175
IO
AC3
R8
gpio_176
General-purpose IO 176
IO
AB1
R9
gpio_177
General-purpose IO 177
IO
AB2
T8
gpio_178
General-purpose IO 178
IO
AA3
W7
gpio_179
General-purpose IO 179
IO
Y2
W8
gpio_180
General-purpose IO 180
IO
Y3
U8
gpio_181
General-purpose IO 181
IO
Y4
V8
gpio_182
General-purpose IO 182
IO
V3
V9
Submit Documentation Feedback
TERMINAL DESCRIPTION
PRODUCT PREVIEW
Table 2-25. General-Purpose IOs Signals Description (continued)
87
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 2-25. General-Purpose IOs Signals Description (continued)
SIGNAL NAME
DESCRIPTION
TYPE (2)
BALL BOTTOM
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
gpio_183
General-purpose IO 183
IO
AE15
C1
gpio_184
General-purpose IO 184
IO
AF14
AB4
gpio_185
General-purpose IO 185
IO
AG14
AC4
gpio_186
General-purpose IO 186
IO
AE22
W11
gpio_188
General-purpose IO 188
IO
U25
W17
gpio_189
General-purpose IO 189
IO
V28
Y18
gpio_190
General-purpose IO 190
IO
V27
Y19
gpio_191
General-purpose IO 191
IO
V26
Y17
PRODUCT PREVIEW
88
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
2.4.8
SPRS599 – JUNE 2009
Power Supplies
SIGNAL NAME
DESCRIPTION
BALL BOTTOM
(CBB Pkg.)
BALL TOP
(CBB Pkg.)
BALL BOTTOM
(CBC Pkg.)
BALL TOP
(CBC Pkg.)
vdd_mpu_iva
ARM/IVA power
domain
Y9 / W9 / T9 / R9 /
M9 / L9 / J9 / Y10 /
U10 / T10 / R10 /
N10 / M10 / L10 /
J10 / Y11 / W11 /
K11 / J11 / W12 /
K13 / Y14 / K14 /
J14 / Y15 / W15 /
J15
NA
H7/ N7/ U7/ V7/ N8/
G9/ L9/ M9/ W9/ Y9/
M10/ P10/ K11/ U11/
V11/ Y11/ G12/ D13/
U13
NA
vdd_core
Core power domain
AC4 / J4 / H4 / D8 /
AE9 / D9 / D15 /
Y16 / AE18 / Y18 /
W18 / K18 / J18 /
AE19 / Y19 / U19 /
T19 / N19 / M19 /
J19 / Y20 / W20 /
V20 / U20 / P20 /
N20 / K20 / J20 /
D22 / D23 / AE24 /
M25 / L25 / E25
NA
M7/ T7/ Y8/ G11/ Y12/
D15/ M17/ G18/ H20/
R20/ AC21
NA
cap_vdd_wkup
Wakeup/EMU/memor
y domains, connect
capacitor
AA15
NA
NA
NA
bg_testout (2)
Used for band gap
test
U4
NA
D6
NA
vdds_dpll_dll
DLL IO power domain
(1.8 V): internal
connection to
PLL_VDDS, power
supply for 3PLL (1.8
V)
K15
NA
K13
NA
vpp
eFuse programmation
G1
NA
D5
NA
vdda_dac
Video DAC power
plane
V25
NA
V25
NA
vssa_dac
Video DAC ground
plane
Y26
NA
V24
NA
vdds
IO power plane
AD3 / AD4 / W4 /
AF8 / AE8 / AF16 /
AE16 / AF23 / AE23
/ F25 / F26 / AG27/
AE27/ AG20/ H28/
AG21
NA
G4/ M4/ T4/ Y4/ L7/
AC7/ D9/ AE10/ C11/
J15/ AC15/ A18/ J18/
AC18/ AD20/ E24/ L24/
T24/ W24/ AC24
-
vdds_mem
Memory IO power
plane
U1 / J1 / F1 / J2 / F2 AC5 / P1 / H1 / F23
/ R4 / B5 / A5 / AH6 / E1 / C23 / A4 / A7 /
/ B8 / A8 / B12 / A12
A10 / A15 / A18
/ D16 / C16 / B18 /
A18 / B22 / A22 /
G28 / C28
vdds_dpll_per
Peripheral DPLLs
power rail
AA16
NA
U14
NA
vdds_wkup_bg
For wakeup LDO and
VDDA (2 LDOs
SRAM and BG)
AA14
NA
W14
NA
(1)
(2)
PRODUCT PREVIEW
Table 2-26. Power Supplies Signals Description (1)
NA = Not Applicable.
For proper device operation, this pin must be left unconnected.
Submit Documentation Feedback
TERMINAL DESCRIPTION
89
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 2-26. Power Supplies Signals Description (continued)
SIGNAL NAME
DESCRIPTION
BALL BOTTOM
(CBB Pkg.)
BALL TOP
(CBB Pkg.)
BALL TOP
(CBC Pkg.)
G1/ K1/ R1/ W1/ B2/
H4/ N4/ R4/ W4/ AB5/
A6/ D7/ Y7/AE7/ A8/
G8/ D10/ G10/ L10/
N10/ Y10/ AC10/ C12/
D12/A13/ D14/ AD14/
K15/ Y16/ L17/ N17/
R17/ D18/ D20/G20/
E22/ AB22/ G23/ L23/
T23/ W23/ AF23/ B25/
K25/U25/ AD25
C1/ F1/ H2/ M2/ R2/
Y6/AA7/ Y11/ AA16/
W20/P20/ L21/ H20/
F20/ B14/A13/ A7
PRODUCT PREVIEW
vss
Ground
vdds_sram
SRAM LDOs
W16
NA
U12
NA
vdds_mmc1
MMC IO power
domain for CMD,
CLK, and DAT(0..3)
K25
NA
N23
NA
pbias_mmc1 (3)
MMC1 Pbias
NA
NA
N18
NA
vdds_mmc1a
Power supply for
MMC DAT [4..7]
P25
NA
P23
NA
MMC1a Pbias
pbias_mmc1a
(4)
AG2 / U2 / B2 / AG3
H2 / B18 / AC20 /
/ W3 / P3 / J3 / E3 / AB5 / AB14 / AB20 /
A3 / P4 / E4 / AG6 / P2 / F22 / E2 / C22 /
D7 / C7 / V9 / U9 /
B4 / B7 / B10 / B15
P9 / N9 / K9 / W10 /
V10 / P10 / K10 /
D10 / C10 / AF12 /
AE12 / Y12 / K12 /
J12 / Y13 / W13 /
J13 / D13 / C13 /
W14 / K16 / J16 /
Y17 / W17 / K17 /
J17 / W19 / V19 /
R19 / P19 / L19 /
K19 / D19 / C19 /
AF20 / AE20 / T20 /
R20 / M20 / L20 /
D21 / C22 / AC25 /
Y25 / W25 / AC26 /
R26 / L26 / A26 /
G27 / B27/ AA26/
M28/ AG16/ AH21=
BALL BOTTOM
(CBC Pkg.)
NA
NA
K23
NA
cap_vdd_sram_mp SRAM LDO
u_iva
capacitance for
VDDRAM1
V4
NA
N9 (2)
NA
cap_vdd_sram_cor SRAM LDO
e
capacitance for
VDDRAM2
L21
NA
K20 (2)
NA
pop_ddr_vdd_ft
POPed SDRAM
power
A15 / J28 / M1 /
AF28 / AE28
AA23 / Y23 / K1 /
H23 / A12
L1/AF13/AF17/AF18/A
20/U26/K26
J1/AA11/Y14/AA17/B1
6/P21/H21
pop_flash_vpp_ft
POPed flash vpp
AH13
AC11
AF13
AA11
pop_flash_vdd_ft
POPed flash power
N1 / AA1 / AF1 /
AH10 / AH15
AC8 / AC13 / AA1 /
U1 / L1
AF16/AF22/T2/Y2/AF8/
AF5
AA14/AA19/N2/T2/Y7/
AA6
pop_vss_ft
POPed devices
ground
AF15/AF21/AF24
AA13/Y17/Y19
(3)
(4)
90
B15 / J27 / M2 /
AB8 / AB13 / AA2 /
M26 / N2 / AA2 /
AA22 / U2 / L2 / K2 /
AF2 / AF27 / AG10 /
K22 / H22 / B12
AG15
The recommended configuration is pbias_mmc1 = vdds_mmc1.
The recommended configuration is pbias_mmc1a = vdds_mmc1a
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
2.4.9
SPRS599 – JUNE 2009
System and Miscellaneous Terminals
Table 2-27. System and Miscellaneous Signals Description
DESCRIPTION
TYPE (1)
BALL
BOTTOM
(CBB Pkg.)
BALL TOP
(CBB Pkg.)
BALL
BOTTOM
(CBC Pkg.)
BALL TOP
(CBC Pkg.)
sys_32k
32-kHz clock input
I
AE25
NA
AE20
-
sys_xtalin
Main input clock. Oscillator input or LVCMOS at
19.2, 13, or 12 MHz.
I
AE17
NA
AF19
-
sys_xtalout
Output of oscillator
O
AF17
NA
AF20
-
sys_altclk
Alternate clock source selectable for GPTIMERs
(maximum 54 MHz), USB (48 MHz), or
NTSC/PAL (54 MHz)
I
J25
NA
J23
-
sys_clkreq
Request from OMAP3525/30 device for system
clock (open source type)
IO
AF25
NA
W15
-
sys_clkout1
Configurable output clock1
O
AG25
NA
AE14
-
sys_clkout2
Configurable output clock2
O
AE22
NA
W11
-
sys_boot0
Boot configuration mode bit 0
I
AH26
NA
F3
-
sys_boot1
Boot configuration mode bit 1
I
AG26
NA
D3
-
sys_boot2
Boot configuration mode bit 2
I
AE14
NA
C3
-
sys_boot3
Boot configuration mode bit 3
I
AF18
NA
E3
-
sys_boot4
Boot configuration mode bit 4
I
AF19
NA
E4
-
sys_boot5
Boot configuration mode bit 5
I
AE21
NA
G3
-
sys_boot6
Boot configuration mode bit 6
I
AF21
NA
D4
-
sys_nrespwron
Power On Reset
sys_nreswarm
Warm Boot Reset (open drain output)
sys_nirq
I
AH25
NA
V13
-
IOD
AF24
NA
AD7
-
External FIQ input
I
AF26
NA
V16
-
sys_nvmode1
Indicates the voltage mode
O
AD26
NA
AD15
-
sys_nvmode2
Indicates the voltage mode
O
AE26
NA
W16
-
sys_off_mode
Indicates the voltage mode
O
AF22
NA
V12
-
sys_ndmareq0
External DMA request 0 (system expansion).
Level (active low) or edge (falling) selectable.
I
U8
NA
B6
-
sys_ndmareq1
External DMA request 1 (system expansion).
Level (active low) or edge (falling) selectable.
I
T8 / J8
NA
B4 / C6
-
sys_ndmareq2
External DMA request 2 (system expansion).
Level (active low) or edge (falling) selectable.
I
L3 / R8
NA
D1 / C4
-
sys_ndmareq3
External DMA request 3 (system expansion).
Level (active low) or edge (falling) selectable.
I
K3 / P8
NA
D2 / B5
-
sys_secure_
indicator
MSECURE transactions indicator
O
AG9
NA
V2
-
sys_drm_
msecure
MSECURE output
O
AF9
NA
AA4
-
sys_ipmcsws (2)
Reserved
AI
B1
NA
B1
-
sys_opmcsws (2)
Reserved
AO
A1
NA
A2
-
pop_int0_ft (3)
POP dedicated control signal
O
AG11
AB9
AF10
Y9
pop_int1_ft (3)
POP dedicated control signal
O
AH11
AC9
AE2
W2
pop_tq_temp_
sense_ft (3)
POP dedicated control signal
NA
AH16
AC14
AF14
AA12
(1)
(2)
(3)
PRODUCT PREVIEW
SIGNAL NAME
Type = Ball type for this specific function (I = Input, O = Output, Z = high-impedance, D = Open Drain, DS = Differential, A = Analog)
sys_ipmcsws and sys_opmcsws pins must be left unconnected.
Top feed-through pop_int0_ft, pop_int1_ft are routed as feed-through for loopback to a GPIO to detect the POP OneNAND die event
and respond accordingly. Top pop_tq_temp_sense_ft is routed as feed-through for loopback to a GPIO to monitor the temperature of the
POP DDR. Top pop_reset_rp_ft is typically looped back to sys_nreswarm to reset the flash memories when a warm reset event occurs
on the processor side.
Submit Documentation Feedback
TERMINAL DESCRIPTION
91
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 2-27. System and Miscellaneous Signals Description (continued)
SIGNAL NAME
DESCRIPTION
pop_reset_rp_ft ( POP dedicated control signal
3)
TYPE (1)
BALL
BOTTOM
(CBB Pkg.)
BALL TOP
(CBB Pkg.)
BALL
BOTTOM
(CBC Pkg.)
BALL TOP
(CBC Pkg.)
NA
AG13
AB11
-
AA5
PRODUCT PREVIEW
92
TERMINAL DESCRIPTION
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
3 ELECTRICAL CHARACTERISTICS
3.1 Power Domains
The OMAP3525 and OMAP3530 devices integrate enhanced features that dynamically adapt energy
consumption according to application needs and performance requirements.
PRODUCT PREVIEW
The OMAP3525 and OMAP3530 devices includes an enhanced power-management scheme based on:
• Nine independent functional voltage domains on chip partitioning
• Multiple voltage domains
• Voltage scaling support
• Enhanced memory retention support
• Optimized device off mode
• Centralized management of power, reset, and clock
The external power supplies of OMAP3525 and OMAP3530 are:
• vdd_mpu_iva for the ARM and IVA2.2 processors
• vdd_core for macros
• vdds for IO macros
• vdds_mem for memory macros
• vdds_sram for SRAM LDOs
• vdds_dpll_dll for DLL IO
• vdds_dpll_per for peripheral DPLLs
• vdds_wkup_bg for wakeup LDO and VDDA (2 LDOs: SRAM and BandGap)
• vdda_dac for video DAC
• vdds_mmc1 for MMC IO
• vpp for eFuse
The supply voltages are detailed in Table 3-3.
Figure 3-1 illustrates the power domains:
Submit Documentation Feedback
ELECTRICAL CHARACTERISTICS
93
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
vdd_mpu_iva
vdds_dpll_dll
DLL/DCDL
BandGap
vdds_wkup_bg
LDO3
1.0 V/1.2 V
WKUP
cap_vdd_wkup
BCK
MEM
cap_vdd_sram_mpu_iva
SRAM 1 LDO
0 V/1.0 V/1.2 V
PRODUCT PREVIEW
VDDS
LDO
in 1.8 V
out 1.2 V
vdds
SRAM1
ARRAY
DPLL_IVA
VDDS
MEM
vdds_mem
IVA2
LDO
in 1.8 V
out 1.2 V
EMU
MPU
DPLL_MPU
vdd_mpu_iva1 domain
vdds_sram
vpp
eFUSE
LDO
in 1.8 V
out 1.2 V
vdd_core
Core
SRAM2
ARRAY
cap_vdd_sram_core
DPLL_CORE
vdds_mmc1
vdds_mmc1a
SRAM 2 LDO
0 V/1.0 V/1.2 V
MMC1
LDO
HSDIVIDER
LDO
in 1.8 V
out 1.2 V
Periph1
tv_ref
(for capacitor)
DPLL4
vdds_dpll_per
LDO
vdda_dac
HSDIVIDER
Dual Video DAC
LDO
in 1.8 V
out 1.2 V
Periph2
DPLL5
vdd_core domain
OMAP Device
vss
vssa_dac
030-003
Figure 3-1. OMAP3525/30 Power Domains
This power domain segmentation switches off (or places in retention state) domains that are unused while
keeping others active. This implementation is based on internal switches that independently control each
power domain.
A power domain regular logic is attached to one of the device VDD supplies through a primary domain
switch. When the primary switch is open, most of the logic supply is off, resulting in a low-leakage state of
the domain. Embedded switches are implemented for all power domains except the wake-up domain. This
allows the domain to be powered off, if not being used, to give maximum power savings. For more
information, see the PRCM chapter of the OMAP35x Technical Reference Manual (TRM) [literature
number SPRUFA5].
All domain output signals at the interface between power domains are connected through isolation latch
cells. These cells ensure a proper electrical isolation between the domains and an appropriate interface
state at the domain boundaries.
94
ELECTRICAL CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
3.2 Absolute Maximum Ratings
The following table specifies the absolute maximum ratings over the operating junction temperature range
of OMAP commercial and extended temperature devices. Stresses beyond those listed under absolute
maximum ratings may cause permanent damage to the device. These are stress ratings only and
functional operation of the device at these or any other conditions beyond those indicated under
recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for
extended periods may affect device reliability.
PRODUCT PREVIEW
Notes:
• Logic functions and parameter values are not assured out of the range specified in the recommended
operating conditions.
• The OMAP3525 and OMAP3530 devices adhere to EIA/JESD22–A114, Electrostatic Discharge (ESD)
Sensitivity Testing Human Body Model (HBM). Minimum pass level for HBM is ±2 kV.
Table 3-1. Absolute Maximum Ratings Over Operating Junction Temperature Range
MIN
MAX
UNIT
vdd_mpu_iva
vdd_core
Supply voltage range for core macros
PARAMETER
–0.5
1.6
V
vdds
vdds_mem
Second supply voltage range for 1.8-V I/O macros
–0.5
2.25
V
vdds_mmc1
Supply voltage range for MMC1 CMD, CLK and
DAT[3:0] and for memory stick I/Os
1.8-V mode
–0.5
2.45
V
3.0-V mode
-0.5
3.50
vdds_vdds_mm
c1a
Second supply voltage range for =MMC1 DAT[7:4]
1.8-V mode
–0.5
2.45
3.0-V mode
-0.5
3.50
vdds_dpll_dll
vdds_dpll_per
Supply voltage for DLL DPLL
Supply voltage for Per DPLL
–0.5
2.10
V
vdds_sram
vdds_wkup_bg
Supply voltage for SRAM LDOs
Supply voltage for wakeup LDO and VDDA (2 LDOs SRAM and BG)
–0.5
2.25
V
VPAD
Voltage range
at PAD
Supply voltage range
for 1.8-V IOs
–0.54 (1)
2.34 (1)
Supply voltage range
for 3.0-V IOs
–0.45 (2)
3.45 (2)
–0.63 (1)
2.73 (1)
Crystal (xtalin/xtalout) (Balls AE17, AF17)
–0.5
2.71
Other balls
–0.5
vddsx (3) + 0.5
MMC1, MS (Balls N28, M27, N27,
N26, N25, P28)
MMC1(Balls P27, P26, R27, R25)
I2C1, I2C2, I2C3, I2C4 (Balls K21, J21, AF15, AE15, AF14,
AG14, AD26, AE26)
vdda_dac
Supply voltage range for analog macros
VESD
ESD stress
voltage (4)
–0.5
HBM (human body model) (5)
CDM (charged device model)
(6)
V
2.43
V
2000
V
500
IIOI
Current-pulse injection on each I/O pin (7)
200
mA
Iclamp
Clamp current for an input or output
–20
20
mA
Tstg
Storage temperature range (8)
–65
150
°C
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
For a maximum time of 30% time period.
For a maximum time of 15% time period.
) Depending on ball, vddsx can be vdds_mem or vdds.
Electrostatic discharge (ESD) to measure device sensitivity/immunity to damage caused by electrostatic discharges into the device.
JEDEC JESD22–A114 D with the following exception-no connect pins are not stressed. 2000V Human Body Model (HBM)
JEDEC JESD22–C101C with the following exception-split out pin groupings to eliminate cumulative stress effect
Each device is tested with I/O pin injection of 200 mA with a stress voltage of 1.5 times maximum vdd at room temperature.
These temperatures extreme do not simulate actual operating conditions but exaggerate any faults that might exist.
Submit Documentation Feedback
ELECTRICAL CHARACTERISTICS
95
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
This section includes the maximum power consumption for each power domain (core, IVA2, etc.).
Table 3-2 summarizes the power consumption at the ball level.
Table 3-2. Estimated Maximum Power Consumption At Ball Level
PARAMETER
Signal
Description=
vdd_mpu_iva
Processors
vdd_core
PRODUCT PREVIEW
vdd_core
Core
Core
MAX
( T = 90°C)
MAX
( T = 105°C)
UNIT
OMAP3525/30 (SmartReflex™ Enabled)
1137
1209
mA
OMAP35=25/30 (SmartReflex™
Disabled)
1384
1520
mA
OMAP3530 (SmartReflex™ Enabled)
433
490
mA
OMAP3530 (SmartReflex™ Disabled)
509
599
mA
OMAP3525 (SmartReflex™ Enabled)
328
382
mA
OMAP3525(SmartReflex™ Disabled)
378
485
mA
OMAP3515 (SmartReflex™ Enabled)
433
490
mA
OMAP3515 (SmartReflex™ Disabled)
509
599
mA
OMAP3503 (SmartReflex™ Enabled)
328
382
mA
OMAP3503(SmartReflex™ Disabled)
378
485
mA
vdda_dac
Video DAC
65
65
mA
vdss_dpll_dll
DLL + DPLL MPU, DSP, and core
25
25
mA
vdds_dpll_per
DPLL peripheral 1 and peripheral 2
15
15
mA
vdds_sram
Processors and core LDO (LDO1 and LDO2)
41
41
mA
vdds_wkup_bg
Bandgap, wakeup + LDO, EMU off
6
6
mA
vdds_mem
Standard I/Os (SDRC+GPMC)
37
37
vdds
Standard I/Os (all excluding SDRC and GPMC)
63
63
mA
vdds_mmc1
MMC I/O (1)
20
20
mA
vdds_mmc1a
Power supply for MMC IO [DAT4 – DAT7]
2
2
mA
vpp
eFuse
50
50
mA
(1)
96
MMC card and I/O card are not included.
ELECTRICAL CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
3.3 Recommended Operating Conditions
All OMAP3525 and OMAP3530 modules are used under the operating conditions contained in Table 3-3.
Note:
To avoid significant device degradation for commercial temperature OMAP3530/OMAP3525 devices
(–40°C ≤ TJ ≤ 90°C), the device power-on hours (POH) must be limited to one of the following:
• 100K total POH when operating across all OPPs and keeping the time spent at OPP5 to less than 23K
POH.
• 50K total POH when operating exclusively at OPP5.
• 44K total POH with no restrictions to the proportion of these POH at operating points OPP1 - OPP5.
Table 3-3. Recommended Operating Conditions
PARAMETER
DESCRIPTION
VDD1
(vdd_mpu_iva),
SmartReflex
Disabled
OMAP processor logic supply
VDD2 (vdd_core) OMAP core logic supply (1)
SmartReflex
Disabled
vdds
MIN
NOM
MAX
UNIT
OPP5: Overdrive
VDD1NOM (0.05*VDD1NOM)
1.35
VDD1NOM +
(0.05*VDD1NOM)
V
OPP4: Mid-Overdrive
VDD1NOM (0.05*VDD1NOM)
1.27
VDD1NOM +
(0.05*VDD1NOM)
V
OPP3: Nominal
VDD1NOM (0.05*VDD1NOM)
1.20
VDD1NOM +
(0.05*VDD1NOM)
V
OPP2: Low-Power
VDD1NOM (0.05*VDD1NOM)
1.05
VDD1NOM +
(0.05*VDD1NOM)
V
OPP1: Ultra Low-Power
VDD1NOM (0.05*VDD1NOM)
0.975
VDD1NOM +
(0.05*VDD1NOM)
V
OPP3: Nominal
VDD2NOM (0.05*VDD2NOM)
1.15
VDD2NOM +
(0.05*VDD2NOM)
V
OPP2: Low-Power
VDD2NOM (0.05*VDD2NOM)
1.05
VDD2NOM +
(0.05*VDD2NOM)
V
OPP1: Ultra Low-Power
VDD2NOM (0.05*VDD2NOM)
0.975
VDD2NOM +
(0.05*VDD2NOM)
V
1.71
1.8
1.91
V
90
mVpp
1.71
1.8
1.89
V
90
mVpp
Supply voltage for I/O macros
Noise (peak-peak)
vdds_mem
Supply voltage for memory I/O macros
Noise (peak-peak)
vdds_mmc1
Supply voltage range for MMC1
CMD, CLK and DAT[3:0] and for
memory stick I/Os
1.8-V mode
1.71
1.8
1.89
V
3.0-V mode
2.7
3.0
3.3
V
Noise (peak-peak)
1.8-V mode
90
mVpp
3.0-V mode
vdds_mmc1a
150
Second supply voltage range for
SIM I/Os and MMC1 DAT[7:4]
1.8-V mode
1.71
1.8
1.89
3.0-V mode
2.7
3.0
3.3
Noise (peak-peak)
1.8-V mode
90
3.0-V mode
vdds_wkup_bg
Wakeup LDO
Analog supply voltage for video DAC
Noise (peak-peak)
(1)
1.71
For a frequency of 0 to
100 kHz
(For a frequency < 100
kHz, decreases 20dB /
sec)
mVpp
150
1.71
1.8
Noise (peak-peak)
vdda_dac
V
1.8
1.89
V
50
mVpp
1.89
V
30
mVpp
Core logic includes interconnect, graphics processor, and peripherals.
Submit Documentation Feedback
ELECTRICAL CHARACTERISTICS
97
PRODUCT PREVIEW
Note: Logic functions and parameter values are not assured out of the range specified in the
recommended operating conditions.
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 3-3. Recommended Operating Conditions (continued)
PARAMETER
DESCRIPTION
MIN
NOM
MAX
vdds_sram
SRAM LDOs
1.71
1.8
1.89
V
50
mVpp
Noise (peak-peak)
vdds_dpll_per
Peripherals DPLLs power supply
1.71
1.8
Noise (peak-peak)
vdds_dpll_dll
Supply voltage for DPLLs I/Os
VDDS for serial camera interface
VDDS for serial camera interface
PRODUCT PREVIEW
Dedicated VDDS for SDI IO cell
V
30
mVpp
1.71
1.8
1.89
V
25
mVpp
1.71
1.8
1.89
V
20
mVpp
1.71
1.8
1.89
V
20
mVpp
Noise (peak-peak)
vdds_dsi
1.8-V analog supply pad for the module
Noise (peak-peak)
vpp (2)
eFuse programming
vss
Ground
vssa_dac
Dedicated ground for DAC
TJ
Operating junction temperature (3)
(2)
(3)
98
mVpp
1.89
Noise (peak-peak) for a frequency from dc to 10 MHz
vdds_sdi
V
36
1.8
Noise (peak-peak)
vdds_csib
1.89
1.71
Noise (peak-peak)
vdds_csi2
UNIT
1.89
V
For a frequency from 0
to 10 MHz
1.71
1.8
50
mVpp
For any frequency > 400
MHz
2.5
V
0
0
0
V
0
0
0
V
-40
-
90
°C
It is recommended not to connect this pin. It is just used for eFuse programming on package unit.
For proper device operation, Tj must be within the specified range.
ELECTRICAL CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
3.4 DC Electrical Characteristics
Table 3-4 summarizes the DC electrical characteristics.
Table 3-4. DC Electrical Characteristics
PARAMETER
MIN
NOM
MAX
UNIT
LVCMOS Pin Buffers - CBB: N28, M27, N27, N26, N25, P28,P27, P26, R27, R25/ CBC: N19, L18, M19, M18, K18, N20, M20, P17, P18,
P19
High-level input voltage
VIL
Low-level input voltage
High-level output voltage (2)
VOH
vdds (1) = 1.8 V
0.65 × vdds (1)
vdds + 0.3
vdds (1) = 3.0 V
0.625 ×
vdds (1)
vdds + 0.3
vdds (1) = 1.8 V
–0.3
0.35 × vdds
vdds (1) = 3.0 V
–0.3
0.25 × vdds
vdds (1) = 1.8 V
vdds (1) – 0.2
vdds
Low-level output voltage (2)
VOL
tT
Input transition time (rise time, tR or fall time,
tF evaluated between 10% and 90% at PAD)
(1)
= 3.0 V
V
V
V
0.75 × vdds (1)
vdds (1) = 1.8 V
0.2
vdds (1) = 3.0 V
0.125 ×
vdds (1)
Normal Mode
10
High-Speed
Mode
3
PRODUCT PREVIEW
VIH
V
ns
LVDS/CMOS Pin Buffers - CBB: AG19, AH19, AG18, AH18, AG17, AH17/ CBC: AE16, AE15, AD17, AE18, AD16, AE17
Low-Power Receiver (LP-RX)
VIL
Low-level input threshold
VIH
High-level input threshold
800
mV
Input hysteresis
25
mV
VHYS
500
mV
Ultralow-Power Receiver (ULP-RX)
VIL-ULPM
VIH
Low-level input threshold, ULPM
300
High-level input threshold
mV
880
mV
High-Speed Receiver (HS-RX)
VIDTH
Differential input high threshold
VIDTL
Differential input low threshold
–70
mV
Maximum differential input voltage
270
mV
VIDMAX
VILHS
Single-ended input low voltage
VIHHS
Single-ended input high voltage
VCMRXDC
70
mV
–40
Common-mode voltage
mV
70
460
mV
330
mV
1200
mV
LVDS/CMOS Pin Buffers - CBB: K28, L28, K27, L27/ CBC: P25, P26, N25, N26
VCM
Input common mode voltage range
600
Vos
Receiver Input dc offset
–20
Vid
Receiver input differential amplitude
70
Input transition time (rise time, tR or fall time, tF evaluated
between 10% and 90% at PAD)
267
tT
900
100
20
mV
200
mV (3)
533
ps
LVDS/CMOS Pin Buffers - CBB: AG22, AH22, AG23, AH23, AG24, AH24/ CBC: AE21, AE22, AE23, AE24, AD23, AD24
High-Speed Transceiver (HS-TX)
VOHHS
HS output high voltage
360
mV
|VOD|
HS transmit differential voltage
140
200
270
mV
VCMTX
HS transmit static common mode voltage
150
200
250
mV
50
mV
Low-Power Transceiver (LP-TX)
VOL
(1)
(2)
(3)
Thevenin output low level
–50
This global value may be overridden on a per interface basis if another value is explicitly defined for that interface (for example, I2C).
With 100 µA sink / source current at vddsxmin.
Corresponds to peak-to-peak values: minimum = 140 mVpp; nominal = 200 mVpp; maximum = 400 mVpp.
Submit Documentation Feedback
ELECTRICAL CHARACTERISTICS
99
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 3-4. DC Electrical Characteristics (continued)
PARAMETER
VOH
MIN
NOM
MAX
UNIT
1.1
1.2
1.3
V
550
mV
Thevenin output high level
Low-Power Receiver (LP-RX)
VIL
Low-level input threshold
VIH
High-level input threshold
880
mV
Input hysteresis
25
mV
VHYST
Ultralow-Power Receiver (ULP-RX)
VIL-ULPS
VIH
Low-level input threshold, ULPM
300
High-level input threshold
880
mV
mV
subLVDS/CMOS Pin Buffers - CBB: AA27, AA28, AB27, AB28, AD27, AD28, AC28, AC27/ CBC: AC26, AD26, AA25, Y25, AA26,
AB26, AC25, AB25
Vod
PRODUCT PREVIEW
Vocm
tT
Differential voltage range @ RL = 100 Ω
100
150
200
mV
Common mode voltage range
0.8
0.9
1
V
Input transition time (Vod rise time, tR or Vod fall time, tF
evaluated between 20% and 80% at PAD)
200
500
ps
vdds + 0.3
V
0.35 × vdds
V
Standard LVCMOS Pin Buffers
VIH (4)
High-level input voltage (Standard LVCMOS)
0.65 × vdds
(4)
Low-level input voltage (Standard LVCMOS)
- 0.3
VIL
VHYS
Hysteresis voltage at an input (5)
VOH
High-level output voltage, driver enabled,
pullup or pulldown disabled
0.1
IO = IOH or
IO = –2 mA
vdds – 0.45
IO = IOH < |–2|
mA
vdds – 0.40
VOL
Low-level output voltage with , driver enabled, IO = IOL or
pullup or pulldown disabled
IO = 2 mA
tT
Input transition time (rise time, tR or fall time, tF evaluated
between 10% and 90% at PAD)
II
Input current with VI = VI max
Off-state output current for output in high impedance with driver
only, driver disabled
V
0.45
IO = IOL < 2 mA
IOZ
IZ
V
0.40
10 (1)
ns
–1
1
µA
–20
20
µA
20
µA
0
Off-state output current for output in high impedance with
driver/receiver/pullup only, driver disabled, pullup not inhibited
–100
Off-state output current for output in high impedance with
driver/receiver/pulldown only, driver disabled, pulldown not
inhibited
100
Total leakage current through the PAD connection of a
driver/receiver combination that may include a pullup or pulldown.
The driver output is disabled and the pullup or pulldown is
inhibited.
V
– 20
LVCMOS Open-Drain Pin Buffers Dedicated to I2C IOs - CBB: K21, J21, AF14, AG14, AF15, AE15, AD26, AE26/ CBC: J25, J24, C2,
C1, AB4, AC4, AD15, W16, A21, C21
(4)
(5)
100
VIH
High level input voltage
0.7 x vdds
vdds + 0.5
V
VIL
Low level input voltage
- 0.5
0.3 x vdds
V
VOL
Low-level output voltage open-drain at 3-mA sink current
0
0.2 x vdds
V
- 10
10
µA
10
pF
II
Input current at each I/O pin with an input voltage between 0.1 x
vdds to 0.9 x vdds
CI
Capacitance for each I/O pin
VIH/VIL (Standard LVCMOS) parameters are applicable for sys_altclk input clocks.
Vhys is the magnitude of the difference between the positive-going threshold voltage VT+ and the negative-going voltage VT-.
ELECTRICAL CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 3-4. DC Electrical Characteristics (continued)
PARAMETER
TOF
Output fall time from VIHmin to VILmax with a
bus capacitance CB from 10 pF to 400 pF
MIN
Fast mode
20 + 0.1CB
Standard mode
NOM
MAX
UNIT
250
ns
250
Output fall time with a capacitive load from 10 High-speed mode
pF to 100 pF at 3-mA sink current
10
40
Output fall time with a capacitive load of 400
pF at 3-mA sink current
20
80
Output fall time with a capacitive load of 40
pF (for CBUS compatibility)
20
VIH
High-level input voltage
0.7 x vdds
vdds + 0.5
V
VIL
Low-level input voltage
- 0.5
0.3 x vdds
V
VOH
High-level output voltage at 4-mA sink current
VOL
Low-level output voltage at 4-mA sink current
Submit Documentation Feedback
vdds - 0.45
PRODUCT PREVIEW
LVCMOS Open-Drain Pin Buffers Dedicated in GPIO mode - CBB: AF15, AE15, AF14, AG14, AD26, AE26 / CBC: C2, C1, AB4, AC4,
AD15, W16, A21, C21
V
0.45
ELECTRICAL CHARACTERISTICS
V
101
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
3.5 Core Voltage Decoupling
For module performance, decoupling capacitors are required to suppress the switching noise generated
by high frequency and to stabilize the supply voltage. A decoupling capacitor is most effective when it is
close to the device because this minimizes the inductance of the circuit board wiring and interconnects.
Table 3-5 summarizes the power supplies decoupling characteristics.
Table 3-5. Core Voltage Decoupling Characteristics
MIN
TYP
MAX
UNIT
Cvdd_mpu_iva (1)
PARAMETER
50
100
120
nF
Cvdd_core (1)
50
100
120
nF
Cvdds_sram
100
nF
PRODUCT PREVIEW
Ccap_vdd_sram_mpu_iva
0.7
1.0
1.3
µF
Ccap_vdd_sram_core
0.7
1.0
1.3
µF
Ccap_vdd_wkup
0.7
1.0
1.3
µF
Cvdds_wkup_bg
100
nF
Cvdds_dpll_dll
100
nF
Cvdds_dpll_per
100
nF
Cvdda_dac
100
nF
Cvdds_mmc1
100
nF
Cvdds_mmca
100
nF
Cvdds
100
nF
Cvdds_mem
100
nF
(1)
102
1 capacitor per 2 to 4 balls
ELECTRICAL CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Figure 3-2 illustrates an example of power supply decoupling.
OMAP Device
vdds_sram
Cvdda_dac
vdds_sram
vdda_dac
Cvdds_sram
Video DAC
vssa_dac
SRAM_LDO1
cap_vdd_sram_mpu_
iva
cap_vdd_sram_core
SRAM_LDO2
BG
Ccap_vdd_sram_mpu_iva
Ccap_vdd_sram_core
vdds_wkup_bg
PRODUCT PREVIEW
vdda_dac
vdds_wkup_bg
Cvdds_wkup_bg
WKUP_LDO
vdds_mmc1
vdds_mmc1
cap_vdd_wkup
MMC IOs
Cvdds_mmc1
Cvdd_wkup
DPLL_MPU
vdds_dpll_dll
vdds_dpll_dll
DPLL_IVA
Cvdds_dpll_dll
DPLL_CORE
vdds_dpll_per
vdds_dpll_per
DPLL5
Cvdds_dpll_per
DPLL4
vdd_mpu_iva
Cvdd_mpu_iva
Vdd_core
Vdd_mpu_iva
MPU
Core
vdd_core
Cvdd_core
VSS
030-004
(1)
Decoupling capacitors must be placed as closed as possible to the power ball. Choose the ground located closest to the power pin
for each decoupling capacitor. Place the decoupling capacitor Ci in a group of 1, 2, or 3 balls; the total must be equal to the
decoupling requirement. In case you interconnect powers, first insert the decoupling capacitor and then interconnect the powers.
(2)
The decoupling capacitor value depends on the board characteristics.
Figure 3-2. Power Supply Decoupling
Submit Documentation Feedback
ELECTRICAL CHARACTERISTICS
103
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
3.6 Power-up and Power-down
This section provides the timing requirements for the OMAP3525 and OMAP3530 hardware signals.
3.6.1
Power-up Sequence
PRODUCT PREVIEW
The following steps give an example of power-up sequence supported by the OMAP3525 and OMAP3530
devices.
1. vdds and vdds_mem are ramped ensuring a level on the IO domain and sys_nrespwron must be low.
At the same time, vdds_sram and vdds_wkup_bg can also be ramped.
2. Once vdds_wkup_bg rail is stabilized, vdd_core can be ramped.
3. Once vdd_core is stabilized, then vdd_mpu_iva can be ramped.
4. vdds_dpll_dll and vdds_dpll_per rails can be ramped at any time during the above sequence.
5. sys_nrespwron can be released as soon as the vdds_pll_dll rail is stabilized, and sys_xtalin and
sys_32k clocks are stabilized.
6. During the whole sequence above, sys_nreswarm is held low by OMAP3525 and OMAP3530.
sys_nreswarm is released after the eFuse check has been performed; that is, after sys_nrespwron is
released.
7. The other power supplies can then be turned on upon software request.
Figure 3-3 shows the power-up sequence.
Notes:
• If an external square clock is provided, it could be started after sys_nrespwron release provided it is
clean: no glitch, stable frequency, and duty cycle.
• Higher voltage can be used. See the operating condition addendum for values. OPP voltage values
may change following the silicon characterization result.
104
ELECTRICAL CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
1.8 V
vdds_wkup_bg
1.8 V
vdds_mem,vdds,
vdds_sram
ldo3 (internal)
(2)
vdd_core
(2)
vdd_mpu_iva
1.8 V
vdds_dpll_dll
1.8 V
PRODUCT PREVIEW
vdds_dpll_per
sys_32k
sys_nrespwron
sys_xtalin
EFUSE.RSTPWRON(internal)
sys_nreswarm
vdds_mmc1,vdds_sim,
vdda_dac(1), vpp
030-005
Figure 3-3. Power-up Sequence
Submit Documentation Feedback
ELECTRICAL CHARACTERISTICS
105
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
3.6.2
www.ti.com
Power-down Sequence
The OMAP3525 and OMAP3530 devices proceed with the power-down sequence shown in Figure 3-4.
sys_nrespwron
vdds_mmc1,
vdda_dac,
vdds_wkup_bg
PRODUCT PREVIEW
vdd_mpu_iva
vdd_core
vdds_mem, vdds,
vdds_sram
vdds_dpll_dll,
vdds_dpll_per
sys_32kin
sys.clk
030-006
Figure 3-4. Power-down Sequence
106
ELECTRICAL CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
4 CLOCK SPECIFICATIONS
The OMAP3525 and OMAP3530 devices have three external input clocks, a low frequency (sys_32k), a
high frequency (sys_xtalin), and an optional (sys_altclk). The OMAP3525 and OMAP3530 devices haver
two configurable output clocks, sys_clkout1 and sys_clkout2.
Figure 4-1 shows the interface to the external clock sources and clock outputs.
OMAP
sys_32k
Power IC
sys_clkout1
To Peripherals (From OSC_CLK: 12, 13,16.8, 19.2, 26, or
38.4 MHz)
sys_clkout2
To Peripherals (From OSC_CLK: 12,13, 16.8, 19.2, 26, or
38.4 MHz, core_clk [DPLL, up to 332 MHz], DPLL-96 MHz
or DPLL-54 MHz outputs with a divider of 1, 2, 4, 8, or 16)
sys_xtalout
To Quartz (Oscillator output) or Unconnected
To Quartz (Oscillator input) or Square Clock
sys_xtalin
sys_clkreq
Clock Request. To Square Clock Source or from Peripherals
sys_xtalout
sys_xtalout
Oscillator
is Used
Unconnected
Oscillator
is Bypassed
sys_xtalin
sys_clkreq
PRODUCT PREVIEW
Alternate Clock Source Selectable (54, 48 MHz or other [up
to 59 MHz])
sys_altclk
GPin
sys_xtalin
sys_clkreq
Square
Clock
Source
030-007
Figure 4-1. Clock Interface
The OMAP3525 and OMAP3530 devices operation requires the following three input clocks:
• The 32-kHz frequency is used for low frequency operation. It supplies the wake-up domain for
operation in lowest power mode (off mode). This clock is provided through the sys_32k pin.
• The system alternative clock can be used (through the sys_altclk pin) to provide alternative 48 or 54
MHz or other clock source (up to 59 MHz).
• The system clock input (12, 13, 16.8, 19.2, 26, or 38.4 MHz) is used to generate the main source clock
of the OMAP3525 and OMAP3530 devices. It supplies the DPLLs as well as several OMAP modules.
The system clock input can be connected to either:
– A crystal oscillator clock managed by sys_xtalin and sys_xtalout. In this case, the sys_clkreq is
used as an input (GPIN).
– A CMOS digital clock through the sys_xtalin pin. In this case, the sys_clkreq is used as an output to
request the external system clock.
The OMAP3525 and OMAP3530 outputs externally two clocks:
• sys_clkout1 can output the oscillator clock (12, 13, 16.8, 19.2, 26, or 38.4 MHz) at any time. It can be
controlled by software or externally using sys_clkreq control. When the device is in the off state, the
sys_clkreq can be asserted to enable the oscillator and activate the sys_clkout1 without waking up the
device. The off state polarity of sys_clkout1 is programmable.
Submit Documentation Feedback
CLOCK SPECIFICATIONS
107
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
•
www.ti.com
sys_clkout2 can output the oscillator clock (12, 13, 16.8, 19.2, 26, or 38.4 MHz), core_clk (core DPLL
output), 96 MHz or 54 MHz. It can be divided by 2, 4, 8, or 16 and its off state polarity is
programmable. This output is active only when the core power domain is active.
For more information on the OMAP3525 and OMAP3530 Applications Processors clocking structure, see
the Power, Reset, and Clock management (PRCM) chapter of the OMAP35x Applications Processor TRM
(literature number SPRUFA5).
4.1 Input Clock Specifications
The clock system accepts three input clock sources:
• 32-kHz digital CMOS clock
• Crystal oscillator clock or CMOS digital clock (12, 13, 16.8, 19.2, 26, or 38.4 MHz)
• Alternate clock (48 or 54 MHz, or other up to 59 MHz)
PRODUCT PREVIEW
4.1.1
Clock Source Requirements
Table 4-1 illustrates the requirements to supply a clock to the OMAP3525 and OMAP3530 devices.
Table 4-1. Clock Source Requirements
PAD
CLOCK FREQUENCY
sys_xtalout
sys_xtalin
sys_altclk
4.1.2
STABILITY
DUTY CYCLE
JITTER
TRANSITION
Crystal
± 25 ppm
na
na
na
12, 13, 16.8, 19.2, 26, or 38.4 MHz Square
± 50 ppm
45% to 55%
< 1%
< 3.6 ns
± 50 ppm
40% to 60%
< 1%
< 5 ns
12, 13, 16.8, or 19.2 MHz
48,54 or up to 59 MHz
External Crystal Description
To supply a 12-, 13-, 16.8-, or 19.2-MHz clock to the OMAP3525 and OMAP3530, an external crystal can
be connected to the sys_xtalin and sys_xtalout pins. Figure 4-2 describes the crystal implementation.
OMAP Device
sys_xtalin
sys_xtalout
Optional Rbias
Optional Rd
Cf2
Cf1
Crystal
030-008
Figure 4-2. Crystal Implementation(1)(2)(3)(4)
(1) On the PCB, the oscillator components (crystal, foot capacitors, optional Rbias and Rd) must be located close to the package. All these
components must be routed first with the lowest possible number of board vias.
(2) An optional resistor Rd can be added in series with the crystal to debug or filter the harmonics; a footprint must be reserved on the PCB
for use with 10-MHz crystals and feature low-drive levels.
(3) A 120-kΩ internal bias resistor Rbias is used. The feedback resistor Rbias provides negative feedback to the oscillator to put it in the
108
CLOCK SPECIFICATIONS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
linear operating region; thus oscillation begins when power is applied.
(4) Cf1 and Cf2 represent the total capacitance of the PCB and components excluding the power IC and crystal. Their values in fact depend
on the crystal datasheet. In the datasheet of the crystal, the frequency is specified at a specific load capacitor value which is the
equivalent capacitor of the two capacitors Cf1 and Cf2 connected to sys_xtalin and sys_xtalout. The frequency of the oscillations
depends on the value of the capacitors (10 pF corresponds to a load capacitor of 5 pF for the crystal).
The crystal must be in the fundamental mode of operation and parallel resonant. Table 4-2 summarizes
the required electrical constraints.
Table 4-2. Crystal Electrical Characteristics
DESCRIPTION
Parallel resonance crystal frequency (1)
CL
Load capacitance for crystal parallel resonance
ESR12&13
Crystal ESR (12 and 13 MHz) (1)
TYP
Crystal ESR (16.8 and 19.2 MHz)
Co
Crystal shunt capacitance
Lm
Crystal motional inductance for fp = 12 MHz
Cm
Crystal motional capacitance
DL
Crystal drive level
Rbias
Internal bias resistor
MAX
12, 13, 16.8, or 19.2
5
(1)
ESR16.8&19.2
(1)
MIN
1
5
30
120
UNIT
MHz
20
pF
80
Ω
50
Ω
7
pF
35
mH
100
fF
0.5
mW
300
kΩ
Measured with the load capacitance specified by the crystal manufacturer. This load is defined by the foot capacitances tied in series. If
CL = 20 pF, then both foot capacitors will be Cf1 = Cf2 = 40 pF. Parasitic capacitance from package and board must also be taken in
account.
2
ESR=Rm 1+
C0
CL
When selecting a crystal, the system design must take into account the temperature and aging
characteristics of a crystal versus the user environment and expected lifetime of the system. Table 4-3
details the switching characteristics of the oscillator and the input requirements of the 12-, 13-, 16.8-, or
19.2-MHz input clock.
Table 4-3. Base Oscillator Switching Characteristics
NAME
DESCRIPTION
fp
Oscillation frequency
tsX
Start-up time (1) (2)
(1)
(2)
MIN
TYP
12, 13, 16.8, or 19.2
8
MAX
UNIT
MHz
ms
Start-up time defined as time interval between oscillator control signal release and sys_xtalin amplitude at 50% of its final value (vdd and
vdds supplies ramped and stable). The start-up time can be performed in function of the crystal characteristics. 8-ms minimum only
when using the internal oscillator; it is programmable after reset for wake-up. At power-on reset, the time is adjustable using the pin
itself. The reset must be released when the oscillator or clock source is stable. Before the processor boots up and the oscillator is set to
bypass mode, there is a start-up time when the internal oscillator is in application mode and receives a square wave. The start-up time
in this case is about 100 µs.
For fp = 12 or 13 MHz: CL = 13.5 pF and Lm = 35 mH
For fp = 16.8 or 19.2 MHz: CL = 9 pF and Lm = 15 mH
4.1.3
Clock Squarer Input Description
A 1.8-V CMOS clock squarer is another source that can supply a 12-, 13-, 16.8-, 19.2-, 26-, or 38.4-MHz
clock to the OMAP3525 and OMAP3530. An analog clock squarer function converts a low-amplitude
sinusoidal clock into a low-jitter digital signal. It can be connected to input pin sys_xtalin (sys_xtalout
unconnected). Figure 4-3 illustrates the effective connections.
Submit Documentation Feedback
CLOCK SPECIFICATIONS
109
PRODUCT PREVIEW
NAME
fp
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
OMAP Device
Oscillator
In Bypass Mode
sys_clkreq
sys_xtalin
sys_xtalout
Clock Squarer Source
PRODUCT PREVIEW
030-010
Figure 4-3. Clock Squarer Source Connection
To connect a digital clock source, the oscillator is configured in bypass mode(1). The sys_clkreq(2) pin is an
OMAP3525 and OMAP3530 output which can be used to switch the clock source on or off.
1. Pin sys_xtalout is not used in this mode. It must be left unconnected.
2. Once the system is powered up, the clock squarer source or crystal oscillator source can be applied;
however, this affects the performance. The input source must be configured after power up to attain
the desired system requirements.
Table 4-4 summarizes the electrical constraints required by the clock squarer used in the fundamental
mode of operation.
Note: There is an internal pulldown resistor of 5k Ω (max.) on sys_xtalin when the oscillator is disabled.
Table 4-4. Base Oscillator Electrical Characteristics (in Bypass Mode)
NAME
DESCRIPTION
MIN
TYP
MAX
UNIT
f
Frequency (1)
12, 13, 16.8, 19.2, 26, or 38.4
MHz
tsX
Start-up time
= (2)
ms
IDDQ
Current consumption on VDDS when sys_xtalin = 0 and in
power-down mode
(1)
(2)
1
µA
Measured with the load capacitance specified by the manufacturer. Parasitic capacitance from package and board must also be taken in
account.
Before the processor boots up and the oscillator is set to bypass mode, there is a start-up time when the internal oscillator is in
application mode and receives a square wave. The start-up time in this case is about 100 µs.
Table 4-5 details the input requirements of the 12-, 13-, 16.8-, 19.2-, 26-, or 38.4-MHz input clock.
Table 4-5. 12-, 13-, 16.8-, 19.2-, 26-, or 38.4-MHz Input Clock Squarer Timing Requirements
NAME
DESCRIPTION
MIN
TYP
MAX
1 / tc(xtalin)
Frequency, sys_xtalin
OCS1
tw(xtalin)
Pulse duration, sys_xtalin low or high
OCS2
tJ(xtalin)
Peak-to-peak jitter (1), sys_xtalin
OCS3
tR(xtalin)
Rise time, sys_xtalin
3.6
OCS4
tF(xtalin)
Fall time, sys_xtalin
3.6
ns
OCS5
tJ(xtalin)
Frequency stability, sys_xtalin
±25
ppm
(1)
110
12, 13, 16.8, 19.2, 26, or 38.4
UNIT
OCS0
0.45 * tc(xtalin)
0.55 * tc(xtalin)
–1%
1%
MHz
ns
ns
Peak-to-peak jitter is defined as the difference between the maximum and the minimum output periods on a statistical population of 300
period samples. The sinusoidal noise is added on top of the vdds supply voltage.
CLOCK SPECIFICATIONS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
OCS0
OCS1
OCS1
sys.xtalin
030-011
Figure 4-4. Crystal Oscillator in Bypass Mode
4.1.4
External 32-kHz CMOS Input Clock
A 32.768-kHz clock signal (often abbreviated to 32-kHz) can be supplied by an external 1.8-V CMOS
signal on pin sys_32k.
Table 4-6 summarizes the electrical constraints imposed to the clock source.
Table 4-6. 32-kHz Input Clock Source Electrical Characteristics
DESCRIPTION
Frequency
CI
Input capacitance
RI
Input resistance
MIN
TYP
MAX
UNIT
32.768
PRODUCT PREVIEW
NAME
f
kHz
0.44
pF
106
0.25
GΩ
Table 4-7 details the input requirements of the 32-kHz input clock.
Table 4-7. 32-kHz Input Clock Source Timing Requirements (1)
NAME
DESCRIPTION
MIN
TYP
MAX
UNIT
CK0
1 / tc(32k)
Frequency, sys_32k
CK3
tR(32k)
Rise time, sys_32k
20
ns
CK4
tF(32k)
Fall time, sys_32k
20
ns
CK5
tJ(32k)
Frequency stability, sys_32k
±200
ppm
(1)
32.768
kHz
See Table 3-4, Electrical Characteristics, Standard LVCMOS IOs part for sys_32k VIH/VIL parameters.
CK0
CK1
CK1
sys_32k
030-012
Figure 4-5. 32-kHz CMOS Clock
4.1.5
External sys_altclk CMOS Input Clock
A 48-, 54-, or up to 59- MHz clock signal can be supplied by an external 1.8-V CMOS signal on pin
sys_altclk.
Table 4-8 summarizes the electrical constraints imposed by the clock source.
Table 4-8. 48-, 54-, or up to 59- MHz Input Clock Source Electrical Characteristics
NAME
DESCRIPTION
f
Frequency , sys_altclk
CI
Input capacitance
RI
Input resistance
MIN
TYP
MAX
48-, 54-, or up to 59- MHz
MHz
0.74
0.25
UNIT
pF
106
GΩ
Table 4-9 details the input requirements of the input clock.
Submit Documentation Feedback
CLOCK SPECIFICATIONS
111
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 4-9. 48- or 54-MHz Input Clock Source Timing Requirements (1) (2)
NAME
DESCRIPTION
MIN
TYP
MAX
ALT0
1 / tc(altclk)
Frequency, sys_altclk
ALT1
tw(altclk)
Pulse duration, sys_altclk low or
high
0.40 * tc(altclk)
0.60 * tc(altclk)
ALT2
tJ(altclk)
Peak-to-peak jitter (1), sys_altclk
–1%
1%
ALT3
tR(altclk)
Rise time, sys_altclk
ALT4
tF(altclk)
Fall time, sys_altclk
ALT5
tJ(altclk)
Frequency stability, sys_altclk
(1)
(2)
48-, 54-, or up to 59- MHz
UNIT
MHz
10
ns
ns
10
ns
± 50
ppm
Peak-to-peak jitter is defined as the difference between the maximum and the minimum output periods on a statistical population of 300
period samples. The sinusoidal noise is added on top of the vdds supply voltage.
See Table 3-4, Electrical Characteristics, for sys_altclk VIH/VIL parameters.
PRODUCT PREVIEW
ALT0
ALT1
ALT1
sys_altclk
030-013
Figure 4-6. Alternate CMOS Clock
112
CLOCK SPECIFICATIONS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
4.2 Output Clock Specifications
Two output clocks (pin sys_clkout1 and pin sys_clkout2) are available:
• sys_clkout1 can output the oscillator clock (12, 13, 16.8, 19.2, 26, or 38.4 MHz) at any time. It can be
controlled by software or externally using sys_clkreq control. When the device is in the off state, the
sys_clkreq can be asserted to enable the oscillator and activate the sys_clkout1 without waking up the
device. The off state polarity of sys_clkout1 is programmable.
• sys_clkout2 can output sys_clk (12, 13, 16.8, 19.2, 26, or 38.4 MHz), CORE_CLK (core DPLL output,
332 MHz maximum), APLL-96 MHz, or APLL-54 MHz. It can be divided by 2, 4, 8, or 16 and its off
state polarity is programmable. This output is active only when the core domain is active.
Table 4-10 summarizes the sys_clkout1 output clock electrical characteristics.
NAME
f
DESCRIPTION
MIN
Frequency
CI
Load capacitance
(1)
(1)
TYP
MAX
UNIT
12, 13, 16.8, 19.2, 26, or 38.4=
MHz
f(max) = 38.4 MHz
37
pF
f(max) = 26 MHz
50
The load capacitance is adapted to a frequency.
Table 4-11 details the sys_clkout1 output clock timing characteristics.
Table 4-11. sys_clkout1 Output Clock Switching Characteristics
NAME
DESCRIPTION
MIN
f
1 / CO0
Frequency
CO1
tw(CLKOUT1)
Pulse duration, sys_clkout1 low or high
TYP
MAX
UNIT
12, 13, 16.8, 19.2, 26, or 38.4
MHz
0.40 *
0.60 *
tc(CLKOUT1)
tc(CLKOUT1)
ns
CO2
tR(CLKOUT1)
Rise time, sys_clkout1 (1)
5.5
ns
CO3
tF(CLKOUT1)
Fall time, sys_clkout1 (1)
5.5
ns
(1)
With a load capacitance of 50 pF.
CO0
CO1
CO1
sys_clkout
030-014
Figure 4-7. sys_clkout1 System Output Clock
Table 4-12 summarizes the sys_clkout2 output clock electrical characteristics.
Table 4-12. sys_clkout2 Output Clock Electrical Characteristics
NAME
DESCRIPTION
f
Frequency, sys_clkout2
CL
Load capacitance (1)
(1)
MIN
f(max) = 166 MHz
2
TYP
8
MAX
UNIT
322
MHz
12
pF
The load capacitance is adapted to a frequency.
Table 4-13 details the sys_clkout2 output clock timing characteristics.
Submit Documentation Feedback
CLOCK SPECIFICATIONS
113
PRODUCT PREVIEW
Table 4-10. sys_clkout1 Output Clock Electrical Characteristics
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 4-13. sys_clkout2 Output Clock Switching Characteristics
NAME
DESCRIPTION
MIN
f
1 / CO0
Frequency
CO1
tw(CLKOUT2)
Pulse duration, sys_clkout2 low or high
CO2
tR(CLKOUT2)
Rise time, sys_clkout2 (1)
CO3
tF(CLKOUT2)
Fall time, sys_clkout2 (1)
(1)
TYP
0.40 * tc(CLKOUT2)
MAX
UNIT
322
MHz
0.60 * tc(CLKOUT2)
ns
3.7
ns
4.3
ns
With a load capacitance of 12 pF.
CO0
CO1
CO1
sys_clkout
030-015
PRODUCT PREVIEW
Figure 4-8. sys_clkout2 System Output Clock
114
CLOCK SPECIFICATIONS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
4.3 DPLL and DLL Specifications
The OMAP3525 and OMAP3530 integrate seven DPLLs and a DLL. The PRM and CM drive five of them,
while the sixth (not supported) and the seventh (not supported) are controlled by the display subsystem.
The five main DPLLs are:
• DPLL1 (MPU)
• DPLL2 (IVA2)
• DPLL3 (Core)
• DPLL4 (Peripherals)
• DPLL5 (Second Peripherals DPLL)
Figure 4-10Figure 4-9 illustrates the DLL and DPLL implementation.
vdds_dpll_dll
PRODUCT PREVIEW
OMAP
Power Rail
DPLL1
DLL
DPLL2
DPLL3
DPLL4
DPLL5
vdds_dpll_per
SDI DPLL
vdds_sdi
DSI DPLL
vdds_dsi
Figure 4-9. DPLL and DLL Implementation
Submit Documentation Feedback
CLOCK SPECIFICATIONS
115
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
OMAP
vdds_dpll_dll
Power Rail
DPLL1
DPLL2
DLL
DPLL3
DPLL4
DPLL5
PRODUCT PREVIEW
vdds_dpll_per
030-016
Figure 4-10. DPLL and DLL Implementation
For more information on the OMAP3525 and OMAP3530 Applications Processors DPLLs and clocking
structure, see the Power, Reset, and Clock management (PRCM) chapter of the OMAP35x Applications
Processor TRM (literature number SPRUFA5).
4.3.1
Digital Phase-Locked Loop (DPLL)
The DPLL provides all interface clocks and some functional clocks (such as the processor clocks) of the
OMAP3525 and OMAP3530 devices.
DPLL1 and DPLL2 get an always-on clock used to produce the synthesized clock. They get a high-speed
bypass clock used to switch the DPLL output clock on this high-speed clock during bypass mode.
The high-speed bypass clock is an L3 divided clock (programmable by 1 or 2) that saves DPLL processor
power consumption when the processor does not need to run faster than the L3 clock speed, or optimizes
performance during frequency scaling.
Each DPLL synthesized frequency is set by programming M (multiplier) and N (divider) factors. In addition,
all DPLL outputs can be controlled by an independent divider (M2 to M6).
The clock generating DPLLs of the OMAP3525 and OMAP3530 devices have following features:
• Independent power domain per DPLL
• Controlled by clock-manager (CM)
• Fed with always-on system clock with independent gating control per DPLL
• Analog part supplied through dedicated power supply (1.8 V) and an embedded LDO to get rid of
1-MHz noise
• Up to five independent output dividers for simultaneous generation of multiple clock frequencies
4.3.1.1 DPLL1 (MPU)
DPLL1 is located in the MPU subsystem and supplies all clocks of the subsystem. All MPU subsystem
clocks are internally generated in the subsystem. When the core domain is on, it can use the DPLL3
(CORE DPLL) output as a high-frequency bypass input clock.
4.3.1.2 DPLL2 (IVA2)
DPLL2 is located in the IVA subsystem and supplies all clocks of the subsystem. All IVA subsystem clocks
are internally generated in the subsystem. When the core domain is on, it can use the DPLL3 (CORE
DPLL) output as a high-frequency bypass input clock.
116
CLOCK SPECIFICATIONS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
4.3.1.3 DPLL3 (CORE)
DPLL3 supplies all interface clocks and also a few module functional clocks. It can be also source of the
emulation trace clock. It is located in the core domain area. All interface clocks and a few module
functional clocks are generated in the CM. When the core domain is on, it can be used as a bypass input
to DPLL1 and DPLL2.
4.3.1.4 DPLL4 (Peripherals)
DPLL4 generates clocks for the peripherals. It supplies five clock sources: 96-MHz functional clocks to
subsystems and peripherals, 54 MHz to TV DAC, display functional clock, camera sensor clock, and
emulation trace clock. It is located in the core domain area. All interface clocks and few module functional
clocks are generated in the CM. Its outputs to the DSS, PER, and EMU domains are propagated with
always-on clock trees.
DPLL5 supplies the 120-MHz functional clock to the CM.
4.3.2
Delay-Locked Loops (DLL)
The SDRC includes analog-controlled delay technology for interfacing high-speed mobile DDR memory
components. For more information, see the SDRC-GPMC chapter of the OMAP35x Technical Reference
Manual (TRM) [literature number SPRUF98]. A DLL is a calibration module used on dynamic track of
voltage and temperature variations, as well as to compensate the silicon process dispersion.
The SDRC DLL has four modes of operation:
1. APPLICATION MODE 0: used to generate 72° delay
2. APPLICATION MODE 1: used to generate 90° delay
3. MODEMAXDELAY: used for low frequency operation where we do not have the requirement of
accurate 72° or 90° phase shift
4. IDLE MODE: a low-power state that allows the DLL to gain lock quickly on exit from this mode
Submit Documentation Feedback
CLOCK SPECIFICATIONS
117
PRODUCT PREVIEW
4.3.1.5 DPLL5 (Second peripherals DPLL)
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
4.3.3
www.ti.com
DPLLs and DLL Characteristics
Several specifications characterize the seven DPLLs.
Table 4-14 summarizes the DPLL characteristics and assumes testing over recommended operating
conditions.
Table 4-14. DPLL Characteristics
NAME
PARAMETER
MIN
TYP
MAX
UNIT
vdds_dpll_per
1.71
1.8
1.89
V
vdds_dpll_dll
1.71
1.8
1.89
V
25
107
°C
COMMENTS (1)
At ball level (+5%, +10%)
PRODUCT PREVIEW
TJ
Junction temperature
–40
Will not unlock after lock over this range for
slow temperature drifts
finput
Input reference frequency (2)
0.75
65
MHz
FINP
finternal
Internal reference frequency
0.75
2.1
MHz
FREQSEL3 = 0; FINT = FINP/(N+1)
7.5
21
MHz
FREQSEL3 = 1; FINT = FINP/(N+1)
foutput
CLKOUT output frequency
25
900
MHz
foutput*2
CLKOUTx2 output
frequency
50
1800
MHz
tlock
Frequency lock time (3)
71.4
200
µs
150 FINT cycles; FREQSEL3 = 0
37.1
104
µs
780 FINT cycles; FREQSEL3 = 1
166.7
466.7
µs
350 FINT cycles; FREQSEL3 = 0
46.7
130.7
µs
980 FINT cycles; FREQSEL3 = 1
4.8
13.3
µs
10 FINT cycles
plock
trelock
Phase lock time
Relock time – frequency
lock (4)
Lowcurrstby = 0; FREQSEL3 = 0
4.8
13.3
µs
19
53.3
µs
19
53.3
µs
100 FINT cycles
Lowcurrstby = 0; FREQSEL3 = 1
40 FINT cycles
Lowcurrstby = 1; FREQSEL3 = 0
400 FINT cycles
Lowcurrstby = 1; FREQSEL3 = 1
prelock
Relock time – Phase lock
(4)
71.4
200
µs
11.9
33.3
µs
150 FINT cycles
Lowcurrstby = 0; FREQSEL3 = 0
250 FINT cycles
Lowcurrstby = 0; FREQSEL3 = 1
95.2
266.7
µs
26.7
74.7
µs
200 FINT cycles
Lowcurrstby = 1; FREQSEL3 = 0
560 FINT cycles
Lowcurrstby = 1; FREQSEL3 = 1
Table 4-15 and Table 4-16 show the DPLL1 and DPLL2 clock frequency ranges.
Note: The DPLL1 and DPLL2 clock frequency ranges depend on the VDD1 (vdd_mpu_iva) operating point.
(1)
(2)
(3)
(4)
118
freqsel needs to be programmed accordingly to reference clock and DPLL divider (register setting), Lowcurrstdby depends on the targeted
DPLL power state (dynamic).
Lowcurrstdby = 0 then DPLL is in normal mode
Lowcurrstdby = 1 then DPLL is in low-power mode
Input frequencies below 0.75 MHz are possible with performance penalty.
Maximum frequency for nominal conditions. Speed binning possible above fmax.
Relock time assumes typical operating conditions, 4°C maximum temperature drift (see the Functional Specification for more detailed
information).
CLOCK SPECIFICATIONS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 4-15. DPLL1 Clock Frequency Ranges
Clock Signal
Description
ARM_CLK
DPLL1 output clock.
Max
Unit
OPP5
600
MHz
OPP4
550
MHz
OPP3
500
MHz
OPP2
250
MHz
OPP1
125
MHz
Clock Signal
IVA2_CLK
Description
Generated from DPLL2 output
clock.
Max
Unit
OPP5
430
MHz
OPP4
400
MHz
OPP3
360
MHz
OPP2
180
MHz
OPP1
90
MHz
Table 4-17 through Table 4-19 show the DPLL3 clock frequency ranges.
Note: The DPLL3 clock frequency ranges depend on the VDD2 (vdd_core) operating point and the L3
clock speed configuration.
Table 4-17. DPLL3 Clock Frequency Ranges, VDD2 OPP3
Config 1
(166 MHz)
Clock Signal
Description
Config 2
(133 MHz)
Config 3
(100 MHz)
Min
Max
Min
Max
Min
Max
Unit
CM: CORE_CLK
Output of clock manager (CM),
generated directly from DPLL3.
-
332
-
266
-
200
MHz
CM: L3_ICLK
Output of clock manager (CM),
generated using DPLL3.
-
166
-
133
-
100
MHz
CM: L4_ICLK
Output of clock manager (CM),
generated using CM L3_ICLK and
divider.
-
83
-
66.5
-
50
MHz
SGX
SGX input clock, taken from CM
CORE_CLK.
-
110.67
-
88.67
-
66.67
MHz
SDRC
SDRC input clock, taken from CM
L3_ICLK.
-
166
-
133
-
100
MHz
GPMC
GPMC input clock, taken from CM
L3_ICLK.
-
83
-
66.5
-
100
MHz
Table 4-18. DPLL3 Clock Frequency Ranges, VDD2 OPP2
Config 1
(83 MHz)
Clock Signal
Description
Config 2
(100 MHz)
Min
Max
Min
Max
Unit
CM: CORE_CLK
Output of clock manager (CM), generated
directly from DPLL3.
-
166
-
200
MHz
CM: L3_ICLK
Output of clock manager (CM), generated using
DPLL3.
-
83
-
100
MHz
CM: L4_ICLK
Output of clock manager (CM), generated using
CM L3_ICLK and divider.
-
41.5
-
50
MHz
SGX
SGX input clock, taken from CM CORE_CLK.
-
55.53
-
66.67
MHz
SDRC
SDRC input clock, taken from CM L3_ICLK.
-
83
-
100
MHz
GPMC
GPMC input clock, taken from CM L3_ICLK.
-
83
-
50
MHz
Submit Documentation Feedback
CLOCK SPECIFICATIONS
119
PRODUCT PREVIEW
Table 4-16. DPLL2 Clock Frequency Ranges
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 4-19. DPLL3 Clock Frequency Ranges, VDD2 OPP1
Config 1
(40 MHz)
Clock Signal
Unit
Description
Min
Max
CM: CORE_CLK
Output of clock manager (CM), generated directly from DPLL3.
-
83
MHz
CM: L3_ICLK
Output of clock manager (CM), generated using DPLL3.
-
41.5
MHz
CM: L4_ICLK
Output of clock manager (CM), generated using CM L3_ICLK
and divider.
-
20.75
MHz
SGX
SGX input clock, taken from CM CORE_CLK.
-
N/A
MHz
SDRC
SDRC input clock, taken from CM L3_ICLK.
-
41.5
MHz
GPMC
GPMC input clock, taken from CM L3_ICLK.
-
41.5
MHz
PRODUCT PREVIEW
Table 4-20 summarizes the DLL characteristics.
Table 4-20. DLL Characteristics
PARAMETER
MIN
NOM
MAX
UNIT
Supply voltage vdds_dpll_dll
1.71
1.8
1.89
V
Junction operating temperature
–40
25
107
°C
Input clock frequency
66
120
133
MHz
83
120
166
15
fF
Lock time (2)
500
Clocks
(Mode transitions through idle mode)
(1)
(2)
120
APPLICATION MODE 0
APPLICATION MODE 1
Input load (1)
Relock time
COMMENTS
500
ns
150
372
Clocks
IDLE to MODEMAXDELAY
1
2
µs
IDLE to APPLICATION MODE @133 MHz
1
1.5
µs
IDLE to APPLICATION MODE @166 MHz
IDLE to APPLICATION MODE 1 or 0
This parameter is design goal and is not tested on silicon.
Lock signal would go high from power down within 500 clocks. Lock signal switches to low state when the input clock is switched off
after 3 µs.
CLOCK SPECIFICATIONS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
4.3.4
SPRS599 – JUNE 2009
DPLL and DLL Noise Isolation
The DPLL and DLL require dedicated power supply pins to isolate the core analog circuit from the
switching noise generated by the core logic that can cause jitter on the clock output signal. Guard rings
are added to the cell to isolate it from substrate noise injection.
The vdd supplies are the most sensitive to noise; decoupling capacitance is recommended below the
supply rails. The maximum input noise level allowed is 30 mVPP for frequencies below 1 MHz.
Figure 4-11= illustrates an example of a noise filter.
OMAP Device
Noise Filter
DPLL_MPU
DPLL_IVA
DPLL_CORE
PRODUCT PREVIEW
vdds_dpll_dll
C
DLL
Noise Filter
vdds_dpll_per
DPLL5
C
DPLL4
030-017
Figure 4-11. DPLL and DLL Noise Filter
Table 4-21 specifies the noise filter requirements.
Table 4-21. DPLL and DLL Noise Filter Requirements
NAME
MIN
Filtering capacitor
(1)
(2)
(3)
(4)
TYP
100
MAX
UNIT
nF
The capacitors must be inserted between power and ground as close as possible.
This circuit is provided only as an example.
The filter must be located as close as possible to the device.
No filtering required if noise is below 10 mVPP.
Submit Documentation Feedback
CLOCK SPECIFICATIONS
121
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
5 VIDEO DAC SPECIFICATIONS
A dual-display interface equips the OMAP3525 and OMAP3530 processors. This display subsystem
provides the necessary control signals to interface the memory frame buffer directly to the external
displays (TV-set). Two (one per channel) 10-bit current steering DACs are inserted between the DSS and
the TV set to generate the video analog signal. One of the video DACs also includes TV detection and
power-down mode. Figure 5-1 illustrates the OMAP3525 and OMAP3530 DAC architecture. For more
information, see the DSS chapter of the OMAP35x Technical Reference Manual (TRM) [literature number
SPRUF98].
OMAP Device
TV DCT
PRODUCT PREVIEW
DIN1[9:0]
ROUT1
tv_vfb1
TVOUT
BUFFER
Video DAC 1
tv_out1
DSS
tv_vfb2
TVOUT
TVOUT
BUFFER
BUFFER
Video DAC 2
ROUT2
DIN2[9:0]
tv_out2
vdda_dac
V_ref
vssa_dac
tv_vref
CBG
030-018
Figure 5-1. Video DAC Architecture
The following paragraphs detail the 10-bit DAC interface pinout, static and dynamic specifications, and
noise requirements. The operating conditions and absolute maximum ratings are detailed in Table 5-2 and
Table 5-4.
5.1 Interface Description
Table 5-1 summarizes the external pins of the video DAC.
Table 5-1. External Pins of 10-bit Video DAC
PIN NAME
I/O
DESCRIPTION
tv_out1
O
TV analog output composite
122
VIDEO DAC SPECIFICATIONS
DAC1 video output. An external resistor is connected between this
node and tv_vfb1. The nominal value of ROUT1 is 1650 Ω. Finally,
note that this is the output node that drives the load (75 Ω).
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 5-1. External Pins of 10-bit Video DAC (continued)
I/O
DESCRIPTION
tv_out2
O
TV analog output S-VIDEO
DAC2 video output. An external resistor is connected between this
node and tv_vfb2. The nominal value of ROUT2 is 1650 Ω. Finally,
note that this is the output node that drives the load (75 Ω).
tv_vref
I
Reference output voltage from internal
bandgap
A decoupling capacitor (CBG) needs to be connected for optimum
performance.
tv_vfb1
O
Amplifier feedback node
Amplifier feedback node. An external resistor is connected between
this node and tv_out1. The nominal value of ROUT1 is 1650 Ω (1%).
tv_vfb2
O
Amplifier feedback node
Amplifier feedback node. An external resistor is connected between
this node and tv_out2. The nominal value of ROUT2 is 1650 Ω (1%).
PRODUCT PREVIEW
PIN NAME
Submit Documentation Feedback
VIDEO DAC SPECIFICATIONS
123
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
5.2 Electrical Specifications Over Recommended Operating Conditions
(TMIN to TMAX, vdda_dac = 1.8 V, ROUT1/2 = 1650 Ω, RLOAD = 75 Ω, unless otherwise noted)
Table 5-2. DAC – Static Electrical Specification
PARAMETER
R
CONDITIONS/ASSUMPTIONS
MIN
Resolution
TYP
MAX
10
UNIT
Bits
DC ACCURACY
INL (1)
Integral nonlinearity
–1
1
LSB
DNL (2)
Differential nonlinearity
–1
1
LSB
ANALOG OUTPUT
RLOAD = 75 Ω
PRODUCT PREVIEW
-
Full-scale output voltage
-
Output offset voltage
0,7
-
Output offset voltage drift
-
Gain error
–17
RVOUT
Output impedance
67.5
0.525
0.88
1
V
50
mV
20
mV/°C
19
% FS
75
82.5
Ω
0.55
0.575
V
REFERENCE
VREF
Reference voltage range
-
Reference noise density
RSET
Full-scale current adjust resistor
PSRR
Reference PSRR (3) (Up to 6 MHz)
100-kHz reference noise
bandwidth
129
3700
4000
4200
Ω
40
dB
POWER CONSUMPTION
Ivdda-up
Analog Supply Current (4)
2 channels, no load
8
mA
-
Analog supply driving a 75-Ω load
(RMS)
2 channels
50
mA
Lasts less than 1 ns
60
mA
Measured at fCLK = 54 MHz, fOUT
= 2 MHz sine wave, vdd = 1.3 V
2
mA
Ivdda-up (peak) Peak analog supply current:
Ivdd-up
Digital supply current
(5)
Peak digital supply current (6)
Lasts less than 1 ns
2.5
mA
Ivdda-down
Analog power at power-down
T = 30°C, vdda = 1.8 V
1.5
mA
Ivdd-down
Digital power at power-down
T = 30°C, vdd = 1.3 V
1
mA
Ivdd-up
(1)
(2)
(3)
(4)
(5)
(6)
124
(peak)
The INL is measured at the output of the DAC (accessible at an external pin during bypass mode).
The DNL is measured at the output of the DAC (accessible at an external pin during bypass mode).
Assuming a capacitor of 0.1 µF at the tv_ref node.
The analog supply current Ivdda is directly proportional to the full-scale output current IFS and is insensitive to fCLK
The digital supply current IVDD is dependent on the digital input waveform, the DAC update rate fCLK, and the digital supply VDD.
The peak digital supply current occurs at full-scale transition for duration less than 1 ns.
VIDEO DAC SPECIFICATIONS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
(TMIN to TMAX, vdda_dac = 1.8 V, ROUT1/2 = 1650 Ω, RLOAD = 75 Ω, unless otherwise noted)
Table 5-3. Video DAC – Dynamic Electrical Specification
CONDITIONS/ASSUMPTIONS
MIN
TYP
MAX
Equal to input clock frequency
Clock jitter
rms clock jitter required in order to assure
10-bit accuracy
Attenuation at 5.1 MHz
Corner frequency for signal
0.1
Attenuation at 54 MHz (1)
Image frequency
25
tST
Output settling time
Time from the start of the output transition to
output within ± 1 LSB of final value.
85
ns
tRout
Output rise time
Measured from 10% to 90% of full-scale
transition
25
ns
tFout
Output fall time
Measured from 10% to 90% of full-scale
transition
25
ns
BW
Signal bandwidth
6
MHz
Differential gain
(2)
Within bandwidth
40
ps
0.5
1.5
dB
30
33
dB
fCLK = 54 MHz, fOUT = 1 MHz
1
deg.
45
dB
(3)
SNR
Signal-to-noise ratio
1 kHz to 6 MHz bandwidth
fCLK = 54 MHz, fOUT = 1 MHz
55
PSRR
Power supply rejection ratio
Up to 6 MHz
20 (4)
Crosstalk
Between the two video
channels
(1)
(2)
(3)
(4)
MHz
1.5%
Differential phase (2)
SFDR
54
UNIT
Output update rate
PRODUCT PREVIEW
PARAMETER
fCLK (1)
–50
dB
dB
–40
dB
For internal input clock information, For more information, see the DSS chapter of the OMAP35x Technical Reference Manual (TRM)
[literature number SPRUF98].
The differential gain and phase value is for dc coupling. Note that there is degradation for the ac coupling.
The SNR value is for dc coupling. Note that there is a 6-dB degradation for ac coupling.
The PSSR value is for dc coupling. Note that there is a 10-dB degradation for ac coupling.
Submit Documentation Feedback
VIDEO DAC SPECIFICATIONS
125
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
5.3 Analog Supply (vdda_dac) Noise Requirements
In order to assure 10-bit accuracy of the DAC analog output, the analog supply vdda_dac has to meet the
noise requirements stated in this section.
The DAC Power Supply Rejection Ratio is defined as the relative variation of the full-scale output current
divided by the supply variation. Thus, it is expressed in percentage of Full-Scale Range (FSR) per volt of
DI OUT
I OUTFS
VAC
100 ×
supply variation as shown in the following equation:
PSRRDAC =
% FSR
V
Depending on frequency, the PSRR is defined in Table 5-4.
Table 5-4. Video DAC – Power Supply Rejection Ratio
Supply Noise Frequency
PSRR % FSR/V
PRODUCT PREVIEW
0 to 100 kHz
1
> 100 kHz
The rejection decreases 20 dB/dec.
Example: at 1 MHz the PSRR is 10% of FSR/V
A graphic representation is shown in Figure 5-2.
PSRR (% FSR/V)
First pole of
DAC output load
10
1
f
100 kHz 1 MHz
030-019
Figure 5-2. Video DAC – Power Supply Rejection Ratio
To ensure that the DAC SFDR specification is met, the PSRR values and the clock jitter requirements
translate to the following limits on vdda_dac (for the Video DAC).
The maximum peak-to-peak noise on vdda (ripple) is defined in Table 5-5:
Table 5-5. Video DAC – Maximum Peak-to-Peak Noise on vdda_dac
Tone Frequency
Maximum Peak-to-Peak Noise on vdda_dac
0 to 100 kHz
< 30 mVpp
> 100 kHz
Decreases 20 dB/dec.
Example: at 1 MHz the maximum is 3 mVpp
The maximum noise spectral density (white noise) is defined in Table 5-6:
Table 5-6. Video DAC – Maximum Noise Spectral Density
Supply Noise Bandwidth
126
Maximum Supply Noise Density
0 to 100 kHz
< 20 µV / √Hz
> 100 kHz
Decreases 20 dB/dec.
Example: at 1 MHz the maximum noise density is 2 µ / √Hz
VIDEO DAC SPECIFICATIONS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Because the DAC PSRR deteriorates at a rate of 20 dB/dec after 100 kHz, it is highly recommended to
have vdda_dac low pass filtered (proper decoupling) (see the illustrated application: Section 5.4, External
Component Value Choice).
5.4 External Component Value Choice
The full-scale output voltage VOUTMAX is regulated by the reference amplifier, and is set by an internal
resistor RSET. IOUTMAX can be expressed as:
IOUTMAX = IREF /8 * (63 + 15/16)
Where:
The output current IOUT appearing at DAC output is a function of both the input code and IOUTMAX and can
be expressed as:
IOUT = (DAC_CODE/1023) * IOUTMAX
Where:
DAC_CODE = 0 to 1023 is the DAC input code in decimal.
The output voltage is:
VOUT = IOUT *N* RCABLE
Where:
(N = amplifier gain = 21)
RCABLE = 75 Ω (cable typical impedance)
The TV-out buffer requires a per channel external resistors: ROUT1/2. The equation below can be used to
select different resistor values (if necessary):
ROUT = (N+1) RCABLE = 1650 Ω
Recommended parameter values are:
Table 5-7. Video DAC – Recommended External Components Values
Recommended Value
UNIT
CBG
100
nF
ROUT1/2
1650
Ω
In order to limit the reference noise bandwidth and to suppress transients on VREF, it is necessary to
connect a large decoupling capacitor =BG) between the tv_vref and vssa_dac pins.
Submit Documentation Feedback
VIDEO DAC SPECIFICATIONS
127
PRODUCT PREVIEW
VREF = 0.55V
IREF = VREF/ (2* RSET)
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
6 TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
6.1 Timing Test Conditions
All timing requirements and switching characteristics are valid over the recommended operating conditions
of Table 3-3, unless otherwise specified.
6.2 Interface Clock Specifications
6.2.1
Interface Clock Terminology
The Interface clock is used at the system level to sequence the data and/or control transfers accordingly
with the interface protocol.
6.2.2
Interface Clock Frequency
PRODUCT PREVIEW
The two interface clock characteristics are:
• The maximum clock frequency
• The maximum operating frequency
The interface clock frequency documented in this document is the maximum clock frequency, which
corresponds to the maximum frequency programmable on this output clock. This frequency defines the
maximum limit supported by the OMAP3525 and OMAP3530 IC and doesn’t take into account any system
consideration (PCB, peripherals).
The system designer will have to consider these system considerations and OMAP3525 and OMAP3530
IC timings characteristics as well, to define properly the maximum operating frequency, which corresponds
to the maximum frequency supported to transfer the data on this interface.
6.2.3
Clock Jitter Specifications
Jitter is a phase noise, which may alter different characteristics of a clock signal. The jitter specified in this
document is the time difference between the typical cycle period and the actual cycle period affected by
noise sources on the clock. The cycle (or period) jitter terminology identifies this type of jitter.
Cycle (or Period) Jitter
Tn-1
Tn
Tn+1
Max. Cycle Jitter = Max (Ti)
Min. Cycle Jitter = Min (Ti)
Jitter Standard Deviation (or rms Jitter) = Standard Deviation (Ti)
030-020
Figure 6-1. Cycle (or Period) Jitter
6.2.4
Clock Duty Cycle Error
The duty cycle error is the ratio between either the high-level pulse duration or the low-level pulse duration
and the cycle time of a clock signal.
128
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
6.3 Timing Parameters
The timing parameter symbols used in the timing requirement and switching characteristic tables are
created in accordance with JEDEC Standard 100. To shorten the symbols, some pin names and other
related terminologies have been abbreviated as follows:
Table 6-1. Timing Parameters
Symbols
Parameter
c
Cycle time (period)
d
Delay time
dis
Disable time
en
Enable time
h
Hold time
su
Setup time
START
Start bit
t
Transition time
v
Valid time
Submit Documentation Feedback
w
Pulse duration (width)
X
Unknown, changing, or don’t care level
H
High
L
Low
V
Valid
IV
Invalid
AE
Active Edge
FE
First Edge
LE
Last Edge
Z
High impedance
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
PRODUCT PREVIEW
LOWERCASE SUBSCRIPTS
129
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
6.4 External Memory Interfaces
The OMAP3525 and OMAP3530 processors include the following external memory interfaces:
• General-purpose memory controller (GPMC)
• SDRAM controller (SDRC)
6.4.1
General-Purpose Memory Controller (GPMC)
The GPMC is the OMAP3525 and OMAP3530 unified memory controller used to interface external
memory devices such as:
• Asynchronous SRAM-like memories and ASIC devices
• Asynchronous page mode and synchronous burst NOR flash
• NAND flash
6.4.1.1 GPMC/NOR Flash Interface Synchronous Timing
PRODUCT PREVIEW
Table 6-3 and Table 6-4 assume testing over the recommended operating conditions (see Figure 6-2
through Figure 6-5) and electrical characteristic conditions.
Table 6-2. GPMC/NOR Flash Synchronous Mode Timing Conditions
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
1.8
ns
tF
Input signal fall time
1.8
ns
15.94
pF
Output Conditions
CLOAD
Output load capacitance
Table 6-3. GPMC/NOR Flash Interface Timing Requirements – Synchronous Mode (1)
NO.
PARAMETER
OPP3
MIN
OPP2
MAX
MIN
OPP1
MAX
MIN
UNIT
MAX
F12
tsu(DV-CLKH)
Setup time, read gpmc_d[15:0]
valid before gpmc_clk high
1.9
1.9
3.2
ns
F13
th(CLKH-DV)
Hold time, read gpmc_d[15:0]
valid after gpmc_clk high
1.9
1.9
1.9
ns
F21
tsu(WAITV-CLKH)
Setup time, gpmc_waitx (2) valid
before gpmc_clk high
1.9
1.9
3.2
ns
F22
th(CLKH-WAITV)
Hold Time, gpmc_waitx (2) valid
after gpmc_clk high
2.5
2.5
2.5
ns
(1)
(2)
For VDD2 (vdd_core) OPP voltages, see Table 3-3, Recommended Operating Conditions.
Wait monitoring support is limited to a WaitMonitoringTime value > 0. For a full description of wait monitoring feature, see the OMAP35x
Technical Reference Manual (literature number SPRUF988).
Table 6-4. GPMC/NOR Flash Interface Switching Characteristics – Synchronous Mode
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
0.9 V
MAX
MIN
UNIT
MAX
F0
tc(CLK)
Cycle time(15), output
clock gpmc_clk period
10
F1
tw(CLKH)
Typical pulse duration,
output clock gpmc_clk
high
0.5 P(12)
0.5 P(12)
0.5 P(12)
0.5 P(12)
0.5 P(12)
0.5 P(12)
ns
F1
tw(CLKL)
Typical pulse duration,
output clock gpmc_clk low
0.5 P(12)
0.5 P(12)
0.5 P(12)
0.5 P(12)
0.5 P(12)
0.5 P(12)
ns
tdc(CLK)
Duty cycle error, output
clk gpmc_clk
–500
500
–602
602
–1250
1250
ps
130
12.05
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
25
ns
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 6-4. GPMC/NOR Flash Interface Switching Characteristics – Synchronous Mode (continued)
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
0.9 V
MAX
MIN
UNIT
MAX
tj(CLK)
Jitter standard
deviation(16), output clock
gpmc_clk
33.3
33.3
33.3
ps
tR(CLK)
Rise time, output clock
gpmc_clk
1.6
2
2
ns
tF(CLK)
Fall time, output clock
gpmc_clk
1.6
2
2
ns
tR(DO)
Rise time, output data
2
2
2
ns
tF(DO)
Fall time, output data
2
ns
F2
td(CLKH-nCSV)
Delay time, gpmc_clk
rising edge to
gpmc_ncsx(11) transition
F(6) – 1.9
F(6) + 3.3
F(6) – 1.8
F(6) + 4.1
F(6) – 2.6
F(6) + 4.9
ns
F3
td(CLKH-nCSIV)
Delay time, gpmc_clk
rising edge to
gpmc_ncsx(11) invalid
E(5) – 1.9
E(5) + 3.3
E(5) – 1.8
E(5) + 4.1
E(5) – 2.6
E(5) + 4.9
ns
F4
td(ADDV-CLK)
Delay time, address bus
valid to gpmc_clk first
edge
B(2) – 4.1
B(2) + 2.1
B(2) – 4.1
B(2) + 2.1
B(2) – 4.9
B(2) + 2.6
ns
F5
td(CLKH-ADDIV)
Delay time, gpmc_clk
rising edge to
gpmc_a[16:1] invalid
F6
td(nBEV-CLK)
Delay time,
gpmc_nbe0_cle,
gpmc_nbe1 valid to
gpmc_clk first edge
B(2) – 1.1
B(2) + 2.1
B(2) – 0.9
B(2) + 1.9
B(2) – 2.6
B(2) + 2.6
ns
F7
td(CLKH-nBEIV)
Delay time, gpmc_clk
rising edge to
gpmc_nbe0_cle,
gpmc_nbe1 invalid
D(4) – 2.1
D(4) + 1.1
D(4) – 1.9
D(4) + 0.9
D(4) – 2.6
D(4) + 2.6
ns
F8
td(CLKH-nADV)
Delay time, gpmc_clk
rising edge to
gpmc_nadv_ale transition
G(7) – 1.9
G(7) + 4.1
G(7) – 2.1
G(7) + 4.1
G(7) – 2.6
G(7) + 4.9
ns
F9
td(CLKH-nADVIV)
Delay time, gpmc_clk
rising edge to
gpmc_nadv_ale invalid
D(4) – 1.9
D(4) + 4.1
D(4) – 2.1
D(4) + 4.1
D(4) – 2.6
D(4) + 4.9
ns
F10
td(CLKH-nOE)
Delay time, gpmc_clk
rising edge to gpmc_noe
transition
H(8) – 2.1
H(8) + 2.1
H(8) – 2.1
H(8) + 2.1
H(8) – 2.6
H(8) + 4.9
ns
F11
td(CLKH-nOEIV)
Delay time, gpcm rising
edge to gpmc_noe invalid
E(5) – 2.1
E(5) + 2.1
E(5) – 2.1
E(5) + 2.1
E(5) – 2.6
E(5) + 4.9
ns
F14
td(CLKH-nWE)
Delay time, gpmc_clk
rising edge to gpmc_nwe
transition
I(9) – 1.9
I(9) + 4.1
I(9) – 2.1
I(9) + 4.1
I(9) – 2.6
I(9) + 4.9
ns
F15
td(CLKH-Data)
Delay time, gpmc_clk
rising edge to data bus
transition
J(10) – 2.1
J(10) + 1.1
J(10) – 1.9
J(10) + 0.9
J(10) – 2.6
J(10) + 2.6
ns
F17
td(CLKH-nBE)
Delay time, gpmc_clk
rising edge to
gpmc_nbex_cle transition
J(10) – 2.1
J(10) + 1.1
J(10) – 1.9
J(10) + 0.9
J(10) – 2.6
J(10) + 2.6
ns
F18
tW(nCSV)
Pulse duration,
gpmc_ncsx(11)
low
F19
F20
tW(nBEV)
tW(nADVV)
Submit Documentation Feedback
–2.1
2
–2.1
–2.6
ns
Read
A(1)
A(1)
A(1)
ns
Write
(1)
(1)
A(1)
ns
C(3)
C(3)
C(3)
ns
(3)
(3)
(3)
ns
(13)
Pulse duration, Read
gpmc_nbe0_cle,
Write
gpmc_nbe1 low
Pulse duration,
gpmc_nadv_ale
low
2
A
C
(13)
A
C
(13)
PRODUCT PREVIEW
NO.
C
Read
K
K
K
ns
Write
K(13)
K(13)
K(13)
ns
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
131
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 6-4. GPMC/NOR Flash Interface Switching Characteristics – Synchronous Mode (continued)
NO.
PARAMETER
1.15 V
1.0 V
0.9 V
UNIT
MIN
MAX
MIN
MAX
MIN
MAX
H(8) – 2.1
H(8) + 4.1
H(8) – 2.1
H(8) + 4.1
H(8) – 2.6
F23
td(CLKH-IODIR)
Delay time, gpmc_clk
rising edge to gpmc_io_dir
high (IN direction)
H(8) + 4.9
ns
F24
td(CLKH-IODIV)
Delay time, gpmc_clk
M(17) – 2.1 M(17) + 4.1 M(17) – 2.1 M(17) + 4.1 M(17) – 2.6 M(17) + 4.9
rising edge to gpmc_io_dir
low (OUT direction)
ns
PRODUCT PREVIEW
(1) For single read: A = (CSRdOffTime – CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK period
For burst read: A = (CSRdOffTime – CSOnTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK period
For burst write: A = (CSWrOffTime – CSOnTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK period
with n being the page burst access number.
(2) B = ClkActivationTime * GPMC_FCLK
(3) For single read: C = RdCycleTime * (TimeParaGranularity + 1) * GPMC_FCLK
For burst read: C = (RdCycleTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For burst write: C = (WrCycleTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK with n being the
page burst access number.
(4) For single read: D = (RdCycleTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For burst read: D = (RdCycleTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For burst write: D = (WrCycleTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
(5) For single read: E = (CSRdOffTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For burst read: E = (CSRdOffTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For burst write: E = (CSWrOffTime – AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
(6) For nCS falling edge (CS activated):
– Case GpmcFCLKDivider = 0:
– F = 0.5 * CSExtraDelay * GPMC_FCLK
– Case GpmcFCLKDivider = 1:
– F = 0.5 * CSExtraDelay * GPMC_FCLK if (ClkActivationTime and CSOnTime are odd) or (ClkActivationTime and CSOnTime
are even)
– F = (1 + 0.5 * CSExtraDelay) * GPMC_FCLK otherwise
– Case GpmcFCLKDivider = 2:
– F = 0.5 * CSExtraDelay * GPMC_FCLK if ((CSOnTime – ClkActivationTime) is a multiple of 3)
– F = (1 + 0.5 * CSExtraDelay) * GPMC_FCLK if ((CSOnTime – ClkActivationTime – 1) is a multiple of 3)
– F = (2 + 0.5 * CSExtraDelay) * GPMC_FCLK if ((CSOnTime – ClkActivationTime – 2) is a multiple of 3)
(7) For ADV falling edge (ADV activated):
– Case GpmcFCLKDivider = 0:
– G = 0.5 * ADVExtraDelay * GPMC_FCLK
– Case GpmcFCLKDivider = 1:
– G = 0.5 * ADVExtraDelay * GPMC_FCLK if (ClkActivationTime and ADVOnTime are odd) or (ClkActivationTime and
ADVOnTime are even)
– G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK otherwise
– Case GpmcFCLKDivider = 2:
– G = 0.5 * ADVExtraDelay * GPMC_FCLK if ((ADVOnTime – ClkActivationTime) is a multiple of 3)
– G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVOnTime – ClkActivationTime – 1) is a multiple of 3)
– G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVOnTime – ClkActivationTime – 2) is a multiple of 3)
For ADV rising edge (ADV deactivated) in Reading mode:
– Case GpmcFCLKDivider = 0:
– G = 0.5 * ADVExtraDelay * GPMC_FCLK
– Case GpmcFCLKDivider = 1:
– G = 0.5 * ADVExtraDelay * GPMC_FCLK if (ClkActivationTime and ADVRdOffTime are odd) or (ClkActivationTime and
ADVRdOffTime are even)
– G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK otherwise
– Case GpmcFCLKDivider = 2:
– G = 0.5 * ADVExtraDelay * GPMC_FCLK if ((ADVRdOffTime – ClkActivationTime) is a multiple of 3)
– G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVRdOffTime – ClkActivationTime – 1) is a multiple of 3)
– G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVRdOffTime – ClkActivationTime – 2) is a multiple of 3)
For ADV rising edge (ADV deactivated) in Writing mode:
– Case GpmcFCLKDivider = 0:
– G = 0.5 * ADVExtraDelay * GPMC_FCLK
– Case GpmcFCLKDivider = 1:
– G = 0.5 * ADVExtraDelay * GPMC_FCLK if (ClkActivationTime and ADVWrOffTime are odd) or (ClkActivationTime and
ADVWrOffTime are even)
– G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK otherwise
– Case GpmcFCLKDivider = 2:
132
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
For OE rising edge (OE deactivated):
– GpmcFCLKDivider = 0:
– H = 0.5 * OEExtraDelay * GPMC_FCLK
– Case GpmcFCLKDivider = 1:
– H = 0.5 * OEExtraDelay * GPMC_FC if (ClkActivationTime and OEOffTime are odd) or (ClkActivationTime and OEOffTime are
even)
– H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK otherwise
– Case GpmcFCLKDivider = 2:
– H = 0.5 * OEExtraDelay * GPMC_FCLK if ((OEOffTime – ClkActivationTime) is a multiple of 3)
– H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK if ((OEOffTime – ClkActivationTime – 1) is a multiple of 3)
– H = (2 + 0.5 * OEExtraDelay) * GPMC_FCLK if ((OEOffTime – ClkActivationTime – 2) is a multiple of 3)
(9) For WE falling edge (WE activated):
– Case GpmcFCLKDivider = 0:
– I = 0.5 * WEExtraDelay * GPMC_FCLK
– Case GpmcFCLKDivider = 1:
– I = 0.5 * WEExtraDelay * GPMC_FCLK if (ClkActivationTime and WEOnTime are odd) or (ClkActivationTime and WEOnTime
are even)
– I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK otherwise
– Case GpmcFCLKDivider = 2:
– I = 0.5 * WEExtraDelay * GPMC_FCLK if ((WEOnTime – ClkActivationTime) is a multiple of 3)
– I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOnTime – ClkActivationTime – 1) is a multiple of 3)
– I = (2 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOnTime – ClkActivationTime – 2) is a multiple of 3)
For WE rising edge (WE deactivated):
– Case GpmcFCLKDivider = 0:
– I = 0.5 * WEExtraDelay * GPMC_FCLK
– Case GpmcFCLKDivider = 1:
– I = 0.5 * WEExtraDelay * GPMC_FCLK if (ClkActivationTime and WEOffTime are odd) or (ClkActivationTime and WEOffTime
are even)
– I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK otherwise
– Case GpmcFCLKDivider = 2:
– I = 0.5 * WEExtraDelay * GPMC_FCLK if ((WEOffTime – ClkActivationTime) is a multiple of 3)
– I = (1 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOffTime – ClkActivationTime – 1) is a multiple of 3)
– I = (2 + 0.5 * WEExtraDelay) * GPMC_FCLK if ((WEOffTime – ClkActivationTime – 2) is a multiple of 3)
(10) J = GPMC_FCLK period
(11) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
(12) P = gpmc_clk period
(13) For read: K = (ADVRdOffTime – ADVOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For write: K = (ADVWrOffTime – ADVOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK
(14) GPMC_FCLK is General-Purpose Memory Controller internal functional clock.
(15) Related to the gpmc_clk output clock maximum and minimum frequencies programmable in the I/F module by setting the
GPMC_CONFIG1_CSx configuration register bit field GpmcFCLKDivider.
(16) The jitter probability density can be approximated by a Gaussian function.
(17) M = (RdCycleTime - AccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
Above M parameter expression is given as one example of GPMC programming. IO DIR signal will go from IN to OUT after both
RdCycleTime and BusTurnAround completion. Behavior of IO direction signal does depend on kind of successive Read/Write accesses
performed to Memory and multiplexed or non-multiplexed memory addressing scheme, bus keeping feature enabled or not. IO DIR
behavior is automatically handled by GPMC controller. For a full description of the gpmc_io_dir feature, see the OMAP35x Technical
Reference Manual (TRM) [literature number SPRUF98].
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
133
PRODUCT PREVIEW
– G = 0.5 * ADVExtraDelay * GPMC_FCLK if ((ADVWrOffTime – ClkActivationTime) is a multiple of 3)
– G = (1 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVWrOffTime – ClkActivationTime – 1) is a multiple of 3)
– G = (2 + 0.5 * ADVExtraDelay) * GPMC_FCLK if ((ADVWrOffTime – ClkActivationTime – 2) is a multiple of 3)
(8) For OE falling edge (OE activated) / IO DIR rising edge (Data Bus input direction):
– Case GpmcFCLKDivider = 0:
– H = 0.5 * OEExtraDelay * GPMC_FCLK
– Case GpmcFCLKDivider = 1:
– H = 0.5 * OEExtraDelay * GPMC_FCLK if (ClkActivationTime and OEOnTime are odd) or (ClkActivationTime and OEOnTime
are even)
– H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK otherwise
– Case GpmcFCLKDivider = 2:
– H = 0.5 * OEExtraDelay * GPMC_FCLK if ((OEOnTime – ClkActivationTime) is a multiple of 3)
– H = (1 + 0.5 * OEExtraDelay) * GPMC_FCLK if ((OEOnTime – ClkActivationTime – 1) is a multiple of 3)
– H = (2 + 0.5 * OEExtraDelay) * GPMC_FCLK if ((OEOnTime – ClkActivationTime – 2) is a multiple of 3)
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
F1
F1
F0
gpmc_clk
F2
F3
F18
gpmc_ncsx
F4
gpmc_a[10:1]
Valid Address
F6
F7
F19
gpmc_nbe0_cle
F19
gpmc_nbe1
PRODUCT PREVIEW
F6
F8
F8
F20
F9
gpmc_nadv_ale
F10
F11
gpmc_noe
F13
F12
D0
gpmc_d[15:0]
gpmc_waitx
F23
gpmc_io_dir
OUT
F24
IN
OUT
030-021
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 6-2. GPMC/NOR Flash – Synchronous Single Read – (GpmcFCLKDivider = 0)
134
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
F1
F1
F0
gpmc_clk
F2
F3
gpmc_ncsx
F4
Valid Address
gpmc_a[10:1]
F6
F7
gpmc_nbe0_cle
F7
gpmc_nbe1
F6
F8
F8
F9
F10
PRODUCT PREVIEW
gpmc_nadv_ale
F11
gpmc_noe
F13
F13
F12
D0
gpmc_d[15:0]
F21
F12
D1
D2
D3
F22
gpmc_waitx
F24
F23
gpmc_io_dir
OUT
IN
OUT
030-022
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 6-3. GPMC/NOR Flash – Synchronous Burst Read – 4x16-bit (GpmcFCLKDivider = 0)
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
135
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
F1
F1
F0
gpmc_clk
F2
F3
gpmc_ncsx
F4
gpmc_a[10:1]
Valid Address
F17
F6
F17
F17
gpmc_nbe0_cle
F17
F17
F17
gpmc_nbe1
PRODUCT PREVIEW
F6
F8
F8
F9
gpmc_nadv_ale
F14
F14
gpmc_nwe
F15
gpmc_d[15:0]
D0
D1
F15
D2
F15
D3
gpmc_waitx
gpmc_io_dir
OUT
030-023
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 6-4. GPMC/NOR Flash – Synchronous Burst Write – (GpmcFCLKDivider = 0)
136
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
F1
F0
F1
gpmc_clk
F2
F3
gpmc_ncsx
F6
F7
gpmc_nbe0_cle
Valid
F6
F7
gpmc_nbe1
Valid
F4
gpmc_a[26:17]
Address (MSB)
F12
F13
F5
Address (LSB)
F8
D0
D1
F12
D2
F8
D3
F9
gpmc_nadv_ale
F10
F11
gpmc_noe
gpmc_waitx
F24
F23
gpmc_io_dir
OUT
IN
OUT
030-024
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 6-5. GPMC/Multiplexed NOR Flash – Synchronous Burst Read
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
137
PRODUCT PREVIEW
F4
gpmc_a[16:1]_d[15:0]
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
F1
F1
F0
gpmc_clk
F2
F3
gpmc_ncsx
F4
Address (MSB)
gpmc_a[26:17]
F17
F6
F17
F17
gpmc_nbe0_cle
F17
F17
F17
gpmc_nbe1
PRODUCT PREVIEW
F6
F8
F8
F9
gpmc_nadv_ale
F14
F14
gpmc_nwe
F15
gpmc_d[15:0]
Address (LSB)
D0
D1
F15
F15
D2
D3
gpmc_waitx
OUT
gpmc_io_dir
030-025
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 6-6. GPMC/Multiplexed NOR Flash – Synchronous Burst Write
6.4.1.2 GPMC/NOR Flash Interface Asynchronous Timing
Table 6-7 and Table 6-8 assume testing over the recommended operating conditions (see Figure 6-7
through Figure 6-12) and electrical characteristic conditions.
Table 6-5. GPMC/NOR Flash Asynchronous Mode Timing Conditions
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
1.8
ns
tF
Input signal fall time
1.8
ns
15.94
pF
Output Conditions
CLOAD
Output load capacitance
Table 6-6. GPMC/NOR Flash Interface Asynchronous Timing – Internal Parameters (1) (2)
NO.
PARAMETER
1.15 V
MIN
FI1
Maximum output data generation delay from internal
functional clock
FI2
Maximum input data capture delay by internal
functional clock
FI3
Maximum device select generation delay from internal
functional clock
(1)
(2)
138
1.0 V
MAX
MIN
0.9 V
MAX
MIN
UNIT
MAX
6.5
9.1
13.7
ns
4
5.6
8.1
ns
6.5
9.1
13.7
ns
The internal parameters table must be used to calculate Data Access Time stored in the corresponding CS register bit field.
Internal parameters are referred to the GPMC functional internal clock which is not provided externally.
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 6-6. GPMC/NOR Flash Interface Asynchronous Timing – Internal Parameters (continued)
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
0.9 V
MAX
MIN
UNIT
MAX
FI4
Maximum address generation delay from internal
functional clock
6.5
9.1
13.7
ns
FI5
Maximum address valid generation delay from internal
functional clock
6.5
9.1
13.7
ns
FI6
Maximum byte enable generation delay from internal
functional clock
6.5
9.1
13.7
ns
FI7
Maximum output enable generation delay from internal
functional clock
6.5
9.1
13.7
ns
FI8
Maximum write enable generation delay from internal
functional clock
6.5
9.1
13.7
ns
FI9
Maximum functional clock skew
100
170
200
ps
Table 6-7. GPMC/NOR Flash Interface Timing Requirements – Asynchronous Mode
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
0.9 V
MAX
MIN
UNIT
MAX
FA5 (1)
tacc(DAT)
Data maximum access
time
H (2)
H (2)
H (2)
GPMC_FCLK cycles
FA20 (3)
tacc1-pgmode(DAT) Page mode successive
data maximum access
time
P (4)
P (4)
P (4)
GPMC_FCLK cycles
FA21 (5)
tacc2-pgmode(DAT) Page mode first data
maximum access time
H (2)
H (2)
H (2)
GPMC_FCLK cycles
(1)
(2)
(3)
(4)
(5)
The FA5 parameter illustrates the amount of time required to internally sample input Data. It is expressed in number of GPMC functional
clock cycles. From start of read cycle and after FA5 functional clock cycles, input Data is internally sampled by active functional clock
edge. FA5 value must be stored inside the AccessTime register bit field.
H = AccessTime * (TimeParaGranularity + 1)
The FA20 parameter illustrates amount of time required to internally sample successive input Page Data. It is expressed in number of
GPMC functional clock cycles. After each access to input Page Data, next input Page Data is internally sampled by active functional
clock edge after FA20 functional clock cycles. The FA20 value must be stored in the PageBurstAccessTime register bit field.
P = PageBurstAccessTime * (TimeParaGranularity + 1)
The FA21 parameter illustrates amount of time required to internally sample first input Page Data. It is expressed in number of GPMC
functional clock cycles. From start of read cycle and after FA21 functional clock cycles, First input Page Data is internally sampled by
active functional clock edge. FA21 value must be stored inside the AccessTime register bit field.
Table 6-8. GPMC/NOR Flash Interface Switching Characteristics – Asynchronous Mode
NO.
PARAMETER
1.15 V
MIN
FA0
FA1
FA3
FA4
1.0 V
MAX
0.9 V
MIN
MAX
UNIT
MIN
MAX
tR(DO)
Rise time, output data
2.0
2.0
2.0
ns
tF(DO)
Fall time, output data
2.0
2.0
2.0
ns
tW(nBEV)
Pulse duration, Read
gpmc_nbe0_cl
Write
e, gpmc_nbe1
valid time
N(12)
N(12)
N(12)
ns
(12)
(12)
(12)
ns
Pulse duration, Read
gpmc_ncsx(13)
Write
v low
A(1)
A(1)
A(1)
(1)
(1)
(1)
tW(nCSV)
td(nCSV-nADVIV)
td(nCSV-nOEIV)
Delay time,
gpmc_ncsx(13)
valid to
gpmc_nadv_al
e invalid
Read
Write
Delay time,
gpmc_ncsx(13) valid to
gpmc_noe invalid
(Single read)
Submit Documentation Feedback
N
N
A
(2)
B
(2)
B
– 0.2
– 0.2
C(3) – 0.2
N
A
(2)
B
(2)
B
+ 2.0
+ 2.0
C(3) + 2.0
(2)
B
(2)
B
– 0.2
– 0.2
C(3) – 0.2
ns
A
(2)
B
(2)
B
+ 2.6
+ 2.6
C(3) + 2.6
(2)
B
(2)
B
– 0.2
– 0.2
C(3) – 0.2
ns
(2)
+ 3.7
ns
(2)
+ 3.7
ns
C(3) + 3.7
ns
B
B
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
139
PRODUCT PREVIEW
NO.
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 6-8. GPMC/NOR Flash Interface Switching Characteristics – Asynchronous Mode (continued)
NO.
PARAMETER
1.15 V
1.0 V
0.9 V
UNIT
MIN
MAX
MIN
MAX
MIN
MAX
PRODUCT PREVIEW
FA9
td(AV-nCSV)
Delay time, address
bus valid to
gpmc_ncsx(13) valid
J(9) – 0.2
J(9) + 2.0
J(9) – 0.2
J(9) + 2.6
J(9) – 0.2
J(9) + 3.7
ns
FA10
td(nBEV-nCSV)
Delay time,
gpmc_nbe0_cle,
gpmc_nbe1 valid to
gpmc_ncsx(13) valid
J(9) – 0.2
J(9) + 2.0
J(9) – 0.2
J(9) + 2.6
J(9) – 0.2
J(9) + 3.7
ns
FA12
td(nCSV-nADVV)
Delay time,
gpmc_ncsx(13) valid to
gpmc_nadv_ale valid
K(10) – 0.2
K(10) + 2.0
K(10) – 0.2
K(10) + 2.6
K(10) – 0.2
K(10) + 3.7
ns
FA13
td(nCSV-nOEV)
Delay time,
gpmc_ncsx(13) valid to
gpmc_noe valid
L(11) – 0.2
L(11) + 2.0
L(11) – 0.2
L(11) + 2.6
L(11) – 0.2
L(11) + 3.7
ns
FA14
td(nCSV-IODIR)
Delay time,
gpmc_ncsx(13) valid to
gpmc_io_dir high
L(11) – 0.2
L(11) + 2.0
L(11) – 0.2
L(11) + 2.6
L(11) – 0.2
L(11) + 3.7
ns
FA15
td(nCSV-IODIR)
Delay time,
gpmc_ncsx(13) valid to
gpmc_io_dir low
M(14) – 0.2
M(14) + 2.0
M(14) – 0.2
M(14) + 2.6
M(14) – 0.2
M(14) + 3.7
ns
FA16
tw(AIV)
Address invalid
duration between 2
successive R/W
accesses
FA18
td(nCSV-nOEIV)
Delay time,
gpmc_ncsx(13) valid to
gpmc_noe invalid
(Burst read)
FA20
tw(AV)
Pulse duration, address
valid – 2nd, 3rd, and
4th accesses
FA25
td(nCSV-nWEV)
Delay time,
gpmc_ncsx(13) valid to
gpmc_nwe valid
E(5) – 0.2
E(5) + 2.0
E(5) – 0.2
E(5) + 2.6
E(5) – 0.2
E(5) + 3.7
ns
FA27
td(nCSV-nWEIV)
Delay time,
gpmc_ncsx(13) valid to
gpmc_nwe invalid
F(6) – 0.2
F(6) + 2.0
F(6) – 0.2
F(6) + 2.6
F(6) – 0.2
F(6) + 3.7
ns
FA28
td(nWEV-DV)
Delay time, gpmc_ new
valid to data bus valid
3.7
ns
FA29
td(DV-nCSV)
Delay time, data bus
valid to gpmc_ncsx(13)
valid
J(9) + 3.7
ns
FA37
td(nOEV-AIV)
Delay time, gpmc_noe
valid to
gpmc_a[16:1]_d[15:0]
address phase end
3.7
ns
G(7)
I(8) – 0.2
G(7)
I(8) + 2.0
I(8) – 0.2
D(4)
I(8) + 2.6
I(8) – 0.2
D(4)
2.0
J(9) – 0.2
G(7)
J(9) + 2.0
2.0
I(8) + 3.7
D(4)
2.6
J(9) – 0.2
ns
J(9) + 2.6
2.6
J(9) – 0.2
ns
ns
(1) For single read: A = (CSRdOffTime – CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For single write: A = (CSWrOffTime – CSOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For burst read: A = (CSRdOffTime – CSOnTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For burst write: A = (CSWrOffTime – CSOnTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK with n
being the page burst access number
(2) For reading: B = ((ADVRdOffTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay – CSExtraDelay)) * GPMC_FCLK
For writing: B = ((ADVWrOffTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay – CSExtraDelay)) * GPMC_FCLK
(3) C = ((OEOffTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay – CSExtraDelay)) * GPMC_FCLK
(4) D = PageBurstAccessTime * (TimeParaGranularity + 1) * GPMC_FCLK
(5) E = ((WEOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay – CSExtraDelay)) * GPMC_FCLK
(6) F = ((WEOffTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay – CSExtraDelay)) * GPMC_FCLK
(7) G = Cycle2CycleDelay * GPMC_FCLK
(8) I = ((OEOffTime + (n – 1) * PageBurstAccessTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay – CSExtraDelay)) *
GPMC_FCLK
140
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
(9) J = (CSOnTime * (TimeParaGranularity + 1) + 0.5 * CSExtraDelay) * GPMC_FCLK
(10) K = ((ADVOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay – CSExtraDelay)) * GPMC_FCLK
(11) L = ((OEOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay – CSExtraDelay)) * GPMC_FCLK
(12) For single read: N = RdCycleTime * (TimeParaGranularity + 1) * GPMC_FCLK
For single write: N = WrCycleTime * (TimeParaGranularity + 1) * GPMC_FCLK
For burst read: N = (RdCycleTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
For burst write: N = (WrCycleTime + (n – 1) * PageBurstAccessTime) * (TimeParaGranularity + 1) * GPMC_FCLK
(13) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.
(14) M = ((RdCycleTime - CSOnTime) * (TimeParaGranularity + 1) - 0.5 * CSExtraDelay) * GPMC_FCLK
Above M parameter expression is given as one example of GPMC programming. IO DIR signal will go from IN to OUT after both
RdCycleTime and BusTurnAround completion. Behavior of IO direction signal does depend on kind of successive Read/Write accesses
performed to Memory and multiplexed or non-multiplexed memory addressing scheme, bus keeping feature enabled or not. IO DIR
behavior is automatically handled by GPMC controller. For a full description of the gpmc_io_dir feature, see the OMAP35x Technical
Reference Manual (TRM) [literature number SPRUF98].
GPMC_FCLK
PRODUCT PREVIEW
gpmc_clk
FA5
FA1
gpmc_ncsx
FA9
Valid Address
gpmc_a[10:1]
FA0
FA10
gpmc_nbe0_cle
Valid
gpmc_nbe1
Valid
FA0
FA10
FA3
FA12
gpmc_nadv_ale
FA4
FA13
gpmc_noe
gpmc_d[15:0]
Data IN 0
Data IN 0
gpmc_waitx
FA14
gpmc_io_dir
OUT
FA15
IN
OUT
030-026
Figure 6-7. GPMC/NOR Flash – Asynchronous Read – Single Word Timing(1)(2)(3)
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
(2) FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock
cycles. From start of read cycle and after FA5 functional clock cycles, input data is internally sampled by active functional clock edge.
FA5 value must be stored inside AccessTime register bit field.
(3) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
141
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
GPMC_FCLK
gpmc_clk
FA5
FA5
FA1
FA1
gpmc_ncsx
FA16
FA9
FA9
gpmc_a[10:1]
Address 0
Address 1
FA0
FA0
FA10
FA10
PRODUCT PREVIEW
gpmc_nbe0_cle
Valid
FA0
FA0
gpmc_nbe1
Valid
Valid
Valid
FA10
FA10
FA3
FA3
FA12
FA12
gpmc_nadv_ale
FA4
FA4
FA13
FA13
gpmc_noe
gpmc_d[15:0]
Data Upper
gpmc_waitx
FA15
gpmc_io_dir
FA14
OUT
IN
FA14
OUT
FA15
IN
030-027
Figure 6-8. GPMC/NOR Flash – Asynchronous Read – 32-bit Timing
(1)(2)(3)
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
(2) FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock
cycles. From start of read cycle and after FA5 functional clock cycles, input data is internally sampled by active functional clock edge.
FA5 value must be stored inside AccessTime register bit field.
(3) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
142
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
GPMC_FCLK
gpmc_clk
FA21
FA20
FA20
FA20
FA1
gpmc_ncsx
FA9
Add0
gpmc_a[10:1]
Add1
Add2
Add3
D0
D1
D2
Add4
FA0
FA10
gpmc_nbe0_cle
FA0
gpmc_nbe1
FA12
gpmc_nadv_ale
FA18
FA13
gpmc_noe
gpmc_d[15:0]
D3
D3
gpmc_waitx
FA15
gpmc_io_dir
OUT
FA14
IN
OUT
030-028
Figure 6-9. GPMC/NOR Flash – Asynchronous Read – Page Mode 4x16-bit Timing(1)(2)(3)(4)
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
(2) FA21 parameter illustrates amount of time required to internally sample first input page data. It is expressed in number of GPMC
functional clock cycles. From start of read cycle and after FA21 functional clock cycles, first input page data is internally sampled by
active functional clock edge. FA21 value must be stored inside AccessTime register bit field.
(3) FA20 parameter illustrates amount of time required to internally sample successive input page data. It is expressed in number of GPMC
functional clock cycles. After each access to input page data, next input page data is internally sampled by active functional clock edge
after FA20 functional clock cycles. FA20 is also the duration of address phases for successive input page data (excluding first input
page data). FA20 value must be stored in PageBurstAccessTime register bit field.
(4) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
143
PRODUCT PREVIEW
FA10
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
gpmc_fclk
gpmc_clk
FA1
gpmc_ncsx
FA9
Valid Address
gpmc_a[10:1]
FA0
FA10
gpmc_nbe0_cle
FA0
FA10
gpmc_nbe1
PRODUCT PREVIEW
FA3
FA12
gpmc_nadv_ale
FA27
FA25
gpmc_nwe
FA29
gpmc_d[15:0]
Data OUT
gpmc_waitx
gpmc_io_dir
OUT
030-029
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 6-10. GPMC/NOR Flash – Asynchronous Write – Single Word Timing
144
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
GPMC_FCLK
gpmc_clk
FA1
FA5
gpmc_ncsx
FA9
gpmc_a[26:17]
Address (MSB)
FA0
FA10
gpmc_nbe0_cle
Valid
FA0
gpmc_nbe1
Valid
FA3
FA12
gpmc_nadv_ale
FA4
FA13
gpmc_noe
FA29
gpmc_a[16:1]_d[15:0]
FA37
Address (LSB)
FA14
gpmc_io_dir
OUT
Data IN
Data IN
FA15
OUT
IN
gpmc_waitx
030-030
Figure 6-11. GPMC/Multiplexed NOR Flash – Asynchronous Read – Single Word Timing
(1)(2)(3)
(1) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
(2) FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock
cycles. From start of read cycle and after FA5 functional clock cycles, input data is internally sampled by active functional clock edge.
FA5 value must be stored inside AccessTime register bit field.
(3) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
145
PRODUCT PREVIEW
FA10
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
gpmc_fclk
gpmc_clk
FA1
gpmc_ncsx
FA9
gpmc_a[26:17]
Address (MSB)
FA0
FA10
gpmc_nbe0_cle
FA0
FA10
gpmc_nbe1
PRODUCT PREVIEW
FA3
FA12
gpmc_nadv_ale
FA27
FA25
gpmc_nwe
FA29
gpmc_a[16:1]_d[15:0]
FA28
Valid Address (LSB)
Data OUT
gpmc_waitx
gpmc_io_dir
OUT
030-031
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0, 1, 2, or 3.
Figure 6-12. GPMC/Multiplexed NOR Flash – Asynchronous Write – Single Word Timing
6.4.1.3 GPMC/NAND Flash Interface Timing
Table 6-10 through Table 6-12 assume testing over the recommended operating conditions (see
Figure 6-13 through Figure 6-16) and electrical characteristic conditions.
Table 6-9. GPMC/NAND Flash Asynchronous Mode Timing Conditions
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
1.8
ns
tF
Input signal fall time
1.8
ns
15.94
pF
Output Conditions
CLOAD
Output load capacitance
Table 6-10. GPMC/NAND Flash Interface Asynchronous Timing – Internal Parameters (1) (2)
NO.
PARAMETER
1.15 V
MIN
GNFI1
Maximum output data generation delay from
internal functional clock
GNFI2
Maximum input data capture delay by internal
functional clock
(1)
(2)
146
1.0 V
MAX
MIN
0.9 V
MAX
MIN
UNIT
MAX
6.5
9.1
13.7
ns
4
5.6
8.1
ns
Internal parameters table must be used to calculate data access time stored in the corresponding CS register bit field.
Internal parameters are referred to the GPMC functional internal clock which is not provided externally.
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 6-10. GPMC/NAND Flash Interface Asynchronous Timing – Internal Parameters (continued)
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
0.9 V
MAX
MIN
UNIT
MAX
GNFI3
Maximum device select generation delay from
internal functional clock
6.5
9.1
13.7
ns
GNFI4
Maximum address latch enable generation delay
from internal functional clock
6.5
9.1
13.7
ns
GNFI5
Maximum command latch enable generation
delay from internal functional clock
6.5
9.1
13.7
ns
GNFI6
Maximum output enable generation delay from
internal functional clock
6.5
9.1
13.7
ns
GNFI7
Maximum write enable generation delay from
internal functional clock
6.5
9.1
13.7
ns
GNFI8
Maximum functional clock skew
100
170
200
ps
Table 6-11. GPMC/NAND Flash Interface Timing Requirements
NO.
PARAMETER
1.15 V
MIN
GNF12 (1) tacc(DAT)
(1)
(2)
1.0 V
MAX
MIN
J (2)
Data maximum access time
0.9 V
MAX
MIN
UNIT
MAX
J (2)
J (2)
GPMC_FCLK
cycles
The GNF12 parameter illustrates the amount of time required to internally sample input data. It is expressed in number of GPMC
functional clock cycles. From start of the read cycle and after GNF12 functional clock cycles, input data is internally sampled by the
active functional clock edge. The GNF12 value must be stored inside AccessTime register bit field.
J = AccessTime * (TimeParaGranularity + 1)
Table 6-12. GPMC/NAND Flash Interface Switching Characteristics
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
0.9 V
MAX
MIN
UNIT
MAX
tR(DO)
Rise time, output
data
2.0
2.0
2.0
ns
tF(DO)
Fall time, output
data
2.0
2.0
2.0
ns
GNF0
tw(nWEV)
Pulse duration,
gpmc_nwe valid
time
GNF1
td(nCSV-nWEV)
Delay time,
gpmc_ncsx(13)
valid to
gpmc_nwe valid
B(2) – 0.2
B(2) + 2.0
B(2) – 0.2
B(2) + 2.6
B(2) – 0.2
B(2) + 3.7
ns
GNF2
tw(CLEH-nWEV)
Delay time,
gpmc_nbe0_cle
high to gpmc_nwe
valid
C(3) – 0.2
C(3) + 2.0
C(3) – 0.2
C(3) + 2.6
C(3) – 0.2
C(3) + 3.7
ns
GNF3
tw(nWEV-DV)
Delay time,
gpmc_d[15:0]
valid to
gpmc_nwe valid
D(4) – 0.2
D(4) + 2.0
D(4) – 0.2
D(4) + 2.6
D(4) – 0.2
D(4) + 3.7
ns
GNF4
tw(nWEIV-DIV)
Delay time,
gpmc_nwe invalid
to gpmc_d[15:0]
invalid
E(5) – 0.2
E(5) + 2.0
E(5) – 0.2
E(5) + 2.6
E(5) – 0.2
E(5) + 3.7
ns
GNF5
tw(nWEIV-CLEIV)
Delay time,
gpmc_nwe invalid
to
gpmc_nbe0_cle
invalid
F(6) – 0.2
F(6) + 2.0
F(6) – 0.2
F(6) + 2.6
F(6) – 0.2
F(6) + 3.7
ns
Submit Documentation Feedback
A(1)
A(1)
A(1)
ns
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
147
PRODUCT PREVIEW
NO.
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 6-12. GPMC/NAND Flash Interface Switching Characteristics (continued)
NO.
PARAMETER
1.15 V
1.0 V
0.9 V
UNIT
MIN
MAX
MIN
MAX
MIN
MAX
PRODUCT PREVIEW
GNF6
tw(nWEIV-nCSIV)
Delay time,
gpmc_nwe invalid
to gpmc_ncsx(13)
invalid
G(7) – 0.2
G(7) + 2.0
G(7) – 0.2
G(7) + 2.6
G(7) – 0.2
G(7) + 3.7
ns
GNF7
tw(ALEH-nWEV)
Delay time,
gpmc_nadv_ale
High to
gpmc_nwe valid
C(3) – 0.2
C(3) + 2.0
C(3) – 0.2
C(3) + 2.6
C(3) – 0.2
C(3) + 3.7
ns
GNF8
tw(nWEIV-ALEIV)
Delay time,
gpmc_nwe invalid
to
gpmc_nadv_ale
invalid
F(6) – 0.2
F(6) + 2.0
F(6) – 0.2
F(6) + 2.6
F(6) – 0.2
F(6) + 3.7
ns
GNF9
tc(nWE)
Cycle time, Write
cycle time
GNF10
td(nCSV-nOEV)
Delay time,
gpmc_ncsx(13)
valid to gpmc_noe
valid
GNF13
tw(nOEV)
Pulse duration,
gpmc_noe valid
time
K(10)
K(10)
K(10)
ns
GN F14
tc(nOE)
Cycle time, Read
cycle time
L(11)
L(11)
L(11)
ns
GNF15
tw(nOEIV-nCSIV)
Delay time,
gpmc_noe invalid
to gpmc_ncsx(13)
invalid
H(8)
I(9) – 0.2
H(8)
I(9) + 2.0
M(12) – 0.2
M(12) + 2.0
I(9) – 0.2
H(8)
I(9) + 2.6
M(12) – 0.2
M(12) + 2.6
I(9) – 0.2
ns
I(9) + 3.7
M(12) – 0.2
M(12) + 3.7
ns
ns
(1) A = (WEOffTime – WEOnTime) * (TimeParaGranularity + 1) * GPMC_FCLK
(2) B = ((WEOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay – CSExtraDelay)) * GPMC_FCLK
(3) C = ((WEOnTime – ADVOnTime) * (TimeParaGranularity + 1) + 0.5 * (WEExtraDelay – ADVExtraDelay)) * GPMC_FCLK
(4) D = (WEOnTime * (TimeParaGranularity + 1) + 0.5 * WEExtraDelay ) * GPMC_FCLK
(5) E = ((WrCycleTime – WEOffTime) * (TimeParaGranularity + 1) – 0.5 * WEExtraDelay ) * GPMC_FCLK
(6) F = ((ADVWrOffTime – WEOffTime) * (TimeParaGranularity + 1) + 0.5 * (ADVExtraDelay – WEExtraDelay )) * GPMC_FCLK
(7) G = ((CSWrOffTime – WEOffTime) * (TimeParaGranularity + 1) + 0.5 * (CSExtraDelay – WEExtraDelay )) * GPMC_FCLK
(8) H = WrCycleTime * (1 + TimeParaGranularity) * GPMC_FCLK
(9) I = ((OEOnTime – CSOnTime) * (TimeParaGranularity + 1) + 0.5 * (OEExtraDelay – CSExtraDelay)) * GPMC_FCLK
(10) K = (OEOffTime – OEOnTime) * (1 + TimeParaGranularity) * GPMC_FCLK
(11) L = RdCycleTime * (1 + TimeParaGranularity) * GPMC_FCLK
(12) M = ((CSRdOffTime – OEOffTime) * (TimeParaGranularity + 1) + 0.5 * (CSExtraDelay – OEExtraDelay )) * GPMC_FCLK
(13) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.
148
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
GPMC_FCLK
GNF1
GNF6
GNF2
GNF5
gpmc_ncsx
gpmc_nbe0_cle
gpmc_nadv_ale
gpmc_noe
GNF0
gpmc_nwe
GNF3
GNF4
PRODUCT PREVIEW
Command
gpmc_a[16:1]_d[15:0]
030-032
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.
Figure 6-13. GPMC/NAND Flash – Command Latch Cycle Timing
GPMC_FCLK
GNF1
GNF6
GNF7
GNF8
gpmc_ncsx
gpmc_nbe0_cle
gpmc_nadv_ale
gpmc_noe
GNF9
GNF0
gpmc_nwe
GNF3
gpmc_a[16:1]_d[15:0]
GNF4
Address
030-033
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7.
Figure 6-14. GPMC/NAND Flash – Address Latch Cycle Timing
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
149
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
GPMC_FCLK
GNF12
GNF10
GNF15
gpmc_ncsx
gpmc_nbe0_cle
gpmc_nadv_ale
GNF14
GNF13
gpmc_noe
PRODUCT PREVIEW
gpmc_a[16:1]_d[15:0]
DATA
gpmc_waitx
030-034
Figure 6-15. GPMC/NAND Flash – Data Read Cycle Timing
(1)(2)(3)
(1) The GNF12 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional
clock cycles. From start of read cycle and after GNF12 functional clock cycles, input data is internally sampled by active functional clock
edge. The GNF12 value must be stored inside AccessTime register bit field.
(2) GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
(3) In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0 ,1, 2, or 3.
GPMC_FCLK
GNF1
GNF6
gpmc_ncsx
gpmc_nbe0_cle
gpmc_nadv_ale
gpmc_noe
GNF9
GNF0
gpmc_nwe
GNF3
gpmc_a[16:1]_d[15:0]
GNF4
DATA
030-035
In gpmc_ncsx, x is equal to 0, 1, 2, 3, 4, 5, 6, or 7. In gpmc_waitx, x is equal to 0 or 1.
Figure 6-16. GPMC/NAND Flash – Data Write Cycle Timing
150
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
6.4.2
SPRS599 – JUNE 2009
SDRAM Controller Subsystem (SDRC)
The SDRAM controller subsystem (SDRC) module provides connectivity between the OMAP3525 and
OMAP3530 Applications Processors and external DRAM memory components. The SDRC module only
supports low-power double-data-rate (LPDDR) SDRAM devices. Memory devices can be interfaced to the
SDRC using a stacked-memory approach or through the printed circuit board (PCB). The stacked-memory
approach uses the package on package interface pins (available on CBB & CBC package).
6.4.2.1 SDRAM Controller Subsystem Device-Specific Information
For the SDRC memory bus, the approach is to specify compatible memory devices and provide the
printed circuit board (PCB) solution and guidelines directly to the user. Texas Instruments (TI) has
performed the simulation and system characterization to ensure all interface timings in this solution are
met.
6.4.2.2 LPDDR Interface
The LPDDR interface is balled out on the bottom side of all OMAP35x packages and on the top side of
OMAP35x POP packages. The LPDDR interface on the top of the POP package has been designed for
compatibility any POP LPDDR device with a matching footprint and compliance with the JEDEC
LPDDR-266 specification.
This section provides the timing specification for the bottom-side LPDDR interface as a PCB design and
manufacturing specification. The design rules constrain PCB trace length, PCB trace skew, signal
integrity, cross-talk, and signal timing. These rules, when followed, result in a reliable LPDDR memory
system without the need for a complex timing closure process. For more information regarding guidelines
for using this LPDDR specification, see the Understanding TI's PCB Routing Rule-Based DDR Timing
Specification Application Report (literature number SPRAAV0).
6.4.2.2.1 LPDDR Interface Schematic
Figure 6-17 and Figure 6-18 show the LPDDR interface schematics for a LPDDR memory system. The 1
x16 LPDDR system schematic is identical to Figure 6-17 except that the high word LPDDR device is
deleted.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
151
PRODUCT PREVIEW
The approach to specifying interface timing for the SDRC memory bus is different than on other interfaces
such as the general-purpose memory controller (GPMC) and the multi-channel buffered serial ports
(McBSPs). For these other interfaces the device timing was specified in terms of data manual
specifications and I/O buffer information specification (IBIS) models.
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
LPDDR
OMAP35x
sdrc_d0
T
DQ0
sdrc_d7
sdrc_dm0
sdrc_dqs0
sdrc_d8
T
DQ7
LDM
LDQS
DQ8
sdrc_d15
sdrc_dm1
sdrc_dqs1
T
T
T
T
T
T
LPDDR
PRODUCT PREVIEW
sdrc_d16
T
DQ0
sdrc_d23
sdrc_dm2
sdrc_dqs2
sdrc_d24
T
DQ7
LDM
LDQS
DQ8
sdrc_d31
sdrc_dm3
sdrc_dqs3
sdrc_ba0
sdrc_ba1
sdrc_a0
T
sdrc_a14
sdrc_ncs0
sdrc_ncs1
sdrc_ncas
sdrc_nras
sdrc_nwe
sdrc_cke0
sdrc_cke1
sdrc_clk
sdrc_nclk
T
T
T
T
T
T
T
T
T
T
DQ15
UDM
UDQS
DQ15
UDM
UDQS
BA0
BA1
A0
BA0
BA1
A0
A14
CS
A14
CS
CAS
RAS
WE
CKE
CAS
RAS
WE
CKE
CK
CK
CK
CK
N/C
T
T
T
T
N/C
T
T
Figure 6-17. OMAP35x LPDDR High Level Schematic (x16 memories)
152
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
LPDDR
sdrc_d0
T
DQ0
sdrc_d7
sdrc_dm0
sdrc_dqs0
sdrc_d8
T
DQ7
DM0
DQS0
DQ8
sdrc_d15
sdrc_dm1
sdrc_dqs1
T
T
DQ15
DM1
DQS1
sdrc_d16
T
DQ16
sdrc_d23
sdrc_dm2
sdrc_dqs2
sdrc_d24
T
DQ23
DM2
DQS2
DQ24
sdrc_d31
sdrc_dm3
sdrc_dqs3
sdrc_ba0
sdrc_ba1
sdrc_a0
T
sdrc_a14
sdrc_ncs0
sdrc_ncs1
sdrc_ncas
sdrc_nras
sdrc_nwe
sdrc_cke0
sdrc_cke1
sdrc_clk
sdrc_nclk
T
T
T
T
T
T
T
T
T
T
T
T
T
PRODUCT PREVIEW
OMAP35x
DQ31
DM3
DQS3
BA0
BA1
A0
A14
CS
T
N/C
T
CAS
RAS
WE
CKE
T
T
T
N/C
T
CK
CK
T
Figure 6-18. OMAP35x LPDDR High Level Schematic (x32 memory)
6.4.2.2.2 Compatible JEDEC LPDDR Devices
Table 6-13 shows the parameters of the JEDEC LPDDR devices that are compatible with this interface.
Generally, the LPDDR interface is compatible with x16 and x32 LPDDR266 and LPDDR333 speed grade
LPDDR devices.
Table 6-13. Compatible JEDEC LPDDR Devices
(1)
(2)
NO.
PARAMETER
MIN
1
JEDEC LPDDR Device Speed
Grade
MAX
UNIT
LPDDR-266
2
JEDEC LPDDR Device Bit Width
16
32
Bits
3
JEDEC LPDDR Device Count
1
2
Devices
4
JEDEC LPDDR Device Ball
Count
60
90
Balls
NOTES
See Note
(1)
See Note
(2)
Higher LPDDR speed grades are supported due to inherent JEDEC LPDDR backwards compatibility.
1 x16 LPDDR device is used for 16 bit LPDDR memory system. 1x32 or 2x16 LPDDR devices are used for a 32-bit LPDDR memory
system.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
153
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
6.4.2.2.3 PCB Stackup
The minimum stackup required for routing the OMAP35x is a six layer stack as shown in Table 6-14.
Additional layers may be added to the PCB stack up to accommodate other circuity or to reduce the size
of the PCB footprint.
Table 6-14. OMAP35x Minimum PCB Stack Up
PRODUCT PREVIEW
LAYER
TYPE
DESCRIPTION
1
Signal
Top Routing Mostly Horizontal
2
Plane
Ground
3
Plane
Power
4
Signal
Internal Routing
5
Plane
Ground
6
Signal
Bottom Routing Mostly Vertical
Table 6-15. PCB Stack Up Specifications
NO.
PARAMETER
MIN
1
PCB Routing/Plane Layers
6
2
Signal Routing Layers
3
3
Full ground layers under LPDDR routing region
2
4
Number of ground plane cuts allowed within LPDDR routing region
5
Number of ground reference planes required for each LPDDR routing 1
layer
6
Number of layers between LPDDR routing layer and reference ground 0
plane
7
PCB Routing Feature Size
4
Mils
8
PCB Trace Width w
4
Mils
9
PCB BGA escape via pad size
18
Mils
10
PCB BGA escape via hole size
8
Mils
11
Device BGA Pad Size
See Note (1)
12
LPDDR Device BGA Pad Size
See Note (2)
13
Single Ended Impedance, ZO
50
14
Impedance Control
Z-5
(1)
(2)
(3)
TYP
MAX
UNIT
NOTES
0
1
0
Z
75
Ω
Z+5
Ω
See Note (3)
Please see the Flip Chip Ball Grid Array Package Reference Guide (literature number SPRU811) for device BGA pad size.
Please see the LPDDR device manufacturer documentation for the LPDDR device BGA pad size.
Z is the nominal singled ended impedance selected for the PCB specified by item 12.
6.4.2.3 Placement
Figure 6-19 shows the required placement for the OMAP35x device as well as the LPDDR devices. The
dimensions for Figure 6-19 are defined in Table 6-16. The placement does not restrict the side of the PCB
that the devices are mounted on. The ultimate purpose of the placement is to limit the maximum trace
lengths and allow for proper routing space. For 1x16 and 1x32 LPDDR memory systems, the second
LPDDR device is omitted from the placement.
154
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
X
Y
OFFSET
LPDDR
Device
Y
Y
OFFSET
LPDDR
Controller
A1
OMAP
A1
Figure 6-19. OMAP35x and LPDDR Device Placement
Table 6-16. Placement Specifications
NO.
1
(1)
(2)
(3)
(4)
(5)
PARAMETER
MIN
X
MAX
UNIT
1440
Mils
2
Y
1030
Mils
3
Y Offset
525
Mils
4
LPDDR Keepout Region
5
Clearance from non-LPDDR signal to LPDDR
Keepout Region
NOTES
See Notes (1),
See Notes
(2)
(1) (2)
,
See Notes (1), (2), (3)
See Note (4)
4
w
See Note (5)
See Figure 6-17 for dimension definitions.
Measurements from center of device to center of LPDDR device.
For 16 bit memory systems it is recommended that Y Offset be as small as possible.
LPDDR keepout region to encompass entire LPDDR routing area.
Non-LPDDR signals allowed within LPDDR keepout region provided they are separated from LPDDR routing layers by a ground plane.
6.4.2.4 LPDDR Keep Out Region
The region of the PCB used for the LPDDR circuitry must be isolated from other signals. The LPDDR
keep out region is defined for this purpose and is shown in Figure 6-20. The size of this region varies with
the placement and LPDDR routing. Additional clearances required for the keep out region are shown in
Table 6-16.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
155
PRODUCT PREVIEW
Recommended LPDDR Device
Orientation
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
LPDDR Controller
A1
LPDDR Device
A1
PRODUCT PREVIEW
Region should encompass all LPDDR circuitry and varies depending
on placement. Non-LPDDR signals should not be routed on the
LPDDR signal layers within the LPDDR keep out region. Non-LPDDR
signals may be routed in the region provided they are routed on
layers separated from LPDDR signal layers by a ground layer. No
breaks should be allowed in the reference ground layers in this
region. In addition, the 1.8 V power plane should cover the entire keep
out region.
Figure 6-20. LPDDR Keepout Region
6.4.2.5 Net Classes
Table 6-17 lists the clock net classes for the LPDDR interface. Table 6-18 lists the signal net classes, and
associated clock net classes, for the signals in the LPDDR interface. These net classes are used for the
termination and routing rules that follow.
Table 6-17. Clock Net Class Definitions
CLOCK NET CLASS
OMAP PIN NAMES
CK
sdrc_clk/sdrc_nclk
DQS0
sdrc_dqs0
DQS1
sdrc_dqs1
DQS2
sdrc_dqs2
DQS3
sdrc_dqs3
Table 6-18. Signal Net Class Definitions
CLOCK NET CLASS
ASSOCIATED CLOCK NET CLASS
OMAP PIN NAMES
ADDR_CTRL
CK
sdrc_ba, sdrc_a, sdrc_ncs0, sdrc_ncas,
sdrc_nras, sdrc_nwe, sdrc_cke0
DQ0
DQS0
sdrc_d, sdrc_dm0
DQ1
DQS1
sdrc_d, sdrc_dm1
DQ2
DQS2
sdrc_d, sdrc_dm2
DQ3
DQS3
sdrc_d, sdrc_dm3
6.4.2.6 LPDDR Signal Termination
No terminations of any kind are required in order to meet signal integrity and overshoot requirements.
Serial terminators are permitted, if desired, to reduce EMI risk; however, serial terminations are the only
type permitted. Table 6-19 shows the specifications for the series terminators.
Table 6-19. LPDDR Signal Terminations
NO.
PARAMETER
MIN
1
CK Net Class
0
TYP
(1)
Only series termination is permitted, parallel or SST specifically disallowed.
156
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
MAX
UNIT
NOTES
10
Ω
See Note (1)
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 6-19. LPDDR Signal Terminations (continued)
NO.
PARAMETER
MIN
TYP
MAX
UNIT
NOTES
2
ADDR_CTRL Net Class
0
22
Zo
Ω
See Notes (1), (2), (3)
3
Data Byte Net Classes
(DQS0-DQS3, DQ0-DQ3)
0
22
Zo
Ω
See Notes (1), (2), (3)
(2)
(3)
Terminator values larger than typical only recommended to address EMI issues.
Termination value should be uniform across net class.
6.4.2.7 LPDDR CK and ADDR_CTRL Routing
Figure 6-21 shows the topology of the routing for the CK and ADDR_CTRL net classes. The route is a
balanced T as it is intended that the length of segments B and C be equal. In addition, the length of A
should be maximized.
C
PRODUCT PREVIEW
T
A
LPDDR
Controller
B
A1
OMAP
A1
Figure 6-21. CK and ADDR_CTRL Routing and Topology
Table 6-20. CK and ADDR_CTRL Routing Specification
NO.
PARAMETER
1
Center to Center CK-CK spacing
2w
2
CK A to B/A to C Skew Length Mismatch
3
CK B to C Skew Length Mismatch
4
Center to Center CK to other
LPDDR trace spacing
4w
5
CK/ADDR_CTRL nominal trace length
CACLM-50
6
(1)
(2)
(3)
MIN
TYP
MAX
UNIT
NOTES
25
Mils
See Note (1)
25
Mils
See Note (2)
CACLM
See Note (3)
CACLM+50
Mils
ADDR_CTRL to CK Skew Length Mismatch
100
Mils
7
ADDR_CTRL to ADDR_CTRL
Skew Length Mismatch
100
Mils
8
Center to Center ADDR_CTRL to other
LPDDR trace 4w spacing
4w
See Note (2)
9
Center to Center ADDR_CTRL to other
ADDR_CTRL 3w trace spacing
3w
See Note (2)
10
ADDR_CTRL A to B/A to C Skew Length
Mismatch
100
Mils
11
ADDR_CTRL B to C Skew Length Mismatch
100
Mils
See Note (1)
Series terminator, if used, should be located closest to device.
Center to center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing
congestion.
CACLM is the longest Manhattan distance of the CK and ADDR_CTRL net classes.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
157
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Figure 6-22 shows the topology and routing for the DQS and DQ net classes; the routes are point to point.
Skew matching across bytes is not needed nor recommended.
T
A1
E0
T
LPDDR
Controller
E1
OMAP
T
PRODUCT PREVIEW
A1
E2
T
E3
Figure 6-22. DQS and DQ Routing and Topology
Table 6-21. DQS and DQ Routing Specification (1)
NO.
PARAMETER
2
DQS E Skew Length Mismatch
3
Center to Center DQS to other LPDDR
trace spacing
4w
4
DQS/DQ nominal trace length
DQLM - 50
5
6
7
Center to Center DQ to other LPDDR
trace spacing
4w
See Note (2)
8
Center to Center DQ to other DQ trace
spacing
3w
See Note (2), (4)
9
DQ E Skew Length Mismatch
(1)
(2)
(3)
(4)
158
MIN
TYP
MAX
UNIT
25
Mils
NOTES
See Note (2)
DQLM
DQLM + 50
Mils
DQ to DQS Skew Length Mismatch
100
Mils
DQ to DQ Skew Length Mismatch
100
Mils
100
See Note (3)
Mils
Series terminator, if used, should be located closest to LPDDR.
Center to center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing
congestion.
Center to center spacing is allowed to fall to minimum (w) for up to 500 mils of routed length to accommodate BGA escape and routing
congestion.
DQLM is the longest Manhattan distance of the DQS and DQ net classes.
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
6.5 Video Interfaces
6.5.1
Camera Interface
The camera subsystem provides the system interfaces and the processing capability to connect raw, YUV,
or JPEG image sensor modules to the OMAP3525 and OMAP3530 devices for video-preview,
video-record, and still-image-capture applications. The camera subsystem supports up to two
simultaneous pixel flows but only one of them can use the video processing hardware:
• PARALLEL: the parallel interface data must go through the video processing hardware.
6.5.1.1 First Camera Serial Interface (CSI2) Timing
6.5.1.1.1 Camera Serial Interface in High-Speed Mode
Table 6-23 assumes testing over the recommended operating conditions and electrical characteristic
conditions (see Figure 6-23).
Table 6-22. Camera Serial Intrerface Timing Conditions – High-Speed Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
MIN
MAX
0.15
0.4*tUIINST (1)
ns
0.15
(1)
ns
Input Conditions
tR
Input signal rise time
tF
(1)
Input signal fall time
0.4*tUIINST
For tUIINST timing, please refer to the CS2, CS3, and CS6 parameters defined in Table 6-23
Table 6-23. Camera Serial Interface Timing Requirements – High-Speed Mode (1)
NO.
(1)
(2)
PARAMETER=
OPP3
OPP2
MIN
MAX
25.0
UNIT
MIN
MAX
2.5
25.0
CS1
tc(clk)
Cycle time (2), input clock period
2.5
CS2,
CS3
tUI(INST,MIN)
Minimum instantaneous unit interval
1.15
1.15
ns
CS4
tsu(dV-clkH)
Setup time, data valid before clock rising edge
0.172
0.172
ns
CS5
th(clkH-dV)
Hold time, data valid after clock rising edge
0.172
0.172
ns
CS6
tUI(INST,MIN)
Minimum instantaneous bit duration
1.15
1.15
ns
ns
The timing requirements are assured up to the minimum instantaneous bit duration.
Related with the input maximum frequency supported by the CSI2 module.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
159
PRODUCT PREVIEW
First camera serial interface is a MIPI (MIPI CSI2) D-PHY compliant interface connecting a digital camera
module and a mobile phone application. This interface is made of three differential lanes, each of them
being configurable for carrying data or clock. The polarity of each wire of a lane is also configurable.
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
CS1
CS3
CS2
csi2a_dwi
CS4
csi2a_dwi
CS5
Data (j-1)
Data_j
Data_(j+1)
CS4
csi2a_dwi
CS6
CS5
Data_(k-1)
CS6
Data_k
Data_(k+1)
030-053
Figure 6-23. Camera Serial Interface Timing Requirements – High-Speed Mode(1)(2)(3)(4)
PRODUCT PREVIEW
(1) w = x and y
(2) I = 0 to 2
(3) The use of each csi2_dwi(1) lane (clock or data) is software programmable with the CSI2_COMPLEXIO_CFG1 register, by setting bit
field CLOCK_POSITION to 0x1, 0x2, or 0x3.
(4) The polarity of each csi2_dwi(1) lane is software programmable with the CSI2_COMPLEXIO_CFG1 register, DATAi_POL(2) bit field.
6.5.1.1.2 Camera Serial Interface in Low-Power Mode and Ultralow-Power Mode
Table 6-25 assumes testing over the recommended operating conditions and electrical characteristic
conditions (see Figure 6-24).
Table 6-24. Camera Serial Interface Timing Conditions – Low-Power Mode and Ultralow-Power Mode (1)
TIMING CONDITION PARAMETER
VALUE
UNIT
Input signal rise time
25
ns
Input signal fall time
25
ns
Input Conditions
tR
tF
(1)
Low-power and ultralow-power communication modes are asynchronous, data is Spaced-One-Hot bit encoded, data transfer clock is
recovered by means of an XOR between csi2a_dxi and csi2a_dxi.
Table 6-25. Camera Serial Interface Timing Requirements – Low-Power and Ultralow-Power Mode (1)
NO.
PARAMETER=
1.35 V
1.20 V
MIN
CS7
(1)
tv(LPsate)
Duration of a low-Power
state (1)
MAX
50
MIN
UNIT
MAX
50
ns
Low-power and ultralow-power communication modes are asynchronous, data is Spaced-One-Hot bit encoded, data transfer clock is
recovered by means of an XOR between csi2a_dxi and csi2a_dxi.
CS7
csi2a_dxi
mark_j-1
space_j-1
CS7
mark_j
space_j
mark_j+1
CS7
csi2a_dyi
mark_k-1
space_k-1
mark_k
space_k
mark_k+1
030-054
Figure 6-24. Camera Serial Interface Timing Requirements – Low-Power and Ultralow-Power Mode(1)(2)
(1) I = 0, 1, or 2
(2) Low-power and ultralow-power communication modes are asynchronous, data is Spaced-One-Hot bit encoded, data transfer clock is
recovered by means of an XOR between csi2a_dxi and csi2a_dyi.
160
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
6.5.1.2 Second Camera Serial Interface (CSIb) Timing
Second camera serial interface is a MIPI serial interface supporting following input data formats: YUV420,
YUV422, RGB444, RGB565, RGB888, RAW8, RAW10, RAW12, and JPEG8. Clock and data are
transferred on a differential SubLVDS link.
Table 6-27 assumes testing over the recommended operating conditions and electrical characteristic
conditions (see Figure 6-25).
Table 6-26. CSIb Timing Conditions
TIMING CONDITION PARAMETER
VALUE
UNIT
tR
Input signal rise time
0.50
ns
tF
Input signal fall time
0.50
ns
CSIb – Class 1 Input Conditions
tR
Input signal rise time
0.40
ns
tF
Input signal fall time
0.40
ns
CSIb – Class 2 Input Conditions
tR
Input signal rise time
0.40
ns
tF
Input signal fall time
0.40
ns
20
pF
Output Condition
CLOAD
Output load capacitance
Table 6-27. CSIb Timing Requirements(3)(4)
NO.
PARAMETER
OPP3
MIN
OPP2
MAX
MIN
0.55*P(1)
0.45*P(1)
UNIT
MAX
CSIb – Class 0
(2)
CS0
tc(STRB)
Cycle time, csib_strbp/csib_strbn
CS1/
CS2
tw(STRB)
Pulse duration, csib_strbp/csib_strbn high/low
duration
4.8
CS3
tsu(DATV-STRBH) Setup time, csib_datp/csib_datn valid before
csib_strbp/csib_strbn rising edge
CS4
th(STRBH-DATV)
Hold time, csib_datp/csib_datn valid after
csib_strbp/csib_strbn rising edge
0.45*P(1)
4.8
ns
0.55*P(1)
ns
0.6
0.6
ns
2
2
ns
CSIb – Class 1
(2)
CS10
tc(STRB)
Cycle time, csib_strbp/csib_strbn
CS11
tw(STRB)
Stable duration, csib_strbp/csib_strbn
4.8
CS12
ts(DATV-STRBH)
Skew time, csib_datp/csib_datn valid before
csib_strbp/csib_strbn rising edge
1.3
1.3
ns
CS13
ts(STRBF-DATV)
Skew time, csib_datp/csib_datn valid after
csib_strbp/csib_strbn falling edge
1.3
1.3
ns
0.45*P(1)
4.8
0.55*P(1)
0.45*P(1)
ns
0.55*P(1)
ns
CSIb – Class 2
(2)
CS10
tc(STRB)
Cycle time, csib_strbp/csib_strbn
CS11
tw(STRB)
Stable duration, csib_strbp/csib_strbn
3.1
CS12
ts(DATV-STRBH)
Skew time, csib_datp/csib_datn valid before
csib_strbp/csib_strbn rising edge
0.7
0.7
ns
CS13
ts(STRBF-DATV)
Skew time, csib_datp/csib_datn valid after
csib_strbp/csib_strbn falling edge
0.7
0.7
ns
0.45*P(1)
3.1
0.55*P(1)
0.45*P(1)
ns
0.55*P(1)
ns
(1) P = csib_strbp/csib_strbn period in ns.
(2) The maximum clock frequency of the CSI must be chosen to be the lowest possible for the application / transmitting device in order to
reduce the power consumption of the sensor, the IO pad of the device and the camera core module itself.
(3) The input timing requirements are given by considering a rising, or a falling, time of 0.50 ns for Class 0, 0.40 ns for Class 1 and Class 2.
(4) See DM Operating Condition Addendum for OPP voltages.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
161
PRODUCT PREVIEW
CSIb – Class 0 Input Conditions
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 6-28. CSIb Switching Characteristics(3)(4)
NO.
PARAMETER
OPP3
MIN
OPP2
MAX
MIN
0.55*PO(1)
0.45*PO(1)
0.55*PO(1)
0.45*PO(1)
UNIT
MAX
CSIb – Class 0
CS5
tc(XCLK)
Cycle time, cam_xclkb(2)
CS6/CS7
tw(XCLK)
Pulse duration, cam_xclkb(2) high or low duration
CS14
tc(XCLK)
Cycle time, cam_xclkb(2)
CS15/CS16
tw(XCLK)
Pulse duration, cam_xclkb(2) high or low duration
4.6
4.6
0.45*PO(1)
ns
0.55*PO(1)
ns
CSIb – Class =
4.6
4.6
0.45*PO(1)
ns
0.55*PO(1)
ns
PRODUCT PREVIEW
(1) PO = cam_xclkb period in ns. The duty cycle generated depends on the mode selected with the register TCTRL_CTRL[9:5] DIVB. For
more information, see the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98
(2) The cam_xclkb frequency is programmable by setting the configuration register TCTRL_CTRL[9:5] DIVB.
Caution: You must disable the camera sensor or the camera module to change the frequency configuration. For more information, see
the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98
(3) The capacitive load is equilvalent to 20 pf.
(4) See DM Operating Condition Addendum for OPP voltages.
CS0
CS1
CS2
csib_strb
CS3
csib_dat
CS4
Bit 0
Bit 6
Bit 7
CS5
CS6
CS7
cam_xclkb
030-055
Figure 6-25. Camera Serial Interface (CSIb) – Class 0(1)(2)(3)
(1) csib_strb and csib_dat are the result of low-voltage differential data signal converters (see the Camera Subsystem section of the
OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98).
(2) The CSI receives up to 208 Mbps data rate or data/clock transmission.
(3) The CSI supports YUV422, YUV420, Bayer RGB444, RGB565, RGB888, RAW Bayer 6-, 7-, 8-, 10-, and 12-bit, and JPEG8 input data
formats.
CS10
CS11
csib_strb
CS12
CS13
csib_dat
CS14
CS15
CS16
cam_xclkb
030-119
Figure 6-26. Camera Serial Interface (CSIb) – Class 1/2(1)(2)(3)
(1) csib_strb and csib_dat are the result of low-voltage differential data signal converters (see the Camera Subsystem section of the
OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98).
162
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
(2) The CSI receives up to 208 Mbps data rate or data/clock transmission and up to 416 or 650 Mbps data rate for data/strobe
transmission.
(3) The CSI supports YUV422, YUV420, Bayer RGB444, RGB565, RGB888, RAW Bayer 6-, 7-, 8-, 10-, and 12-bit, and JPEG8 input data
format.
6.5.1.3 Parallel Camera Interface Timing
The parallel camera interface is a 12-bit interface which can be used in two modes:
1. SYNC mode: progressive and interlaced image sensor modules for 8-, 10-, 11-, and 12-bit data. The
pixel clock can be up to 75 MHz in 12-bit mode. The pixel clock can be up to 130 MHz in 8-bit packed
mode.
2. ITU mode provides an ITU-R BT 656 compatible data stream with progressive image sensor modules
only in 8- and 10-bit configurations. The pixel clock can be up to 75 MHz.
6.5.1.3.1.1 12-Bit SYNC Normal – Progressive Mode
Table 6-30 and Table 6-31 assume testing over the recommended operating conditions and electrical
characteristic conditions (see Figure 6-27).
Table 6-29. ISP Timing Conditions – 12-Bit SYNC Normal – Progressive Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
2.7
ns
tF
Input signal fall time
2.7
ns
Output load capacitance
8.6
pF
Output Condition
CLOAD
Table 6-30. ISP Timing Requirements – 12-Bit SYNC Normal – Progressive Mode (1)
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
ISP17
tc(pclk)
Cycle time (2), cam_pclk period
ISP18
tW(pclkH)
Typical pulse duration, cam_pclk high
0.5*P (3)
0.5*P (3)
ns
ISP18
tW(pclkL)
Typical pulse duration, cam_pclk low
0.5*P (3)
0.5*P (3)
ns
tdc(pclk)
Duty cycle error, cam_pclk
13.3
22.2
667
(4)
133
1111
ps
200
ps
tj(pclk)
Cycle jitter
ISP19
tsu(dV-pclkH)
Setup time, cam_d[11:0] valid before cam_pclk rising
edge
1.82
3.25
ns
ISP20
th(pclkH-dV)
Hold time, cam_d[11:0] valid after cam_pclk rising
edge
1.82
3.25
ns
ISP21
tsu(dV-vsH)
Setup time, cam_vs valid before cam_pclk rising
edge
1.82
3.25
ns
ISP22
th(pclkH-vsV)
Hold time, cam_vs valid after cam_pclk rising edge
1.82
3.25
ns
ISP23
tsu(dV-hsH)
Setup time, cam_hs valid before cam_pclk rising
edge
1.82
3.25
ns
ISP24
th(pclkH-hsV)
Hold time, cam_hs valid after cam_pclk rising edge
1.82
3.25
ns
ISP25
tsu(dV-hsH)
Setup time, cam_wen valid before cam_pclk rising
edge
1.82
3.25
ns
ISP26
th(pclkH-hsV)
Hold time, cam_wen valid after cam_pclk rising edge
1.82
3.25
ns
(1)
(2)
(3)
(4)
, cam_pclk
ns
The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.
Related with the input maximum frequency supported by the ISP module.
P = cam_pclk period in ns
Maximum cycle jitter supported by cam_pclk input clock.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
163
PRODUCT PREVIEW
6.5.1.3.1 SYNC Normal Mode
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 6-31. ISP Switching Characteristics – 12-Bit SYNC Normal – Progressive Mode
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
ISP15
tc(xclk)
Cycle time (1), cam_xclk period
ISP16
tW(xclkH)
Typical pulse duration, cam_xclk high
0.5*PO (2)
0.5*PO (2)
ns
ISP16
tW(xclkL)
Typical pulse duration, cam_xclk low
0.5*PO (2)
0.5*PO (2)
ns
tdc(xclk)
Duty cycle error, cam_xclk
231
231
ps
tj(xclk)
Jitter standard deviation (3), cam_xclk
33
33
ps
tR(xclk)
Rise time, cam_xclk
0.93
0.93
ns
tF(xclk)
Fall time, cam_xclk
0.93
0.93
ns
(1)
PRODUCT PREVIEW
(2)
(3)
4.6
4.6
ns
Related with the cam_xclk maximum and minimum frequencies programmable in the ISP module.
Warning: The camera sensor or the camera module must be disabled to change the frequency configuration. For more information, see
the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98]
PO = cam_xclk period in ns
The jitter probability density can be approximated by a Gaussian function.
ISP16
ISP15
ISP16
cam_xclki
ISP17
ISP18
ISP18
cam_pclk
ISP19
ISP20
ISP21
ISP22
cam_vs
cam_hs
ISP23
cam_d[11:0]
D(0)
D(n-3)
D(n-2)
ISP24
D(n-1)
D(0)
D(1)
D(n-1)
ISP25
ISP26
cam_wen
cam_fld
030-056
(1)(2)(3)(4)(5)(6)(7)(8)
Figure 6-27. ISP – 12-Bit SYNC Normal – Progressive Mode
(1) The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are configurable. If the cam_hs, cam_vs, and cam_fld signals are output, the
signal length can be set.
(2) The parallel camera in SYNC mode supports progressive image sensor modules and 8-, 10-, 11-, or 12-bit data.
(3) When the image sensor has fewer than 12 data lines, it must be connected to the lower data lines and the unused lines must be
grounded.
(4) However, it is possible to shift the data to 0, 2, or 4 data internal lanes.
164
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
(5) The bit configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit mode, cam_d[11:2] or cam_d[9:0] in 10-bit mode, cam_d[10:0] in 11-bit
mode, and cam_d[11:0] in 12-bit mode.
(6) Optionally, the data write to memory can be qualified by the external cam_wen signal.
(7) The cam_wen signal can be used as a external memory write-enable signal. The data is stored to memory only if cam_hs, cam_vs, and
cam_wen signals are asserted.
(8) In cam_xclki; I is equal to a or b.
6.5.1.3.1.2 8-bit Packed SYNC – Progressive Mode
Table 6-33 and Table 6-34 assume testing over the recommended operating conditions and electrical
characteristic conditions (see Figure 6-28).
Table 6-32. ISP Timing Conditions – 8-bit Packed SYNC – Progressive Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
tR
Input signal rise time
2.5
ns
tF
Input signal fall time
2.5
ns
Output load capacitance
8.6
pF
Output Conditions
CLOAD
Table 6-33. ISP Timing Requirements – 8-bit Packed SYNC – Progressive Mode (1)
NO.
PARAMETER
1.15 V
MIN
ISP3
tc(pclk)
Cycle time (2), cam_pclk period
ISP4
tW(pclkH)
Typical pulse duration, cam_pclk high
ISP4
1.0 V
MAX
MIN
7.7
UNIT
MAX
15.4
ns
0.5*P (3)
0.5*P (3)
ns
(3)
(3)
ns
tW(pclkL)
Typical pulse duration, cam_pclk low
tdc(pclk)
Duty cycle error, cam_pclk
385
769
ps
tj(pclk)
Cycle jitter (4), cam_pclk
83
167
ps
ISP5
tsu(dV-pclkH)
Setup time, cam_d[11:0] valid before cam_pclk
rising edge
1.08
2.27
ns
ISP6
th(pclkH-dV)
Hold time, cam_d[11:0] valid after cam_pclk rising
edge
1.08
2.27
ns
ISP7
tsu(dV-vsH)
Setup time, cam_vs valid before cam_pclk rising
edge
1.08
2.27
ns
ISP8
th(pclkH-vsV)
Hold time, cam_vs valid after cam_pclk rising edge
1.08
2.27
ns
ISP9
tsu(dV-hsH)
Setup time, cam_hs valid before cam_pclk rising
edge
1.08
2.27
ns
ISP10
th(pclkH-hsV)
Hold time, cam_hs valid after cam_pclk rising edge
1.08
2.27
ns
ISP11
tsu(dV-hsH)
Setup time, cam_wen valid before cam_pclk rising
edge
1.08
2.27
ns
ISP12
th(pclkH-hsV)
Hold time, cam_wen valid after cam_pclk rising edge
1.08
2.27
ns
(1)
(2)
(3)
(4)
0.5*P
0.5*P
The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.
Related with the input maximum frequency supported by the ISP module.
P = cam_pclk period in ns.
Maximum cycle jitter supported by cam_pclk input clock.
Table 6-34. ISP Switching Characteristics – 8-bit packed SYNC – Progressive Mode
NO.
PARAMETER
1.15 V
MIN
ISP1
tc(xclk)
Cycle time (1), cam_xclk period
ISP2
tW(xclkH)
Typical pulse duration, cam_xclk high
(1)
(2)
1.0 V
MAX
4.6
MIN
UNIT
MAX
4.6
0.5*PO (2)
ns
0.5*PO (2)
ns
Related with the cam_xclk maximum and minimum frequencies programmable in the ISP module.
Warning: You must disable the camera sensor or the camera module to change the frequency configuration. For more information, see
the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98
PO = cam_xclk period in ns
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
165
PRODUCT PREVIEW
Input Conditions
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 6-34. ISP Switching Characteristics – 8-bit packed SYNC – Progressive Mode (continued)
NO.
PARAMETER
1.15 V
MIN
ISP2
(3)
1.0 V
MAX
MIN
0.5*PO (2)
UNIT
MAX
0.5*PO (2)
tW(xclkL)
Typical pulse duration, cam_xclk low
ns
tdc(xclk)
Duty cycle error, cam_xclk
231
231
ps
tj(xclk)
Jitter standard deviation (3), cam_xclk
67
67
ps
tR(xclk)
Rise time, cam_xclk
0.93
0.93
ns
tF(xclk)
Fall time, cam_xclk
0.93
0.93
ns
The jitter probability density can be approximated by a Gaussian function.
ISP1
ISP2
ISP2
PRODUCT PREVIEW
cam_xclki
ISP4
ISP3
ISP4
cam_pclk
ISP5
ISP6
ISP7
ISP8
cam_vs
cam_hs
ISP9
cam_d[7:0]
D(0)
D(n-3)
D(n-2)
ISP10
D(n-1)
D(0)
D(1)
D(n-1)
ISP12
ISP11
cam_wen
cam_fld
030-059
(1)(2)(3)(4)(5)
Figure 6-28. ISP – 8-bit Packed SYNC – Progressive Mode
(1) The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are configurable.
(2) The image sensor must be connected to the lower data lines and the unused lines must be grounded. However, it is possible to shift the
data to 0, 2, or 4 data internal lanes. The bit configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit packed mode.
(3) Optionally, the data write to memory can be qualified by the external cam_wen signal. The cam_wen signal can be used as a external
memory write-enable signal. The data is stored to memory only if cam_hs, cam_vs, and cam_wen signals are asserted. The polarity of
cam_fld is programmable.
(4) The camera module can pack 8-bit data into 16 bits. It doubles the maximum pixel clock. This mode can be particularly useful to transfer
a YCbCr data stream or compressed stream to memory at very high speed.
(5) In cam_xclki; I is equal to a or b.
166
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
6.5.1.3.1.3 12-Bit SYNC Normal – Interlaced Mode
Table 6-36 and Table 6-37 assume testing over the recommended operating conditions and electrical
characteristic conditions (see Figure 6-29).
Table 6-35. ISP Timing Conditions – 12-Bit SYNC Normal – Interlaced Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
2.7
ns
tF
Input signal fall time
2.7
ns
Output load capacitance
8.6
pF
Output Conditions
CLOAD
NO.
PARAMETER
1.15 V
1.0 V
MIN
ISP17
tc(pclk)
Cycle time (2), cam_pclk period
ISP18
tW(pclkH)
Typical pulse duration, cam_pclk high
ISP18
MAX
13.3
MIN
UNIT
MAX
22.2
ns
0.5*P (3)
0.5*P (3)
(3)
(3)
0.5*P
ns
tW(pclkL)
Typical pulse duration, cam_pclk low
tdc(pclk)
Duty cycle error, cam_pclk
667
1111
ps
tj(pclk)
Cycle jitter (4), cam_pclk
133
200
ps
ISP19
tsu(dV-pclkH)
Setup time, cam_d[11:0] valid before cam_pclk
rising edge
1.82
3.25
ns
ISP20
th(pclkH-dV)
Hold time, cam_d[11:0] valid after cam_pclk rising
edge
1.82
3.25
ns
ISP21
tsu(dV-vsH)
Setup time, cam_vs valid before cam_pclk rising
edge
1.82
3.25
ns
ISP22
th(pclkH-vsV)
Hold time, cam_vs valid after cam_pclk rising edge
1.82
3.25
ns
ISP23
tsu(dV-hsH)
Setup time, cam_hs valid before cam_pclk rising
edge
1.82
3.25
ns
ISP24
th(pclkH-hsV)
Hold time, cam_hs valid after cam_pclk rising edge
1.82
3.25
ns
ISP25
tsu(dV-hsH)
Setup time, cam_wen valid before cam_pclk rising
edge
1.82
3.25
ns
ISP26
th(pclkH-hsV)
Hold time, cam_wen valid after cam_pclk rising
edge
1.82
3.25
ns
ISP27
tsu(dV-fldH)
Setup time, cam_fld valid before cam_pclk rising
edge
1.82
3.25
ns
ISP28
th(pclkH-fldV)
Hold time, cam_fld valid after cam_pclk rising edge
1.82
3.25
ns
(1)
(2)
(3)
(4)
0.5*P
PRODUCT PREVIEW
Table 6-36. ISP Timing Requirements – 12-Bit SYNC Normal – Interlaced Mode (1)
ns
The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.
Related with the input maximum frequency supported by the ISP module.
P = cam_lclk period in ns.
Maximum cycle jitter supported by cam_pclk input clock.
Table 6-37. ISP Switching Characteristics – 12-Bit SYNC Normal – Interlaced Mode
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
ISP15
tc(xclk)
Cycle time (1), cam_xclk period
ISP16
tW(xclkH)
Typical pulse duration, cam_xclk high
0.5*PO (2)
0.5*PO (2)
ns
ISP16
tW(xclkL)
Typical pulse duration, cam_xclk low
0.5*PO (2)
0.5*PO (2)
ns
tdc(xclk)
Duty cycle error, cam_xclk
(1)
(2)
4.6
4.6
231
ns
231
ps
Related with the cam_xclk maximum and minimum frequencies programmable in the ISP module.
Warning: You must disable the camera sensor or the camera module to change the frequency configuration. For more information, see
the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98
PO = cam_xclk period in ns.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
167
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 6-37. ISP Switching Characteristics – 12-Bit SYNC Normal – Interlaced Mode (continued)
NO.
PARAMETER
1.15 V
MIN
(3)
tj(xclk)
Jitter standard deviation (3), cam_xclk
tR(xclk)
tF(xclk)
1.0 V
MAX
MIN
UNIT
MAX
33
33
ps
Rise time, cam_xclk
0.93
0.93
ns
Fall time, cam_xclk
0.93
0.93
ns
The jitter probability density can be approximated by a Gaussian function.
ISP16
ISP15
ISP16
cam_xclki
PRODUCT PREVIEW
ISP18
ISP17
ISP18
cam_pclk
ISP20
ISP19
FRAME(0)
cam_vs
FRAME(0)
ISP21
L(0)
cam_hs
ISP22
L(n-1)
L(0)
ISP23
cam_d[11:0]
D(0)
D(n-3)
D(n-2)
D(n-1)
D(0)
D(1)
ISP24
D(2)
ISP25
D(n-1)
ISP26
cam_wen
ISP28
ISP27
cam_fld
PAIR
IMPAIR
030-057
Figure 6-29. ISP – 12-Bit SYNC Normal – Interlaced Mode(1)(2)(3)(4)(5)(6)(7)(8)
(1) The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are configurable. If the cam_hs, cam_vs, and cam_fld signals are output, the
signal length can be set.
(2) The parallel camera in SYNC mode supports interlaced image sensor modules and 8-, 10-, 11-, or 12-bit data.
(3) When the image sensor has fewer than 12 data lines, it must be connected to the lower data lines and the unused lines must be
grounded.
(4) It is possible to shift the data to 0, 2, or 4 data internal lanes.
(5) The bit configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit mode, cam_d[11:2] or cam_d[9:0] in 10-bit mode, cam_d[10:0] in 11-bit
mode, and cam_d[11:0] in 12-bit mode.
(6) Optionally, the data write to memory can be qualified by the external cam_wen signal.
(7) The cam_wen signal can be used as a external memory write-enable signal. The data is stored to memory only if cam_hs, cam_vs, and
168
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
cam_wen signals are asserted.
(8) In cam_xclki; I is equal to a or b.
6.5.1.3.1.4 8-bit Packed SYNC – Interlaced Mode
Table 6-39 and Table 6-40 assume testing over the recommended operating conditions and electrical
characteristic conditions (see Figure 6-30).
Table 6-38. ISP Timing Conditions – 8-bit Packed SYNC – Interlaced Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
2.5
ns
tF
Input signal fall time
2.5
ns
Output load capacitance
8.6
pF
CLOAD
PRODUCT PREVIEW
Output Conditions
Table 6-39. ISP Timing Requirements – 8-bit Packed SYNC – Interlaced Mode (1)
NO.
PARAMETER
1.15 V
MIN
ISP3
Cycle time (2), cam_pclk period
tc(pclk)
1.0 V
MAX
7.7
MIN
UNIT
MAX
15.4
(3)
ISP4
tW(pclkH)
Typical pulse duration, cam_pclk high
0.5*P
ISP4
tW(pclkL)
Typical pulse duration, cam_pclk low
0.5*P (3)
tdc(pclk)
Duty cycle error, cam_pclk
ns
0.5*P
(3)
385
(4)
83
ns
769
ps
167
ps
tj(pclk)
Cycle jitter
ISP5
tsu(dV-pclkH)
Setup time, cam_d[11:0] valid before cam_pclk
rising edge
1.08
2.27
ns
ISP6
th(pclkH-dV)
Hold time, cam_d[11:0] valid after cam_pclk rising
edge
1.08
2.27
ns
ISP7
tsu(dV-vsH)
Setup time, cam_vs valid before cam_pclk rising
edge
1.08
2.27
ns
ISP8
th(pclkH-vsV)
Hold time, cam_vs valid after cam_pclk rising edge
1.08
2.27
ns
ISP9
tsu(dV-hsH)
Setup time, cam_hs valid before cam_pclk rising
edge
1.08
2.27
ns
ISP10
th(pclkH-hsV)
Hold time, cam_hs valid after cam_pclk rising edge
1.08
2.27
ns
ISP11
tsu(dV-hsH)
Setup time, cam_wen valid before cam_pclk rising
edge
1.08
2.27
ns
ISP12
th(pclkH-hsV)
Hold time, cam_wen valid after cam_pclk rising edge
1.08
2.27
ns
ISP13
tsu(dV-fldH)
Setup time, cam_fld valid before cam_pclk rising
edge
1.08
2.27
ns
ISP14
th(pclkH-fldV)
Hold time, cam_fld valid after cam_pclk rising edge
1.08
2.27
ns
(1)
(2)
(3)
(4)
, cam_pclk
ns
0.5*P (3)
The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.
Related with the input maximum frequency supported by the ISP module.
P = cam_lclk period in ns.
Maximum cycle jitter supported by cam_pclk input clock.
Table 6-40. ISP Switching Characteristics – 8-bit Packed SYNC – Interlaced Mode
NO.
PARAMETER
1.15 V
MIN
ISP16
tc(xclk)
Cycle time (1), cam_xclk period
ISP2
tW(xclkH)
Typical pulse duration, cam_xclk high
(1)
(2)
1.0 V
MAX
4.6
MIN
UNIT
MAX
4.6
0.5*PO (2)
ns
0.5*PO (2)
ns
Related with the cam_xclk maximum and minimum frequencies programmable in the ISP module.
Warning: You must disable the camera sensor or the camera module to change the frequency configuration. For more information, see
the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98
PO = cam_xclk period in ns.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
169
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 6-40. ISP Switching Characteristics – 8-bit Packed SYNC – Interlaced Mode (continued)
NO.
PARAMETER
1.15 V
MIN
ISP2
(3)
1.0 V
MAX
MIN
0.5*PO (2)
UNIT
MAX
0.5*PO (2)
tW(xclkL)
Typical pulse duration, cam_xclk low
ns
tdc(xclk)
Duty cycle error, cam_xclk
231
231
ps
tj(xclk)
Jitter standard deviation (3), cam_xclk
67
67
ps
tR(xclk)
Rise time, cam_xclk
0.93
0.93
ns
tF(xclk)
Fall time, cam_xclk
0.93
0.93
ns
The jitter probability density can be approximated by a Gaussian function.
ISP2
ISP1
ISP2
PRODUCT PREVIEW
cam_xclki
ISP4
ISP3
ISP4
cam_pclk
ISP6
ISP5
cam_vs
FRAME(0)
FRAME(0)
ISP7
cam_hs
L(0)
ISP8
L(n-1)
L(0)
ISP10
ISP9
cam_d[7:0]
D(0)
D(n-3)
D(n-2)
D(n-1)
D(0)
D(1)
D(2)
ISP11
D(n-1)
ISP12
cam_wen
ISP14
ISP13
cam_fld
PAIR
IMPAIR
030-060
Figure 6-30. ISP – 8-bit Packed SYNC – Interlaced Mode(1)(2)(3)(4)(5)
(1) The polarity of cam_pclk, cam_fld, cam_vs, and cam_hs are configurable.
(2) The image sensor must be connected to the lower data lines and the unused lines must be grounded. However, it is possible to shift the
data to 0, 2, or 4 data internal lanes. The bit configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit packed mode.
(3) Optionally, the data write to memory can be qualified by the external cam_wen signal. The cam_wen signal can be used as a external
memory write-enable signal. The data is stored to memory only if cam_hs, cam_vs, and cam_wen signals are asserted.
(4) The camera module can pack 8-bit data into 16 bits. It doubles the maximum pixel clock. This mode can be particularly useful to transfer
a YCbCr data stream or compressed stream to memory at very high speed.
170
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
(5) In cam_xclki; I is equal to a or b.
6.5.1.3.2 ITU Mode
Table 6-42 and Table 6-43 assume testing over the recommended operating conditions and electrical
characteristic conditions (see Figure 6-31).
Table 6-41. ISP Timing Conditions – ITU Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
2.7
ns
tF
Input signal fall time
2.7
ns
Output load capacitance
8.6
pF
CLOAD
PRODUCT PREVIEW
Output Conditions
Table 6-42. ISP Timing Requirements – ITU Mode (1)
NO.
PARAMETER
1.15 V
MIN
ISP17
tc(pclk)
Cycle time (2), cam_pclk period
1.0 V
MAX
13.3
MIN
UNIT
MAX
22.2
(3)
ISP18
tW(pclkH)
Typical pulse duration, cam_pclk high
0.5*P
ISP18
tW(pclkL)
Typical pulse duration, cam_pclk low
0.5*P (3)
tdc(pclk)
Duty cycle error, cam_pclk
ns
(3)
ns
0.5*P (3)
ns
0.5*P
667
(4)
133
ps
200
ps
tj(pclk)
Cycle jitter
ISP23
tsu(dV-pclkH)
Setup time, cam_d[9:0] valid before cam_pclk
rising edge
1.82
3.25
ns
ISP24
th(pclkH-dV)
Hold time, cam_d[9:0] valid after cam_pclk rising
edge
1.82
3.25
ns
(1)
(2)
(3)
(4)
, cam_pclk
1111
The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.
Related with the input maximum frequency supported by the ISP module.
P = cam_lclk period in ns.
Maximum cycle jitter supported by cam_lclk input clock.
Table 6-43. ISP Switching Characteristics – ITU Mode
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
ISP15
tc(xclk)
Cycle time (1), cam_xclk period
ISP16
tW(xclkH)
Typical pulse duration, cam_xclk high
0.5*PO (2)
0.5*PO (2)
ns
ISP16
tW(xclkL)
Typical pulse duration, cam_xclk low
0.5*PO (2)
0.5*PO (2)
ns
tdc(xclk)
Duty cycle error, cam_xclk
231
231
ps
tj(xclk)
Jitter standard deviation (3), cam_xclk
33
33
ps
tR(xclk)
Rise time, cam_xclk
0.93
0.93
ns
tF(xclk)
Fall time, cam_xclk
0.93
0.93
ns
(1)
(2)
(3)
4.6
4.6
ns
Related with the cam_xclk maximum and minimum frequencies programmable in the ISP module.
Warning: The camera sensor or the camera module must be disabled to change the frequency configuration. For more information, see
the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98
PO = cam_xclk period in ns
The jitter probability density can be approximated by a Gaussian function.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
171
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
ISP16
ISP15
ISP16
cam_xclki
ISP17
ISP18
ISP18
cam_pclk
ISP23
cam_d[9:0]
SOF
D (0)
ISP24
D(n-1)
EOF
SOF
D(0)
D(n-1)
EOF
030-058
PRODUCT PREVIEW
(1)(2)
Figure 6-31. ISP – ITU Mode
(1) The unused lines must be grounded and the data bus must be connected to the lower data lines. It is possible to shift the data to 0, 2, or
4 data internal lanes. The different configurations are: cam_d[11:4] or cam_d[7:0] in 8-bit mode and cam_d[11:2] or cam_d[9:0] in 10-bit
mode.
(2) The parallel camera in ITU mode supports progressive camera modules.
172
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
6.5.2
SPRS599 – JUNE 2009
Display Subsystem (DSS)
The display subsystem (DSS) provides the logic to display the video frame from external (SDRAM) or
internal (SRAM) memory on an LCD panel or a TV set. The DSS integrates a display controller, a remote
frame buffer module (RFBI), and a TV-out module. It can be used in two configurations:
• LCD display in:
– Bypass mode (RFBI module bypassed)
– RFBI mode (through RFBI module)
• TV display (not discussed in this document because of its analog IO signals)
The two displays can be active at the same time.
PRODUCT PREVIEW
NOTE
For more information, see Display Subsystem / Display Subsystem Functional Description
section of the OMAP35x Technical Reference Manual (TRM) [literature number
SPRUF98.
6.5.2.1 LCD Display in Bypass Mode
Two types of LCD panel are supported:
• Thin film transistor (TFT) or active matrix technology
• Supertwisted nematic (STN) or passive matrix technology
Both configurations are discussed in the following paragraphs.
6.5.2.1.1 LCD Display in TFT Mode
6.5.2.1.1.1 LCD Display in TFT Mode – HDTV Application
Table 6-44 assumes testing over the recommended operating conditions (see Figure 6-32).
Table 6-44. LCD Display Switching Characteristics in TFT Mode – HDTV Application(3)(4)(5)
NO.
PARAMETER
OPP3
OPP2
UNIT
MIN
MAX
MIN
MAX
DL0
td(PCLKA-HSYNCT)
Delay time, dss_pclk active edge to dss_hsync
transition
–4.2
4.2
–4.7
4.7
ns
DL1
td(PCLKA-VSYNCT)
Delay time, dss_pclk active edge to dss_vsync
transition
–4.2
4.2
–4.7
4.7
ns
DL2
td(PCLKA-ACBIASA) Delay time, dss_pclk active edge to
dss_acbias active level
–4.2
4.2
–4.7
4.7
ns
DL3
td(PCLKA-DATAV)
Delay time, dss_pclk active edge to dss_data
bus valid
–4.2
4.2
–4.7
4.7
ns
DL4
tc(PCLK)
Cycle time(2), dss_pclk
DL5
tw(PCLK)
13.468
Pulse duration, dss_pclk low or high
0.45*P
(1)
15.152
0.55*P
(1)
0.45*P
(1)
ns
(1)
0.55*P
ns
(1) P = dss_pclk period.
(2) The pixel clock frequency is software programmable via the pixel clock divider configuration from 1 to 255 division range in the
DISPC_DIVISOR register.
(3) The capacitive load is equivalent to 25 pF at 1.15 V and 30 pF at 1.0 V.
(4) For more information, see the DSS chapter in the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98.
(5) See DM Operating Condition Addendum for OPP voltages.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
173
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
DL5
DL4
dss_pclk
DL1
dss_vsync
DL0
dss_hsync
DL2
dss_acbias
PRODUCT PREVIEW
DL3
dss_data[23:0]
030-061
(1)(2)(3)(4)
Figure 6-32. LCD Display in TFT Mode – HDTV Application
(1)
(2)
(3)
(4)
The pixel data bus depends on the use of 8-, 9-, 12-, 16-, 18-, or 24-bit per pixel data output pins.
The pixel clock frequency is programmable.
All timings not illustrated in the waveform are programmable by software, control signal polarity, and driven edge of dss_pclk.
For more information, see the DSS chapter in the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98.
6.5.2.1.2 LCD Display in STN Mode
Table 6-45 assumes testing over the recommended operating conditions (see Figure 6-33).
Table 6-45. LCD Display Switching Characteristics in STN Mode(3)(4)(5)(6)
NO.
PARAMETER
DL3
td(PCLKA-DATAV)
Delay time, dss_pclk active edge to dss_data
bus valid
DL4
tc(PCLK)
Cycle time(2), dss_pclk
DL5
tw(PCLK)
Pulse duration, dss_pclk low or high
OPP3
OPP2
UNIT
MIN
MAX
MIN
MAX
–6.9
6.9
–6.9
6.9
22.727
0.45*P
(1)
ns
22.727
0.55*P
(1)
(1)
0.45*P
ns
(1)
0.55*P
ns
(1) P = dss_pclk period.
(2) The pixel clock frequency is software programmable via the pixel clock divider configuration from 1 to 255 division range in the
DISPC_DIVISOR register.
(3) The DSS in STN mode is used with 4 or 8 pins only; unused pixel data bits always remain low.
(4) The capacitive load is equivalent to 40 pF.
(5) For more information, see the DSS chapter in the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98.
(6) See DM Operating Condition Addendum for OPP voltages.
174
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
DL5
DL4
dss_pclk
dss_vsync
dss_hsync
dss_acbias
dss_data[23:0]
030-062
(1)(2)(3)(4)(5)
Figure 6-33. LCD Display in STN Mode
(1)
(2)
(3)
(4)
(5)
The pixel data bus depends on the use 4-, 8-, 12-, 16-, 18-, or 24-bit per pixel data output pins.
All timings not illustrated in the waveform are programmable by software, control signal polarity, and driven edge of dss_pclk.
dss_vsync width must be programmed to be as small as possible.
The pixel clock frequency is programmable.
For more information, see the DSS chapter in the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98.
6.5.2.2 LCD Display in RFBI Mode
Table 6-47 and Table 6-48 assume testing over the recommended operating conditions (see Figure 6-34
through Figure 6-36).
Table 6-46. LCD Timing Conditions – RFBI Mode
TIMING CONDITION PARAMETER
VALUE
MIN
UNIT
MAX
Input Conditions
tR
Input signal rise time
15
ns
tF
Input signal fall time
15
ns
30
pF
Output Conditions
CLOAD
Output load capacitance
Table 6-47. LCD Display Timing Requirements in RFBI Mode(2)
NO.
PARAMETER
OPP3
MIN
MAX
OPP2
MIN
MAX
OPP1
MIN
UNIT
MAX
DR0
tsu(DAV-RDH)
Setup time, rfbi_da[15:0] valid to rfbi_rd
high
7.0
9.0
ns
DR1
th(RDH-DAIV)
Hold time, rfbi_rd high to rfbi_da[15:0]
invalid
5.0
5.0
ns
td(Data
rfbi_da[15:0] are sampled at the end off
the access time
sampled)
N(1)
N(1)
ns
(1) N = (AccessTime) * (TimeParaGranularity + 1) * L4CLK
(2) See DM Operating Condition Addendum for OPP voltages.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
175
PRODUCT PREVIEW
DL3
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 6-48. LCD Display Switching Characteristics in RFBI Mode(15)
PARAMETER
OPP3
MIN
tw(rfbi_wrH)
Pulse duration, rfbi_wr high
OPP2
MAX
MIN
OPP1
MAX
MIN
UNIT
MAX
A(1)
A(1)
ns
(2)
tw(rfbi_wrL)
Pulse duration, rfbi_wr low
B
B(2)
ns
td(rfbi_a0-rfbi_wrL)
Delay time, rfbi_a0 transition to rfbi_wr
low
C(3)
C(3)
ns
td(rfbi_wrH-rfbi_a0)
Delay time, rfbi_wr high to rfbi_a0
transition
D(4)
D(4)
ns
td(rfbi_csx-rfbi_wrL)
Delay time, rfbi_csx(14) low to rfbi_wr low
E(5)
E(5)
ns
(6)
(6)
(14)
PRODUCT PREVIEW
td(rfbi_wrH-rfbi_csxH)
Delay time, rfbi_wr high to rfbi_csx
high
F
F
ns
td(dataV)
rfbi_da[15:0] valid
G(7)
G(7)
ns
td(rfbi_a0H-rfbi_rdL)
Delay time, rfbi_a0 high to rfbi_rd low
H(8)
H(8)
ns
(9)
(9)
ns
J(10)
J(10)
ns
(11)
(11)
td(rfbi_rdlH-rfbi_a0)
Delay time, rfbi_rd high to rfbi_a0
transition
tw(rfbi_rdH)
Pulse duration, rfbi_rd high
I
I
tw(rfbi_rdL)
Pulse duration, rfbi_rd low
K
K
ns
td(rfbi_rdL-rfbi_csxL)
Delay time, rfbi_rd low to rfbi_csx(14) low
L(12)
L(12)
ns
td(rfbi_rdH-rfbi_csxH)
Delay time, rfbi_rd high to rfbi_csx(14)
high
M(13)
M(13)
ns
tR(rfbi_wr)
Rise time, rfbi_wr
10
10
ns
tF(rfbi_wr)
Fall time, rfbi_wr
10
10
ns
tR(rfbi_a0)
Rise time, rfbi_a0
10
10
ns
tF(rfbi_a0)
Fall time, rfbi_a0
10
10
ns
tR(rfbi_csx)
Rise time, rfbi_csx(14)
10
10
ns
tF(rfbi_csx)
Fall time, rfbi_csx(14)
10
10
ns
tR(rfbi_da[15:0])
Rise time, rfbi_da[15:0]
10
10
ns
tF(rfbi_da[15:0])
Fall time, rfbi_da[15:0]
10
10
ns
tR(rfbi_rd)
Rise time, rfbi_rd
10
10
ns
tF(rfbi_rd)
Fall time, rfbi_rd
10
10
ns
(1)
(2)
(3)
(4)
A = (WECycleTime – WEOffTime) * (TimeParaGranularity + 1) * L4CLK
B = (WEOffTime – WEOntime) * (TimeParaGranularity + 1) * L4CLK
C = WEOnTime * (TimeParaGranularity + 1) * L4CLK
D = (WECycleTime + CSPulseWidth – WEOffTime) * (TimeParaGranularity + 1) * L4CLK
if mode Write to Read or Read to Write is enabled
(5) E = (WEOnTime – CSOnTime) * (TimeParaGranularity + 1) * L4CLK
(6) F = (CSOffTime – WEOffTime) * (TimeParaGranularity + 1) * L4CLK
(7) G = (WECycleTime) * (TimeParaGranularity + 1) * L4CLK
(8) H = (REOnTime) * (TimeParaGranularity + 1) * L4CLK
(9) I = (RECycleTime + CSPulseWidth – REOffTime) * (TimeParaGranularity + 1) * L4CLK
if mode Write to Read or Read to Write is enabled
(10) J = (RECycleTime – REOffTime) * (TimeParaGranularity + 1) * L4CLK
(11) K = (REOffTime – REOntime) * (TimeParaGranularity + 1) * L4CLK
(12) L = (REOnTime – CSOnTime) * (TimeParaGranularity + 1) * L4CLK
(13) M = (CSOffTime – REOffTime) * (TimeParaGranularity + 1) * L4CLK
(14) In rfbi_csx, x stands for 0 or 1.
(15) See DM Operating Condition Addendum for OPP voltages.
176
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
CsPulseWidth
WeCycleTime
WeCycleTime
rfbi_a0
CsOffTime
CsOffTime
CsOnTime
CsOnTime
rfbi_csx
WeOffTime
WeOffTime
WeOnTime
WeOnTime
DATA1
DATA0
rfbi_rd
034-002
Figure 6-34. LCD Display in RFBI Mode – Command / Data Write Mode(1)(2)
(1) In rfbi_csx, x is equal to 0 or 1.
(2) For more information, see the DSS chapter in the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98 .
AccessTime
AccessTime
ReCycleTime
ReCycleTime
CsPulseWidth
rfbi_a0
CsOffTime
CsOffTime
CsOnTime
CsOnTime
ReOffTime
ReOffTime
rfbi_csx
ReOnTime
ReOnTime
rfbi_rd
DR1
DR0
rfbi_da[15:0]
DATA0
DATA1
rfbi_wr
034-003
Figure 6-35. LCD Display in RFBI Mode – Data Read Mode(1)(2)
(1) In rfbi_csx, x is equal to 0 or 1.
(2) For more information, see the DSS chapter in the OMAP35x Technical Reference Manual (TRM) [literature number SPRUF98.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
177
PRODUCT PREVIEW
rfbi_wr
rfbi_da[15:0]
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
WeCycleTime
ReCycleTime
AccessTime
WeCycleTime
rfbi_a0
CsOffTime
CsOffTime
CsOnTime
CsOnTime
CsOffTime
CsOnTime
rfbi_csx
WeOffTime
WeOffTime
WeOnTime
WeOnTime
rfbi_wr
ReOffTime
PRODUCT PREVIEW
ReOnTime
rfbi_rd
CsPulseWidth
rfbi_da[15:0]
WRITE
READ
CsPulseWidth
WRITE
034-004
Figure 6-36. LCD Display in RFBI Mode – Command / Data Write-to-Read and Read-to-Write Timing
Modes(1)(2)
(1) In rfbi_csx, x is equal to 0 or 1.
(2) For more information, see the DSS chapter in the OMAP35x Technical Reference Manual (TRM) [literature number =SPRUF98.
178
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
6.6 Serial Communications Interfaces
6.6.1
Multichannel Buffered Serial Port (McBSP) Timing
There are five McBSP modules called McBSP1 through McBSP5. McBSP provides a full-duplex, direct
serial interface between the OMAP3525 and OMAP3530 devices and other devices in a system such as
other application devices or codecs. It can accommodate a wide range of peripherals and clocked
frame-oriented protocols (I2S, PCM, and TDM) due to its high level of versatility.
The interface clock (CLKX/CLKR) activation edge (data/frame sync capture and generation) has to be
configured accordingly with the external peripheral (activation edge capability) and the type of data
transfer required at the system level.
The OMAP3525 and OMAP3530 McBSP1-5 timing characteristics are described for both rising and falling
activation edges. McBSP1 supports:
• 6-pin mode: dx and dr as data pins; clkx, clkr, fsx, and fsr as control pins.
• 4-pin mode: dx and dr as data pins; clkx and fsx pins as control pins. The clkx and fsx pins are
internally looped back via software configuration, respectively, to the clkr and fsr internal signals for
data receive.
McBSP2, 3, 4, and 5 support only the 4-pin mode.
The following sections describe the timing characteristics for applications in normal mode (that is,
OMAP3525 and OMAP3530 McBSPx connected to one peripheral) and TDM applications in multipoint
mode.
6.6.1.1 McBSP in Normal Mode
Table 6-49. McBSP Timing Conditions—Normal Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
2
ns
tF
Input signal fall time
2
ns
Output load capacitance
10
pF
Output Conditions
CLOAD
Table 6-50. McBSP Output Clock Pulse Duration(3)
NO.
PARAMETER
OPP3
MIN
OPP2
MAX
MIN
UNIT
MAX
Inputs and Outputs
McBSP1 tc(CLK)
Cycle time, mcbsp1_clkx / mcbsp1_clkr (multiplexing mode
0)
20.83
41.67
ns
McBSP2 tc(CLK)
Cycle time, mcbsp2_clkx (multiplexing mode 0)
20.83
41.67
ns
McBSP3 tc(CLK)
Cycle time,
mcbsp3_clkx
IO set 1 (multiplexing mode 0)
31.25
62.50
ns
IO set 2 (multiplexing mode 1)
20.83
41.67
IO set 3 (multiplexing mode 2)
20.83
41.67
IO set 1 (multiplexing mode 0)
20.83
41.67
IO set 2 (multiplexing mode 2)
31.25
62.50
McBSP4 tc(CLK)
Cycle time,
mcbsp4_clkx
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
ns
179
PRODUCT PREVIEW
The McBSP1-5 modules may support two types of data transfer at the system level:
• The full-cycle mode, for which one clock period is used to transfer the data, generated on one edge
and captured on the same edge (one clock period later).
• The half-cycle mode, for which one half clock period is used to transfer the data, generated on one
edge and captured on the opposite edge (one half clock period later). Note that a new data is
generated only every clock period, which secures the required hold time.
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 6-50. McBSP Output Clock Pulse Duration(3) (continued)
NO.
PARAMETER
OPP3
MIN
McBSP5 tc(CLK)
Cycle time, mcbsp5_clkx (multiplexing mode 1)
OPP2
MAX
MIN
31.25
UNIT
MAX
62.50
ns
Outputs
tw(CLKH)
tw(CLKL)
tdc(CLK)
Typical pulse duration, mcbsp1_clkr / mcbspx_clkx high(2)
(2)
Typical pulse duration, mcbsp1_clkr / mcbspx_clkx low
Duty cycle error, mcbsp1_clkr / mcbspx_clkx
(2)
0.5*P(1)
0.5*P(1)
ns
(1)
0.5*P(1)
ns
0.5*P
–0.75
0.75
–0.75
0.75
ns
(1) P = mcbsp1_clkr / mcbspx_clkx clock period.
(2) In mcbspx, x identifies the McBSP number: 1, 2, 3, 4, or 5.
(3) See DM Operating Condition Addendum for OPP voltages.
6.6.1.1.1 Receive Timing with Rising Edge as Activation Edge
PRODUCT PREVIEW
Table 6-51 through Table 6-56 assume testing over the recommended operating conditions (see
Figure 6-37 through Figure 6-38).
Table 6-51. McBSP1, 2, and 3 (Sets #2 and #3) Timing Requirements – Rising Edge and Receive Mode (1)
NO.
PARAMETER
1.15 V
MIN
MAX
1.0 V
MIN
UNIT
MAX
B3
tsu(DRV-CLKAE)
Setup time, mcbspx_dr valid before mcbsp1_clkr /
mcbspx_clkx active edge
Master
3.5
7.7
ns
Slave
3.7
7.9
ns
B4
th(CLKAE-DRV)
Hold time, mcbspx_dr valid after mcbsp1_clkr /
mcbspx_clkx active edge
Master
1
1
ns
Slave
0.4
0.4
ns
B5
tsu(FSV-CLKAE)
Setup time, mcbsp1_fsr / mcbspx_fsx valid before mcbsp1_clkr /
mcbspx_clkx active edge
3.7
7.9
ns
B6
th(CLKAE-FSV)
Hold time, mcbsp1_fsr / mcbspx_fsx valid after mcbsp1_clkr /
mcbspx_clkx active edge
0.5
0.5
ns
(1)
In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
Table 6-52. McBSP1, 2, and 3 (Sets #2 and #3) Switching Characteristics – Rising Edge and Receive
Mode (1)
NO.
B2
(1)
PARAMETER
td(CLKAE-FSV)
1.15 V
Delay time, mcbsp1_clkr / mcbspx_clkx active edge to mcbsp1_fsr /
mcbspx_fsx valid
1.0 V
MIN
MAX
MIN
MAX
0.7
14.8
0.7
29.6
UNIT
ns
In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
Table 6-53. McBSP4 (Set #1) Timing Requirements – Rising Edge and Receive Mode (1)
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
B3
tsu(DRV-CLKXAE)
Setup time, mcbspx_dr valid before
mcbspx_clkx active edge
Master
2.7
7.7
ns
Slave
3.7
7.9
ns
B4
th(CLKXAE-DRV)
Hold time, mcbspx_dr valid after mcbspx_clkx
active edge
Master
1
1
ns
Slave
0.4
0.4
ns
B5
B6
(1)
180
tsu(FSXV-CLKXAE)
Setup time mcbspx_fsx valid before mcbspx_clkx active edge
3.7
7.9
ns
th(CLKXAE-FSXV)
Hold Time mcbspx_fsx valid after mcbspx_clkx active edge
0.5
0.5
ns
In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-55 and Table 6-56
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 6-54. McBSP4 (Set #1) Switching Characteristics – Rising Edge and Receive Mode (1)
NO.
B2
PARAMETER
td(CLKXAE-FSXV)
(1)
1.15 V
Delay time, mcbspx_clkx active edge to mcbspx_fsx valid
1.0 V
UNIT
MIN
MAX
MIN
MAX
0.7
16.6
0.7
33.1
ns
In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-55 and Table 6-56
Table 6-55. McBSP3 (Set #1), 4 (Set #2), and 5 Timing Requirements – Rising Edge and Receive Mode (1)
PARAMETER
1.15 V
MIN
B3
tsu(DRV-CLKXAE)
B4
th(CLKXAE-DRV)
B5
B6
(1)
1.0 V
MAX
MIN
UNIT
MAX
Setup time, mcbspx_dr valid before
mcbspx_clkx active edge
Master
5.6
12
ns
Slave
5.8
12.2
ns
Hold time, mcbspx_dr valid after mcbspx_clkx
active edge
Master
1
1
ns
Slave
0.4
0.4
ns
tsu(FSXV-CLKXAE)
Setup time, mcbspx_fsx valid before mcbspx_clkx active edge
5.8
12.2
ns
th(CLKXAE-FSXV)
Hold time, mcbspx_fsx valid after mcbspx_clkx active edge
0.5
0.5
ns
In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are
specified in Table 6-53 and Table 6-54.
For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).
Table 6-56. McBSP3 (Set #1), 4 (Set #2), and 5 Switching Requirements – Rising Edge and Receive
Mode (1)
NO.
B2
PARAMETER
td(CLKXAE-FSXV)
1.15 V
Delay time, mcbspx_clkx active edge to mcbspx_fsx valid
1.0 V
UNIT
MIN
MAX
MIN
MAX
0.7
22.2
0.7
44.4
ns
mcbspx_clkr
B2
B2
mcbspx_fsr
B3
mcbspx_dr
B4
D7
D6
D5
030-068
Figure 6-37. McBSP Rising Edge Receive Timing in Master Mode
mcbspx_clkr
B5
B6
mcbspx_fsr
B3
mcbspx_dr
B4
D7
D6
D5
030-069
Figure 6-38. McBSP Rising Edge Receive Timing in Slave Mode
(1)
In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are
specified in Table 6-53 and Table 6-54.
For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
181
PRODUCT PREVIEW
NO.
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
6.6.1.1.2 Transmit Timing with Rising Edge as Activation Edge
Table 6-57 through Table 6-62 assume testing over the recommended operating conditions (see
Figure 6-39 and Figure 6-40).
Table 6-57. McBSP1, 2, and 3 (Sets #2 and #3) Timing Requirements – Rising Edge and Transmit Mode (1)
NO.
PARAMETER
1.15 V
MIN
MAX
1.0 V
MIN
UNIT
MAX
B5
tsu(FSXV-CLKXAE)
Setup time, mcbspx_fsx valid before mcbspx_clkx
active edge
3.7
7.9
ns
B6
th(CLKXAE-FSXV)
Hold time, mcbspx_fsx valid after mcbspx_clkx active
edge
0.5
0.5
ns
(1)
In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
PRODUCT PREVIEW
Table 6-58. McBSP1, 2, and 3 (Sets #2 and #3) Switching Characteristics – Rising Edge and Transmit
Mode (1)
NO.
PARAMETER
1.15 V
1.0 V
UNIT
MIN
MAX
MIN
MAX
B2
td(CLKXAE-FSXV)
Delay time, mcbspx_clkx active edge to mcbspx_fsx
valid
0.7
14.8
0.7
29.6
ns
B8
td(CLKXAE-DXV)
Delay time, mcbspx_clkx active edge to
mcbspx_dx valid
Master
0.6
14.8
0.6
29.6
ns
Slave
0.6
14.8
0.6
29.6
ns
(1)
In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
Table 6-59. McBSP4 (Set #1) Timing Requirements – Rising Edge and Transmit Mode (1)
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
B5
tsu(FSXV-CLKXAE)
Setup time, mcbspx_fsx valid before mcbspx_clkx
active edge
3.7
7.9
ns
B6
th(CLKXAE-FSXV)
Hold time, mcbspx_fsx valid after mcbspx_clkx active
edge
0.5
0.5
ns
(1)
In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-61.
Table 6-60. McBSP4 (Set #1) Switching Characteristics – Rising Edge and Transmit Mode (1)
NO.
PARAMETER
B2
td(CLKXAE-FSXV)
Delay time, mcbspx_clkx active edge to
mcbspx_fsx valid
B8
td(CLKXAE-DXV)
Delay time, mcbspx_clkx active edge
to mcbspx_dx valid
(1)
1.15 V
1.0 V
UNIT
MIN
MAX
MIN
MAX
0.7
16.6
0.7
33.1
ns
Master
0.6
16.6
0.6
33.1
ns
Slave
0.6
17.3
0.6
33.1
ns
In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-61.
Table 6-61. McBSP3 (Set #1), 4 (Set #2), and 5 Timing Requirements – Rising Edge and Transmit Mode (1)
NO.
PARAMETER
1.15 V
MIN
B5
(1)
182
tsu(FSXV-CLKXAE)
Setup time, mcbspx_fsx valid before mcbspx_clkx
active edge
5.8
MAX
1.0 V
MIN
12.2
UNIT
MAX
ns
In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-61.
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 6-61. McBSP3 (Set #1), 4 (Set #2), and 5 Timing Requirements – Rising Edge and Transmit Mode
(continued)
NO.
PARAMETER
1.15 V
MIN
B6
th(CLKXAE-FSXV)
Hold time, mcbspx_fsx valid after mcbspx_clkx active
edge
1.0 V
MAX
0.5
MIN
UNIT
MAX
0.5
ns
Table 6-62. McBSP 3 (Set #1), 4 (Set #2), and 5 Switching Requirements – Rising Edge and Transmit
Mode (1)
PARAMETER
1.15 V
1.0 V
UNIT
MIN
MAX
MIN
MAX
B2
td(CLKXAE-FSXV)
Delay time, mcbspx_clkx active edge to mcbspx_fsx
valid
0.7
22.2
0.7
44.4
ns
B8
td(CLKXAE-DXV)
Delay time, mcbspx_clkx active edge to
mcbspx_dx valid
Master
0.6
22.2
0.6
44.4
ns
Slave
0.6
22.2
0.6
44.4
ns
mcbspx_clkx
B2
B2
mcbspx_fsx
B8
mcbspx_dx
D7
D6
D5
030-070
Figure 6-39. McBSP Rising Edge Transmit Timing in Master Mode
mcbspx_clkx
B5
B6
mcbspx_fsx
B8
mcbspx_dx
D7
D6
D5
030-071
Figure 6-40. McBSP Rising Edge Transmit Timing in Slave Mode
(1)
In mcbspx, x identifies the McBSP number: 3, 4 or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are
specified in the table above. For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).
6.6.1.1.3 Receive Timing with Falling Edge as Activation Edge
Table 6-63 through Table 6-68 assume testing over the recommended operating conditions (see
Figure 6-41 and Figure 6-42).
Table 6-63. McBSP1, 2, and 3 (Sets #2 and #3) Timing Requirements – Falling Edge and Receive Mode (1)
NO.
PARAMETER
1.15 V
MIN
B3
tsu(DRV-CLKAE)
1.0 V
MIN
UNIT
MAX
Setup time, mcbspx_dr valid before
mcbsp1_clkr / mcbspx_clkx active edge
Master
3.5
7.7
ns
Slave
3.7
7.9
ns
Master
1
1
ns
Slave
0.4
0.4
ns
3.7
7.9
ns
B4
th(CLKAE-DRV)
Hold time, mcbspx_dr valid after
mcbsp1_clkr / mcbspx_clkx active edge
B5
tsu(FSV-CLKAE)
Setup time, mcbsp1_fsr / mcbspx_fsx valid before
mcbsp1_clkr /mcbspx_clkx active edge
(1)
MAX
In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
183
PRODUCT PREVIEW
NO.
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 6-63. McBSP1, 2, and 3 (Sets #2 and #3) Timing Requirements – Falling Edge and Receive Mode
(continued)
NO.
PARAMETER
1.15 V
MIN
B6
th(CLKAE-FSV)
Hold time, mcbsp1_fsr / mcbspx_fsx valid after
mcbsp1_clkr /mcbspx_clkx active edge
1.0 V
MAX
0.5
MIN
UNIT
MAX
0.5
ns
Table 6-64. McBSP1, 2, and 3 (Sets #2 and #3) Switching Characteristics – Falling Edge and Receive
Mode (1)
NO.
B2
PRODUCT PREVIEW
(1)
PARAMETER
td(CLKAE-FSV)
1.15 V
Delay time, mcbsp1_clkr / mcbspx_clkx active edge to
mcbsp1_fsr / mcbspx_fsx valid
1.0 V
UNIT
MIN
MAX
MIN
MAX
0.7
14.8
0.7
29.6
ns
In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
Table 6-65. McBSP4 (Set #1) Timing Requirements – Falling Edge and Receive Mode (1)
NO.
PARAMETER
1.15 V
MIN
MAX
1.0 V
MIN
UNIT
MAX
B3
tsu(DRV-CLKXAE)
Setup time, mcbspx_dr valid before
mcbspx_clkx active edge
Master
2.7
7.7
ns
Slave
3.7
7.9
ns
B4
th(CLKXAE-DRV)
Hold time, mcbspx_dr valid after
mcbspx_clkx active edge
Master
1
1
ns
Slave
0.4
0.4
ns
B5
tsu(FSXV-CLKXAE)
Setup time mcbspx_fsx valid before mcbspx_clkx active
edge
3.7
7.9
ns
B6
th(CLKXAE-FSXV)
Hold time mcbspx_fsx valid after mcbspx_clkx active
edge
0.5
0.5
ns
(1)
In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-67
Table 6-66. McBSP4 (Set #1) Switching Characteristics – Falling Edge and Receive Mode (1)
NO.
B2
(1)
PARAMETER
td(CLKXAE-FSXV)
1.15 V
Delay time, mcbspx_clkx active edge to mcbspx_fsx valid
1.0 V
UNIT
MIN
MAX
MIN
MAX
0.7
16.6
0.7
33.1
ns
In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-67
Table 6-67. McBSP3 (Set #1), 4 (Set #2), and 5 Timing Requirements – Falling Edge and Receive Mode (1)
NO.
PARAMETER
1.15 V
MIN
MAX
1.0 V
MIN
UNIT
MAX
B3
tsu(DRV-CLKXAE)
Setup time, mcbspx_dr valid before
mcbspx_clkx active edge
Master
5.6
12
ns
Slave
5.8
12.2
ns
B4
th(CLKXAE-DRV)
Hold time, mcbspx_dr valid after mcbspx_clkx
active edge
Master
1
1
ns
Slave
0.4
0.4
ns
B5
tsu(FSXV-CLKXAE)
Setup time, mcbspx_fsx valid before mcbspx_clkx active
edge
5.8
12.2
ns
B6
th(CLKXAE-FSXV)
Hold time, mcbspx_fsx valid after mcbspx_clkx active
edge
0.5
0.5
ns
(1)
184
In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are
specified in the table above. For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 6-68. McBSP3 (Set #1), 4 (Set #2), and 5 Switching Requirements – Falling Edge and Receive
Mode (1)
NO.
B2
PARAMETER
td(CLKXAE-FSXV)
(1)
1.15 V
Delay time, mcbspx_clkx active edge to mcbspx_fsx
valid
1.0 V
UNIT
MIN
MAX
MIN
MAX
0.7
22.2
0.7
44.4
ns
In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are
specified in the table above. For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).
mcbspx_clkr
B2
B2
B3
mcbspx_dr
B4
D7
D6
D5
030-072
Figure 6-41. McBSP Falling Edge Receive Timing in Master Mode
mcbspx_clkr
B5
B6
mcbspx_fsr
B3
mcbspx_dr
B4
D7
D6
D5
030-073
Figure 6-42. McBSP Falling Edge Receive Timing in Slave Mode
6.6.1.1.4 Transmit Timing with Falling Edge as Activation Edge
Table 6-69 through Table 6-74 assume testing over the recommended operating conditions (see
Figure 6-43 and Figure 6-44).
Table 6-69. McBSP1, 2, and 3 (Sets #2 and #3) Timing Requirements – Falling Edge and Transmit Mode (1)
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
B5
tsu(FSXV-CLKXAE)
Setup time, mcbspx_fsx valid before mcbspx_clkx
active edge
3.7
7.9
ns
B6
th(CLKXAE-FSXV)
Hold time, mcbspx_fsx valid after mcbspx_clkx
active edge
0.5
0.5
ns
(1)
In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
Table 6-70. McBSP1, 2, and 3 (Sets #2 and #3) Switching Characteristics – Falling Edge and Transmit
Mode (1)
NO.
PARAMETER
1.15 V
1.0 V
UNIT
MIN
MAX
MIN
MAX
B2
td(CLKXAE-FSXV)
Delay time, mcbspx_clkx active edge to mcbspx_fsx
valid
0.7
14.8
0.7
29.6
ns
B8
td(CLKXAE-DXV)
Delay time, mcbspx_clkx active edge to
mcbspx_dx valid
Master
0.6
14.8
0.6
29.6
ns
Slave
0.6
14.8
0.6
29.6
ns
(1)
In mcbspx, x identifies the McBSP number: 1, 2, or 3. Note that for the McBSP3, these timings concern only Set #2 (multiplexing mode
on UART pins) and Set #3 (multiplexing mode on McBSP1 pins).
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
185
PRODUCT PREVIEW
mcbspx_fsr
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 6-71. McBSP4 (Set #1) Timing Requirements – Falling Edge and Transmit Mode (1)
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
B5
tsu(FSXV-CLKXAE)
Setup time, mcbspx_fsx valid before
mcbspx_clkx active edge
3.7
7.9
ns
B6
th(CLKXAE-FSXV)
Hold time, mcbspx_fsx valid after mcbspx_clkx
active edge
0.5
0.5
ns
(1)
In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-73.
Table 6-72. McBSP4 (Set #1) Switching Characteristics – Falling Edge and Transmit Mode (1)
NO.
PARAMETER
1.15 V
1.0 V
UNIT
PRODUCT PREVIEW
MIN
MAX
MIN
MAX
B2
td(CLKXAE-FSXV)
Delay time, mcbspx_clkx active edge to mcbspx_fsx
valid
0.7
16.6
0.7
33.1
ns
B8
td(CLKXAE-DXV)
Delay time, mcbspx_clkx active edge to
mcbspx_dx valid
Master
0.6
16.6
0.6
33.1
ns
Slave
0.6
17.3
0.6
33.1
ns
(1)
In mcbspx, x identifies the McBSP number: 4. Note that for the McBSP4, these timings concern only Set #1: multiplexing mode by
default. The McBSP4 is also multiplexed on GPMC pins (Set #2): the corresponding timings are specified in Table 6-73.
Table 6-73. McBSP3 (Set #1), 4 (Set #2), and 5 Timing Requirements – Falling Edge and Transmit Mode (1)
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
B5
tsu(FSXV-CLKXAE)
Setup time, mcbspx_fsx valid before mcbspx_clkx
active edge
5.8
12.2
ns
B6
th(CLKXAE-FSXV)
Hold time, mcbspx_fsx valid after mcbspx_clkx
active edge
0.5
0.5
ns
(1)
In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are
specified in Table 6-73. For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).
Table 6-74. McBSP3 (Set #1), 4 (Set #2), and 5 Switching Requirements – Falling Edge and Transmit
Mode (1)
NO.
PARAMETER
1.15 V
1.0 V
UNIT
MIN
MAX
MIN
MAX
B2
td(CLKXAE-FSXV)
Delay time, mcbspx_clkx active edge to mcbspx_fsx valid
0.7
22.2
0.7
44.4
ns
B8
td(CLKXAE-DXV)
Delay time, mcbspx_clkx active edge to
mcbspx_dx valid
Master
0.6
22.2
0.6
44.4
ns
Slave
0.6
22.2
0.6
44.4
ns
(1)
In mcbspx, x identifies the McBSP number: 3, 4, or 5. Note that for the McBSP3, these timings concern only Set #1: multiplexing mode
by default. The McBSP3 is also multiplexed on UART pins (Set #2) and on McBSP1 pins (Set #3): the corresponding timings are
specified in Table 6-73. For the McBSP4, these timings concern only Set #2 (multiplexing mode on GPMC pins).
mcbspx_clkx
B2
B2
mcbspx_fsx
B8
mcbspx_dx
D7
D6
D5
030-074
Figure 6-43. McBSP Falling Edge Transmit Timing in Master Mode
186
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
mcbspx_clkx
B5
B6
mcbspx_fsx
B8
mcbspx_dx
D7
D6
D5
030-075
Figure 6-44. McBSP Falling Edge Transmit Timing in Slave Mode
6.6.1.2 McBSP in TDM—Multipoint Mode (McBSP3)
Table 6-75. McBSP3 Timing Conditions—TDM in Multipoint Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
MIN
MAX
Input Conditions
tR
Input signal rising time
1.0
8.5
ns
tF
Input signal falling time
1.0
8.5
ns
40
pF
Output Conditions
CLOAD
Output Load Capacitance
Table 6-76. McBSP3 Timing Requirements—TDM in Multipoint Mode (1)
NO.
PARAMETER
1.15 V
MIN
tW(CLKH)
Cycle Time, mcbsp3_clkx
tW(CLKH)
Typical Pulse duration, mcbsp3_clkx high
MAX
162.8
tW(CLKL)
Typical Pulse duration, mcbsp3_clkx low
tdc(CLK)
Duty cycle error, mcbsp3_clkx
B3 (3)
tsu(DRV-CLKAE)
Setup time, mcbsp3_dr valid before
mcbsp3_clkx active edge
B4 (3)
th(CLKAE-DRV)
Hold time, mcbsp3_dr valid after mcbsp3_clkx
active edge
B5 (3)
tsu(FSV-CLKAE)
Setup time, mcbsp3_fsx valid before
mcbsp3_clkx active edge
B6 (3)
th(CLKAE-FSV)
Hold time, mcbsp3_fsx valid after
mcbsp3_clkx active edge
(1)
(2)
(3)
1.0 V
MIN
UNIT
MAX
162.8
ns
0.5*P (2)
0.5*P (2)
(2)
(2)
0.5*P
–8.14
0.5*P
8.14
–8.14
ns
ns
8.14
ns
9
9
ns
2.4
2.4
ns
9
9
ns
2.4
2.4
ns
For McBSP3, these timings concern only Set #3 (multiplexing mode in McBSP1 pins).
P = mcbsp3_clkx period in ns
See Section 6.6.1.1, McBSP in Normal Mode for corresponding figures.
Table 6-77. McBSP3 Switching Characteristics—TDM in Multipoint Mode (1)
NO.
B8 (2)
(1)
(2)
PARAMETER
td(CLKXAE-DXV)
1.15 V
Delay time, mcbsp3_clkx active edge to
mcbsp3_dx valid
1.0 V
UNIT
MIN
MAX
MIN
MAX
0.6
16.8
0.6
29.6
ns
For McBSP3, these timings concern only Set #3 (multiplexing mode in McBSP1 pins).
See Section 6.6.1.1, McBSP in Normal Mode for corresponding figures.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
187
PRODUCT PREVIEW
For TDM application in multipoint mode, OMAP3525 and OMAP3530 are considered as a slave.
Table 6-76 and Table 6-77 assume testing over the operating conditions and electrical characteristic
conditions described below.
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
6.6.2
www.ti.com
Multichannel Serial Port Interface (McSPI) Timing
The multichannel SPI is a master/slave synchronous serial bus. The McSPI1 module supports up to four
peripherals and the others (McSPI2, McSPI3, and McSPI4) support up to two peripherals. The following
timings are applicable to the different configurations of McSPI in master/slave mode for any McSPI and
any channel (n).
6.6.2.1 McSPI in Slave Mode
Table 6-78 and Table 6-79 assume testing over the recommended operating conditions (see Figure 6-45).
Table 6-78. McSPI Interface Timing Requirements – Slave Mode (1) (2)
NO.
PARAMETER
1.15 V
MIN
PRODUCT PREVIEW
1/SS 1/tc(CLK)
0
1.0 V
MAX
Frequency, mcspix_clk
MIN
UNIT
MAX
24
12
MHz
-200
200
ps
0.45*P (4)
0.55*P (4)
ns
tj(CLK)
Cycle jitter (3), mcspix_clk
SS1
tw(CLK)
Pulse duration, mcspix_clk high or low
SS2
tsu(SIMOV-CLKAE)
Setup time, mcspix_simo valid before mcspix_clk
active edge
4.2
9.5
ns
SS3
th(SIMOV-CLKAE)
Hold time, mcspix_simo valid after mcspix_clk active
edge
4.6
9.9
ns
SS4
tsu(CS0V-CLKFE)
Setup time, mcspix_cs0 valid before mcspix_clk first
edge
13.8
28.6
ns
SS5
th(CS0I-CLKLE)
Hold time, mcspix_cs0 invalid after mcspix_clk last
edge
13.8
28.6
ns
(1)
(2)
(3)
(4)
-200
200
0.45*P (4) 0.55*P (4)
The input timing requirements are given by considering a rise time and a fall time of 4 ns.
In mcspix, x is equal to 1, 2, 3, or 4.
Maximum cycle jitter supported by mcspix_clk input clock.
P = mcspix_clk clock period
Table 6-79. McSPI Interface Switching Requirements (1) (2) (3) (4)
NO.
PARAMETER
SS6
td(CLKAE-SOMIV)
Delay time, mcspix_clk active edge to mcspix_somi
shifted
SS7
td(CS0AE-SOMIV)
Delay time, mcspix_cs0 active edge to Modes 0 and 2
mcspix_somi shifted
(1)
(2)
(3)
(4)
188
1.15 V
1.0 V
UNIT
MIN
MAX
MIN
MAX
1.8
15.9
3.2
31.7
ns
31.7
ns
15.9
The capacitive load is equivalent to 20 pF.
In mcspix, x is equal to 1, 2, 3, or 4.
The polarity of mcspix_clk and the active edge (rising or falling) on which mcspix_simo is driven and mcspix_somi is latched is all
software configurable.
This timing applies to all configurations regardless of mcspix_clk polarity and which clock edges are used to drive output data and
capture input data.
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Mode 0 & 2
mcspix_cs0(EPOL=1)
SS0
SS4
SS5
SS1
mcspix_clk(POL=0)
SS0
SS1
mcspix_clk(POL=1)
SS2
SS3
Bit n-2
SS7
Bit n-4
Bit 0
SS6
Bit n-1
mcspix_somi
Bit n-3
PRODUCT PREVIEW
Bit n-1
mcspix_simo
Bit n-2
Bit n-3
Bit n-4
Bit 0
Mode 1 & 3
mcspix_cs0(EPOL=1)
SS0
SS1
mcspix_clk(POL=0)
SS0
SS1
SS4
SS5
mcspix_clk(POL=1)
SS3
SS2
Bit n-1
mcspix_simo
Bit n-2
Bit n-3
Bit 1
Bit 0
SS6
Bit n-1
mcspix_somi
Bit n-2
Bit n-3
Bit 1
Bit 0
030-076
Figure 6-45. McSPI Interface – Transmit and Receive in Slave Mode(1)(2)
(1) The active clock edge (rising or falling) on which mcspi_somi is driven and mcspi_simo data is latched is software configurable with the
bit MSPI_CHCONFx[0] = PHA and the bit MSPI_CHCONFx[1] = POL.
(2) The polarity of mcspix_csi is software configurable with the bit MSPI_CHCONFx[6] = EPOL In mcspix, x is equal to 1, 2, 3, or 4.
6.6.2.2 McSPI in Master Mode
Table 6-80 and Table 6-81 assume testing over the recommended operating conditions (see Figure 6-46).
Table 6-80. McSPI1, 2, and 4 Interface Timing Requirements – Master Mode (1) (2)
NO.
PARAMETER
1.15 V
MIN
MAX
1.0 V
MIN
UNIT
MAX
SM2
tsu(SOMIV-CLKAE)
Setup time, mcspix_somi valid before mcspix_clk
active edge
1.1
1.5
ns
SM3
th(SOMIV-CLKAE)
Hold time, mcspix_somi valid after mcspix_clk active
edge
1.9
2.8
ns
(1)
(2)
The input timing requirements are given by considering a rise time and a fall time of 4 ns.
In mcspix, x is equal to 1, 2, or 4. In mcspix_csn, n is equal to 0, 1, 2, or 3 for x equal to 1, n is equal to 0 or 1 for x equal to 2 and 4.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
189
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 6-81. McSPI1, 2, and 4 Interface Switching Characteristics – Master Mode (1) (2) (3)
NO.
PARAMETER
1/SM0 1/tc(CLK)
1.15 V
SM1
tw(CLK)
Pulse duration, mcspix_clk high or low
SM4
td(CLKAE-SIMOV)
Delay time, mcspix_clk active edge to mcspix_simo
shifted
SM5
td(CSnA-CLKFE)
Delay time, mcspix_csi active to
mcspix_clk first edge
PRODUCT PREVIEW
(1)
(2)
(3)
(4)
(5)
(6)
(7)
-200
td(CLKLE-CSnI)
td(CSnAE-SIMOV)
Delay time, mcspix_clk last edge to
mcspix_csi inactive
Delay time, mcspix_csi active edge to
mcspix_simo shifted
UNIT
MIN
MAX
24
MHz
200
-200
200
ps
0.45*P (5)
0.55*P (5)
0.45*P (
0.55*P (5)
ns
–2.1
5
–2.1
11.3
ns
48
Cycle jitter (4), mcspix_clk
SM7
MAX
Frequency, mcspix_clk
tj(CLK)
SM6
1.0 V
MIN
5)
Modes 1
and 3
A (6) – 3.1
A (6) –
4.4
ns
Modes 0
and 2
B (7) – 3.1
B (7) –
4.4
ns
Modes 1
and 3
B (7) – 3.1
B (7) –
4.4
ns
Modes 0
and 2
A (6) – 3.1
A (6) –
4.4
ns
Modes 0
and 2
5.0
11.3
ns
Timings are given for a maximum load capacitance of 20 pF for spix_csn signals, 30 pF for spix_clk and spix_simo signals with x = 1 or
2, and 20 pF for spi4_clk and spi4_simo signals.
In mcspix, x is equal to 1, 2, or 4. In mcspix_csn, n is equal to 0, 1, 2, or 3 for x equal to 1, n is equal to 0 or 1 for x equal to 2 and 4.
The polarity of mcspix_clk and the active edge (rising or falling) on which mcspix_simo is driven and mcspix_somi is latched is all
software configurable.
Maximum cycle jitter supported by mcspix_clk input clock.
P = mcspix_clk clock period
Case P = 20.8 ns, A = (TCS+0.5)*P (TCS is a bit field of MSPI_CHCONFx[26:25] register). Case P > 20.8 ns, A = TCS*P (TCS is a
bitfield of MSPI_CHCONFx[26:25] register). For more information, see the McSPI chapter of the OMAP35x Technical Reference Manual
(TRM) [literature number SPRUF98].
B = TCS*P (TCS is a bit field of MSPI_CHCONFx[26:25] register). For more information, see the McSPI chapter of the OMAP35x
Technical Reference Manual (TRM) [literature number SPRUF98].
Table 6-82 and Table 6-83 assume testing over the recommended operating conditions (see Figure 6-46).
Table 6-82. McSPI 3 Interface Timing Requirements – Master Mode (1) (2)
NO.
PARAMETER
1.15 V
MIN
MAX
1.0 V
MIN
UNIT
MAX
SM2
tsu(SOMIV-CLKAE)
Setup time, mcspi3_somi valid before
mcspi3_clk active edge
1.5
4.3
ns
SM3
th(SOMIV-CLKAE)
Hold time, mcspi3_somi valid after mcspi3_clk
active edge
2.8
5.9
ns
(1)
(2)
The input timing requirements are given by considering a rise time and a fall time of 4 ns.
In mcspi3_csn, n is equal to 0 or 1. The polarity of mcspi3_clk and the active edge (rising or falling) on which mcspi3_simo is driven and
mcspi3_somi is latched is all software configurable.
Table 6-83. McSPI3 Interface Switching Requirements – Master Mode (1) (2) (3)
NO.
PARAMETER
1.15 V
MIN
1/SM 1/tc(CLK)
0
tj(CLK)
(1)
(2)
(3)
(4)
190
Frequency, mcspix_clk
Cycle jitter (4), mcspix_clk
1.0 V
MAX
MIN
24
-200
200
-200
UNIT
MAX
12
MHz
200
ps
The capacitive load is equivalent to 20 pF.
In mcspi3_csn, n is equal to 0 or 1. The polarity of mcspi3_clk and the active edge (rising or falling) on which mcspi3_simo is driven and
mcspi3_somi is latched is all software configurable.
This timing applies to all configurations regardless of McSPI3_CLK polarity and which clock edges are used to drive output data and
capture input data.
Maximum cycle jitter supported by mcspix_clk input clock.
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 6-83. McSPI3 Interface Switching Requirements – Master Mode (continued)
PARAMETER
1.15 V
1.0 V
UNIT
MIN
MAX
MIN
MAX
SM1
tw(CLK)
Pulse duration, mcspix_clk high or low
0.45*P (5)
0.55*P (5)
0.45*P (5)
0.55*P (5)
ns
SM4
td(CLKAE-SIMOV)
Delay time, mcspix_clk active edge to
mcspix_simo shifted
–2.1
11.3
–5.3
23.6
ns
SM5
td(CSnA-CLKFE)
Delay time, mcspix_csi active Modes 1
to mcspix_clk first edge
and 3
–4.4 + A (6)
–10.1 + A (6)
ns
Modes 0
and 2
–4.4 + B (7)
–10.1 + B (7)
ns
Modes 1
and 3
B – 4.4 (7)
B – 10.1 (7)
ns
Modes 0
and 2
A (6) – 4.4
A (6) – 10.1
ns
SM6
SM7
(5)
(6)
(7)
td(CLK-CSn)
td(CSnAE-SIMOV)
Delay time, mcspix_clk last
edge to mcspix_csi inactive
Delay time, mcspix_csi active Modes 0
edge to mcspix_simo shifted and 2
11.3
23.6
ns
P = mcspi3_clk clock period
Case P = 20.8 ns, A = (TCS + 0.5)*P (TCS is a bit field of MSPI_CHCONFx[26:25] register). Case P > 20.8 ns, A = TCS*P (TCS is a bit
field of MSPI_CHCONFx[26:25] register). For more information, see the McSPI chapter of the OMAP35x Technical Reference Manual
(TRM) [literature number SPRUF98].
B = TCS*P (TCS is a bit field of MSPI_CHCONFx[26:25] register). For more information, see the McSPI chapter of the OMAP35x
Technical Reference Manual (TRM) [literature number SPRUF98].
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
191
PRODUCT PREVIEW
NO.
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
mcspix_csn(EPOL=1)
Mode 0 & 2
SM0
SM1
SM5
SM6
mcspix_clk(POL=0)
SM0
SM1
mcspix_clk(POL=1)
SM4
SM7
Bit n-1
mcspix_simo
Bit n-2
Bit n-3
Bit n-4
Bit 0
SM2
PRODUCT PREVIEW
SM3
Bit n-1
mcspix_somi
Bit n-2
Bit n-3
Bit 0
Bit n-4
Mode 1 & 3
mcspix_csn(EPOL=1)
SM0
SM1
mcspix_clk(POL=0)
SM0
SM1
SM5
SM6
mcspix_clk(POL=1)
SM4
mcspix_simo
Bit n-1
Bit n-2
Bit n-3
Bit 1
Bit 0
SM2
SM3
mcspix_somi
Bit n-1
Bit n-2
Bit n-3
Bit 1
Bit 0
030-077
Figure 6-46. McSPI Interface – Transmit and Receive in Master Mode(1)(2)(3)
(1) The active clock edge (rising or falling) on which mcspix_simo is driven and mcspi_somi data is latched is software configurable with the
bit MSPI_CHCONFx[0] = PHA and the bit MSPI_CHCONFx[1] = POL.
(2) The polarity of mcspix_csi is software configurable with the bit MSPI_CHCONFx[6] = EPOL.
(3) In mcspix, x is equal to 1. In mcspix_csn, n is equal to 0, 1, 2, or 3.
192
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
6.6.3
SPRS599 – JUNE 2009
Multiport Full-Speed Universal Serial Bus (USB) Interface
The OMAP3525 and OMAP3530 processors provide three USB ports working in full- and low-speed data
transactions (up to 12Mbit/s).
Connected to either a serial link controller (TLL modes) or a serial PHY (PHY interface modes) it supports:
• 6-pin (Tx: Dat/Se0 or Tx: Dp/Dm) unidirectional mode
• 4-pin bidirectional mode
• 3-pin bidirectional mode
6.6.3.1 Multiport Full-Speed Universal Serial Bus (USB) – Unidirectional Standard 6-pin Mode
Table 6-85 and Table 6-86 assume testing over the recommended operating conditions (see Figure 6-47).
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
2.0
ns
tF
Input signal fall time
2.0
ns
Output load capacitance
15.0
pF
Output Conditions
CLOAD
Table 6-85. Low-/Full-Speed USB Timing Requirements – Unidirectional Standard 6-pin Mode
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
FSU1
td(Vp,Vm)
Time duration, mmx_rxdp and mmx_rxdm low together during
transition
14.0
14.0
ns
FSU2
td(Vp,Vm)
Time duration, mmx_rxdp and mmx_rxdm high together during
transition
8.0
8.0
ns
FSU3
td(RCVU0)
Time duration, mmx_rrxcv undefine during a single end 0
(mmx_rxdp and mmx_rxdm low together)
14.0
14.0
ns
FSU4
td(RCVU1)
Time duration, mmx_rxrcv undefine during a single end 1
(mmx_rxdp and mmx_rxdm high together)
8.0
8.0
ns
Table 6-86. Low-/Full-Speed USB Switching Characteristics – Unidirectional Standard 6-pin Mode
NO.
PARAMETER
1.15 V
1.0 V
UNIT
MIN
MAX
MIN
MAX
FSU5
td(TXENL-DATV)
Delay time, mmx_txen_n low to mmx_txdat valid
81.8
84.8
81.8
84.8
ns
FSU6
td(TXENL-SE0V)
Delay time, mmx_txen_n low to mmx_txse0 valid
81.8
84.8
81.8
84.8
ns
FSU7
ts(DAT-SE0)
Skew between mmx_txdat and mmx_txse0 transition
1.5
ns
FSU8
td(DATI-TXENH)
Delay time, mmx_txdat invalid to mmx_txen_n high
81.8
81.8
ns
FSU9
td(SE0I-TXENH)
Delay time, mmx_txse0 invalid to mmx_txen_n high
81.8
81.8
ns
tR(do)
Rise time, mmx_txen_n
4.0
4.0
ns
tF(do)
Fall time, mmx_txen_n
4.0
4.0
ns
tR(do)
Rise time, mmx_txdat
4.0
4.0
ns
tF(do)
Fall time, mmx_txdat
4.0
4.0
ns
tR(do)
Rise time, mmx_txse0
4.0
4.0
ns
tF(do)
Fall time, mmx_txse0
4.0
4.0
ns
Submit Documentation Feedback
1.5
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
193
PRODUCT PREVIEW
Table 6-84. Low-/Full-Speed USB Timing Conditions – Unidirectional Standard 6-pin Mode
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Transmit
mmx_txen_n
FSU5
Receive
FSU8
mmx_txdat
FSU6
FSU7
FSU9
mmx_txse0
FSU1
FSU2
FSU1
FSU2
FSU3
FSU4
mmx_rxdp
mmx_rxdm
PRODUCT PREVIEW
mmx_rxrcv
030-080
In mmx, x is equal to 0, 1, or 2.
Figure 6-47. Low-/Full-Speed USB – Unidirectional Standard 6-pin Mode
6.6.3.2 Multiport Full-Speed Universal Serial Bus (USB) – Bidirectional Standard 4-pin Mode
Table 6-88 and Table 6-89 assume testing over the recommended operating conditions (see Figure 6-48).
Table 6-87. Low-/Full-Speed USB Timing Conditions – Bidirectional Standard 4-pin Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
2.0
ns
tF
Input signal fall time
2.0
ns
Output load capacitance
15.0
pF
Output Conditions
CLOAD
Table 6-88. Low-/Full-Speed USB Timing Requirements – Bidirectional Standard 4-pin Mode
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
FSU10
td(DAT,SE0)
Time duration, mmx_txdat and mmx_txse0 low together
during transition
14.0
14.0
ns
FSU11
td(DAT,SE0)
Time duration, mmx_txdat and mmx_txse0 high together
during transition
8.0
8.0
ns
FSU12
td(RCVU0)
Time duration, mmx_rrxcv undefine during a single end 0
(mmx_txdat and mmx_txse0 low together)
14.0
14.0
ns
FSU13
td(RCVU1)
Time duration, mmx_rxrcv undefine during a single end 1
(mmx_txdat and mmx_txse0 high together)
8.0
8.0
ns
Table 6-89. Low-/Full-Speed USB Switching Characteristics – Bidirectional Standard 4-pin Mode
NO.
PARAMETER
1.15 V
1.0 V
UNIT
MIN
MAX
MIN
MAX
FSU14
td(TXENL-DATV)
Delay time, mmx_txen_n low to mmx_txdat valid
81.8
84.8
81.8
84.8
ns
FSU15
td(TXENL-SE0V)
Delay time, mmx_txen_n low to mmx_txse0 valid
81.8
84.8
81.8
84.8
ns
FSU16
ts(DAT-SE0)
Skew between mmx_txdat and mmx_txse0
transition
1.5
ns
FSU17
td(DATV-TXENH)
Delay time, mmx_txdat invalid before mmx_txen_n
high
194
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
1.5
81.8
81.8
ns
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 6-89. Low-/Full-Speed USB Switching Characteristics – Bidirectional Standard 4-pin Mode
(continued)
PARAMETER
1.15 V
MIN
FSU18
1.0 V
MAX
81.8
MIN
UNIT
MAX
td(SE0V-TXENH)
Delay time, mmx_txse0 invalid before mmx_txen_n
high
81.8
tR(txen)
Rise time, mmx_txen_n
4.0
4.0
ns
tF(txen)
Fall time, mmx_txen_n
4.0
4.0
ns
tR(dat)
Rise time, mmx_txdat
4.0
4.0
ns
tF(dat)
Fall time, mmx_txdat
4.0
4.0
ns
tR(se0)
Rise time, mmx_txse0
4.0
4.0
ns
tF(se0)
Fall time, mmx_txse0
4.0
4.0
ns
Transmit
mmx_txen_n
FSU14
ns
FSU17
Receive
FSU10
FSU11
FSU18
FSU10
FSU11
FSU12
FSU13
PRODUCT PREVIEW
NO.
mmx_txdat
FSU15
FSU16
mmx_txse0
mmx_rxrcv
030-081
In mmx, x is equal to 0, 1, or 2.
Figure 6-48. Low-/Full-Speed USB – Bidirectional Standard 4-pin Mode
6.6.3.3 Multiport Full-Speed Universal Serial Bus (USB) – Bidirectional Standard 3-pin Mode
Table 6-91 and Table 6-92 assume testing over the recommended operating conditions below (see
Figure 6-49).
Table 6-90. Low-/Full-Speed USB Timing Conditions – Bidirectional Standard 3-pin Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
2.0
ns
tF
Input signal fall time
2.0
ns
Output load capacitance
15.0
pF
Output Conditions
CLOAD
Table 6-91. Low-/Full-Speed USB Timing Requirements – Bidirectional Standard 3-pin Mode
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
FSU19
td(DAT,SE0)
Time duration, mmx_txdat and mmx_txse0 low together
during transition
14.0
14.0
ns
FSU20
td(DAT,SE0)
Time duration, mmx_tsdat and mmx_txse0 high
together during transition
8.0
8.0
ns
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
195
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 6-92. Low-/Full-Speed USB Switching Characteristics – Bidirectional Standard 3-pin Mode
NO.
PARAMETER
1.15 V
1.0 V
UNIT
MIN
MAX
MIN
MAX
td(TXENL-DATV)
Delay time, mmx_txen_n low to mmx_txdat valid
81.8
84.8
81.8
84.8
ns
FSU22
td(TXENL-SE0V)
Delay time, mmx_txen_n low to mmx_txse0 valid
81.8
84.8
81.8
84.8
ns
FSU23
ts(DAT-SE0)
Skew between mmx_txdat and mmx_txse0
transition
1.5
ns
FSU24
td(DATI-TXENH)
Delay time, mmx_txdat invalid to mmx_txen_n
high
81.8
81.8
ns
FSU25
td(SE0I-TXENH)
Delay time, mmx_txse0 invalid to mmx_txen_n
high
81.8
81.8
ns
tR(do)
Rise time, mmx_txen_n
4.0
4.0
ns
tF(do)
Fall time, mmx_txen_n
4.0
4.0
ns
tR(do)
Rise time, mmx_txdat
4.0
4.0
ns
tF(do)
Fall time, mmx_txdat
4.0
4.0
ns
tR(do)
Rise time, mmx_txse0
4.0
4.0
ns
tF(do)
Fall time, mmx_txse0
4.0
4.0
ns
PRODUCT PREVIEW
FSU21
1.5
Transmit
mmx_txen_n
FSU21
Receive
FSU24
FSU19
FSU20
FSU25
FSU19
FSU20
mmx_txdat
FSU22
FSU23
mmx_txse0
030-082
In mmx, x is equal to 0, 1, or 2.
Figure 6-49. Low-/Full-Speed USB – Bidirectional Standard 3-pin Mode
6.6.3.4 Multiport Full-Speed Universal Serial Bus (USB) – Unidirectional TLL 6-pin Mode
Table 6-94 and Table 6-95 assume testing over the recommended operating conditions (see Figure 6-50).
Table 6-93. Low-/Full-Speed USB Timing Conditions – Unidirectional TLL 6-pin Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
2
ns
tF
Input signal fall time
2
ns
Output load capacitance
15
pF
Output Conditions
CLOAD
Table 6-94. Low-/Full-Speed USB Timing Requirements – Unidirectional TLL 6-pin Mode
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
FSUT1
td(SE0,DAT)
Time duration, mmx_txse0 and mmx_txdat low
together during transition
14
14
ns
FSUT2
td(SE0,DAT)
Time duration, mmx_txse0 and mmx_txdat high
together during transition
8
8
ns
196
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 6-95. Low-/Full-Speed USB Switching Characteristics – Unidirectional TLL 6-pin Mode
PARAMETER
1.15 V
1.0 V
UNIT
MIN
MAX
MIN
MAX
FSUT3
td(TXENH-DPV)
Delay time, mmx_txen_n high to mmx_rxdp valid
81.8
84.8
81.8
84.8
ns
FSUT4
td(TXENH-DMV)
Delay time, mmx_txen_n high to mmx_rxdm valid
81.8
84.8
81.8
84.8
ns
FSUT5
td(DPI-TXENL)
Delay time, mmx_rxdp invalid mmx_txen_n low
81.8
FSUT6
td(DMI-TXENL)
Delay time, mmx_rxdm invalid mmx_txen_n low
81.8
FSUT7
ts(DP-DM)
Skew between mmx_rxdp and mmx_rxdm
transition
1.5
1.5
ns
FSUT8
ts(DP,DM-RCV)
Skew between mmx_rxdp, mmx_rxdm, and
mmx_rxrcv transition
1.5
1.5
ns
tR(rxrcv)
Rise time, mmx_rxrcv
4
4
ns
tF(rxrcv)
Fall time, mmx_rxrcv
4
4
ns
tR(dp)
Rise time, mmx_rxdp
4
4
ns
tF(dp)
Fall time, mmx_rxdp
4
4
ns
tR(dm)
Rise time, mmx_rxdm
4
4
ns
tF(dm)
Fall time, mmx_rxdm
4
4
ns
mmx_txen_n
81.8
ns
81.8
Transmit
ns
PRODUCT PREVIEW
NO.
Receive
FSUT1
FSUT2
FSUT1
FSUT2
mmx_txdat
mmx_txse0
FSUT3
FSUT5
mmx_rxdp
FSUT4
FSUT7
FSUT6
mmx_rxdm
FSUT8
mmx_rxrcv
030-083
In mmx, x is equal to 0, 1, or 2.
Figure 6-50. Low-/Full-Speed USB – Unidirectional TLL 6-pin Mode
6.6.3.5 Multiport Full-Speed Universal Serial Bus (USB) – Bidirectional TLL 4-pin Mode
Table 6-97 and Table 6-98 assume testing over the recommended operating conditions (see Figure 6-51).
Table 6-96. Low-/Full-Speed USB Timing Conditions – Bidirectional TLL 4-pin Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
2
ns
tF
Input signal fall time
2
ns
Output load capacitance
15
pF
Output Conditions
CLOAD
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
197
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 6-97. Low-/Full-Speed USB Timing Requirements – Bidirectional TLL 4-pin Mode
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
FSUT9
td(DAT,SE0)
Time duration, mmx_txdat and mmx_txse0 low
together during transition
14
14
ns
FSUT10
td(DAT,SE0)
Time duration, mmx_tsdat and mmx_txse0 high
together during transition
8
8
ns
Table 6-98. Low-/Full-Speed USB Switching Characteristics – Bidirectional TLL 4-pin Mode
NO.
PARAMETER
1.15 V
1.0 V
UNIT
PRODUCT PREVIEW
MIN
MAX
MIN
MAX
FSUT11
td(TXENL-DATV)
Delay time, mmx_txen_n active to mmx_txdat valid
81.8
84.8
81.8
84.8
ns
FSUT12
td(TXENL-SE0V)
Delay time, mmx_txen_n active to mmx_txse0 valid
81.8
84.8
81.8
84.8
ns
FSUT13
ts(DAT-SE0)
Skew between mmx_txdat and mmx_txse0
transition
1.5
1.5
ns
FSUT14
ts(DP,DM-RCV)
Skew between mmx_rxdp, mmx_rxdm, and
mmx_rxrcv transition
1.5
1.5
ns
FSUT15
td(DATI-TXENL)
Delay time, mmx_txse0 invalid to mmx_txen_n Low
81.8
81.8
FSUT16
td(SE0I-TXENL)
Delay time, mmx_txdat invalid to mmx_txen_n Low
81.8
81.8
tR(rcv)
Rise time, mmx_rxrcv
4
4
ns
tF(rcv)
Fall time, mmx_rxrcv
4
4
ns
tR(dat)
Rise time, mmx_txdat
4
4
ns
tF(dat)
Fall time, mmx_txdat
4
4
ns
tR(se0)
Rise time, mmx_txse0
4
4
ns
tF(se0)
Fall time, mmx_txse0
4
4
ns
mmx_txen_n
ns
Receive
Transmit
FSUT11
ns
FSUT15
FSUT9
FSUT10
FSUT16
FSUT9
FSUT10
mmx_txdat
FSUT12
FSUT13
mmx_txse0
FSUT14
mmx_rxrcv
030-084
In mmx, x is equal to 0, 1, or 2.
Figure 6-51. Low-/Full-Speed USB – Bidirectional TLL 4-pin Mode
6.6.3.6 Multiport Full-Speed Universal Serial Bus (USB) – Bidirectional TLL 3-pin Mode
Table 6-100 and Table 6-101 assume testing over the recommended operating conditions (see
Figure 6-52).
Table 6-99. Low-/Full-Speed USB Timing Conditions – Bidirectional TLL 3-pin Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
2
ns
Input Conditions
tR
198
Input signal rise time
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 6-99. Low-/Full-Speed USB Timing Conditions – Bidirectional TLL 3-pin Mode (continued)
TIMING CONDITION PARAMETER
tF
VALUE
UNIT
Input signal fall time
2
ns
Output load capacitance
15
pF
Output Conditions
CLOAD
Table 6-100. Low-/Full-Speed USB Timing Requirements – Bidirectional TLL 3-pin Mode
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
FSUT17
td(DAT,SE0)
Time duration, mmx_txdat and mmx_txse0 low
together during transition
14
14
ns
FSUT18
td(DAT,SE0)
Time duration, mmx_tsdat and mmx_txse0 high
together during transition
8
8
ns
PRODUCT PREVIEW
NO.
Table 6-101. Low-/Full-Speed USB Switching Characteristics – Bidirectional TLL 3-pin Mode
NO.
PARAMETER
1.15 V
1.0 V
UNIT
MIN
MAX
MIN
MAX
FSUT19
td(TXENH-DATV)
Delay time, mmx_txen_n high to mmx_txdat valid
81.8
84.8
81.8
84.8
ns
FSUT20
td(TXENH-SE0V)
Delay time, mmx_txen_n high to mmx_txse0 valid
81.8
84.8
81.8
84.8
ns
FSUT21
ts(DAT-SE0)
Skew between mmx_txdat and mmx_txse0
transition
1.5
ns
FSUT22
td(DATI-TXENL)
Delay time, mmx_txdat invalid mmx_txen_n low
81.8
FSUT23
td(SE0I-TXENL)
Delay time, mmx_txse0 invalid mmx_txen_n low
81.8
tR(dat)
Rise time, mmx_txdat
4
4
ns
tF(dat)
Fall time, mmx_txdat
4
4
ns
tR(se0)
Rise time, mmx_txse0
4
4
ns
tF(se0)
Fall time, mmx_txse0
4
4
ns
tR(do)
Rise time, mmx_txse0
4
4
ns
tF(do)
Fall time, mmx_txse0
4
4
ns
mmx_txen_n
1.5
ns
81.8
ns
Receive
Transmit
FSUT19
81.8
FSUT22
FSUT17
FSUT18
FSUT23
FSUT17
FSUT18
mmx_txdat
FSUT20
FSUT21
mmx_txse0
030-085
In mmx, x is equal to 0, 1, or 2.
Figure 6-52. Low-/Full-Speed USB – Bidirectional TLL 3-pin Mode
6.6.4
Multiport High-Speed Universal Serial Bus (USB) Timing
In addition to the full-speed USB controller, a high-speed (HS) USB OTG controller is instantiated inside
OMAP3525 and OMAP3530. It allows high-speed transactions (up to 480 Mbit/s) on the USB ports 0, 1, 2,
and 3.
• Port 0:
– 12-bit slave mode (SDR)
• Port 1 and port 2:
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
199
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
•
www.ti.com
– 12-bit master mode (SDR)
– 12-bit TLL master mode (SDR)
– 8-bit TLL master mode (DDR)
Port 3:
– 12-bit TLL master mode (SDR)
– 8-bit TLL master mode (DDR)
6.6.4.1 High-Speed Universal Serial Bus (USB) on Port 0 – 12-bit Slave Mode
Table 6-103 and Table 6-104 assume testing over the recommended operating conditions (see
Figure 6-53).
Table 6-102. High-Speed USB Timing Conditions – 12-bit Slave Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
PRODUCT PREVIEW
Input Conditions
tr
Input Signal Rising Time
2.00
ns
tf
Input Signal Falling Time
2.00
ns
Output Load Capacitance
3.50
pF
Output Conditions
Cload
Table 6-103. High-Speed USB Timing Requirements – 12-bit Slave Mode (1)
NO.
PARAMETER
1.15 V
MIN
UNIT
MAX
hsusb0_clk clock frequency (2) (3)
60.03
MHz
tj(CLK)
Cycle Jitter (3), hsusb0_clk
500.00
ps
ts(DIRV-CLKH)
Setup time, hsusb0_dir valid before hsusb0_clk rising edge
6.7
ns
ts(NXTV-CLKH)
Setup time, hsusb0_nxt valid before hsusb0_clk rising edge
6.7
ns
th(CLKH-DIRIV)
Hold time, hsusb0_dir valid after hsusb0_clk rising edge
0.0
ns
th(CLKH-NXT/IV)
Hold time, hsusb0_nxt valid after hsusb0_clk rising edge
0.0
ns
HSU5
ts(DATAV-CLKH)
Setup time, hsusb0_data[0:7] valid before hsusb0_clk rising edge
6.7
ns
HSU6
th(CLKH-DATIV)
Hold time, hsusb0_data[0:7] valid after hsusb0_clk rising edge
0.0
ns
HSU0= fp(CLK)
HSU3
HSU4
(1)
(2)
(3)
The timing requirements are assured for the cycle jitter error condition specified.
Related with the input maximum frequency supported by the I/F module.
Maximum cycle jitter supported by clk input clock.
Table 6-104. High-Speed USB Switching Characteristics – 12-bit Slave Mode
NO.
PARAMETER
1.15 V
MIN
HSU1
HSU2
200
UNIT
MAX
td(clkL-STPV)
Delay time, hsusb0_clk high to output usb0_stp valid
td(clkL-STPIV)
Delay time, hsusb0_clk high to output usb0_stp invalid
td(clkL-DV)
Delay time, hsusb0_clk high to output hsusb0_data[0:7] valid
td(clkL-DIV)
Delay time, hsusb0_clk high to output hsusb0_data[0:7] invalid
tr(do)
Rising time, output signals
2.0
ns
tf(do)
Falling time, output signals
2.0
ns
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
9.0
0.5
ns
ns
9.0
0.5
ns
ns
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
HSU0
hsusb0_clk
HSU1
HSU1
hsusb0_stp
HSU3
HSU4
hsusb0_dir_&_nxt
HSU5
HSU2
hsusb0_data[7:0]
HSU2
Data_OUT
HSU6
Data_IN
Figure 6-53. High-Speed USB – 12-bit Slave Mode
6.6.4.2 High-Speed Universal Serial Bus (USB) on Ports 1 and 2 – 12-bit Master Mode
Table 6-106 and Table 6-107 assume testing over the recommended operating conditions (see
Figure 6-54).
Table 6-105. High-Speed USB Timing Conditions – 12-bit Master Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
tR
Input signal rise time
2
ns
tF
Input signal fall time
2
ns
Output load capacitance
3
pF
Input Conditions
Output Conditions
CLOAD
Table 6-106. High-Speed USB Timing Requirements – 12-bit Master Mode (1)
NO.
PARAMETER
1.15 V
MIN
HSU3
UNIT
MAX
ts(DIRV-CLKH)
Setup time, hsusbx_dir valid before hsusbx_clk rising edge
9.3
ns
ts(NXTV-CLKH)
Setup time, hsusbx_nxt valid before hsusbx_clk rising edge
9.3
ns
th(CLKH-DIRIV)
Hold time, hsusbx_dir valid after hsusbx_clk rising edge
0.2
ns
th(CLKH-NXT/IV)
Hold time, hsusbx_nxt valid after hsusbx_clk rising edge
0.2
ns
HSU5
ts(DATAV-CLKH)
Setup time, hsusbx_data[0:7] valid before hsusbx_clk rising edge
9.3
ns
HSU6
th(CLKH-DATIV)
Hold time, hsusbx_data[0:7] valid after hsusbx_clk rising edge
0.2
ns
HSU4
(1)
In hsusbx, x is equal to 1 or 2.
Table 6-107. High-Speed USB Switching Characteristics – 12-bit Master Mode (1)
N O.
PARAMETER
1.15 V
MIN
HSU0
HSU1
HSU2
(1)
(2)
UNIT
MAX
fp(CLK)
hsusbx_clk clock frequency
60
MHz
tj(CLK)
Jitter standard deviation (2), hsusbx_clk
200
ps
td(clkL-STPV)
Delay time, hsusbx_clk high to output hsusbx_stp valid
13
ns
td(clkL-STPIV)
Delay time, hsusbx_clk high to output hsusbx_stp invalid
td(clkL-DV)
Delay time, hsusbx_clk high to output hsusbx_data[0:7] valid
td(clkL-DIV)
Delay time, hsusbx_clk high to output hsusbx_data[0:7] invalid
2
ns
13
2
ns
ns
In hsusbx, x is equal to 1 or 2.
The jitter probability density can be approximated by a Gaussian function.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
201
PRODUCT PREVIEW
030-086
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 6-107. High-Speed USB Switching Characteristics – 12-bit Master Mode (continued)
N O.
PARAMETER
1.15 V
MIN
UNIT
MAX
tR(do)
Rise time, output signals
2
ns
tF(do)
Fall time, output signals
2
ns
HSU0
hsusbx_clk
HSU1
HSU1
hsusbx_stp
HSU3
PRODUCT PREVIEW
HSU4
hsusbx_dir_&_nxt
HSU5
HSU2
HSU2
HSU6
Data_OUT
hsusbx_data[7:0]
Data_IN
030-087
In hsusbx, x is equal to 1 or 2.
Figure 6-54. High-Speed USB – 12-bit Master Mode
6.6.4.3 High-Speed Universal Serial Bus (USB) on Ports 1, 2, and 3 – 12-bit TLL Master Mode
Table 6-109 and Table 6-110 assume testing over the recommended operating conditions (see
Figure 6-55).
Table 6-108. High-Speed USB Timing Conditions – 12-bit TLL Master Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
2
ns
tF
Input signal fall time
2
ns
Output load capacitance
3
pF
Output Conditions
CLOAD
Table 6-109. High-Speed USB Timing Requirements – 12-bit TLL Master Mode (1)
NO.
PARAMETER
1.15 V
MIN
UNIT
MAX
HSU2
ts(STPV-CLKH)
Setup time, hsusbx_tll_stp valid before hsusbx_tll_clk rising edge
6
ns
HSU3
ts(CLKH-STPIV)
Hold time, hsusbx_tll_stp valid after hsusbx_tll_clk rising edge
0
ns
HSU4
ts(DATAV-CLKH)
Setup time, hsusbx_tll_data[7:0] valid before hsusbx_tll_clk rising edge
6
ns
HSU5
th(CLKH-DATIV)
Hold time, hsusbx_tll_data[7:0] valid after hsusbx_tll_clk rising edge
0
ns
(1)
In hsusbx, x is equal to 1, 2, or 3.
Table 6-110. High-Speed USB Switching Characteristics – 12-bit TLL Master Mode (1)
NO.
PARAMETER
1.15 V
MIN
HSU0
(1)
202
fp(CLK)
hsusbx_tll_clk clock frequency
UNIT
MAX
60
MHz
In hsusbx, x is equal to 1, 2, or 3.
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 6-110. High-Speed USB Switching Characteristics – 12-bit TLL Master Mode (continued)
PARAMETER
1.15 V
MIN
HSU6
HSU7
(2)
UNIT
MAX
tj(CLK)
Jitter standard deviation (2), hsusbx_tll_clk
td(CLKL-DIRV)
Delay time, hsusbx_tll_clk high to output hsusbx_tll_dir valid
td(CLKL-DIRIV)
Delay time, hsusbx_tll_clk high to output hsusbx_tll_dir invalid
td(CLKL-NXTV)
Delay time, hsusbx_tll_clk high to output hsusbx_tll_nxt valid
td(CLKL-NXTIV)
Delay time, hsusbx_tll_clk high to output hsusbx_tll_nxt invalid
td(CLKL-DV)
Delay time, hsusbx_tll_clk high to output hsusbx_tll_data[7:0] valid
td(CLKL-DIV)
Delay time, hsusbx_tll_clk high to output hsusbx_tll_data[7:0] invalid
tR(do)
Rise time, output signals
2
ns
tF(do)
Fall time, output signals
2
ns
200
ps
9
ns
0
ns
9
ns
0
ns
9
ns
0
ns
The jitter probability density can be approximated by a Gaussian function.
HSU0
hsusbx_tll_clk
HSU3
HSU2
hsusbx_tll_stp
HSU6
HSU6
hsusbx_tll_dir_&_nxt
HSU4
HSU7
HSU5
hsusbx_tll_data[7:0]
HSU7
Data_IN
Data_OUT
030-088
In hsusbx, x is equal to 1, 2, or 3.
Figure 6-55. High-Speed USB – 12-bit TLL Master Mode
6.6.4.4 High-Speed Universal Serial Bus (USB) on Ports 1, 2, and 3 – 8-bit TLL Master Mode
Table 6-112 and Table 6-113 assume testing over the recommended operating conditions (see
Figure 6-56).
Table 6-111. High-Speed USB Timing Conditions – 8-bit TLL Master Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
2
ns
tF
Input signal fall time
2
ns
Output load capacitance
3
pF
Output Conditions
CLOAD
Table 6-112. High-Speed USB Timing Requirements – 8-bit TLL Master Mode (1)
NO.
PARAMETER
1.15 V
MIN
UNIT
MAX
HSU2
ts(STPV-CLKH)
Setup time, hsusbx_tll_stp valid before hsusbx_tll_clk rising edge
6
ns
HSU3
ts(CLKH-STPIV)
Hold time, hsusbx_tll_stp valid after hsusbx_tll_clk rising edge
0
ns
HSU4
ts(DATAV-CLKH)
Setup time, hsusbx_tll_data[3:0] valid before hsusbx_tll_clk rising edge
3
ns
(1)
In hsusbx, x is equal to 1, 2, or 3.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
203
PRODUCT PREVIEW
NO.
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 6-112. High-Speed USB Timing Requirements – 8-bit TLL Master Mode (continued)
NO.
PARAMETER
1.15 V
UNIT
MIN
HSU5
th(CLKH-DATIV)
Hold time, hsusbx_tll_data[3:0] valid after hsusbx_tll_clk rising edge
MAX
–0.8
ns
Table 6-113. High-Speed USB Switching Characteristics – 8-bit TLL Master Mode (1)
NO.
PARAMETER
1.15 V
MIN
HSU0
UNIT
MAX
PRODUCT PREVIEW
fp(CLK)
hsusbx_tll_clk clock frequency
60
MHz
tj(CLK)
Jitter standard deviation (2), hsusbx_tll_clk
200
ps
HSU1
tj(CLK)
Duty cycle, hsusbx_tll_clk pulse duration (low and high)
HSU6
td(CLKL-DIRV)
Delay time, hsusbx_tll_clk high to output hsusbx_tll_dir valid
td(CLKL-DIRIV)
Delay time, hsusbx_tll_clk high to output hsusbx_tll_dir invalid
td(CLKL-NXTV)
Delay time, hsusbx_tll_clk high to output hsusbx_tll_nxt valid
47.6%
52.4%
9
0
ns
ns
9
td(CLKL-NXTIV)
Delay time, hsusbx_tll_clk high to output hsusbx_tll_nxt invalid
HSU7
td(CLKL-DV)
Delay time, hsusbx_tll_clk high to output hsusbx_tll_data[3:0] valid
HSU8
td(CLKL-DIV)
Delay time, hsusbx_tll_clk high to output hsusbx_tll_data[3:0] invalid
tR(do)
Rise time, output signals
2
ns
tF(do)
Fall time, output signals
2
ns
(1)
(2)
0
ns
ns
4
0
ns
ns
In hsusbx, x is equal to 1, 2, or 3.
The jitter probability density can be approximated by a Gaussian function.
HSU0
HSU1
HSU1
hsusbx_tll_clk
HSU3
HSU2
hsusbx_tll_stp
HSU6
HSU6
hsusbx_tll_dir_&_nxt
HSU5
HSU4
hsusbx_tll_data[3:0]
Data_IN
HSU5
HSU4
Data_IN_(n+1)
HSU8
HSU7
Data_IN_(n+2)
HSU7
Data_OUT
Data_OUT_(n+1)
030-089
In hsusbx, x is equal to 1, 2, or 3.
Figure 6-56. High-Speed USB – 8-bit TLL Master Mode
204
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
6.6.5
SPRS599 – JUNE 2009
I2C Interface
The multimaster I2C peripheral provides an interface between two or more devices via an I2C serial bus.
The I2C controller supports the multimaster mode which allows more than one device capable of
controlling the bus to be connected to it. Each I2C device is recognized by a unique address and can
operate as either transmitter or receiver, according to the function of the device. In addition to being a
transmitter or receiver, a device connected to the I2C bus can also be considered as master or slave when
performing data transfers. This data transfer is carried out via two serial bidirectional wires:
• An SDA data line
• An SCL clock line
6.6.5.1 I2C Standard/Fast-Speed Mode
Table 6-114. I2C Standard/Fast-Speed Mode Timings
PARAMETER (1)
NO.
Standard Mode
MIN
MAX
Fast Mode
MIN
100
UNIT
MAX
fSCL
Clock Frequency, i2cX_scl
I1
tw(SCLH)
Pulse Duration, i2cX_scl high
4
0.6
µs
I2
tw(SCLL)
Pulse Duration, i2cX_scl low
4.7
1.3
µs
I3
tsu(SDAV-SCLH)
Setup time, i2cX_sda valid before i2cX_scl active level
250
100 (2)
(3)
ns
µs
th(SCLH–SDAV)
Hold time, i2cX_sda valid after i2cX_scl active level
0
tsu(SDAL-SCLH)
Setup time, i2cX_scl high after i2cX_sda low (for a
START (5) condition or a repeated START condition)
4.7
0.6
µs
I6
th(SCLH–SDAH)
Hold time, i2cX_sda low level after i2cX_scl high level
(STOP condition)
4
0.6
µs
I7
th(SCLH–RSTART)
Hold time, i2cX_sda low level after i2cX_scl high level (for
a repeated START condition)
4
0.6
µs
I8
tw(SDAH)
Pulse duration, i2cX_sda high between STOP and START
conditions
4.7
1.3
µs
tR(SCL)
Rise time, i2cX_scl
1000
300
ns
tF(SCL)
Fall time, i2cX_scl
300
300
ns
tR(SDA)
Rise time, i2cX_sda
1000
300
ns
tF(SDA)
Fall time, i2cX_sda
300
300
ns
CB
Capacitive load for each bus line
60 (6)
60 (6)
pF
(4)
(5)
(6)
0.9
(4)
I5
(3)
0
(3)
kHz
I4
(1)
(2)
3.45
(4)
400
In i2cX, X is equal to 1, 2, 3, or 4. Note that I2C4 is master transmitter only.
A fast-mode I2C-bus device can be used in a standard-mode I2C-bus system, but the requirement tsu(SDAV-SCLH) ≥ 250 ns must then be
met. This is automatically the case if the device does not stretch the low period of the i2cx_scl. If such a device does stretch the low
period of the i2cx_scl, it must output the next data bit to the i2cx_sda line tr(SDA) max + tsu(SDAV-SCLH) = 1000 + 250 = 1250 ns (according
to the standard-mode I2C-bus specification) before the i2cx_scl line is released.
The device provides (via the I2C bus) a hold time of at least 300 ns for the i2cx_sda signal (refer to the fall and rise time of i2cx_scl) to
bridge the undefined region of the falling edge of i2cx_scl.
The maximum th(SCLH-SDA) has only to be met if the device does not stretch the low period of the i2cx_scl signal.
After this time, the first clock is generated.
Maximum reference load for i2c4_scl and i2c4_sda is CB = 15 pF.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
205
PRODUCT PREVIEW
The following sections illustrate the data transfer is in master or slave configuration with 7-bit addressing
format. The I2C interface is compliant with Philips I2C specification version 2.1. It supports standard mode
(up to 100K bits/s), fast mode (up to 400K bits/s) and high-speed mode (up to 3.4Mb/s) .
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
START REPEAT
START
START
STOP
i2cX_sda
I2
I6
I1
I5
I3
I4
I8
I6
I7
i2cX_scl
030-093
Figure 6-57. I2C – Standard/Fast Mode
PRODUCT PREVIEW
206
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
6.6.5.2 I2C High-Speed Mode
Table 6-115. I2C HighSpeed Mode Timings (1) (2)
PARAMETER
CB = 100 pF MAX
MIN
I1
fSCL
Clock frequency, i2cX_scl
tw(SCLH)
Pulse duration, i2cX_scl high
MAX
CB = 400 pF MAX
MIN
3.4
60 (3)
MAX
1.7
MHz
120 (3)
µs
(3)
µs
I2
tw(SCLL)
Pulse duration, i2cX_scl low
I3
tsu(SDAV-SCLH)
Setup time, i2cX_sda valid before i2cX_scl
active level
10
I4
th(SCLH–SDAV)
Hold time, i2cX_sda valid after i2cX_scl active
level
0 (2)
I5
tsu(SDAL-SCLH)
Setup time, i2cX_scl high after i2cX_sda low
(for a START (4) condition or a repeated START
condition)
160
160
µs
I6
th(SCLH–SDAH)
Hold time, i2cX_sda low level after i2cX_scl high
level (STOP condition)
160
160
µs
I7
th(SCLH–RSTART)
Hold time, i2cX_sda low level after i2cX_scl high
level (for a repeated START condition)
160
160
ns
tR(SCL)
Rise time, i2cX_scl
40
80
ns
tR(SCL)
Rise time, i2cX_scl after a repeated START
condition and after a bit acknowledge
80
160
ns
tF(SCL)
Fall time, i2cX_scl
40
80
ns
tR(SDA)
Rise time, i2cX_sda
80
160
ns
tF(SDA)
Fall time, i2cX_sda
80
160
ns
CB
(1)
(2)
(3)
(4)
(5)
160
(3)
UNIT
320
10
0 (2)
70
Capacitive load for each bus line
60
(5)
ns
150
µs
pF
In i2cX, X is equal to 1, 2, 3, or 4. Note that I2C4 is master transmitter only.
The device provides (via the I2C bus) a hold time of at least 300 ns for the i2cx_sda signal (refer to the fall and rise time of i2cx_scl) to
bridge the undefined region of the falling edge of i2cx_scl.
HS-mode master devices generate a serial clock signal with a high to low ratio of 1 to 2. tw(SCLL) > 2 × tw(SCLH).
After this time, the first clock is generated.
Maximum reference load for i2c4_scl and i2c4_sda is CB = 15 pF.
START REPEAT
STOP
i2cX_sda
I5
I6
I1
I2
I3
I4
I7
i2cX_scl
030-094
Figure 6-58. I2C – High-Speed Mode(1)(2)(3)
(1) HS-mode master devices generate a serial clock signal with a high-to-low ratio of 1 to 2. tw(SCLL) > 2 x tw(SCLH).
(2) In i2cX, X is equal to 1, 2, 3, or 4. Note that I2C4 is master transmitter only.
(3) After this time, the first clock is generated.
Table 6-116. Correspondence Standard vs. TI Timing References
STANDARD-I2C
TI-OMAP
S/F Mode
HS Mode
fSCL
FSCL
FSCLH
I1
tw(SCLH)
THIGH
THIGH
I2
tw(SCLL)
TLOW
TLOW
I3
tsu(SDAV-SCLH)
TSU;DAT
TSU;DAT
I4
th(SCLH-SDAV)
TSU;DAT
TSU;DAT
I5
tsu(SDAL-SCLH)
TSU;STA
TSU;STA
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
207
PRODUCT PREVIEW
NO.
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 6-116. Correspondence Standard vs. TI Timing References (continued)
STANDARD-I2C
TI-OMAP
6.6.6
S/F Mode
HS Mode
I6
th(SCLH-SDAH)
THD;STA
THD;STA
I7
th(SCLH-RSTART)
TSU;STO
TSU;STO
I8
tw(SDAH)
TBUF
HDQ / 1-Wire Interfaces
This module is intended to work with both the HDQ and the 1-Wire protocols. The protocols use a single
wire to communicate between the master and the slave. The protocols employ an asynchronous return to
1 mechanism where, after any command, the line is pulled high.
6.6.6.1 HDQ Protocol
PRODUCT PREVIEW
Table 6-117 and Table 6-118 assume testing over the recommended operating conditions (see
Figure 6-59 through Figure 6-62).
Table 6-117. HDQ Timing Requirements
PARAMETER
DESCRIPTION
MIN
tCYCD
Bit window
253
tHW1
Reads 1
tHW0
Reads 0
tRSPS
Command to host respond time (1)
(1)
MAX
UNIT
µs
68
180
Defined by software.
Table 6-118. HDQ Switching Characteristics
PARAMETER
DESCRIPTION
tB
Break timing
MIN
TYP
193
tBR
Break recovery
63
tCYCH
Bit window
253
tDW1
Sends1 (write)
1.3
tDW0
Sends0 (write)
101
tB
MAX
UNIT
µs
tBR
HDQ
030-095
Figure 6-59. HDQ Break (Reset) Timing
tCYCH
tHW0
tHW1
HDQ
030-096
Figure 6-60. HDQ Read Bit Timing (Data)
208
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
tCYCD
tDW0
tDW1
HDQ
030-097
Figure 6-61. HDQ Write Bit Timing (Command/Address or Data)
Command _byte_written
Data_byte_received
0_(LSB )
Break
1
tRSPS
6
1
7_(MSB)
0_(LSB)
6
030-098
Figure 6-62. HDQ Communication Timing
6.6.6.2 1-Wire Protocol
Table 6-119 and Table 6-120 assume testing over the recommended operating conditions (see
Figure 6-63 through Figure 6-65).
Table 6-119. 1-Wire Timing Requirements
PARAMETER
DESCRIPTION
tPDH
Presence pulse delay high
tPDL
Presence pulse delay low
tRDV + tREL
Read bit-zero time
MIN
MAX
UNIT
68
µs
68 – tPDH
102
Table 6-120. 1-Wire Switching Characteristics
PARAMETER
DESCRIPTION
tRSTL
Reset time low
MIN
TYP
484
tRSTH
Reset time high
484
tSLOT
Write bit cycle time
102
tLOW1
Write bit-one time
1.3
tLOW0
Write bit-zero time
101
tREC
Recovery time
134
tLOWR
Read bit strobe time
13
MAX
UNIT
µs
tRSTH
1-WIRE
tRTSL
tPDH
tPDL
030-099
Figure 6-63. 1-Wire Break (Reset) Timing
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
209
PRODUCT PREVIEW
HDQ
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
tSLOT_and_ tREC
tRDV_and_ tREL
tLOWR
1-WIRE
030-100
Figure 6-64. 1-Wire Read Bit Timing (Data)
tSLOT_and_tREC
tLOW0
1-WIRE
tLOW1
PRODUCT PREVIEW
030-101
Figure 6-65. 1-Wire Write Bit Timing (Command/Address or Data)
6.6.7
UART IrDA Interface
The IrDA module can operate in three different modes:
• Slow infrared (SIR) (≤115.2 Kbits/s)
• Medium infrared (MIR) (0.576 Mbits/s and 1.152 Mbits/s)
• Fast infrared (FIR) (4 Mbits/s)
For more information about this interface, see the UART/IrDA chapter in the OMAP35x Technical
Reference Manual (TRM) [literature number SPRUF98].
Pulse duration
90%
90%
50%
50%
10%
10%
tr
tf
030-118
Figure 6-66. UART IrDA Pulse Parameters
6.6.7.1 IrDA—Receive Mode
Table 6-121. UART IrDA—Signaling Rate and Pulse Duration—Receive Mode
SIGNALING RATE
ELECTRICAL PULSE DURATION
MIN
NOMINAL
MAX
UNIT
SIR
210
2.4 Kbit/s
1.41
78.1
88.55
µs
9.6 Kbit/s
1.41
19.5
22.13
µs
19.2 Kbit/s
1.41
9.75
11.07
µs
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 6-121. UART IrDA—Signaling Rate and Pulse Duration—Receive Mode
(continued)
SIGNALING RATE
ELECTRICAL PULSE DURATION
UNIT
MIN
NOMINAL
MAX
38.4 Kbit/s
1.41
4.87
5.96
µs
57.6 Kbit/s
1.41
3.25
4.34
µs
115.2 Kbit/s
1.41
1.62
2.23
µs
416
518.8
ns
208
258.4
ns
MIR
0.576 Mbit/s
297.2
1.152 Mbit/s
149.6
4.0 Mbit/s (Single pulse)
67
125
164
ns
4.0 Mbit/s (Double pulse)
190
250
289
ns
PRODUCT PREVIEW
FIR
Table 6-122. UART IrDA—Rise and Fall Time—Receive
Mode
PARAMETER
MAX
UNIT
tR
Rising time,
uart3_rx_irrx
200
ns
tF
Falling time,
uart3_rx_irrx
200
ns
6.6.7.2 IrDA—Transmit Mode
Table 6-123. UART IrDA—Signaling Rate and Pulse Duration—Transmit Mode
SIGNALING RATE
ELECTRICAL PULSE DURATION
MIN
NOMINAL
UNIT
MAX
SIR
2.4 Kbit/s
78.1
78.1
78.1
µs
9.6 Kbit/s
19.5
19.5
19.5
µs
19.2 Kbit/s
9.75
9.75
9.75
µs
38.4 Kbit/s
4.87
4.87
4.87
µs
57.6 Kbit/s
3.25
3.25
3.25
µs
115.2 Kbit/s
1.62
1.62
1.62
µs
416
419
ns
208
211
ns
MIR
0.576 Mbit/s
414
1.152 Mbit/s
206
FIR
4.0 Mbit/s (Single pulse)
123
125
128
ns
4.0 Mbit/s (Double pulse)
248
250
253
ns
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
211
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
6.7 Removable Media Interfaces
6.7.1
High-Speed Multimedia Memory Card (MMC) and Secure Digital IO Card (SDIO) Timing
The MMC/SDIO host controller provides an interface to high-speed and standard MMC, SD memory
cards, or SDIO cards. The application interface is responsible for managing transaction semantics. The
MMC/SDIO host controller deals with MMC/SDIO protocol at transmission level, packing data, adding
CRC, start/end bit, and checking for syntactical correctness.
PRODUCT PREVIEW
There are three MMC interfaces on the OMAP3525 and OMAP3530:
• MMC/SD/SDIO Interface 1:
– 1.8 V/3 V support
– 8 bits
• MMC/SD/SDIO Interface 2:
– 1.8 V support
– 8 bits
– 4 bits with external transceiver allowing to support 3 V peripherals. Transceiver direction control
signals are multiplexed with the upper four data bits.
• MMC/SD/SDIO Interface 3:
– 1.8 V support
– 8 bits
6.7.1.1 MMC/SD/SDIO in SD Identification Mode
Table 6-125 and Table 6-126 assume testing over the recommended operating conditions and electrical
characteristic conditions.
Table 6-124. MMC/SD/SDIO Timing Conditions – SD Identification Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
tR
Input signal rise time
10
ns
tF
Input signal fall time
10
ns
Output load capacitance
40
pF
SD Identification Mode
Input Conditions
Output Conditions
CLOAD
Table 6-125. MMC/SD/SDIO Timing Requirements – SD Identification Mode (1) (2) (3)
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
SD Identification Mode
MMC/SD/SDIO Interface 1 (1.8 V IO)
HSSD3/SD3
tsu(CMDV-CLKIH)
Setup time, mmc1_cmd valid before
mmc1_clk rising clock edge
1198.4
1198.4
ns
HSSD4/SD4
tsu(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after
mmc1_clk rising clock edge
1249.2
1249.2
ns
MMC/SD/SDIO Interface 1 (3.0 V IO)
HSSD3/SD3
tsu(CMDV-CLKIH)
Setup time, mmc1_cmd valid before
mmc1_clk rising clock edge
1198.4
1198.4
ns
HSSD4/SD4
tsu(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after
mmc1_clk rising clock edge
1249.2
1249.2
ns
MMC/SD/SDIO Interface 2
(1)
(2)
(3)
212
Timing parameters are referred to output clock specified in Table 6-126.
The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-126.
Corresponding figures showing timing parameters are common with other interface modes. (See SD and HS SD modes).
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 6-125. MMC/SD/SDIO Timing Requirements – SD Identification Mode (continued)
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
HSSD3/SD3
tsu(CMDV-CLKIH)
Setup time, mmc2_cmd valid before
mmc2_clk rising clock edge
1198.4
1198.4
ns
HSSD4/SD4
tsu(CLKIH-CMDIV)
Hold time, mmc2_cmd valid after
mmc2_clk rising clock edge
1249.2
1249.2
ns
MMC/SD/SDIO Interface 3
HSSD3/SD3
tsu(CMDV-CLKIH)
Setup time, mmc3_cmd valid before
mmc3_clk rising clock edge
1198.4
1198.4
ns
HSSD4/SD4
tsu(CLKIH-CMDIV)
Hold time, mmc3_cmd valid after
mmc3_clk rising clock edge
1249.2
1249.2
ns
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
SD Identification Mode
1/
1/tc(clk)
(HSSD1/SD1
)
Frequency (2), mmcx_ clk
(3)
HSSD2/SD2
tW(clkH)
Typical pulse duration, output clk high
X (4)*PO (5)
X (4)*PO (5)
ns
HSSD2/SD2
tW(clkL)
Typical pulse duration, output clk low
Y (6)*PO (5)
Y (6)*PO (5)
ns
tdc(clk)
Duty cycle error, output clk
125
125
ns
tj(clk)
Jitter standard deviation (7), output clk
200
200
ps
0.4
0.4
MHz
MMC/SD/SDIO Interface 1 (1.8 V IO)
HSSD5/SD5
tc(clk)
Rise time, output clk
10
10
ns
tW(clkH)
Fall time, output clk
10
10
ns
tW(clkL)
Rise time, output data
10
10
ns
tdc(clk)
Fall time, output data
10
10
ns
td(CLKOH-CMD)
Delay time, mmc1_clk rising clock edge to
mmc1_cmd transition
2492.7
ns
6.3
2492.7
6.3
MMC/SD/SDIO Interface 1 (3.0 V IO)
HSSD5/SD5
tc(clk)
Rise time, output clk
10
0
ns
tW(clkH)
Fall time, output clk
10
0
ns
tW(clkL)
Rise time, output data
10
10
ns
tdc(clk)
Fall time, output data
td(CLKOH-CMD)
Delay time, mmc1_clk rising clock edge to
mmc1_cmd transition
10
6.3
2492.7
6.3
10
ns
2492.7
ns
MMC/SD/SDIO Interface 2
HSSD5/SD5
tc(clk)
Rise time, output clk
10
10
ns
tW(clkH)
Fall time, output clk
10
10
ns
tW(clkL)
Rise time, output data
10
10
ns
tdc(clk)
Fall time, output data
td(CLKOH-CMD)
Delay time, mmc2_clk rising clock edge to
mmc2_cmd transition
10
6.3
2492.7
6.3
10
ns
2492.7
ns
10
ns
MMC/SD/SDIO Interface 3
tc(clk)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
Rise time, output clk
10
Corresponding figures showing timing parameters are common with other interface modes (see SD and HS SD modes).
Related with the output clk maximum and minimum frequencies programmable in I/F module.
In mmcx_clk, 'x' is equal to 1, 2, or 3.
The X parameter is defined as shown in Table 6-127.
PO = output clk period in ns.
The Y parameter is defined as shown in Table 6-128.
The jitter probability density can be approximated by a Gaussian function.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
213
PRODUCT PREVIEW
Table 6-126. MMC/SD/SDIO Switching Characteristics – SD Identification Mode (1)
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 6-126. MMC/SD/SDIO Switching Characteristics – SD Identification Mode (continued)
NO.
PARAMETER
1.15 V
MIN
HSSD5/SD5
1.0 V
MAX
MIN
UNIT
MAX
tW(clkH)
Fall time, output clk
10
10
ns
tW(clkL)
Rise time, output data
10
10
ns
tdc(clk)
Fall time, output data
10
10
ns
td(CLKOH-CMD)
Delay time, mmc3_clk rising clock edge to
mmc3_cmd transition
2492.7
ns
6.3
2492.7
6.3
Table 6-127. X Parameter
PRODUCT PREVIEW
CLKD
X
1 or Even
0.5
Odd
(trunk[CLKD/2]+1)/CLKD
Table 6-128. Y Parameter
CLKD
Y
1 or Even
0.5
Odd
(trunk[CLKD/2])/CLKD
For details about clock division factor CLKD, see the OMAP35x Technical Reference Manual (TRM)
[literature number SPRUF98].
6.7.1.2 MMC/SD/SDIO in High-Speed MMC Mode
Table 6-130 and Table 6-131 assume testing over the recommended operating conditions and electrical
characteristic conditions (see Figure 6-67 and Figure 6-68).
Table 6-129. MMC/SD/SDIO Timing Conditions – High-Speed MMC Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
High-Speed MMC Mode
Input Conditions
tR
Input signal rise time
3
ns
tF
Input signal fall time
3
ns
Output load capacitance
30
pF
Output Conditions
CLOAD
Table 6-130. MMC/SD/SDIO Timing Requirements – High-Speed MMC Mode (1) (2) (3) (4)
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
High-Speed MMC Mode
MMC/SD/SDIO Interface 1 (1.8 V IO)
MMC3 tsu(CMDV-CLKIH)
Setup time, mmc1_cmd valid before mmc1_clk
rising clock edge
5.6
26
ns
MMC4 tsu(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after mmc1_clk
rising clock edge
2.3
1.9
ns
MMC7 tsu(DATxV-CLKIH)
Setup time, mmc1_datx valid before mmc1_clk
rising clock edge
5.6
26
ns
MMC8 tsu(CLKIH-DATxIV)
Hold time, mmc1_datx valid after mmc1_clk
rising clock edge
2.3
1.9
ns
(1)
(2)
(3)
(4)
214
Timing parameters are referred to output clock specified in Table 6-131.
The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-131.
Corresponding figures showing timing parameters are common with Standard MMC mode (See Figure 6-67 and Figure 6-68)
In datx, x is equal to 1, 2, 3, 4, 5, 6, or 7.
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 6-130. MMC/SD/SDIO Timing Requirements – High-Speed MMC Mode (continued)
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
MMC/SD/SDIO Interface 1 (3.0 V IO)
MMC3 tsu(CMDV-CLKIH)
Setup time, mmc1_cmd valid before mmc1_clk
rising clock edge
5.6
26
ns
MMC4 tsu(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after mmc1_clk
rising clock edge
2.3
1.9
ns
MMC7 tsu(DATxV-CLKIH)
Setup time, mmc1_datx valid before mmc1_clk
rising clock edge
5.6
26
ns
MMC8 tsu(CLKIH-DATxIV)
Hold time, mmc1_datx valid after mmc1_clk
rising clock edge
2.3
1.9
ns
MMC3 tsu(CMDV-CLKIH)
Setup time, mmc2_cmd valid before mmc2_clk
rising clock edge
5.6
26
ns
MMC4 tsu(CLKIH-CMDIV)
Hold time, mmc2_cmd valid after mmc2_clk
rising clock edge
2.3
1.9
ns
MMC7 tsu(DATxV-CLKIH)
Setup time, mmc2_datx valid before mmc2_clk
rising clock edge
5.6
26
ns
MMC8 tsu(CLKIH-DATxIV)
Hold time, mmc2_datx valid after mmc2_clk
rising clock edge
2.3
1.9
ns
MMC3 tsu(CMDV-CLKIH)
Setup time, mmc3_cmd valid before mmc3_clk
rising clock edge
5.6
26
ns
MMC4 tsu(CLKIH-CMDIV)
Hold time, mmc3_cmd valid after mmc3_clk
rising clock edge
2.3
1.9
ns
MMC7 tsu(DATxV-CLKIH)
Setup time, mmc3_datx valid before mmc3_clk
rising clock edge
5.6
26
ns
MMC8 tsu(CLKIH-DATxIV)
Hold time, mmc3_datx valid after mmc3_clk
rising clock edge
2.3
1.9
ns
PRODUCT PREVIEW
MMC/SD/SDIO Interface 2
MMC/SD/SDIO Interface 3
Table 6-131. MMC/SD/SDIO Switching Characteristics – High-Speed MMC Mode (1)
N O.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
High-Speed MMC Mode
1/MMC
1
1/tc(clk)
Frequency (2), mmcx_ clk
MMC2
tW(clkH)
Typical pulse duration, output clk high
MMC2
(3)
tW(clkL)
Typical pulse duration, output clk low
tdc(clk)
Duty cycle error, output clk
tj(clk)
Jitter standard deviation
48
X (4)*PO (5)
Y
(6)
*PO
(7)
, output clk
24
X (4)*PO (5)
(5)
MHz
ns
Y (6)*PO (5)
ns
1041.7
2083.3
ps
200
200
ps
MMC/SD/SDIO Interface 1 (1.8 V IO)
MMC5
(1)
(2)
(3)
(4)
(5)
(6)
(7)
tc(clk)
Rise time, output clk
3
3
ns
tW(clkH)
Fall time, output clk
3
3
ns
tW(clkL)
Rise time, output data
3
3
ns
tdc(clk)
Fall time, output data
3
3
ns
td(CLKOH-CMD)
Delay time, mmc1_clk rising clock edge to
mmc1_cmd transition
34.5
ns
3.7
14.1
4.1
In datx, x is equal to 1, 2, 3, 4, 5, 6, or 7.
Related with the output clk maximum and minimum frequencies programmable in I/F module.
In mmcx_clk, 'x' is equal to 1, 2, or 3.
The X parameter is defined as shown in Table 6-132.
PO = output clk period in ns.
The Y parameter is defined as shown in Table 6-133.
The jitter probability density can be approximated by a Gaussian function.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
215
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 6-131. MMC/SD/SDIO Switching Characteristics – High-Speed MMC Mode (continued)
N O.
PARAMETER
MMC6
td(CLKOH-DATx)
1.15 V
Delay time, mmc1_clk rising clock edge to
mmc1_datx transition
1.0 V
UNIT
MIN
MAX
MIN
MAX
3.7
14.1
4.1
34.5
ns
MMC/SD/SDIO Interface 1 (3.0 V IO)
PRODUCT PREVIEW
tc(clk)
Rise time, output clk
3
3
ns
tW(clkH)
Fall time, output clk
3
3
ns
tW(clkL)
Rise time, output data
3
3
ns
tdc(clk)
Fall time, output data
3
3
ns
MMC5
td(CLKOH-CMD)
Delay time, mmc1_clk rising clock edge to
mmc1_cmd transition
3.7
14.1
4.1
34.5
ns
MMC6
td(CLKOH-DATx)
Delay time, mmc1_clk rising clock edge to
mmc1_datx transition
3.7
14.1
4.1
34.5
ns
MMC/SD/SDIO Interface 2
tc(clk)
Rise time, output clk
3
3
ns
tW(clkH)
Fall time, output clk
3
3
ns
tW(clkL)
Rise time, output data
3
3
ns
tdc(clk)
Fall time, output data
3
ns
MMC5
td(CLKOH-CMD)
Delay time, mmc2_clk rising clock edge to
mmc2_cmd transition
3.7
14.1
3
4.1
34.5
ns
MMC6
td(CLKOH-DATx)
Delay time, mmc2_clk rising clock edge to
mmc2_datx transition
3.7
16.5
4.1
36.9
ns
MMC/SD/SDIO Interface 3
tc(clk)
Rise time, output clk
3
3
ns
tW(clkH)
Fall time, output clk
3
3
ns
tW(clkL)
Rise time, output data
3
3
ns
tdc(clk)
Fall time, output data
3
3
ns
MMC5
td(CLKOH-CMD)
Delay time, mmc3_clk rising clock edge to
mmc3_cmd transition
3.7
14.1
4.1
34.5
ns
MMC6
td(CLKOH-DATx)
Delay time, mmc3_clk rising clock edge to
mmc3_datx transition
3.7
14.1
4.1
34.5
ns
Table 6-132. X Parameter
CLKD
X
1 or Even
0.5
Odd
(trunk[CLKD/2]+1)/CLKD
Table 6-133. Y Parameter
CLKD
Y
1 or Even
0.5
Odd
(trunk[CLKD/2])/CLKD
For details about clock division factor CLKD, see the OMAP35x Technical Reference Manual (TRM)
[literature number SPRUF98].
6.7.1.3 MMC/SD/SDIO in Standard MMC Mode and MMC Identification Mode
Table 6-135 and Table 6-136 assume testing over the recommended operating conditions and electrical
characteristic conditions.
216
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 6-134. MMC/SD/SDIO Timing Conditions – Standard MMC Mode and MMC Identification Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Standard MMC Mode and MMC Identification Mode
Input Conditions
tR
Input signal rise time
10
ns
tF
Input signal fall time
10
ns
Output load capacitance
30
pF
Output Conditions
PRODUCT PREVIEW
CLOAD
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
217
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 6-135. MMC/SD/SDIO Timing Requirements – Standard MMC Mode and MMC Identification
Mode (1) (2)
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
Standard MMC Mode and MMC Identification Mode
MMC/SD/SDIO Interface 1 (1.8 V IO)
MMC3
tsu(CMDV-CLKIH)
Setup time, mmc1_cmd valid before
mmc1_clk rising clock edge
13.6
65.7
ns
MMC4
tsu(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after mmc1_clk
rising clock edge
8.9
8.9
ns
MMC7
tsu(DATxV-CLKIH)
Setup time, mmc1_datx valid before
mmc1_clk rising clock edge
13.6
65.7
ns
MMC8
tsu(CLKIH-DATxIV)
Hold time, mmc1_datx valid after mmc1_clk
rising clock edge
8.9
8.9
ns
PRODUCT PREVIEW
MMC/SD/SDIO Interface 1 (3.0 V IO)
MMC3
tsu(CMDV-CLKIH)
Setup time, mmc1_cmd valid before
mmc1_clk rising clock edge
13.6
65.7
ns
MMC4
tsu(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after mmc1_clk
rising clock edge
8.9
8.9
ns
MMC7
tsu(DATxV-CLKIH)
Setup time, mmc1_datx valid before
mmc1_clk rising clock edge
13.6
65.7
ns
MMC8
tsu(CLKIH-DATxIV)
Hold time, mmc1_datx valid after mmc1_clk
rising clock edge
8.9
8.9
ns
MMC/SD/SDIO Interface 2
MMC3
tsu(CMDV-CLKIH)
Setup time, mmc2_cmd valid before
mmc2_clk rising clock edge
13.6
65.7
ns
MMC4
tsu(CLKIH-CMDIV)
Hold time, mmc2_cmd valid after mmc2_clk
rising clock edge
8.9
8.9
ns
MMC7
tsu(DATxV-CLKIH)
Setup time, mmc2_datx valid before
mmc2_clk rising clock edge
13.6
65.7
ns
MMC8
tsu(CLKIH-DATxIV)
Hold time, mmc2_datx valid after mmc2_clk
rising clock edge
8.9
8.9
ns
MMC/SD/SDIO Interface 3
MMC3
tsu(CMDV-CLKIH)
Setup time, mmc3_cmd valid before
mmc3_clk rising clock edge
13.6
65.7
ns
MMC4
tsu(CLKIH-CMDIV)
Hold time, mmc3_cmd valid after mmc3_clk
rising clock edge
8.9
8.9
ns
MMC7
tsu(DATxV-CLKIH)
Setup time, mmc3_datx valid before
mmc3_clk rising clock edge
13.6
65.7
ns
MMC8
tsu(CLKIH-DATxIV)
Hold time, mmc3_datx valid after mmc3_clk
rising clock edge
8.9
8.9
ns
(1)
(2)
Timing parameters are referred to output clock specified in Table 6-136.
The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-136.
Table 6-136. MMC/SD/SDIO Switching Characteristics – Standard MMC Mode and MMC Identification
Mode
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
MMC Identification Mode
1/MMC
1
1/tc(clk)
Frequency (1), mmcx_ clk
MMC2
tW(clkH)
Typical pulse duration, output clk high
(1)
(2)
(3)
(4)
218
(2)
0.4
X (3)*PO (4)
0.4
X (3)*PO (4)
MHz
ns
Related with the output clk maximum and minimum frequencies programmable in I/F module.
In mmcx_clk, 'x' is equal to 1, 2, or 3.
The X parameter is defined as shown in Table 6-137.
PO = output clk period in ns.
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 6-136. MMC/SD/SDIO Switching Characteristics – Standard MMC Mode and MMC Identification
Mode (continued)
NO.
PARAMETER
1.15 V
MIN
MMC2
tW(clkL)
Typical pulse duration, output clk low
tdc(clk)
Duty cycle error, output clk
tj(clk)
Jitter standard deviation
1.0 V
MAX
Y*PO (4)
(5)
, output clk
MIN
UNIT
MAX
Y*PO (4)
ns
125
125
ns
200
200
ps
19.2
9.6
MHz
Standard MMC Mode
1/tc(clk)
Frequency (1), mmcx_ clk
MMC2
tW(clkH)
Typical pulse duration, output clk high
MMC2
(2)
tW(clkL)
Typical pulse duration, output clk low
tdc(clk)
Duty cycle error, output clk
tj(clk)
X (3)*PO (4)
Y*PO
(5)
Jitter standard deviation , output clk
X (3)*PO (4)
(4)
ns
Y*PO (4)
ns
2604.2
5208.3
ps
200
200
ps
PRODUCT PREVIEW
1/MMC
1
MMC/SD/SDIO Interface 1 (1.8 V IO)
tc(clk)
Rise time, output clk
10
10
ns
tW(clkH)
Fall time, output clk
10
10
ns
tW(clkL)
Rise time, output data
10
10
ns
tdc(clk)
Fall time, output data
10
10
ns
MMC5
td(CLKOH-CMD)
Delay time, mmc1_clk rising clock edge to
mmc1_cmd transition
4.3
47.8
4.3
99.9
ns
MMC6
td(CLKOH-DATx)
Delay time, mmc1_clk rising clock edge to
mmc1_datx transition
4.3
47.8
4.3
99.9
ns
MMC/SD/SDIO Interface 1 (3.0 V IO)
tc(clk)
Rise time, output clk
10
10
ns
tW(clkH)
Fall time, output clk
10
10
ns
tW(clkL)
Rise time, output data
10
10
ns
tdc(clk)
Fall time, output data
10
10
ns
MMC5
td(CLKOH-CMD)
Delay time, mmc1_clk rising clock edge to
mmc1_cmd transition
4.3
47.8
4.3
99.9
ns
MMC6
td(CLKOH-DATx)
Delay time, mmc1_clk rising clock edge to
mmc1_datx transition
4.3
47.8
4.3
99.9
ns
MMC/SD/SDIO Interface 2
tc(clk)
Rise time, output clk
10
10
ns
tW(clkH)
Fall time, output clk
10
10
ns
tW(clkL)
Rise time, output data
10
10
ns
tdc(clk)
Fall time, output data
10
10
ns
MMC5
td(CLKOH-CMD)
Delay time, mmc2_clk rising clock edge to
mmc2_cmd transition
4.3
47.8
4.3
99.9
ns
MMC6
td(CLKOH-DATx)
Delay time, mmc2_clk rising clock edge to
mmc2_datx transition
4.3
47.8
4.3
99.9
ns
MMC/SD/SDIO Interface 3
tc(clk)
Rise time, output clk
10
10
ns
tW(clkH)
Fall time, output clk
10
10
ns
tW(clkL)
Rise time, output data
10
10
ns
tdc(clk)
Fall time, output data
10
10
ns
MMC5
td(CLKOH-CMD)
Delay time, mmc3_clk rising clock edge to
mmc3_cmd transition
4.3
47.8
4.3
99.9
ns
MMC6
td(CLKOH-DATx)
Delay time, mmc3_clk rising clock edge to
mmc3_datx transition
4.3
47.8
4.3
99.9
ns
(5)
The jitter probability density can be approximated by a Gaussian function.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
219
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 6-137. X Parameter
CLKD
X
1 or Even
0.5
Odd
(trunk[CLKD/2]+1)/CLKD
Table 6-138. Y Parameter
CLKD
Y
1 or Even
0.5
Odd
(trunk[CLKD/2])/CLKD
For details about clock division factor CLKD, see the OMAP35x Technical Reference Manual (TRM)
[literature number SPRUF98].
PRODUCT PREVIEW
MMC1
MMC2
mmcx_clk
MMC3
MMC4
mmcx_cmd
MMC7
MMC8
mmcx_dat[3:0]
030-104
In mmcx, x is equal to 1, 2, or 3.
Figure 6-67. MMC/SD/SDIO – High-Speed and Standard MMC Modes – Data/Command Receive
MMC1
MMC2
mmcx_clk
MMC5
MMC5
mmcx_cmd
MMC6
MMC6
mmcx_dat[3:0]
030-105
In mmcx, x is equal to 1, 2, or 3.
Figure 6-68. MMC/SD/SDIO – High-Speed and Standard MMC Modes – Data/Command Transmit
6.7.1.4 MMC/SD/SDIO in High-Speed SD Mode
Table 6-140 and Table 6-141 assume testing over the recommended operating conditions and electrical
characteristic conditions.
Table 6-139. MMC/SD/SDIO Timing Conditions – High-Speed SD Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
High-Speed SD Mode
Input Conditions
tR
Input signal rise time
3
ns
tF
Input signal fall time
3
ns
Output load capacitance
40
pF
Output Conditions
CLOAD
220
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 6-140. MMC/SD/SDIO Timing Requirements – High-Speed SD Mode (1) (2) (3)
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
High-Speed SD Mode
HSSD3
tsu(CMDV-CLKIH)
Setup time, mmc1_cmd valid before
mmc1_clk rising clock edge
5.6
26
ns
HSSD4
tsu(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after mmc1_clk
rising clock edge
2.3
1.9
ns
HSSD7
tsu(DATxV-CLKIH)
Setup time, mmc1_datx valid before
mmc1_clk rising clock edge
5.6
26
ns
HSSD8
tsu(CLKIH-DATxIV)
Hold time, mmc1_datx valid after mmc1_clk
rising clock edge
2.3
1.9
ns
PRODUCT PREVIEW
MMC/SD/SDIO Interface 1 (1.8 V IO)
MMC/SD/SDIO Interface 1 (3.0 V IO)
HSSD3
tsu(CMDV-CLKIH)
Setup time, mmc1_cmd valid before
mmc1_clk rising clock edge
5.6
26
ns
HSSD4
tsu(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after mmc1_clk
rising clock edge
2.3
1.9
ns
HSSD7
tsu(DATxV-CLKIH)
Setup time, mmc1_datx valid before
mmc1_clk rising clock edge
5.6
26
ns
HSSD8
tsu(CLKIH-DATxIV)
Hold time, mmc1_datx valid after mmc1_clk
rising clock edge
2.3
1.9
ns
MMC/SD/SDIO Interface 2
HSSD3
tsu(CMDV-CLKIH)
Setup time, mmc2_cmd valid before
mmc2_clk rising clock edge
5.6
26
ns
HSSD4
tsu(CLKIH-CMDIV)
Hold time, mmc2_cmd valid after mmc2_clk
rising clock edge
2.3
1.9
ns
HSSD7
tsu(DATxV-CLKIH)
Setup time, mmc2_datx valid before
mmc2_clk rising clock edge
5.6
26
ns
HSSD8
tsu(CLKIH-DATxIV)
Hold time, mmc2_datx valid after mmc2_clk
rising clock edge
2.3
1.9
ns
MMC/SD/SDIO Interface 3
HSSD3
tsu(CMDV-CLKIH)
Setup time, mmc3_cmd valid before
mmc3_clk rising clock edge
5.6
26
ns
HSSD4
tsu(CLKIH-CMDIV)
Hold time, mmc3_cmd valid after mmc3_clk
rising clock edge
2.3
1.9
ns
HSSD7
tsu(DATxV-CLKIH)
Setup time, mmc3_datx valid before
mmc3_clk rising clock edge
5.6
26
ns
HSSD8
tsu(CLKIH-DATxIV)
Hold time, mmc3_datx valid after mmc3_clk
rising clock edge
2.3
1.9
ns
(1)
(2)
(3)
Timing Parameters are referred to output clock specified in Table 6-141.
The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-141.
In datx, x is equal to 1, 2, 3, 4, 5, 6, or 7.
Table 6-141. MMC/SD/SDIO Switching Characteristics – High-Speed SD Mode
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
High-Speed SD Mode
1/HSSD 1/tc(clk)
1
Frequency (1), mmcx_ clk
HSSD2
Typical pulse duration, output clk high
(1)
(2)
(3)
(4)
tW(clkH)
(2)
48
X (3)*PO (4)
24
X (3)*PO (4)
ns
ns
Related with the output clk maximum and minimum frequencies programmable in I/F module.
In mmcx_clk, 'x' is equal to 1, 2, or 3.
The X parameter is defined as shown in Table 6-142.
PO = output clk period in ns.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
221
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 6-141. MMC/SD/SDIO Switching Characteristics – High-Speed SD Mode (continued)
NO.
PARAMETER
1.15 V
MIN
HSSD2
tW(clkL)
Typical pulse duration, output clk low
tdc(clk)
Duty cycle error, output clk
tj(clk)
Jitter standard deviation (6), output clk
1.0 V
MAX
Y (5)*PO (4)
MIN
UNIT
MAX
Y (5)*PO (4)
ns
1041.7
2083.3
ps
200
200
ps
MMC/SD/SDIO Interface 1 (1.8 V IO)
PRODUCT PREVIEW
tc(clk)
Rise time, output clk
3
3
ns
tW(clkH)
Fall time, output clk
3
3
ns
tW(clkL)
Rise time, output data
3
3
ns
tdc(clk)
Fall time, output data
3
3
ns
HSSD5
td(CLKOH-CMD)
Delay time, mmc1_clk rising clock edge to
mmc1_cmd transition
3.7
14.1
4.1
34.5
ns
HSSD6
td(CLKOH-DATx)
Delay time, mmc1_clk rising clock edge to
mmc1_datx transition
3.7
14.1
4.1
34.5
ns
MMC/SD/SDIO Interface 1 (3.0 V IO)
tc(clk)
Rise time, output clk
3
3
ns
tW(clkH)
Fall time, output clk
3
3
ns
tW(clkL)
Rise time, output data
3
3
ns
tdc(clk)
Fall time, output data
3
3
ns
HSSD5
td(CLKOH-CMD)
Delay time, mmc1_clk rising clock edge to
mmc1_cmd transition
3.7
14.1
4.1
34.5
ns
HSSD6
td(CLKOH-DATx)
Delay time, mmc1_clk rising clock edge to
mmc1_datx transition
3.7
14.1
4.1
34.5
ns
MMC/SD/SDIO Interface 2
tc(clk)
Rise time, output clk
3
3
ns
tW(clkH)
Fall time, output clk
3
3
ns
tW(clkL)
Rise time, output data
3
3
ns
tdc(clk)
Fall time, output data
3
ns
HSSD5
td(CLKOH-CMD)
Delay time, mmc2_clk rising clock edge to
mmc2_cmd transition
3.7
14.1
3
4.1
34.5
ns
HSSD6
td(CLKOH-DATx)
Delay time, mmc2_clk rising clock edge to
mmc2_datx transition
3.7
14.1
4.1
34.5
ns
MMC/SD/SDIO Interface 3
tc(clk)
Rise time, output clk
3
3
ns
tW(clkH)
Fall time, output clk
3
3
ns
tW(clkL)
Rise time, output data
3
3
ns
tdc(clk)
Fall time, output data
3
3
ns
HSSD5
td(CLKOH-CMD)
Delay time, mmc3_clk rising clock edge to
mmc3_cmd transition
3.7
14.1
4.1
34.5
ns
HSSD6
td(CLKOH-DATx)
Delay time, mmc3_clk rising clock edge to
mmc3_datx transition
3.7
14.1
4.1
34.5
ns
(5)
(6)
The Y parameter is defined as shown in Table 6-143.
The jitter probability density can be approximated by a Gaussian function.
Table 6-142. X Parameters
CLKD
X
1 or Even
0.5
Odd
(trunk[CLKD/2]+1)/CLKD
222
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 6-143. Y Parameters
CLKD
Y
1 or Even
0.5
Odd
(trunk[CLKD/2])/CLKD
For details about clock division factor CLKD, see the OMAP35x Technical Reference Manual (TRM)
[literature number SPRUF98].
HSSD1
HSSD2
mmcx_clk
HSSD4
mmcx_cmd
HSSD7
HSSD8
mmcx_dat[3:0]
030-106
In mmcx, x is equal to 1, 2, or 3.
Figure 6-69. MMC/SD/SDIO – High-Speed SD Mode – Data/Command Receive
HSSD1
HSSD2
mmcx_clk
HSSD5
HSSD5
mmcx_cmd
HSSD6
HSSD6
mmcx_dat[3:0]
030-107
In mmcx, x is equal to 1, 2, or 3.
Figure 6-70. MMC/SD/SDIO – High-Speed SD Mode – Data/Command Transmit
6.7.1.5 MMC/SD/SDIO in Standard SD Mode
Table 6-145 and Table 6-146 assume testing over the recommended operating conditions and electrical
characteristic conditions (see Figure 6-71).
Table 6-144. MMC/SD/SDIO Timing Conditions – Standard SD Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Standard SD Mode
Input Conditions
tR
Input signal rise time
10
ns
tF
Input signal fall time
10
ns
Output load capacitance
40
pF
Output Conditions
CLOAD
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
223
PRODUCT PREVIEW
HSSD3
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 6-145. MMC/SD/SDIO Timing Requirements – Standard SD Mode (1) (2) (3)
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
Standard SD Mode
MMC/SD/SDIO Interface 1 (1.8 V IO)
SD3
tsu(CMDV-CLKIH)
Setup time, mmc1_cmd valid before mmc1_clk
rising clock edge
6.2
47.7
ns
SD4
tsu(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after mmc1_clk
rising clock edge
19.4
19.2
ns
SD7
tsu(DATxV-CLKIH)
Setup time, mmc1_datx valid before mmc1_clk
rising clock edge
6.2
47.7
ns
SD8
tsu(CLKIH-DATxIV)
Hold time, mmc1_datx valid after mmc1_clk
rising clock edge
19.4
19.2
ns
MMC/SD/SDIO Interface 1 (3.0 V IO)
PRODUCT PREVIEW
SD3
tsu(CMDV-CLKIH)
Setup time, mmc1_cmd valid before mmc1_clk
rising clock edge
6.2
47.7
ns
SD4
tsu(CLKIH-CMDIV)
Hold time, mmc1_cmd valid after mmc1_clk
rising clock edge
19.4
19.2
ns
SD7
tsu(DATxV-CLKIH)
Setup time, mmc1_datx valid before mmc1_clk
rising clock edge
6.2
47.7
ns
SD8
tsu(CLKIH-DATxIV)
Hold time, mmc1_datx valid after mmc1_clk
rising clock edge
19.4
19.2
ns
MMC/SD/SDIO Interface 2
SD3
tsu(CMDV-CLKIH)
Setup time, mmc2_cmd valid before mmc2_clk
rising clock edge
6.2
47.7
ns
SD4
tsu(CLKIH-CMDIV)
Hold time, mmc2_cmd valid after mmc2_clk
rising clock edge
19.4
19.2
ns
SD7
tsu(DATxV-CLKIH)
Setup time, mmc2_datx valid before mmc2_clk
rising clock edge
6.2
47.7
ns
SD8
tsu(CLKIH-DATxIV)
Hold time, mmc2_datx valid after mmc2_clk
rising clock edge
19.4
19.2
ns
MMC/SD/SDIO Interface 3
SD3
tsu(CMDV-CLKIH)
Setup time, mmc3_cmd valid before mmc3_clk
rising clock edge
6.2
47.7
ns
SD4
tsu(CLKIH-CMDIV)
Hold time, mmc3_cmd valid after mmc3_clk
rising clock edge
19.4
19.2
ns
SD7
tsu(DATxV-CLKIH)
Setup time, mmc3_datx valid before mmc3_clk
rising clock edge
6.2
47.7
ns
SD8
tsu(CLKIH-DATxIV)
Hold time, mmc3_datx valid after mmc3_clk
rising clock edge
19.4
19.2
ns
(1)
(2)
(3)
Timing parameters are referred to output clock specified in Table 6-146.
The timing requirements are assured for the cycle jitter and duty cycle error conditions specified in Table 6-146.
In datx, x is equal to 1, 2, 3, 4, 5, 6, or 7.
Table 6-146. MMC/SD/SDIO Switching Characteristics – Standard SD Mode
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT
MAX
Standard SD Mode
(1)
, mmcx_clk (2)
1/SD 1/tc(clk)
1
Frequency
SD2
Typical pulse duration, output clk high
(1)
(2)
(3)
(4)
224
tW(clkH)
24
X (3)*PO (4)
12
X (3)*PO (4)
MHz
ns
Related with the output clk maximum and minimum frequencies programmable in I/F module.
In mmcx_clk, 'x' is equal to 1, 2, or 3.
The X parameter is defined as shown in Table 6-147.
PO = output clk period in ns.
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 6-146. MMC/SD/SDIO Switching Characteristics – Standard SD Mode (continued)
NO.
PARAMETER
1.15 V
MIN
SD2
tW(clkL)
Typical pulse duration, output clk low
tdc(clk)
Duty cycle error, output clk
tj(clk)
Jitter standard deviation (6), output clk
1.0 V
MAX
Y (5)*PO (4)
MIN
UNIT
MAX
Y (5)*PO (4)
ns
2083.3
4166.7
ps
200
200
ps
tc(clk)
Rise time, output clk
10
10
ns
tW(clkH)
Fall time, output clk
10
10
ns
tW(clkL)
Rise time, output data
10
10
ns
tdc(clk)
Fall time, output data
10
10
ns
SD5
td(CLKOH-CMD)
Delay time, mmc1_clk rising clock edge to
mmc1_cmd transition
6.1
35.5
6.3
77
ns
SD6
td(CLKOH-DATx)
Delay time, mmc1_clk rising clock edge to
mmc1_datx transition
6.1
35.5
6.3
77
ns
PRODUCT PREVIEW
MMC/SD/SDIO Interface 1 (1.8 V IO)
MMC/SD/SDIO Interface 1 (3.0 V IO)
tc(clk)
Rise time, output clk
10
10
ns
tW(clkH)
Fall time, output clk
10
10
ns
tW(clkL)
Rise time, output data
10
10
ns
tdc(clk)
Fall time, output data
10
10
ns
SD5
td(CLKOH-CMD)
Delay time, mmc1_clk rising clock edge to
mmc1_cmd transition
6.1
35.5
6.3
77
ns
SD6
td(CLKOH-DATx)
Delay time, mmc1_clk rising clock edge to
mmc1_datx transition
6.1
35.5
6.3
77
ns
MMC/SD/SDIO Interface 2
tc(clk)
Rise time, output clk
10
10
ns
tW(clkH)
Fall time, output clk
10
10
ns
tW(clkL)
Rise time, output data
10
10
ns
tdc(clk)
Fall time, output data
10
ns
SD5
td(CLKOH-CMD)
Delay time, mmc2_clk rising clock edge to
mmc2_cmd transition
6.1
35.5
10
6.3
77
ns
SD6
td(CLKOH-DATx)
Delay time, mmc2_clk rising clock edge to
mmc2_datx transition
6.1
35.5
6.3
77
ns
MMC/SD/SDIO Interface 3
tc(clk)
Rise time, output clk
10
10
ns
tW(clkH)
Fall time, output clk
10
10
ns
tW(clkL)
Rise time, output data
10
10
ns
tdc(clk)
Fall time, output data
10
10
ns
SD5
td(CLKOH-CMD)
Delay time, mmc3_clk rising clock edge to
mmc3_cmd transition
6.1
35.5
6.3
77
ns
SD6
td(CLKOH-DATx)
Delay time, mmc3_clk rising clock edge to
mmc3_datx transition
6.1
35.5
6.3
77
ns
(5)
(6)
The Y parameter is defined as shown in Table 6-148.
The jitter probability density can be approximated by a Gaussian function.
Table 6-147. X Parameter
CLKD
X
1 or Even
0.5
Odd
(trunk[CLKD/2]+1)/CLKD
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
225
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 6-148. Y Parameter
CLKD
Y
1 or Even
0.5
Odd
(trunk[CLKD/2])/CLKD
For details about clock division factor CLKD, see the OMAP35x Technical Reference Manual (TRM)
[literature number SPRUF98].
SD1
SD2
mmcx_clk
SD3
SD4
PRODUCT PREVIEW
mmcx_cmd
SD7
SD8
mmcx_dat[3:0]
030-108
In mmcx, x is equal to 1, 2, or 3.
Figure 6-71. MMC/SD/SDIO – Standard SD Mode – Data/Command Receive
SD1
SD2
mmcx_clk
SD5
SD5
mmcx_cmd
SD6
SD6
mmcx_dat[3:0]
030-109
In mmcx, x is equal to 1, 2, or 3.
Figure 6-72. MMC/SD/SDIO – Standard SD Mode – Data/Command Transmit
226
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
6.8 Test Interfaces
The emulation and trace interfaces allow tracing activities of the following CPUs:
• ARM1136JF-STM through an Embedded Trace Macro-cell (ETM11) dedicated to enable real-time
trace of the ARM subsystem operations and a Serial Debug Trace Interface (SDTI)
• IVA2 DSP through a high-speed real-time data exchange (HS-RTDX) controller
All processors can be emulated via JTAG ports.
6.8.1
Embedded Trace Macro Interface (ETM)
Table 6-149 assumes testing over the recommended operating conditions (see Figure 6-73).
Table 6-149. Embedded Trace Macro Interface Switching Characteristics (1)
PARAMETER
1.15 V
MIN
UNIT
MAX
f
1/tc(CLK)
Frequency, etk_clk
ETM0
tc(CLK)
Cycle time (2), etk_clk
ETM1
tW(CLK)
Clock pulse width, etk_clk
2.7
ETM2
td(CLK-CTL)
Delay time, etk_clk clock edge to etk_ctl transition
–0.5
0.5
ns
ETM3
td(CLK-D)
Delay time, etk_clk clock high to etk_d[15:0] transition
–0.5
0.5
ns
(1)
(2)
166
6
PRODUCT PREVIEW
NO.
MHz
ns
ns
The capacitive load is equivalent to 25 pF.
Cycle time is given by considering a jitter of 5%.
ETM0
ETM1
etk_clk
ETM2
ETM2
etk_ctl
ETM3
ETM3
etk_d[15:0]
030-110
Figure 6-73. Embedded Trace Macro Interface
6.8.2
System Debug Trace Interface (SDTI)
The system debug trace interface (SDTI) module provides real-time software tracing functionality to the
OMAP3525 and OMAP3530 devices.
The trace interface has four trace data pins and a trace clock pin.
This interface is a dual-edge interface: the data are available on rising and falling edges of sdti_clk but can
be also configured in single edge mode where data are available on falling edge of sdti_clk.
Serial interface operates in clock stop regime: serial clock is not free running, when there is no trace data
there is no trace clock.
6.8.2.1 System Debug Trace Interface in Dual-Edge Mode
Table 6-151 assumes testing over the recommended operating conditions and electrical characteristic
conditions (see Figure 6-74).
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
227
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 6-150. System Debug Trace Interface Timing Conditions – Dual-Edge Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
25
pF
Output Conditions
CLOAD
Output load capacitance
Table 6-151. System Debug Trace Interface Switching Characteristics – Dual-Edge Mode
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
MAX
PRODUCT PREVIEW
SD1
tc(CLK)
Cycle time, sdti_clk period
SD2
tw(CLK)
Typical pulse duration, sdti_clk high or low
tdc(CLK)
Duty cycle error, sdti_clk
1.2
ns
tR(CLK)
Rise time, sdti_clk
5
5
ns
tF(CLK)
Fall time, sdti_clk
5
5
ns
td(CLK-TxD)
Delay time, sdti_clk
transition to sdti_txd[3:0]
transition
ns
SD3
(1)
29
UNIT
29
0.5*P (1)
–1.2
ns
0.5*P (1)
1.2
–1.2
ns
Multiplexing mode on etk pins
2.3
10.9
2.3
10.9
Multiplexing mode on
jtag_emu pins
2.3
13.9
2.3
13.9
tR(CLK)
Rise time, sdti_txd[3:0]
5
5
ns
tF(CLK)
Fall time, sdti_txd[3:0]
5
5
ns
P = sdti_clk clock period
SD1
SD2
sdti_clk
SD3
sdti_txd[3:0]
Header
Header
SD3
Ad[7:4]
Ad[3:0] Da[15:12] Da[11:8]
Da[7:4]
Da[3:0]
030-111
Figure 6-74. System Debug Trace Interface – Dual-Edge Mode
6.8.2.2 System Debug Trace Interface in Single-Edge Mode
Table 6-153 assumes testing over the recommended operating conditions and electrical characteristic
conditions (see Figure 6-75).
Table 6-152. System Debug Trace Interface Timing Conditions – Single-Edge Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
25
pF
Output Conditions
CLOAD
Output load capacitance
Table 6-153. System Debug Trace Interface Switching Characteristics – Single-Edge Mode
NO.
PARAMETER
1.15 V
MIN
SD1
tc(CLK)
Cycle time, sdti_clk period
SD2
tw(CLK)
Typical pulse duration, sdti_clk high or low
tdc(CLK)
Duty cycle error, sdti_clk
tR(CLK)
Rise time, sdti_clk
tF(CLK)
Fall time, sdti_clk
td(CLK-TxD)
Delay time, sdti_clk
transition to sdti_txd[3:0]
transition
SD3
tR(CLK)
(1)
228
1.0 V
MAX
29
MIN
UNIT
MAX
29
0.5*P (1)
–1.2
ns
0.5*P (1)
1.2
–1.2
ns
1.2
ns
5
5
ns
5
5
ns
ns
Multiplexing mode on etk pins
2.3
26.5
2.3
26.5
Multiplexing mode on jtag_emu
pins
2.3
33.2
2.3
33.2
Rise time, sdti_txd[3:0]
5
5
ns
P = sdti_clk clock period.
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 6-153. System Debug Trace Interface Switching Characteristics – Single-Edge Mode (continued)
NO.
PARAMETER
1.15 V
MIN
tF(CLK)
1.0 V
MAX
Fall time, sdti_txd[3:0]
MIN
UNIT
MAX
5
SD1
5
ns
SD2
sdti_clk
SD3
sdti_txd[3:0]
Header
SD3
Header
Ad[7:4]
Ad[3:0]
Da[15:12]
Da[11:8]
Da[7:4]
Da[3:0]
030-112
6.8.3
JTAG Interfaces
OMAP3525 and OMAP3530 JTAG TAP controllers handle standard IEEE JTAG interfaces. The following
sections define the timing requirements for several tools used to test the OMAP3525 and OMAP3530
processors as:
• Free running clock tool, like XDS560 and XDS510 tools
• Adaptive clock tool, like RealView® ICE tool and Lauterbach™ tool
6.8.3.1 JTAG – Free Running Clock Mode
Table 6-155 and Table 6-156 assume testing over the recommended operating conditions and electrical
characteristic conditions (see Figure 6-76).
Table 6-154. JTAG Timing Conditions – Free Running Clock Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
5
ns
tF
Input signal fall time
5
ns
Output load capacitance
30
pF
Output Conditions
CLOAD
Table 6-155. JTAG Timing Requirements – Free Running Clock Mode (1)
NO.
PARAMETER
1.15 V
1.0 V
MIN
MAX
MIN
JT4
tc(tck)
Cycle time (2), jtag_tck period
JT5
tw(tckL)
Typical pulse duration, jtag_tck low
0.5*P (3)
0.5*P (3)
JT6
tw(tckH)
Typical pulse duration, jtag_tck high
0.5*P (3)
0.5*P (3)
tdc(tck)
Duty cycle error, jtag_tck
25
(4)
, jtag_tck
UNIT
MAX
33
ns
ns
ns
–1250
1250
–1667
1667
ps
–1250
1250
–1667
1667
ps
tj(tck)
Cycle jitter
JT7
tsu(tdiV-rtckH)
Setup time, jtag_tdi valid before jtag_rtck high
1.8
1.8
ns
JT8
th(tdiV-rtckH)
Hold time, jtag_tdi valid after jtag_rtck high
0.7
1
ns
JT9
tsu(tmsV-rtckH)
Setup time, jtag_tms valid before jtag_rtck high
1.8
1.8
ns
JT10 th(tmsV-rtckH)
Hold time, jtag_tms valid after jtag_rtck high
0.7
1
ns
JT12 tsu(emuxV-rtckH)
Setup time, jtag_emux (5) valid before jtag_rtck
high
14.6
19.8
ns
(1)
(2)
(3)
(4)
(5)
The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.
Related with the input maximum frequency supported by the JTAG module.
P = jtag _tck period in ns.
Maximum cycle jitter supported by jtag _tck input clock.
x = 0 to 1
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
229
PRODUCT PREVIEW
Figure 6-75. System Debug Trace Interface – Single-Edge Mode
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
Table 6-155. JTAG Timing Requirements – Free Running Clock Mode (continued)
NO.
PARAMETER
1.15 V
MIN
JT13 th(emuxV-rtckH)
Hold time,jtag_emux (5) valid after jtag_rtck high
1.0 V
MAX
2
MIN
UNIT
MAX
2.7
ns
Table 6-156. JTAG Switching Characteristics – Free Running Clock Mode
NO.
PARAMETER
1.15 V
MIN
1.0 V
MAX
MIN
UNIT=
MAX
PRODUCT PREVIEW
JT1
tc(rtck)
Cycle time (1), jtag_rtck period
JT2
tw(rtckL)
Typical pulse duration, jtag_rtck low
0.5*PO (2)
0.5*PO (2)
ns
JT3
tw(rtckH)
Typical pulse duration, jtag_rtck high
0.5*PO (2)
0.5*PO (2)
ns
tdc(rtck)
Duty cycle error, jtag_rtck
tj(rtck)
Jitter standard deviation (3), jtag_rtck
tR(rtck)
Rise time, jtag_rtck
tF(rtck)
Fall time, jtag_rtck
JT11 td(rtckL-tdoV)
33
–1250
1250
ns
1667
ps
33.3
–1667
33.3
ps
4
4
ns
4
Delay time, jtag_rtck low to jtag_tdo valid
–5.8
5.8
–7.9
4
ns
7.9
ns
tR(tdo)
Rise time, jtag_tdo
4
4
ns
tF(tdo)
Fall time, jtag_tdo
4
4
ns
JT14 td(rtckH-emuxV)
(1)
(2)
(3)
(4)
25
Delay time, jtag_rtck high to ,jtag_emux
(4)
20.4
ns
tR(emux)
Rise time, jtag_emux (4)
valid
2.7
15.1
6
2.7
6
ns
tF(emux)
Fall time, jtag_emux (4)
6
6
ns
Related with the jtag_rtck maximum frequency.
PO = jtag _rtck period in ns.
The jitter probability density can be approximated by a Gaussian function.
x = 0 to 1
JT4
JT5
JT6
jtag_tck
JT1
JT2
JT3
jtag_rtck
JT7
JT8
JT9
JT10
jtag_tdi
jtag_tms
JT12
JT13
jtag_emux(IN)
JT11
jtag_tdo
JT14
jtag_emux(OUT)
030-113
In jtag_emux, x is equal to 0 to 1.
Figure 6-76. JTAG Interface Timing – Free Running Clock Mode
6.8.3.2 JTAG – Adaptive Clock Mode
Table 6-158 and Table 6-159 assume testing over the recommended operating conditions and electrical
characteristic conditions (see Figure 6-77):
230
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Table 6-157. JTAG Timing Conditions – Adaptive Clock Mode
TIMING CONDITION PARAMETER
VALUE
UNIT
Input Conditions
tR
Input signal rise time
5
ns
tF
Input signal fall time
5
ns
Output load capacitance
30
pF
Output Conditions
CLOAD
Table 6-158. JTAG Timing Requirements – Adaptive Clock Mode (1)
PARAMETER
1.15 V
MIN
JA4
tc(tck)
Cycle time (2), jtag_tck period
JA5
tw(tckL)
Typical pulse duration, jtag_tck low
JA6
1.0 V
MAX
50
MIN
UNIT
MAX
50
ns
0.5*P (3)
0.5*P (3)
ns
(3)
(3)
ns
tw(tckH)
Typical pulse duration, jtag_tck high
tdc(lclk)
Duty cycle error, jtag_tck
–2500
2500
–2500
2500
ps
tj(lclk)
Cycle jitter (4), jtag_tck
–1500
1500
–1500
1500
ps
JA7
tsu(tdiV-tckH)
Setup time, jtag_tdi valid before jtag_tck high
13.8
13.8
ns
JA8
th(tdiV-tckH)
Hold time, jtag_tdi valid after jtag_tck high
13.8
13.8
ns
JA9
tsu(tmsV-tckH)
Setup time, jtag_tms valid before jtag_tck high
13.8
13.8
ns
JA10
th(tmsV-tckH)
Hold time, jtag_tms valid after jtag_tck high
13.8
13.8
ns
(1)
(2)
(3)
(4)
0.5*P
0.5*P
PRODUCT PREVIEW
NO.
The timing requirements are assured for the cycle jitter and duty cycle error conditions specified.
Related with the input maximum frequency supported by the JTAG module.
P = jtag _tck period in ns.
Maximum cycle jitter supported by jtag _tck input clock.
Table 6-159. JTAG Switching Characteristics – Adaptive Clock Mode
NO.
PARAMETER
1.15 V
MIN
JA1
tc(rtck)
Cycle time (1), jtag_rtck period
1.0 V
MAX
50
tw(rtckL)
Typical pulse duration, jtag_rtck low
0.5*PO
JA3
tw(rtckH)
Typical pulse duration, jtag_rtck high
0.5*PO (2)
tdc(rtck)
Duty cycle error, jtag_rtck
tj(rtck)
Jitter standard deviation (3), jtag_rtck
tR(rtck)
tF(rtck)
td(rtckL-tdoV)
Delay time, jtag_rtck low to jtag_tdo valid
tR(tdo)
Rise time, jtag_tdo,
tF(tdo)
Fall time, jtag_tdo
(1)
(2)
(3)
UNIT
MAX
50
(2)
JA2
JA11
MIN
–2500
ns
(2)
ns
0.5*PO (2)
ns
0.5*PO
2500
ps
33.3
33.3
ps
Rise time, jtag_rtck
4
4
ns
Fall time, jtag_rtck
4
4
ns
14.6
ns
4
4
ns
4
4
ns
–14.6
2500
14.6
–2500
–14.6
Related with the jtag _rtck maximum frequency programmable.
PO = jtag _rtck period in ns.
The jitter probability density can be approximated by a Gaussian function.
Submit Documentation Feedback
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
231
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
JA4
JA5
JA6
jtag_tck
JA7
JA8
JA9
JA10
jtag_tdi
jtag_tms
JA1
JA2
JA3
jtag_rtck
JA11
jtag_tdo
030-114
PRODUCT PREVIEW
Figure 6-77. JTAG Interface Timing – Adaptive Clock Mode
232
TIMING REQUIREMENTS AND SWITCHING CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
7 PACKAGE CHARACTERISTICS
7.1 Package Thermal Resistance
Table 7-1 provides the thermal resistance characteristics for the recommended package types used on the
OMAP3525 and OMAP3530 Applications Processors.
(2)
Package
Power (W) (3)
RθJA(°C/W)
RθJB(°C/W)
RθJC(°C/W) (4)
Board Type
OMAP3525/30
(CBB Pkg.)
0.92871
24.46
10.94
0.01 (5)
2S2P (6)
OMAP3525/30
(CBC Pkg.)
0.92871
21.89
6.23
(5)
2S2P (6)
(1)
(2)
(3)
(4)
(5)
(6)
RθJA (Theta-JA) = Thermal Resistance Junction-to-Ambient, °C/W
This table provides simulation data and may not represent actual use-case values.
RθJB (Theta-JB) = Thermal Resistance Junction-to-Board, °C/W
RθJC (Theta-JC) = Thermal Resistance Junction-to-Case, °C/W
These numbers are based on simulation results and don’t necessarily represent the wattage that the part will take in actual use.
It is recommended to dissipate the heat to the board instead of attempting to remove it from the top of the chip; therefore, top-side heat
sinks should not be used for package.
Not applicable if the POP package has a memory package on top; no heat sink can be used.
The board types are defined by JEDEC (reference JEDEC standard JESD51-9, Test Board for Area Array Surface Mount Package
Thermal Measurements).
7.2 Device Support
7.2.1
Device and Development-Support Tool Nomenclature
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all
OMAP processors and support tools. Each OMAP device has one of three prefixes: X, P, or null (no
prefix). Texas Instruments recommends two of three possible prefix designators for its support tools:
TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering
prototypes (TMDX) through fully qualified production devices/tools (TMDS).
Device development evolutionary flow:
X
Experimental device that is not necessarily representative of the final device’s electrical
specifications and may not use production assembly flow. (TMX definition)
P
Prototype device that is not necessarily the final silicon die and may not necessarily meet
final electrical specifications. (TMP definition)
null
Production version of the silicon die that is fully qualified. (TMS definition)
Support tool development evolutionary flow:
TMDX
Development support product that has not yet completed Texas Instruments internal
qualification testing.
TMDS
Fully qualified development support product.
TMX and TMP devices and TMDX development-support tools are shipped against the following
disclaimer:
“Developmental product is intended for internal evaluation purposes.”
Production devices and TMDS development-support tools have been characterized fully, and the quality
and reliability of the device have been demonstrated fully. TI’s standard warranty applies.
Predictions show that prototype devices (X or P), have a greater failure rate than the standard production
devices. Texas Instruments recommends that these devices not be used in any production system
because their expected end-use failure rate still is undefined. Only qualified production devices are to be
used.
Submit Documentation Feedback
PACKAGE CHARACTERISTICS
233
PRODUCT PREVIEW
Table 7-1. OMAP3525/30 Thermal Resistance Characteristics (1)
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
SPRS599 – JUNE 2009
www.ti.com
For additional description of the device nomenclature markings, see the OMAP35x Applications Processor
Silicon Errata (literature number SPRZ278).
X
OMAP3530
D
Z
CBB
( ) ( )( )
60 = 600 MHz Cortex - A8
PREFIX
X = Experimental Device
P = Prototype Device
blank= Production Device
blank = Tray
R
= Tape and Reel
blank = -40° C to 90° C
A
= -40° C to 105° C (preview)
DEVICE
PACKAGE TYPE
CBB = 515 pin s-PBGA
CBC = 515 pin s-PBGA
CUS = 423 pin s-PBGA
SILICON REVISION
PRODUCT PREVIEW
TI HIREL RELEASE
A.
For more information on the silicon revision, please see the OMAP3530/25/15/03 Applications Processor Silicon
Errata (literature number SPRZ278).
Figure 7-1. Device Nomenclature(A)
7.2.2
Documentation Support
7.2.2.1 Related Documentation from Texas Instruments
The following documents describe the OMAP3525 and OMAP3530 Applications Processors. Copies of
these documents are available on the Internet at www.ti.com. Tip: Enter the literature number in the
search box provided at www.ti.com.
The current documentation that describes the OMAP3525 and OMAP3530 Applications Processors,
related peripherals, and other technical collateral, is available in the product folder at: www.ti.com.
SPRUF98
OMAP35x Technical Reference Manual. Collection of documents providing detailed
information on the OMAP3 architecture including power, reset, and clock control, interrupts,
memory map, and switch fabric interconnect. Detailed information on the microprocessor unit
(MPU) subsystem, the image, video, and audio (IVA2.2) subsystem, as well a functional
description of the peripherals supported on OMAP35x devices is also included.
SPRU732
TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide.Describes the CPU
architecture, pipeline, instruction set, and interrupts for the TMS320C64x and TMS320C64x+
digital signal processors (DSPs) of the TMS320C6000 DSP family. The C64x/C64x+ DSP
generation comprises fixed-point devices in the C6000 DSP platform. The C64x+ DSP is an
enhancement of the C64x DSP with added functionality and an expanded instruction set.
SPRU871
TMS320C64x+ DSP Megamodule Reference Guide.Describes the TMS320C64x+ digital
signal processor (DSP) megamodule. Included is a discussion on the internal direct memory
access (IDMA) controller, the interrupt controller, the power-down controller, memory
protection, bandwidth management, and the memory and cache.
SPRU889
High-Speed DSP Systems Design Reference Guide. Provides recommendations for
meeting the many challenges of high-speed DSP system design. These recommendations
include information about DSP audio, video, and communications systems for the C5000 and
C6000 DSP platforms.
7.2.2.2 Related Documentation from Other Sources
The following documents are related to the OMAP3525 and OMAP3530 Applications Processors. Copies
of these documents can be obtained directly from the internet or from your Texas Instruments
representative.
234
PACKAGE CHARACTERISTICS
Submit Documentation Feedback
OMAP3525-HiRel and OMAP3530-HiRel Applications Processors
www.ti.com
SPRS599 – JUNE 2009
Cortex™-A8 Technical Reference Manual. This is the technical reference manual for the Cortex-A8
processor. A copy of this document can be obtained via the internet at http://infocenter.arm.com. Please
see the OMAP35x Applications Processor Silicon Errata (literature number SPRZ278) to determine the
revision of the Cortex-A8 core used on your device.
PRODUCT PREVIEW
ARM Core CortexTM-A8 (AT400/AT401) Errata Notice. Provides a list of advisories for the different
revisions of the Cortex-A8 processor. Contact your TI representative for a copy of this document. Please
see the OMAP35x Applications Processor Silicon Errata (literature number SPRZ278) to determine the
revision of the Cortex-A8 core used on your device.
Submit Documentation Feedback
PACKAGE CHARACTERISTICS
235
PACKAGE OPTION ADDENDUM
www.ti.com
18-Jun-2009
PACKAGING INFORMATION
Orderable Device
Status (1)
Package
Type
Package
Drawing
Pins Package Eco Plan (2)
Qty
OMAP3525DZCBC
ACTIVE
POPFCBGA
CBC
515
OMAP3530DZCBB
ACTIVE
POPFCBGA
CBB
515
119
Lead/Ball Finish
MSL Peak Temp (3)
Pb-Free
(RoHS)
Call TI
Level-3-260C-168 HR
Green (RoHS &
no Sb/Br)
SNAGCU
Level-3-260C-168 HR
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
Addendum-Page 1
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products
Amplifiers
Data Converters
DLP® Products
DSP
Clocks and Timers
Interface
Logic
Power Mgmt
Microcontrollers
RFID
RF/IF and ZigBee® Solutions
amplifier.ti.com
dataconverter.ti.com
www.dlp.com
dsp.ti.com
www.ti.com/clocks
interface.ti.com
logic.ti.com
power.ti.com
microcontroller.ti.com
www.ti-rfid.com
www.ti.com/lprf
Applications
Audio
Automotive
Broadband
Digital Control
Medical
Military
Optical Networking
Security
Telephony
Video & Imaging
Wireless
www.ti.com/audio
www.ti.com/automotive
www.ti.com/broadband
www.ti.com/digitalcontrol
www.ti.com/medical
www.ti.com/military
www.ti.com/opticalnetwork
www.ti.com/security
www.ti.com/telephony
www.ti.com/video
www.ti.com/wireless
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated
Similar pages