ON NBSG72AMNR2G 2.5 v/3.3 v sige differential 2 x 2 crosspoint switch with output level selec Datasheet

NBSG72A
2.5 V/3.3 V SiGe Differential
2 x 2 Crosspoint Switch
with Output Level Select
The NBSG72A is a high-bandwidth fully differential 2 × 2
crosspoint switch with Output Level Select (OLS) capabilities. This is
a part of the GigaCommt family of high performance Silicon
Germanium products. The device is housed in a low profile 3 × 3 mm
16-pin QFN package.
Differential inputs incorporate internal 50 W termination resistors
and accept NECL (Negative ECL), PECL (Positive ECL),
LVCMOS/LVTTL, CML, or LVDS. The OLS input is used to
program the peak-to-peak output amplitude between 0 mV and
800 mV in five discrete steps. The SELECT inputs are single-ended
and can be driven with either LVECL or LVCMOS/LVTTL
input levels.
http://onsemi.com
1
QFN−16
MN SUFFIX
CASE 485G
MARKING DIAGRAM*
ÇÇÇ
ÇÇÇ
16
Features
•
•
•
•
•
•
•
1
Maximum Input Clock Frequency > 7 GHz Typical
Maximum Input Data Rate > 7 Gb/s Typical
SG
72A
ALYWG
G
200 ps Typical Propagation Delay (OLS = FLOAT)
55/45 ps Typical Rise/Fall Times (OLS = FLOAT)
Selectable Swing PECL Output with Operating Range:
VCC = 2.375 V to 3.465 V with VEE = 0 V
Selectable Swing NECL Output with NECL Inputs with
Operating Range: VCC = 0 V with VEE = −2.375 V to −3.465 V
Selectable Output Levels (0 mV, 200 mV, 400 mV, 600 mV or
800 mV Peak-to-Peak Output)
50 W Internal Input Termination Resistors
•
• Single-Ended LVECL or LVCMOS/LVTTL Select Inputs
•
(SELA, SELB)
These are Pb-Free Devices
© Semiconductor Components Industries, LLC, 2014
June, 2014 − Rev. 8
A
L
Y
W
G
= Assembly Location
= Wafer Lot
= Year
= Work Week
= Pb-Free Package
(Note: Microdot may be in either location)
*For additional marking information, refer to
Application Note AND8002/D.
ORDERING INFORMATION
See detailed ordering and shipping information in the package
dimensions section on page 15 of this data sheet.
1
Publication Order Number:
NBSG72A/D
NBSG72A
Exposed Pad (EP)
VTD0
1
D0
2
VCC
Q0
Q0
OLS
16
15
14
13
12 VCC
11 Q1
NBSG72A
D0
3
10 Q1
SELA
4
9
5
6
7
VEE
D1
D1
SELB
8
VTD1
Figure 1. QFN−16 Pinout (Top View)
Table 1. PIN DESCRIPTION
Pin No.
Name
I/O
1
VTD0
−
2
D0
LVDS, CML, ECL,
LVTTL, LVCMOS
Input
Inverted Differential Input 0.
3
D0
LVDS, CML, ECL,
LVTTL, LVCMOS
Input
Noninverted Differential Input 0.
4
SELA
LVECL, LVCMOS
Input
Select Logic Input A. Internal 75 kW Pulldown to VEE.
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
5
VEE
−
6
D1
LVDS, CML, ECL,
LVTTL, LVCMOS
Input
7
D1
LVDS, CML, ECL,
LVTTL, LVCMOS
Input
8
VTD1
−
9
SELB
LVECL, LVCMOS
Input
10
Q1
RSECL Output
11
Q1
RSECL Output
12
VCC
−
13
OLS
(Note 2)
Input
14
Q0
RSECL Output
15
Q0
RSECL Output
16
VCC
−
−
EP
−
Description
Common Internal 50 W Termination Pin for D0 and D0 Input. See Table 4. (Note 1)
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Negative Supply. All VEE Pins must be Externally Connected to Power Supply to
Guarantee Proper Operation.
Inverted Differential Input 1.
Noninverted Differential Input 1.
Common Internal 50 W Termination Pin for D1 and D1 Input. See Table 4. (Note 1)
Select Logic Input B. Internal 75 kW Pulldown to VEE.
Noninverted Differential Output.
Inverted Differential Output.
Positive Supply. All VCC Pins must be Externally Connected to Power Supply to
Guarantee Proper Operation.
Input Pin for Output Level Select (OLS) See Table 3.
Noninverted Differential Output Typically Terminated with 50 W Resistor to
VTT = VCC − 2.0 V.
Inverted Differential Output Typically Terminated with 50 W Resistor to
VTT = VCC − 2.0 V.
Positive Supply. All VCC Pins must be Externally Connected to Power Supply to
Guarantee Proper Operation.
The Exposed Pad (EP) on the QFN−16 package bottom is thermally connected to the
die for improved heat transfer out of package. The exposed pad must be attached to
a heat-sinking conduit. The pad is not electrically connected to the die but may be
electrically and thermally connected to VEE on the PC board.
1. In the differential configuration when the input termination pins (VTD0, VTD1) are connected to a common termination voltage, and if no signal
is applied then the device will be susceptible to self-oscillation.
2. When an output level of 400 mV is desired and VCC − VEE > 3.0 V, 2 kW resistor should be connected from OLS pin to VEE.
http://onsemi.com
2
NBSG72A
VTD0
50 W
D0
50 W
2
2
D0
2
D1
2
Q0
2
Q0
D1
+
50 W
VTD1
50 W
VCC
2
SELA
Table 2. TRUTH TABLE
VEE
2
75 kW
2
Q1
2
Q1
SELA
SELB
Q0
Q1
LOW
LOW
D0
D0
HIGH
LOW
D1
D0
LOW
HIGH
D0
D1
HIGH
HIGH
D1
D1
2
SELB
75 kW
OLS
Figure 2. Logic/Block Diagram
Table 3. OUTPUT LEVEL SELECT (OLS)
OLS
Output Amplitude (VOUTPP)
OLS Sensitivity
VCC
800 mV
OLS − 75 mV
VCC − 0.4 V
200 mV
OLS ± 150 mV
VCC − 0.8 V
600 mV
OLS ± 100 mV
VCC − 1.2 V
0
OLS ± 75 mV
VEE (Note 3)
400 mV
OLS ± 100 mV
FLOAT
600 mV
N/A
3. When an output level of 400 mV is desired and VCC − VEE > 3.0 V, a 2 kW resistor should be connected from OLS to VEE.
Table 4. INTERFACING OPTIONS
Interfacing Options
Connections
CML
Connect VTD0 and VTD1 to VCC
LVDS
VTD0 and VTD1 Should Be Left Floating.
AC−COUPLED
RSECL, PECL, NECL
LVCMOS / LVTTL
Bias VTD0 and VTD1 Inputs within Common Mode Range (VIHCMR)
Standard ECL Termination Techniques
The external voltage should be applied to the unused complementary differential input.
Nominal voltage is 1.5 V for LVTTL and VCC/2 for LVCMOS Inputs.
http://onsemi.com
3
NBSG72A
Table 5. ATTRIBUTES
Characteristics
Value
Internal Input Pulldown Resistor (SELA, SELB)
75 kW
ESD Protection
Human Body Model
Machine Model
Charged Device Model
> 2 kV
> 50 V
> 1 kV
Oxygen Index: 28 to 34
UL 94 V−0 @ 0.125 in
Moisture Sensitivity (Note 4)
Flammability Rating
Level 1
Transistor Count
436
Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test
4. For additional information, see Application Note AND8003/D.
Table 6. MAXIMUM RATINGS
Symbol
Parameter
Condition 1
Condition 2
Rating
Units
VCC
Positive Power Supply
VEE = 0 V
3.6
V
VEE
Negative Power Supply
VCC = 0 V
−3.6
V
Positive Input
Negative Input
VEE = 0 V
VCC = 0 V
3.6
−3.6
V
VEE − VCC ≥ 2.8 V
VEE − VCC < 2.8 V
2.8
|VCC − VEE|
V
Continuous
Surge
25
50
mA
Static
Surge
45
80
mA
mA
−40 to +85
°C
VI
VINPP
Differential Input Voltage |DX − DX|
VI ≤ VCC
VI ≥ VEE
Iout
Output Current
IIN
Input Current Through RT (50 W Resistor)
TA
Operating Temperature Range
Tstg
Storage Temperature Range
−65 to +150
°C
qJA
Thermal Resistance (Junction-to-Ambient)
(Note 5)
0 lfpm
500 lfpm
42
35
°C/W
qJC
Thermal Resistance (Junction-to-Case)
(Note 5)
4
°C/W
Tsol
Wave Solder
< 3 sec @ 260°C
265
°C
Pb-Free
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality
should not be assumed, damage may occur and reliability may be affected.
5. JEDEC standard multilayer board − 1S2P (1 signal, 2 power).
http://onsemi.com
4
NBSG72A
Table 7. DC CHARACTERISTICS, INPUT WITH PECL OUTPUT
(VCC = 2.5 V; VEE = 0 V) (Note 6)
−40°C
Symbol
25°C
85°C
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Unit
40
55
65
40
55
65
40
55
65
mA
1460
1510
1560
1490
1540
1590
1515
1565
1615
mV
(OLS = VCC)
(OLS = VCC − 0.4 V)
(OLS = VCC − 0.8 V, OLS = FLOAT)
(OLS = VCC − 1.2 V)
(OLS = VEE)
555
1235
775
1455
1005
705
1295
895
1505
1095
855
1385
1015
1585
1215
595
1270
810
1490
1040
745
1330
930
1540
1130
895
1420
1050
1620
1250
625
1295
840
1510
1065
775
1355
960
1560
1155
925
1445
1080
1640
1275
Output Voltage Amplitude
(OLS = VCC)
(OLS = VCC − 0.4 V)
(OLS = VCC − 0.8 V, OLS = FLOAT)
(OLS = VCC − 1.2 V)
(OLS = VEE)
670
125
510
0
325
800
215
615
5
415
660
120
505
0
320
795
210
610
0
410
655
120
500
0
320
790
210
605
0
410
Characteristic
POWER SUPPLY CURRENT
IEE
Negative Power Supply Current
PECL OUTPUTS (Note 7)
VOH
Output HIGH Voltage
VOL
Output LOW Voltage
VOUTPP
mV
mV
DIFFERENTIAL CLOCK INPUTS DRIVEN SINGLE-ENDED (Figures 12 & 14) (Note 8)
VIH
Input HIGH Voltage
D0, inv-D0, D1, inv-D1, SELA, SELB
1200
VCC
1200
VCC
1200
VCC
mV
VIL
Input LOW Voltage
D0, inv-D0, D1, inv-D1, SELA, SELB
0
VIH −
150
0
VIH −
150
0
VIH −
150
mV
Vth
Input Threshold Reference Voltage
Range (Note 9)
950
VCC –
75
950
VCC –
75
950
VCC –
75
mV
Single-Ended Input Voltage
(VIH – VIL)
150
2600
150
2600
150
260
mV
VISE
DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 13 & 15) (Note 10)
VIHD
Differential Input HIGH Voltage
1200
VCC
1200
VCC
1200
VCC
mV
VILD
Differential Input LOW Voltage
0
VIHD −
75
0
VIHD −
75
0
VIHD −
75
mV
VID
Differential Input Voltage
(VIHD – VILD)
75
2600
75
2600
75
2600
mV
1200
2500
1200
2500
1200
2500
mV
VIHCMR
Input HIGH Voltage Common Mode
Range (Note 11) (Figure 16)
IIH
Input HIGH Current (@VIH)
35
100
35
100
35
100
mA
IIL
Input LOW Current (@VIL)
20
100
20
100
20
100
mA
50
55
50
55
50
55
W
TERMINATION RESISTORS
RTIN
Internal Input Termination Resistor
45
45
45
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
6. Input and output parameters vary 1:1 with VCC.
7. All outputs loaded with 50 W to VCC − 2.0 V.
8. Vth, VIH, VIL, and VISE parameters must be complied with simultaneously.
9. Vth is applied to the complementary input when operating in single-ended mode. Vth = (VIH − VIL) / 2.
10. VIHD, VILD, VID and VIHCMR parameters must be complied with simultaneously.
11. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
http://onsemi.com
5
NBSG72A
Table 8. DC CHARACTERISTICS, INPUT WITH PECL OUTPUT
(VCC = 3.3 V; VEE = 0 V) (Note 12)
−40°C
Symbol
25°C
85°C
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Unit
40
55
65
40
55
65
40
55
65
mA
2260
2310
2360
2290
2340
2390
2315
2365
2415
mV
(OLS = VCC)
(OLS = VCC − 0.4 V)
(OLS = VCC − 0.8 V, OLS = FLOAT)
(OLS = VCC − 1.2 V)
**(OLS = VEE)
1320
2030
1550
2260
1785
1470
2090
1670
2310
1875
1620
2180
1790
2390
1995
1360
2065
1585
2290
1820
1510
2125
1705
2340
2030
1660
2215
1825
2420
2030
1390
2090
1615
2315
1850
1540
2150
1735
2365
1940
1690
2240
1855
2445
2060
Output Voltage Amplitude
(OLS = VCC)
(OLS = VCC − 0.4 V)
(OLS = VCC − 0.8 V, OLS = FLOAT)
(OLS = VCC − 1.2 V)
**(OLS = VEE)
705
130
535
0
345
815
220
640
0
435
695
125
530
0
340
805
215
635
0
430
590
125
525
0
335
800
215
630
0
425
Characteristic
POWER SUPPLY CURRENT
IEE
Negative Power Supply Current
PECL OUTPUTS (Note 13)
VOH
Output HIGH Voltage
VOL
Output LOW Voltage
VOUTPP
mV
mV
DIFFERENTIAL CLOCK INPUTS DRIVEN SINGLE-ENDED (Figures 12 & 14) (Note 14)
VIH
Input HIGH Voltage
D0, inv-D0, D1, inv-D1, SELA, SELB
1200
VCC
1200
VCC
1200
VCC
mV
VIL
Input LOW Voltage
D0, inv-D0, D1, inv-D1, SELA, SELB
0
VIH −
150
0
VIH −
150
0
VIH −
150
mV
Vth
Input Threshold Reference Voltage
Range (Note 15)
950
VCC –
75
950
VCC –
75
950
VCC –
75
mV
Single-Ended Input Voltage
(VIH – VIL)
150
2600
150
2600
150
2600
mV
VISE
DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 13 & 15) (Note 16)
VIHD
Differential Input HIGH Voltage
1200
VCC
1200
VCC
1200
VCC
mV
VILD
Differential Input LOW Voltage
0
VIHD −
75
0
VIHD −
75
0
VIHD −
75
mV
VID
Differential Input Voltage
(VIHD – VILD)
75
2600
75
2600
75
2600
mV
1200
3300
1200
3300
1200
3300
mV
VIHCMR
Input HIGH Voltage Common Mode
Range (Note 17) (Figure 16)
IIH
Input HIGH Current (@VIH)
35
100
35
100
35
100
mA
IIL
Input LOW Current (@VIL)
20
100
20
100
20
100
mA
50
55
50
55
50
55
W
TERMINATION RESISTORS
RTIN
Internal Input Termination Resistor
45
45
45
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
**When an output level of 400 mV is desired and VCC − VEE > 3.0 V, a 2 kW resistor should be connected from OLS to VEE.
12. Input and output parameters vary 1:1 with VCC.
13. All outputs loaded with 50 W to VCC − 2.0 V.
14. Vth, VIH, VIL, and VISE parameters must be complied with simultaneously.
15. Vth is applied to the complementary input when operating in single-ended mode. Vth = (VIH − VIL) / 2.
16. VIHD, VILD, VID and VIHCMR parameters must be complied with simultaneously.
17. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
http://onsemi.com
6
NBSG72A
Table 9. DC CHARACTERISTICS, NECL INPUT WITH NECL OUTPUT
(VCC = 0 V; VEE = −3.465 V to −2.375 V) (Note 18)
−40°C
Symbol
Characteristic
25°C
85°C
Min
Typ
Max
Min
Typ
Max
Min
Typ
Max
Unit
40
55
65
40
55
65
40
55
65
mA
−1040
−990
−940
−1010
−960
−910
−985
−935
−885
mV
POWER SUPPLY CURRENT
IEE
Negative Power Supply Current
NECL OUTPUTS (Note 19)
VOH
Output HIGH Voltage
VOL
Output LOW Voltage
−3.465 V ≤ VEE ≤ −3.0 V
(OLS = VCC)
(OLS = VCC − 0.4 V)
(OLS = VCC − 0.8 V, OLS = FLOAT)
(OLS = VCC − 1.2 V)
**(OLS = VEE)
−3.0 V < VEE ≤ −2.375 V
(OLS = VCC)
(OLS = VCC − 0.4 V)
(OLS = VCC − 0.8 V, OLS = FLOAT)
(OLS = VCC − 1.2 V)
(OLS = VEE)
VOUTPP
mV
−1980
−1270
−1750
−1040
−1515
−1830
−1210
−1630
−990
−1425
−1680
−1120
−1510
−910
−1305
−1940
−1235
−1715
−1010
−1480
−1790
−1175
−1595
−960
−1390
−1640
−1085
−1475
−880
−1270
−1910
−1210
−1685
−985
−1450
−1760
−1150
−1565
−935
−1360
−1610
−1060
−1445
−855
−1240
−1945
−1265
−1725
−1045
−1495
−1795
−1205
−1605
−995
−1405
−1645
−1115
−1485
−915
−1285
−1905
−1230
−1690
−1010
−1460
−1755
−1170
−1570
−960
−1370
−1605
−1080
−1450
−880
−1250
−1875
−1205
−1660
−900
−1435
−1725
−1145
−1540
−940
−1345
−1575
−1055
−1420
−860
−1225
Output Voltage Amplitude
−3.465 V ≤ VEE ≤ −3.0 V
(OLS = VCC)
(OLS = VCC − 0.4 V)
(OLS = VCC − 0.8 V, OLS = FLOAT)
(OLS = VCC − 1.2 V)
**(OLS = VEE)
−3.0 V < VEE ≤ −2.375 V
(OLS = VCC)
(OLS = VCC − 0.4 V)
(OLS = VCC − 0.8 V, OLS = FLOAT)
(OLS = VCC − 1.2 V)
(OLS = VEE)
mV
705
130
535
0
345
815
220
640
0
435
695
125
530
0
340
805
215
635
0
430
690
125
525
0
335
800
215
630
0
425
670
125
510
0
325
800
215
615
5
415
660
120
505
0
320
795
210
610
0
410
655
120
500
0
320
790
210
605
5
410
DIFFERENTIAL CLOCK INPUTS DRIVEN SINGLE-ENDED (Figures 12 & 14) (Note 20)
VIH
Input HIGH Voltage (Single-Ended)
D0, inv-D0, D1, inv-D1, SELA, SELB
VEE +
1200
VCC
VEE +
1200
VCC
VEE +
1200
VCC
mV
VIL
Input LOW Voltage (Single-Ended)
D0, inv-D0, D1, inv-D1, SELA, SELB
VEE
VIH −
150
VEE
VIH −
150
VEE
VIH −
150
mV
Vth
Input Threshold Reference Voltage
Range (Note 21)
VEE +
950
VCC –
75
VEE +
950
VCC –
75
VEE +
950
VCC –
75
mV
150
2600
150
2600
150
260
mV
VISE
Single-Ended Input Voltage
(VIH – VIL)
DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 13 & 15) (Note 22)
VIHD
Differential Input HIGH Voltage
VEE +
1200
VCC
VEE +
1200
VCC
VEE +
1200
VCC
mV
VILD
Differential Input LOW Voltage
VEE
VIHD −
75
VEE
VIHD −
75
VEE
VIHD −
75
mV
VID
Differential Input Voltage
(VIHD – VILD)
75
2600
75
2600
75
2600
mV
VEE +
1200
0.0
VEE +
1200
0.0
VEE +
1200
0.0
mV
VIHCMR
Input HIGH Voltage Common Mode
Range (Differential Configuration)
(Note 23) (Figure 16)
IIH
Input HIGH Current (@VIH)
35
1000
35
1000
35
100
mA
IIL
Input LOW Current (@VIL)
20
100
20
100
20
1000
mA
http://onsemi.com
7
NBSG72A
Table 9. DC CHARACTERISTICS, NECL INPUT WITH NECL OUTPUT (continued)
(VCC = 0 V; VEE = −3.465 V to −2.375 V) (Note 18)
−40°C
Symbol
Characteristic
Min
25°C
Typ
Max
Min
85°C
Typ
Max
900
300
100
−300
300
100
5
−100
Min
Typ
Max
900
300
100
−300
300
100
5
−100
Unit
DIFFERENTIAL INPUTS DRIVEN DIFFERENTIALLY (Figures 13 & 15) (Note 22)
IOLS
OLS Input Current (see Figure 10)
(OLS = VCC)
(OLS = VCC − 0.4 V)
(OLS = VCC − 0.8 V, OLS = FLOAT)
(OLS = VCC − 1.2 V)
−3.465 V ≤ VEE ≤ −3.0 V
*(OLS = VEE)
−3.0 V < VEE ≤ −2.375 V
(OLS = VEE)
mA
−300
300
100
5
−100
900
300
100
−1500
−600
−1500
−600
−1500
−600
−1000
−400
−1000
−400
−1000
−400
45
50
45
50
45
50
TERMINATION RESISTORS
RTIN
Internal Input Termination Resistor
55
55
55
W
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product
performance may not be indicated by the Electrical Characteristics if operated under different conditions.
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
*Typicals used for testing purposes.
**When an output level of 400 mV is desired and VCC − VEE > 3.0 V, a 2 kW resistor should be connected from OLS to VEE.
18. Input and output parameters vary 1:1 with VCC.
19. All outputs loaded with 50 W to VCC − 2.0 V.
20. Vth, VIH, VIL, and VISE parameters must be complied with simultaneously.
21. Vth is applied to the complementary input when operating in single-ended mode. Vth = (VIH − VIL) / 2.
22. VIHD, VILD, VID and VIHCMR parameters must be complied with simultaneously.
23. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential
input signal.
http://onsemi.com
8
NBSG72A
Table 10. AC CHARACTERISTICS
(VCC = 0 V; VEE = −3.465 V to −2.375 V or VCC = 2.375 V to 3.465 V; VEE = 0 V) (Note 24)
−40°C
Symbol
VOUTPP
tPLH
tPHL
Min
Typ
fin < 5 GHz
fin v 7 GHz
400
200
590
250
Propagation Delay to Output Differential
D0, D1 → Q0, Q1
SELA, SELB → Q0, Q1
170
190
205
265
Propagation Delay to Output Differential
D0, D1 → Q0, Q1
SELA, SELB → Q0, Q1
170
150
Characteristic
Output Voltage Amplitude
tSKEW
Duty Cycle Skew (Note 25)
Within-Device Skew
Device-to-Device Skew
tJITTER
RMS Random Clock Jitter (Note 26)
v 1 GHz
OLS = VCC
v 5 GHz
OLS = VCC
v 6.5 GHz
OLS = VCC
v 1 GHz
OLS = VCC − 400 mV
v 5 GHz
OLS = VCC − 400 mV
v 6.5 GHz
OLS = VCC − 400 mV
v 1 GHz
OLS = VCC − 800 mV
v 5 GHz
OLS = VCC − 800 mV
v 6.5 GHz
OLS = VCC − 800 mV
v 1 GHz
OLS = VEE
v 5 GHz
OLS = VEE
v 6.5 GHz
OLS = VEE
Peak-to-Peak Data Dependent Jitter
(Note 27)
fin v 7 Gb/s
VINPP
tr
tf
Input Voltage Swing/Sensitivity
(Differential Configuration) (Note 28)
Output Rise/Fall Times
(20% − 80%)
@ 1 GHz
(Q0, Q1)
tr
tf
25°C
Max
Min
Typ
450
180
590
250
255
350
170
190
205
265
205
215
255
270
170
150
5.0
5.0
15
85°C
Max
Min
Typ
Max
440
130
590
250
255
350
170
190
210
265
260
350
205
215
255
270
170
150
210
215
260
270
25
25
50
5.0
5.0
15
25
25
50
5.0
5.0
15
25
25
50
0.16
0.14
0.21
0.23
0.18
0.2
0.17
0.14
0.2
0.18
0.16
0.18
0.3
0.4
0.5
0.4
0.5
0.5
0.3
0.4
0.5
0.3
0.6
0.5
0.17
0.16
0.31
0.23
0.19
0.25
0.18
0.16
0.27
0.19
0.17
0.24
0.3
0.4
0.7
0.4
0.5
0.6
0.3
0.3
0.7
0.3
0.4
0.6
0.18
0.19
0.44
0.25
0.23
0.32
0.19
0.2
0.38
0.2
0.2
0.34
0.4
0.4
0.9
0.4
0.5
0.7
0.3
0.3
0.9
0.3
0.4
0.8
12
18
12
18
12
18
Unit
mV
ps
ps
ps
ps
75
2600
75
70
55
40
30
2600
75
70
55
40
30
2600
mV
ps
40
30
55
45
55
45
55
45
70
55
NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit
board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared
operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit
values are applied individually under normal operating conditions and not valid simultaneously.
24. Measured using a 75 mV source, 50% duty cycle clock source. All loading with 50 W to VCC − 2.0 V. OLS = FLOAT. Input edge rates 40 ps
(20% − 80%).
25. tSKEW = |tPLH − tPHL| for a nominal 50% differential clock input waveform.
26. Additive RMS jitter with 50% Duty Cycle clock signal.
27. Additive Peak-to-Peak data dependent jitter with NRZ PRBS 231−1 data at 7 Gb/s.
28. Input Voltage Swing is a single-ended measurement operating in differential mode. VINPP (max) cannot exceed VCC − VEE.
http://onsemi.com
9
NBSG72A
OUTPUT VOLTAGE AMPLITUDE (mV)
900
OLS = VCC
800
700
OLS = VCC − 0.8 V = FLOAT
600
500
*OLS = VEE
400
300
OLS = VCC − 0.4 V
200
100
0
1
2
3
4
5
6
7
8
9
INPUT FREQUENCY (GHz)
Figure 3. Output Voltage Amplitude (VOUTPP) vs.
Input Clock Frequency (fin) @ Ambient Temperature (Typical)
*When an output level of 400 mV is desired and VCC − VEE > 3.0 V, a 2 kW resistor should be connected from OLS to VEE.
Input Signal
D0
Q0
D0
Selected
Q0 Output
Signal Path
20
0 dB
0
Non−Driven
Input
D1
Q1
D1
Measured
Q1 Non−Driven Output
(VNA)
SELA
Logic
Low
SELB
Yscale = 10 dB/div
NBSG72A
Q
Q
Logic
High
−80
1
Xscale = 1 GHz/div
8
Figure 4. Channel-to-Channel Crosstalk Isolation at Ambient Temperature
(D0 to Q0 Signal Path Selected; SelA = Low, SelB = High)
D0
Non−Driven
Input
NBSG72A
D0
Q0
20
Selected
Q0 Output
0
Q1
D1
Input Signal
SELA
Logic
High
SELB
0 dB
Yscale = 10 dB/div
D1
Measured
Non−Driven Output
Q1
(VNA)
Q
Q
Logic
Low
−80
1
Xscale = 1 GHz/div
Figure 5. Channel-to-Channel Crosstalk Isolation at Ambient Temperature
(D1 to Q0 Signal Path Selected; SelA = High, SelB = Low)
http://onsemi.com
10
8
NBSG72A
Signal Path
D1
Input Signal
D1
20
Q0
Non−Driven
Q0 Selected Output
Q1
NBSG72A
SELA
Logic
Low
0dB
0
Yscale = 10 dB/div
D0
Non−Driven
Input D0
Measured Output
Q1 (VNA)
SELB
Q
Q
Logic
Low
−80
1
Xscale = 1 GHz/div
8
Figure 6. Channel-to-Channel Crosstalk Isolation at Ambient Temperature
(D0 to Q0 and Q1 Signal Path Selected; SelA = Low, SelB = Low)
D0
Input Signal
NBSG72A
Q0
20
Measured Output
Q0 (VNA)
D0
0dB
D1
Non−Driven
Input D1
Yscale = 10 dB/div
0
Q1
Signal Path
SELA
Logic
High
Non−Driven
Q1 Selected Output
SELB
Q
Q
Logic
High
−80
1
Xscale = 1 GHz/div
Figure 7. Channel-to-Channel Crosstalk Isolation at Ambient Temperature
(D1 to Q0 and Q1 Signal Path Selected; SelA = High, SelB = High)
http://onsemi.com
11
8
NBSG72A
Y = 75 mv/div
Total System Jitter = 17.2 ps
Input Generator Jitter = 10 ps
Device Jitter = 6.8 ps
X = 60 ps/div
Y = 80 mV/div
Figure 8. Eye Diagram at 3.2 Gb/s
(VCC − VEE = 3.3 V, OLS = FLOAT @ 255C with input pattern of 231−1 PRBS, 5000 Waveforms)
Total System Jitter = 17.2 ps
Input Generator Jitter = 10 ps
Device Jitter = 7.2 ps
X = 21 ps/div
Figure 9. Eye Diagram at 7 Gb/s/s
(VCC − VEE = 3.3 V, OLS = FLOAT @ 255C with input pattern of 231−1 PRBS, 5000 Waveforms)
http://onsemi.com
12
NBSG72A
300
200
100
IOLS (mA)
0
−100
−200
−300
−400
−500
−600
−700
VCC
VCC − 400
VCC − 800
VCC − 1200
VEE
VOLS (mV)
Figure 10. Typical OLS Input Current vs. OLS Input Voltage
(VCC − VEE = 3.3 V @ 255C)
1000
VCC − 75
VOUTPP (mV)
800
VCC − 700
VCC − 900
600
VEE + 100
400
VCC − 250
VCC − 550
200
VCC − 1125
VCC − 1275
0
VCC
VCC − 400
VCC − 800
VCC − 1200
OLS (mV)
Figure 11. OLS Operating Area
http://onsemi.com
13
VEE
NBSG72A
IN
VIH
Vth
IN
VIL
IN
IN
Vth
Figure 12. Differential Input Driven
Single-Ended
VCC
Vthmax
Figure 13. Differential Inputs
Driven Differentially
VIHmax
VILmax
Vth
IN
Vthmin
VEE
VIH
Vth
VIL
IN
IN
VID = |VIHD(IN) − VILD(IN)|
VIHD
VILD
VIHmin
VILmin
Figure 14. Vth Diagram
Figure 15. Differential Inputs Driven
Differentially
VCC
VIHDmax
VIHCMRmax
VILDmax
VIHCMR
VIHDtyp
VID = VIHD − VILD
IN
IN
VILDtyp
VIHDmin
VIHCMRmin
VILDmin
VEE
Figure 16. VIHCMR Diagram
http://onsemi.com
14
NBSG72A
D
VINPP = VIH(D) − VIL(D)
D
Q
VOUTPP = VOH(Q) − VOL(Q)
Q
tPHL
tPLH
Figure 17. AC Reference Measurement
Zo = 50 W
Q
D
Receiver
Device
Driver
Device
Zo = 50 W
Q
D
50 W
50 W
VTT
VTT = VCC − 2.0 V
Figure 18. Typical Termination for Output Driver and Device Evaluation
(See Application Note AND8020/D − Termination of ECL Logic Devices.)
ORDERING INFORMATION
Package
Shipping†
NBSG72AMNG
QFN-16
(Pb-Free / Halide-Free)
123 Units / Tube
NBSG72AMNR2G
QFN-16
(Pb-Free / Halide-Free)
3000 / Tape & Reel
Device
Board
Description
NBSG72AMNEVB
NBSG72AMN Evaluation Board
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging
Specifications Brochure, BRD8011/D.
Resource Reference of Application Notes
AND8001/D − Odd Number Counters Design
AND8002/D − Marking and Date Codes
AND8020/D − Termination of ECL Logic Devices
AND8066/D − Interfacing with ECLinPS
AND8090/D − AC Characteristics of ECL Devices
AN1405/D − ECL Clock Distribution Techniques
AN1406/D − Designing with PECL (ECL at +5.0 V)
AN1503/D − ECLinPSt I/O SPICE Modeling Kit
AN1504/D − Metastability and the ECLinPSt Family
AN1568/D − Interfacing between LVDC and ECL
AN1672/D − The ECL Translator Guide
http://onsemi.com
15
NBSG72A
PACKAGE DIMENSIONS
QFN16 3x3, 0.5P
CASE 485G
ISSUE F
D
ÇÇÇ
ÇÇÇ
ÇÇÇ
ÇÇÇ
PIN 1
LOCATION
0.10 C
2X
L1
DETAIL A
ALTERNATE TERMINAL
CONSTRUCTIONS
E
ÉÉÉ
ÉÉÉ
TOP VIEW
DETAIL B
0.05 C
NOTES:
1. DIMENSIONING AND TOLERANCING PER
ASME Y14.5M, 1994.
2. CONTROLLING DIMENSION: MILLIMETERS.
3. DIMENSION b APPLIES TO PLATED
TERMINAL AND IS MEASURED BETWEEN
0.25 AND 0.30 MM FROM TERMINAL.
4. COPLANARITY APPLIES TO THE EXPOSED
PAD AS WELL AS THE TERMINALS.
L
L
EXPOSED Cu
0.10 C
2X
A
B
(A3)
ÉÉ
ÉÉ
ÇÇ
MOLD CMPD
A3
A1
DETAIL B
A
0.05 C
ALTERNATE
CONSTRUCTIONS
NOTE 4
A1
SIDE VIEW
C
SEATING
PLANE
DIM
A
A1
A3
b
D
D2
E
E2
e
K
L
L1
MILLIMETERS
MIN
NOM MAX
0.80
0.90
1.00
0.00
0.03
0.05
0.20 REF
0.18
0.24
0.30
3.00 BSC
1.65
1.75
1.85
3.00 BSC
1.65
1.75
1.85
0.50 BSC
0.18 TYP
0.30
0.40
0.50
0.00
0.08
0.15
RECOMMENDED
SOLDERING FOOTPRINT*
16X
0.10 C A B
16X
L
DETAIL A
0.58
PACKAGE
OUTLINE
D2
8
4
1
9
2X
E2
16X
2X
1.84 3.30
K
1
16X
16
e
e/2
BOTTOM VIEW
0.30
16X
b
0.50
PITCH
0.10 C A B
0.05 C
NOTE 3
DIMENSIONS: MILLIMETERS
*For additional information on our Pb−Free strategy and soldering
details, please download the ON Semiconductor Soldering and
Mounting Techniques Reference Manual, SOLDERRM/D.
GigaComm is a trademark of Semiconductor Components Industries, LLC.
ON Semiconductor and
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks,
copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent−Marking.pdf. SCILLC
reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any
particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without
limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC
does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where
personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly,
any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture
of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada
Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada
Email: [email protected]
N. American Technical Support: 800−282−9855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81−3−5817−1050
http://onsemi.com
16
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
NBSG72A/D
Similar pages