SLAS344C – JANUARY 2002 – REVISED MARCH2003 D Low Supply-Voltage Range, 1.8 V to 3.6 V D Ultralow-Power Consumption: D D D D D D D D D D – Active Mode: 280 µA at 1 MHz, 2.2 V – Standby Mode: 1.1 µA – Off Mode (RAM Retention): 0.1 µA Five Power Saving Modes Wake-Up From Standby Mode in 6 µs 16-Bit RISC Architecture, 125-ns Instruction Cycle Time 12-Bit A/D Converter With Internal Reference, Sample-and-Hold and Autoscan Feature 16-Bit Timer_B With Three† or Seven‡ Capture/Compare-With-Shadow Registers 16-Bit Timer_A With Three Capture/Compare Registers On-Chip Comparator Serial Communication Interface (USART), Select Asynchronous UART or Synchronous SPI by Software: – Two USARTs (USART0, USART1) — MSP430x44x Devices – One USART (USART0) — MSP430x43x Devices Brownout Detector Supply Voltage Supervisor/Monitor With Programmable Level Detection D Serial Onboard Programming, D D D No External Programming Voltage Needed Programmable Code Protection by Security Fuse Integrated LCD Driver for Up to 160 Segments Family Members Include: – MSP430F435: 16KB+256B Flash Memory, 512B RAM – MSP430F436: 24KB+256B Flash Memory, 1KB RAM – MSP430F437: 32KB+256B Flash Memory, 1KB RAM – MSP430F447: 32KB+256B Flash Memory, 1KB RAM – MSP430F448: 48KB+256B Flash Memory, 2KB RAM – MSP430F449: 60KB+256B Flash Memory, 2KB RAM For Complete Module Descriptions, See The MSP430x4xx Family User’s Guide, Literature Number SLAU056 † ’F435, ’F436, and ’F437 devices ‡ ’F447, ’F448, and ’F449 devices description The Texas Instruments MSP430 family of ultralow power microcontrollers consist of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low power modes is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that attribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 6µs. The MSP430x43x and the MSP430x44x series are microcontroller configurations with two built-in 16-bit timers, a fast 12-bit A/D converter, one or two universal serial synchronous/asynchronous communication interfaces (USART), 48 I/O pins, and a liquid crystal driver (LCD) with up to 160 segments. Typical applications include sensor systems that capture analog signals, convert them to digital values, and process and transmit the data to a host system, or process this data and displays it on a LCD panel. The timers make the configurations ideal for industrial control applications such as ripple counters, digital motor control, EE-meters, hand-held meters, etc. The hardware multiplier enhances the performance and offers a broad code and hardware-compatible family solution. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 2002 – 2003, Texas Instruments Incorporated !" #!$% &"' &! #" #" (" " " !" && )*' &! # "+ &" " "%* %!&" "+ %% #""' POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 SLAS344C – JANUARY 2002 – REVISED MARCH2003 AVAILABLE OPTIONS PACKAGED DEVICES TA PLASTIC 80-PIN QFP (PN) –40°C to 85°C PLASTIC 100-PIN QFP (PZ) MSP430F435IPN MSP430F436IPN MSP430F437IPN MSP430F435IPZ MSP430F436IPZ MSP430F437IPZ MSP430F447IPZ MSP430F448IPZ MSP430F449IPZ AVCC DVSS1 AVSS P6.2/A2 P6.1/A1 P6.0/A0 RST/NMI TCK TMS TDI TDO/TDI XT2IN XT2OUT P1.0/TA0 P1.1/TA0/MCLK P1.2/TA1 P1.3/TBOUTH/SVSOUT PN PACKAGE (TOP VIEW) P1.4/TBCLK/SMCLK P1.5/TACLK/ACLK P1.6/CA0 pin designation, MSP430x435IPN, MSP430x436IPN, MSP430x437IPN 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 1 60 2 59 3 58 4 57 5 56 6 55 7 54 8 53 9 10 11 MSP430F435IPN MSP430F436IPN MSP430F437IPN 52 51 50 12 49 13 48 14 47 15 46 16 45 17 44 18 43 19 42 20 41 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 P4.0/S9 S10 S11 S12 S13 S14 S15 S16 S17 P2.7/ADC12CLK/S18 P2.6/CAOUT/S19 S20 S21 S22 S23 P3.7/S24 P3.6/S25 P3.5/S26 P3.4/S27 P3.3/UCLK0/S28 DVCC1 P6.3/A3 P6.4/A4 P6.5/A5 P6.6/A6 P6.7/A7/SVSin VREF+ XIN XOUT/TCLK VeREF+ VREF–/VeREF– P5.1/S0 P5.0/S1 P4.7/S2 P4.6/S3 P4.5/S4 P4.4/S5 P4.3/S6 P4.2/S7 P4.1/S8 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P1.7CA1 P2.0/TA2 P2.1/TB0 P2.2/TB1 P2.3/TB2 P2.4/UTXD0 P2.5/URXD0 DVSS2 DVCC2 P5.7/R33 P5.6/R23 P5.5/R13 R03 P5.4/COM3 P5.3/COM2 P5.2/COM1 COM0 P3.0/STE0/S31 P3.1/SIMO0/S30 P3.2/SOMI0/S29 SLAS344C – JANUARY 2002 – REVISED MARCH2003 pin designation, MSP430x435IPZ, MSP430x436IPZ, MSP430x437IPZ 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 AVCC DVSS1 AVSS P6.2/A2 P6.1/A1 P6.0/A0 RST/NMI TCK TMS TDI TDO/TDI XT2IN XT2OUT P1.0/TA0 P1.1/TA0/MCLK P1.2/TA1 P1.3/TBOUTH/SVSOUT P1.4/TBCLK/SMCLK P1.5/TACLK/ACLK P1.6/CA0 P1.7/CA1 P2.0/TA2 P2.1/TB0 P2.2/TB1 P2.3/TB2 PZ PACKAGE (TOP VIEW) MSP430F435IPZ MSP430F436IPZ MSP430F437IPZ 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 P2.4/UTXD0 P2.5/URXD0 P2.6/CAOUT P2.7/ADC12CLK P3.0/STE0 P3.1/SIMO0 P3.2/SOMI0 P3.3/UCLK0 P3.4 P3.5 P3.6 P3.7 P4.0 P4.1 DVSS2 DVCC2 P5.7/R33 P5.6/R23 P5.5/R13 R03 P5.4/COM3 P5.3/COM2 P5.2/COM1 COM0 P4.2/S39 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31 S32 S33 P4.7/S34 P4.6/S35 P4.5/S36 P4.4/S37 P4.3/S38 DVCC1 P6.3/A3 P6.4/A4 P6.5/A5 P6.6/A6 P6.7/A7/SVSin VREF+ XIN XOUT/TCLK VeREF+ VREF–/VeREF– P5.1/S0 P5.0/S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 SLAS344C – JANUARY 2002 – REVISED MARCH2003 pin designation, MSP430x447IPZ, MSP430x448IPZ, MSP430x449IPZ 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 AVCC DVSS1 AVSS P6.2/A2 P6.1/A1 P6.0/A0 RST/NMI TCK TMS TDI TDO/TDI XT2IN XT2OUT P1.0/TA0 P1.1/TA0/MCLK P1.2/TA1 P1.3/TBOUTH/SVSOUT P1.4/TBCLK/SMCLK P1.5/TACLK/ACLK P1.6/CA0 P1.7/CA1 P2.0/TA2 P2.1/TB0 P2.2/TB1 P2.3/TB2 PZ PACKAGE (TOP VIEW) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 MSP430F447IPZ MSP430F448IPZ MSP430F449IPZ S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31 S32 S33 P4.7/S34 P4.6/S35 P4.5/UCLK1/S36 P4.4/SOMI1/S37 4.3/SIMO1/S38 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 DVCC1 P6.3/A3 P6.4/A4 P6.5/A5 P6.6/A6 P6.7/A7/SVSin VREF+ XIN XOUT/TCLK VeREF+ VREF–/VeREF– P5.1/S0 P5.0/S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 P2.4/UTXD0 P2.5/URXD0 P2.6/CAOUT P2.7/ADC12CLK P3.0/STE0 P3.1/SIMO0 P3.2/SOMI0 P3.3/UCLK0 P3.4/TB3 P3.5/TB4 P3.6/TB5 P3.7/TB6 P4.0/UTXD1 P4.1/URXD1 DVSS2 DVCC2 P5.7/R33 P5.6/R23 P5.5/R13 R03 P5.4/COM3 P5.3/COM2 P5.2/COM1 COM0 P4.2/STE1/S39 SLAS344C – JANUARY 2002 – REVISED MARCH2003 MSP430x43x functional block diagrams XIN XOUT/TCLK Oscillator XT2IN FLL+ DVCC DVSS AVCC AVSS RST/NMI ACLK 16 kB Flash 512 B RAM 12 Bit ADC SMCLK 24 kB Flash 1 kB RAM 8 Channels 32 kB Flash 1 kB RAM <10 µs Conv. XT2OUT P5 P6 I/O Port 5/6 P3 P4 I/O Port 3/4 16 I/Os P1 P2 I/O Port 1/2 USART0 16 I/Os, With UART or SPI Function Interrupt Capability MCLK Test MAB, 4 Bit MAB, 16 Bit JTAG CPU MCB Emulation Module Incl. 16 Reg. Bus Conv MDB, 16 Bit MDB, 8 Bit 4 TMS Watchdog Timer TCK TDI 15 / 16 Bit TDO/TDI Timer_B3 3 CC–Reg Shadow Reg. Timer_A3 POR SVS Brownout 3 CC-Reg. Comparator A Basic Timer1 1 Interrupt Vector LCD 160 Segments 1,2,3,4 MUX fLCD MSP430x44x functional block diagrams XIN XOUT/TCLK Oscillator XT2IN FLL+ DVCC DVSS AVCC AVSS RST/NMI ACLK 32 kB Flash 1 kB RAM 12 Bit ADC SMCLK 48 kB Flash 2 kB RAM 8 Channels 60 kB Flash 2 kB RAM <10 µs Conv. XT2OUT P5 P6 I/O Port 5/6 P3 P4 I/O Port 3/4 16 I/Os P1 P2 I/O Port 1/2 USART0 USART1 16 I/Os, With UART or SPI Function Interrupt Capability MCLK Test MAB, 4 Bit MAB, 16 Bit JTAG CPU MCB Emulation Module Incl. 16 Reg. Bus Conv MDB, 16 Bit MDB, 8 Bit 4 TMS Multiply TCK MPY, MPYS MAC,MACS 8×8 Bit 8×16 Bit 16×8 Bit 16×16 Bit TDI TDO/TDI Watchdog Timer 15 / 16 Bit Timer_B7 7 CC-Reg. Shadow Reg. Timer_A3 3 CC-Reg. POR SVS Brownout Comparator A Basic Timer1 1 Interrupt Vector LCD 160 Segments 1,2,3,4 MUX fLCD POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 SLAS344C – JANUARY 2002 – REVISED MARCH2003 MSP430x43x Terminal Functions TERMINAL PN NAME NO. PZ I/O NAME NO. DESCRIPTION I/O DVCC1 1 2 I/O DVCC1 P6.3/A3 1 P6.3/A3 2 I/O General-purpose digital I/O, analog input a3—12-bit ADC P6.4/A4 3 I/O P6.4/A4 3 I/O General-purpose digital I/O, analog input a4—12-bit ADC P6.5/A5 4 I/O P6.5/A5 4 I/O General-purpose digital I/O, analog input a5—12-bit ADC P6.6/A6 5 I/O P6.6/A6 5 I/O General-purpose digital I/O, analog input a6—12-bit ADC P6.7/A7/SVSin 6 I/O P6.7/A7/SVSin 6 I/O General-purpose digital I/O, analog input a7—12-bit ADC, analog input to brownout, supply voltage supervisor VREF+ 7 O VREF+ 7 O Output of positive terminal of the reference voltage in the ADC XIN 8 I XIN 8 I Input port for crystal oscillator XT1. Standard or watch crystals can be connected. XOUT/TCLK 9 I/O XOUT/TCLK 9 I/O VeREF+ 10 I VeREF+ 10 I Input for an external reference voltage to the ADC VREF–/VeREF– 11 I VREF–/VeREF– 11 I Negative terminal for the ADC’s reference voltage for both sources, the internal reference voltage, or an external applied reference voltage. P5.1/S0 12 I/O P5.1/S0 12 I/O General-purpose I/O / LCD segment output 0 P5.0/S1 13 I/O P5.0/S1 13 I/O General-purpose I/O / LCD segment output 1 P4.7/S2 14 I/O S2 14 O General-purpose I/O / LCD segment output 2 P4.6/S3 15 I/O S3 15 O General-purpose I/O / LCD segment output 3 P4.5/S4 16 I/O S4 16 O General-purpose I/O / LCD segment output 4 P4.4/S5 17 I/O S5 17 O General-purpose I/O / LCD segment output 5 P4.3/S6 18 I/O S6 18 O General-purpose I/O / LCD segment output 6 P4.2/S7 19 I/O S7 19 O General-purpose I/O / LCD segment output 7 P4.1/S8 20 I/O S8 20 O General-purpose I/O / LCD segment output 8 P4.0/S9 21 I/O S9 21 O General-purpose I/O / LCD segment output 9 S10 22 O S10 22 O LCD segment output 10 S11 23 O S11 23 O LCD segment output 11 S12 24 O S12 24 O LCD segment output 12 S13 25 O S13 25 O LCD segment output 13 S14 26 O S14 26 O LCD segment output 14 S15 27 O S15 27 O LCD segment output 15 S16 28 O S16 28 O LCD segment output 16 S17 29 O S17 29 O LCD segment output 17 P2.7/ADC12CLK/ S18 30 I/O S18 30 O General-purpose digital I/O / conversion clock—12-bit ADC LCD segment output 18 P2.6/CAOUT/S19 31 I/O S19 31 O General-purpose digital I/O / Comparator_A output / LCD segment output 19 S20 32 O S20 32 O LCD segment output 20 S21 33 O S21 33 O LCD segment output 21 S22 34 O S22 34 O LCD segment output 22 S23 35 O S23 35 O LCD segment output 23 P3.7/S24 36 I/O S24 36 O General-purpose digital I/O / LCD segment output 24 P3.6/S25 37 I/O S25 37 O General-purpose digital I/O / LCD segment output 25 P3.5/S26 38 I/O S26 38 O General-purpose digital I/O / LCD segment output 26 P3.4/S27 39 I/O S27 39 O General-purpose digital I/O / LCD segment output 27 6 Digital supply voltage, positive terminal. Supplies all digital parts POST OFFICE BOX 655303 Output terminal of crystal oscillator XT1 or test clock input • DALLAS, TEXAS 75265 SLAS344C – JANUARY 2002 – REVISED MARCH2003 MSP430x43x Terminal Functions (Continued) TERMINAL PN PZ I/O NAME NO. DESCRIPTION I/O NAME NO. P3.3/UCLK0/S28 40 I/O S28 40 O General-purpose digital I/O / ext. clock i/p—USART0/UART or SPI mode, clock o/p—USART0/SPI mode / LCD segment output 28 P3.2/SOMI0/S29 41 I/O S29 41 O General-purpose digital I/O / slave out/master in of USART0/SPI mode / LCD segment output 29 P3.1/SIMO0/S30 42 I/O S30 42 O General-purpose digital I/O / slave out/master out of USART0/SPI mode / LCD segment output 30 P3.0/STE0/S31 43 I/O S31 43 O General-purpose digital I/O / slave transmit enable-USART0/SPI mode / LCD segment output 31 S32 44 O LCD segment output 32 S33 45 O LCD segment output 33 P4.7/S34 46 I/O General-purpose digital I/O / LCD segment output 34 P4.6/S35 47 I/O General-purpose digital I/O / LCD segment output 35 P4.5/S36 48 I/O General-purpose digital I/O / LCD segment output 36 P4.4/S37 49 I/O General-purpose digital I/O / LCD segment output 37 P4.3/S38 50 I/O General-purpose digital I/O / LCD segment output 38 P4.2/S39 51 I/O General-purpose digital I/O / LCD segment output 39 COM0 44 O COM0 52 O COM0–3 are used for LCD backplanes. P5.2/COM1 45 I/O P5.2/COM1 53 I/O General-purpose digital I/O / common output, COM0–3 are used for LCD backplanes. P5.3/COM2 46 I/O P5.3/COM2 54 I/O General-purpose digital I/O / common output, COM0–3 are used for LCD backplanes. P5.4/COM3 47 I/O P5.4/COM3 55 I/O General-purpose digital I/O / common output, COM0–3 are used for LCD backplanes. R03 48 I R03 56 I P5.5/R13 49 I/O P5.5/R13 57 I/O General-purpose digital I/O / input port of third most positive analog LCD level (V4 or V3) P5.6/R23 50 I/O P5.6/R23 58 I/O General-purpose digital I/O / input port of second most positive analog LCD level (V2) P5.7/R33 51 I/O P5.7/R33 59 I/O General-purpose digital I/O / output port of most positive analog LCD level (V1) DVCC2 52 53 DVCC2 DVSS2 60 DVSS2 P4.1 62 I/O General-purpose digital I/O P4.0 63 I/O General-purpose digital I/O P3.7 64 I/O General-purpose digital I/O P3.6 65 I/O General-purpose digital I/O P3.5 66 I/O General-purpose digital I/O P3.4 67 I/O General-purpose digital I/O P3.3/UCLK0 68 I/O General-purpose digital I/O / external clock input—USART0/UART or SPI mode, clock output—USART0/SPI mode P3.2/SOMI0 69 I/O General-purpose digital I/O / slave out/master in of USART0/SPI mode P3.1/SIMO0 70 I/O General-purpose digital I/O / slave in/master out of USART0/SPI mode P3.0/STE0 71 I/O General-purpose digital I/O / slave transmit enable USART0/SPI mode P2.7/ADC12CLK 72 I/O General-purpose digital I/O / conversion clock—12-bit ADC P2.6/CAOUT 73 I/O General-purpose digital I/O / Comparator_A output P2.5/URXD0 74 I/O General-purpose digital I/O / receive data in—USART0/UART mode P2.5/URXD0 54 I/O Input port of fourth positive (lowest) analog LCD level (V5) 61 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 SLAS344C – JANUARY 2002 – REVISED MARCH2003 MSP430x43x Terminal Functions (Continued) TERMINAL PN NAME NO. PZ I/O NAME NO. DESCRIPTION I/O P2.4/UTXD0 55 I/O P2.4/UTXD0 75 I/O General-purpose digital I/O / transmit data out—USART0/UART mode P2.3/TB2 56 I/O P2.3/TB2 76 I/O General-purpose digital I/O / Timer_B3 CCR2. Capture: CCI2A/CCI2B input, compare: Out2 output P2.2/TB1 57 I/O P2.2/TB1 77 I/O General-purpose digital I/O / Timer_B3 CCR1. Capture: CCI1A/CCI1B input, compare: Out1 output P2.1/TB0 58 I/O P2.1/TB0 78 I/O General-purpose digital I/O / Timer_B3 CCR0. Capture: CCI0A/CCI0B input, compare: Out0 output P2.0/TA2 59 I/O P2.0/TA2 79 I/O General-purpose digital I/O / Timer_A Capture: CCI2A input, compare: Out2 output P1.7/CA1 60 I/O P1.7/CA1 80 I/O General-purpose digital I/O / Comparator_A input P1.6/CA0 61 I/O P1.6/CA0 81 I/O General-purpose digital I/O / Comparator_A input 82 I/O General-purpose digital I/O / Timer_A, clock signal TACLK input / ACLK output (divided by 1, 2, 4, or 8) P1.5/TACLK/ ACLK 62 I/O P1.5/TACLK/ ACLK P1.4/TBCLK/ SMCLK 63 I/O P1.4/TBCLK/ SMCLK 83 I/O General-purpose digital I/O / input clock TBCLK—Timer_B3 / submain system clock SMCLK output P1.3/TBOUTH/ SVSOUT 64 I/O P1.3/TBOUTH/ SVSOUT 84 I/O General-purpose digital I/O / switch all PWM digital output ports to high impedance—Timer_B3 TB0 to TB2 / SVS: output of SVS comparator P1.2/TA1 65 I/O P1.2/TA1 85 I/O General-purpose digital I/O / Timer_A, Capture: CCI1A, compare: Out1 output P1.1/TA0/MCLK 66 I/O P1.1/TA0/MCLK 86 I/O General-purpose digital I/O / Timer_A. Capture: CCI0B / MCLK output. Note: TA0 is only an input on this pin. P1.0/TA0 67 I/O P1.0/TA0 87 I/O General-purpose digital I/O / Timer_A. Capture: CCI0A input, compare: Out0 output XT2OUT 68 O XT2OUT 88 O Output terminal of crystal oscillator XT2 XT2IN 69 I XT2IN 89 I Input port for crystal oscillator XT2. Only standard crystals can be connected. TDO/TDI 70 I/O TDO/TDI 90 I/O Test data output port. TDO/TDI data output or programming data input terminal TDI 71 I TDI 91 I Test data input. TDI is used as a data input port. The device protection fuse is connected to TDI. TMS 72 I TMS 92 I Test mode select. TMS is used as an input port for device programming and test. TCK 73 I TCK 93 I Test clock. TCK is the clock input port for device programming and test. RST/NMI 74 I RST/NMI 94 I General-purpose digital I/O / reset input or nonmaskable interrupt input port P6.0/A0 75 I/O P6.0/A0 95 I/O General-purpose digital I/O / analog input a0 – 12-bit ADC P6.1/A1 76 I/O P6.1/A1 96 I/O General-purpose digital I/O / analog input a1 – 12-bit ADC P6.2/A2 77 I/O P6.2/A2 97 I/O General-purpose digital I/O / analog input a2 – 12-bit ADC AVSS 78 AVSS 98 Negative terminal that supplies SVS, brownout, oscillator, FLL+, comparator_A, port 1, and LCD resistive divider circuitry. DVSS1 79 DVSS1 99 Digital supply voltage, negative terminal. Supplies all digital parts, except those which are supplied via AVCC/AVSS. AVCC 80 AVCC 100 Positive terminal that supplies SVS, brownout, oscillator, FLL+, comparator_A, port 1, and LCD resistive divider circuitry; must not power up prior to DVCC1/DVCC2. 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS344C – JANUARY 2002 – REVISED MARCH2003 MSP430x44x Terminal Functions TERMINAL PN NAME I/O DESCRIPTION NO. DVCC1 1 P6.3/A3 2 I/O Digital supply voltage, positive terminal. Supplies all digital parts General-purpose digital I/O, analog input a3—12-bit ADC P6.4/A4 3 I/O General-purpose digital I/O, analog input a4—12-bit ADC P6.5/A5 4 I/O General-purpose digital I/O, analog input a5—12-bit ADC P6.6/A6 5 I/O General-purpose digital I/O, analog input a6—12-bit ADC P6.7/A7/SVSin 6 I/O General-purpose digital I/O, analog input a7—12-bit ADC, analog input to brownout, supply voltage supervisor VREF+ XIN 7 O Output of positive terminal of the reference voltage in the ADC 8 I Input port for crystal oscillator XT1. Standard or watch crystals can be connected. XOUT/TCLK 9 I/O VeREF+ 10 I Input for an external reference voltage to the ADC VREF–/VeREF– 11 I Negative terminal for the ADC’s reference voltage for both sources, the internal reference voltage, or an external applied reference voltage P5.1/S0 12 O General-purpose digital I/O, LCD segment output 0 P5.0/S1 13 O General-purpose digital I/O, LCD segment output 1 S2 14 O LCD segment output 2 S3 15 O LCD segment output 3 S4 16 O LCD segment output 4 S5 17 O LCD segment output 5 S6 18 O LCD segment output 6 S7 19 O LCD segment output 7 S8 20 O LCD segment output 8 S9 21 O LCD segment output 9 S10 22 O LCD segment output 10 S11 23 O LCD segment output 11 S12 24 O LCD segment output 12 S13 25 O LCD segment output 13 S14 26 O LCD segment output 14 S15 27 O LCD segment output 15 S16 28 O LCD segment output 16 S17 29 O LCD segment output 17 S18 30 O LCD segment output 18 S19 31 O LCD segment output 19 S20 32 O LCD segment output 20 S21 33 O LCD segment output 21 S22 34 O LCD segment output 22 S23 35 O LCD segment output 23 S24 36 O LCD segment output 24 S25 37 O LCD segment output 25 S26 38 O LCD segment output 26 S27 39 O LCD segment output 27 S28 40 O LCD segment output 28 Output terminal of crystal oscillator XT1 or test clock input POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 SLAS344C – JANUARY 2002 – REVISED MARCH2003 MSP430x44x Terminal Functions (Continued) TERMINAL PN NAME I/O DESCRIPTION NO. S29 41 O LCD segment output 29 S30 42 O LCD segment output 30 S31 43 O LCD segment output 31 S32 44 O LCD segment output 32 S33 45 O LCD segment output 33 P4.7/S34 46 I/O General-purpose digital I/O / LCD segment output 34 P4.6/S35 47 I/O General-purpose digital I/O / LCD segment output 35 P4.5/UCLK1/S36 48 I/O General-purpose digital I/O / external clock input—USART1/UART or SPI mode, clock output—USART1/SPI MODE / LCD segment output 36 P4.4/SOMI1/S37 49 I/O General-purpose digital I/O / slave out/master in of USART1/SPI mode / LCD segment output 37 P4.3/SIMO1/S38 50 I/O General-purpose digital I/O / slave in/master out of USART1/SPI mode / LCD segment output 38 P4.2/STE1/S39 51 I/O General-purpose digital I/O / slave transmit enable—USART1/SPI mode / LCD segment output 39 COM0 52 O COM0–3 are used for LCD backplanes. P5.2/COM1 53 I/O General-purpose digital I/O / common output, COM0–3 are used for LCD backplanes. P5.3/COM2 54 I/O General-purpose digital I/O / common output, COM0–3 are used for LCD backplanes. P5.4/COM3 55 I/O General-purpose digital I/O / common output, COM0–3 are used for LCD backplanes. R03 56 I P5.5/R13 57 I/O General-purpose digital I/O / Input port of third most positive analog LCD level (V4 or V3) P5.6/R23 58 I/O General-purpose digital I/O / Input port of second most positive analog LCD level (V2) P5.7/R33 59 I/O General-purpose digital I/O / Output port of most positive analog LCD level (V1) DVCC2 60 DVSS2 61 P4.1/URXD1 62 I/O General-purpose digital I/O / receive data in—USART1/UART mode P4.0/UTXD1 63 I/O General-purpose digital I/O / transmit data out—USART1/UART mode P3.7/TB6 64 I/O General-purpose digital I/O / Timer_B7 CCR6 / Capture: CCI6A/CCI6B input, compare: Out6 output P3.6/TB5 65 I/O General-purpose digital I/O / Timer_B7 CCR5 / Capture: CCI5A/CCI5B input, compare: Out5 output P3.5/TB4 66 I/O General-purpose digital I/O / Timer_B7 CCR4 / Capture: CCI4A/CCI4B input, compare: Out4 output P3.4/TB3 67 I/O General-purpose digital I/O / Timer_B7 CCR3 / Capture: CCI3A/CCI3B input, compare: Out3 output P3.3/UCLK0 68 I/O General-purpose digital I/O / external clock input—USART0/UART or SPI mode, clock output—USART0/SPI mode P3.2/SOMI0 69 I/O General-purpose digital I/O / slave out/master in of USART0/SPI mode P3.1/SIMO0 70 I/O General-purpose digital I/O / slave in/master out of USART0/SPI mode P3.0/STE0 71 I/O General-purpose digital I/O / slave transmit enable—USART0/SPI mode P2.7/ADC12CLK 72 I/O General-purpose digital I/O / conversion clock—12-bit ADC P2.6/CAOUT 73 I/O General-purpose digital I/O / Comparator_A output P2.5/URXD0 74 I/O General-purpose digital I/O / receive data in—USART0/UART mode P2.4/UTXD0 75 I/O General-purpose digital I/O / transmit data out—USART0/UART mode P2.3/TB2 76 I/O General-purpose digital I/O / Timer_B7 CCR2. Capture: CCI2A/CCI2B input, compare: Out2 output P2.2/TB1 77 I/O General-purpose digital I/O / Timer_B7 CCR1. Capture: CCI1A/CCI1B input, compare: Out1 output P2.1/TB0 78 I/O General-purpose digital I/O / Timer_B7 CCR0. Capture: CCI0A/CCI0B input, compare: Out0 output P2.0/TA2 79 I/O General-purpose digital I/O / Timer_A Capture: CCI2A input, compare: Out2 output P1.7/CA1 80 I/O General-purpose digital I/O / Comparator_A input 10 Input port of fourth positive (lowest) analog LCD level (V5) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS344C – JANUARY 2002 – REVISED MARCH2003 MSP430x44x Terminal Functions (Continued) TERMINAL PN NAME I/O DESCRIPTION NO. P1.6/CA0 81 I/O General-purpose digital I/O / Comparator_A input P1.5/TACLK/ ACLK 82 I/O General-purpose digital I/O / Timer_A, clock signal TACLK input / ACLK output (divided by 1, 2, 4, or 8) P1.4/TBCLK/ SMCLK 83 I/O General-purpose digital I/O / input clock TBCLK—Timer_B7 / submain system clock SMCLK output P1.3/TBOutH/ SVSOut 84 I/O General-purpose digital I/O / switch all PWM digital output ports to high impedance—Timer_B7 TB0 to TB6 / SVS: output of SVS comparator P1.2/TA1 85 I/O General-purpose digital I/O / Timer_A, Capture: CCI1A, compare: Out1 output P1.1/TA0/MCLK 86 I/O General-purpose digital I/O / Timer_A. Capture: CCI0B / MCLK output. Note: TA0 is only an input on this pin. P1.0/TA0 87 I/O General-purpose digital I/O / Timer_A. Capture: CCI0A input, compare: Out0 output XT2OUT 88 O Output terminal of crystal oscillator XT2 XT2IN 89 I Input port for crystal oscillator XT2. Only standard crystals can be connected. TDO/TDI 90 I/O TDI 91 I Test data input. TDI is used as a data input port. The device protection fuse is connected to TDI. TMS 92 I Test mode select. TMS is used as an input port for device programming and test. TCK 93 I Test clock. TCK is the clock input port for device programming and test. RST/NMI 94 I Reset input or nonmaskable interrupt input port P6.0/A0 95 I/O General-purpose digital I/O, analog input a0—12-bit ADC P6.1/A1 96 I/O General-purpose digital I/O, analog input a1—12-bit ADC P6.2/A2 97 I/O General-purpose digital I/O, analog input a2—12-bit ADC AVSS 98 DVSS1 99 AVCC 100 Test data output port. TDO/TDI data output or programming data input terminal Negative terminal that supplies SVS, brownout, oscillator, FLL+, comparator_A, port 1, and LCD resistive divider circuitry. Digital supply voltage, negative terminal. Supplies all digital parts, except those which are supplied via AVCC/AVSS. Positive terminal that supplies SVS, brownout, oscillator, FLL+, comparator_A, port 1, and LCD resistive divider circuitry; must not power up prior to DVCC1/DVCC2. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 SLAS344C – JANUARY 2002 – REVISED MARCH2003 short-form description CPU The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. Program Counter PC/R0 Stack Pointer SP/R1 SR/CG1/R2 Status Register Constant Generator The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator respectively. The remaining registers are general-purpose registers. Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions. instruction set The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 1 shows examples of the three types of instruction formats; the address modes are listed in Table 2. CG2/R3 General-Purpose Register R4 General-Purpose Register R5 General-Purpose Register R6 General-Purpose Register R7 General-Purpose Register R8 General-Purpose Register R9 General-Purpose Register R10 General-Purpose Register R11 General-Purpose Register R12 General-Purpose Register R13 General-Purpose Register R14 General-Purpose Register R15 Table 1. Instruction Word Formats Dual operands, source-destination e.g. ADD R4,R5 R4 + R5 –––> R5 Single operands, destination only e.g. CALL PC ––>(TOS), R8––> PC Relative jump, un/conditional e.g. JNE R8 Jump-on-equal bit = 0 Table 2. Address Mode Descriptions ADDRESS MODE S D Register n n MOV Rs,Rd MOV R10,R11 Indexed n n MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) Symbolic (PC relative) n n MOV EDE,TONI M(EDE) ––> M(TONI) n n MOV and MEM,and TCDAT M(MEM) ––> M(TCDAT) Absolute EXAMPLE OPERATION R10 ––> R11 M(2+R5)––> M(6+R6) Indirect n MOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) ––> M(Tab+R6) Indirect autoincrement n MOV @Rn+,Rm MOV @R10+,R11 M(R10) ––> R11 R10 + 2––> R10 Immediate n MOV #X,TONI MOV #45,TONI NOTE: S = source 12 SYNTAX D = destination POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 #45 ––> M(TONI) SLAS344C – JANUARY 2002 – REVISED MARCH2003 operating modes The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request and restore back to the low-power mode on return from the interrupt program. The following six operating modes can be configured by software: D Active mode AM; – All clocks are active D Low-power mode 0 (LPM0); – CPU is disabled ACLK and SMCLK remain active. MCLK is disabled FLL+ Loop control remains active D Low-power mode 1 (LPM1); – CPU is disabled FLL+ Loop control is disabled ACLK and SMCLK remain active. MCLK is disabled D Low-power mode 2 (LPM2); – CPU is disabled MCLK and FLL+ loop control and DCOCLK are disabled DCO’s dc-generator remains enabled ACLK remains active D Low-power mode 3 (LPM3); – CPU is disabled MCLK, FLL+ loop control, and DCOCLK are disabled DCO’s dc-generator is disabled ACLK remains active D Low-power mode 4 (LPM4); – CPU is disabled ACLK is disabled MCLK, FLL+ loop control, and DCOCLK are disabled DCO’s dc-generator is disabled Crystal oscillator is stopped POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 SLAS344C – JANUARY 2002 – REVISED MARCH2003 interrupt vector addresses The interrupt vectors and the power-up starting address are located in the address range 0FFFFh – 0FFE0h. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. Table 3. Interrupt Sources, Flags, and Vectors of 4xx Configurations INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT WORD ADDRESS PRIORITY Power-Up External Reset Watchdog Flash Memory WDTIFG KEYV (see Note 1) Reset 0FFFEh 15, highest NMI Oscillator Fault Flash Memory Access Violation Timer_B7† NMIIFG (see Notes 1 and 3) OFIFG (see Notes 1 and 3) ACCVIFG (see Notes 1 and 3) (Non)maskable (Non)maskable (Non)maskable 0FFFCh 14 TBCCR0 CCIFG (see Note 2) Maskable 0FFFAh 13 Timer_B7† TBCCR1 to TBCCR6 CCIFGs TBIFG (see Notes 1 and 2) Maskable 0FFF8h 12 Comparator_A CAIFG Maskable 0FFF6h 11 Watchdog Timer WDTIFG Maskable 0FFF4h 10 USART0 Receive URXIFG0 Maskable 0FFF2h 9 USART0 Transmit UTXIFG0 Maskable 0FFF0h 8 ADC12 ADC12IFG (see Notes 1 and 2) Maskable 0FFEEh 7 Timer_A3 TACCR0 CCIFG (see Note 2) Maskable 0FFECh 6 Timer_A3 TACCR1 and TACCR2 CCIFGs, TAIFG (see Notes 1 and 2) Maskable 0FFEAh 5 I/O Port P1 (Eight Flags) P1IFG.0 (see Notes 1 and 2) To P1IFG.7 (see Notes 1 and 2) Maskable 0FFE8h 4 URXIFG1 Maskable 0FFE6h 3 UTXIFG1 Maskable 0FFE4h 2 P2IFG.0 (see Notes 1 and 2) To P2IFG.7 (see Notes 1 and 2) Maskable 0FFE2h 1 USART1 Receive‡ USART1 Transmit‡ I/O Port P2 (Eight Flags) Basic Timer1 BTIFG Maskable 0FFE0h 0, lowest † ’43x uses Timer_B3 with TBCCR0, 1 and 2 CCIFG flags, and TBIFG. ’44x uses Timer_B7 with TBCCR0 CCIFG, TBCCR1 to TBCCR6 CCIFGs, and TBIFG ‡ USART1 is implemented in ’44x only. NOTES: 1. Multiple source flags 2. Interrupt flags are located in the module. 3. (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable can not disable it. 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS344C – JANUARY 2002 – REVISED MARCH2003 special function registers Most interrupt and module-enable bits are collected in the lowest address space. Special-function register bits not allocated to a functional purpose are not physically present in the device. This arrangement provides simple software access. interrupt enable 1 and 2 7 Address 0h 6 UTXIE0 rw–0 URXIE0 rw–0 5 4 ACCVIE NMIIE rw–0 3 2 1 OFIE rw–0 rw–0 0 WDTIE rw–0 WDTIE: Watchdog-timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog timer is configured in interval timer mode. OFIE: Oscillator-fault-interrupt enable NMIIE: Nonmaskable-interrupt enable ACCVIE: Flash access violation interrupt enable URXIE0: USART0, UART, and SPI receive-interrupt enable UTXIE0: USART0, UART, and SPI transmit-interrupt enable 7 Address 6 BTIE 01h rw–0 5 4 UTXIE1 URXIE1 rw–0 3 2 1 0 rw–0 URXIE1: USART1, UART, and SPI receive-interrupt enable (MSP430F44x devices only) UTXIE1: USART1, UART, and SPI transmit-interrupt enable (MSP430F44x devices only) BTIE: Basic timer interrupt enable interrupt flag register 1 and 2 7 Address 02h 6 UTXIFG0 rw–1 5 URXIFG0 4 3 2 1 NMIIFG rw–0 OFIFG rw–0 rw–1 0 WDTIFG rw–0 WDTIFG: Set on watchdog timer overflow (in watchdog mode) or security key violation. Reset on VCC power up or a reset condition at the RST/NMI pin in reset mode. OFIFG: Flag set on oscillator fault NMIIFG: Set via RST/NMI pin URXIFG0: USART0, UART, and SPI receive flag UTXIFG0: USART0, UART, and SPI transmit flag 7 Address 03h 6 BTIFG rw 5 4 UTXIFG1 URXIFG1 rw–1 3 2 1 0 rw–0 URXIFG1: USART1, UART, and SPI receive flag (MSP430F44x devices only) UTXIFG1: USART1, UART, and SPI transmit flag (MSP430F44x devices only) BTIFG: Basic timer flag POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 SLAS344C – JANUARY 2002 – REVISED MARCH2003 module enable registers 1 and 2 7 UTXE0 Address 04h rw–0 6 URXE0 USPIE0 5 4 3 1 0 2 1 0 rw–0 URXE0: USART0, UART mode receive enable UTXE0: USART0, UART mode transmit enable USPIE0: USART0, SPI mode transmit and receive enable Address 2 7 6 05h 5 UTXE1 rw–0 4 URXE1 USPIE1 3 rw–0 URXE1: USART1, UART mode receive enable (MSP430F44x devices only) UTXE1: USART1, UART mode transmit enable (MSP430F44x devices only) USPIE1: USART1, SPI mode transmit and receive enable (MSP430F44x devices only) Bit Can Be Read and Written Bit Can Be Read and Written. It Is Reset by PUC. SFR Bit Not Present in Device Legend: rw: rw–0: memory organization MSP430F435 MSP430F436 MSP430F437 MSP430F447 MSP430F448 MSP430F449 Memory Main: interrupt vector Main: code memory Size Flash Flash 16KB 0FFFFh – 0FFE0h 0FFFFh – 0C000h 24KB 0FFFFh – 0FFE0h 0FFFFh – 0A000h 32KB 0FFFFh – 0FFE0h 0FFFFh – 08000h 48KB 0FFFFh – 0FFE0h 0FFFFh – 04000h 60KB 0FFFFh – 0FFE0h 0FFFFh – 01100h Information memory Size Flash 256 Byte 010FFh – 01000h 256 Byte 010FFh – 01000h 256 Byte 010FFh – 01000h 256 Byte 010FFh – 01000h 256 Byte 010FFh – 01000h Boot memory Size ROM 1KB 0FFFh – 0C00h 1KB 0FFFh – 0C00h 1KB 0FFFh – 0C00h 1KB 0FFFh – 0C00h 1KB 0FFFh – 0C00h Size 512 Byte 03FFh – 0200h 1KB 05FFh – 0200h 1KB 05FFh – 0200h 2KB 09FFh – 0200h 2KB 09FFh – 0200h 16-bit 8-bit 8-bit SFR 01FFh – 0100h 0FFh – 010h 0Fh – 00h 01FFh – 0100h 0FFh – 010h 0Fh – 00h 01FFh – 0100h 0FFh – 010h 0Fh – 00h 01FFh – 0100h 0FFh – 010h 0Fh – 00h 01FFh – 0100h 0FFh – 010h 0Fh – 00h RAM Peripherals bootstrap loader (BSL) The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the features of the BSL and its implementation, see the Application report Features of the MSP430 Bootstrap Loader, Literature Number SLAA089. 16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS344C – JANUARY 2002 – REVISED MARCH2003 flash memory The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include: D Flash memory has n segments of main memory and two segments of information memory (A and B) of 128 bytes each. Each segment in main memory is 512 bytes in size. D Segments 0 to n may be erased in one step, or each segment may be individually erased. D Segments A and B can be erased individually, or as a group with segments 0–n. Segments A and B are also called information memory. D New devices may have some bytes programmed in the information memory (needed for test during manufacturing). The user should perform an erase of the information memory prior to the first use. 16KB 24KB 32KB 48KB 60KB 0FFFFh 0FFFFh 0FFFFh 0FFFFh 0FFFFh 0FE00h 0FDFFh 0FE00h 0FDFFh 0FE00h 0FDFFh 0FE00h 0FDFFh 0FE00h 0FDFFh Segment 1 0FC00h 0FBFFh 0FC00h 0FBFFh 0FC00h 0FBFFh 0FC00h 0FBFFh 0FC00h 0FBFFh Segment 2 0FA00h 0F9FFh 0FA00h 0F9FFh 0FA00h 0F9FFh 0FA00h 0F9FFh 0FA00h 0F9FFh 0C400h 0C3FFh 0A400h 0A3FFh 08400h 083FFh 04400h 043FFh 01400h 013FFh 0C200h 0C1FFh 0A200h 0A1FFh 08200h 081FFh 04200h 041FFh 01200h 011FFh 0C000h 010FFh 0A000h 010FFh 08000h 010FFh 04000h 010FFh 01100h 010FFh 01080h 0107Fh 01080h 0107Fh 01080h 0107Fh 01080h 0107Fh 01080h 0107Fh 01000h 01000h 01000h 01000h 01000h Segment 0 w/ Interrupt Vectors Main Memory Segment n-1 Segment n Segment A Information Memory Segment B peripherals Peripherals are connected to the CPU through data, address, and control busses and can be handled using all instructions. digital I/O There are six 8-bit I/O ports implemented—ports P1 through P6: D D D D All individual I/O bits are independently programmable. Any combination of input, output, and interrupt conditions is possible. Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2. Read/write access to port-control registers is supported by all instructions. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17 SLAS344C – JANUARY 2002 – REVISED MARCH2003 oscillator and system clock The clock system in the MSP430x43x and MSP43x44x family of devices is supported by the FLL+ module that includes support for a 32768-Hz watch crystal oscillator, an internal digitally-controlled oscillator (DCO) and a high frequency crystal oscillator. The FLL+ clock module is designed to meet the requirements of both low system cost and low-power consumption. The FLL+ features a digital frequency locked loop (FLL) hardware which in conjunction with a digital modulator stabilizes the DCO frequency to a programmable multiple of the watch crystal frequency. The internal DCO provides a fast turn-on clock source and stabilizes in less than 6 µs. The FLL+ module provides the following clock signals: D D D D Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high frequency crystal. Main clock (MCLK), the system clock used by the CPU. Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules. ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, or ACLK/8. brownout, supply voltage supervisor The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and power off. The supply voltage supervisor (SVS) circuitry detects if the supply voltage drops below a user selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (SVM, the device is not automatically reset). The CPU begins code execution after the brownout circuit releases the device reset. However, VCC may not have ramped to VCC(min) at that time. The user must insure the default FLL+ settings are not changed until VCC reaches VCC(min). If desired, the SVS circuit can be used to determine when VCC reaches VCC(min). multiplication (MSP430x44x Only) The multiplication operation is supported by a dedicated peripheral module. The module performs 16 16, 16 8, 8 16, and 8 8 bit operations. The module is capable of supporting signed and unsigned multiplication as well as signed and unsigned multiply and accumulate operations. The result of an operation can be accessed immediately after the operands have been loaded into the peripheral registers. No additional clock cycles are required. Basic Timer1 The Basic Timer1 has two independent 8-bit timers which can be cascaded to form a 16-bit timer/counter. Both timers can be read and written by software. The Basic Timer1 can be used to generate periodic interrupts and clock for the LCD module. LCD drive The LCD driver generates the segment and common signals required to drive an LCD display. The LCD controller has dedicated data memory to hold segment drive information. Common and segment signals are generated as defined by the mode. Static, 2-MUX, 3-MUX, and 4-MUX LCDs are supported by this peripheral. 18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Table 4. MSP430x43xIPN Terminal Function, Selected by Bits 5/6/7 in LCD Mode Control Register LCDM TERMINAL NAME NO I/O BITS 5/6/7 IN LCD MODE CONTROL REGISTER LCDM 000X XXXX 001X XXXX 010X XXX 011X XXXX 100X XXXX 12 I/O P5.1 S0 P5.0/S1 13 I/O P5.0 S1 P4.7/S2 14 I/O P4.7 S2 P4.6/S3 15 I/O P4.6 S3 P4.5/S4 16 I/O P4.5 S4 P4.4/S5 17 I/O P4.4 S5 P4.3/S6 18 I/O P4.3 S6 P4.2/S7 19 I/O P4.2 S7 P4.1/S8 20 I/O P4.1 S8 P4.0/S9 21 I/O P4.0 S10–S17 22–29 O 30 I/O P2.7/ADC10CLK P2.7/ADC10CLK P2.6/CAOUT P2.6/CAOUT P2.7/ADC10CLK/S18 P2.6/CAOUT/S19 101X XXXX 110X XXX 111X XXXX S9 S10–S17 S18 31 I/O S20–S23 32–35 O S19 P3.7/S24 36 I/O P3.7 P3.7 P3.7 P3.7 S24 P3.6/S25 37 I/O P3.6 P3.6 P3.6 P3.6 S25 P3.5/S26 38 I/O P3.5 P3.5 P3.5 P3.5 S26 P3.4/S27 39 I/O P3.4 P3.4 P3.4 P3.4 P3.3/UCLK0/S28 40 I/O P3.3/UCLK0 P3.3/UCLK0 P3.3/UCLK0 P3.3/UCLK0 P3.3/UCLK0 S28 P3.2/SOMI0/S29 41 I/O P3.2/SOMI0 P3.2/SOMI0 P3.2/SOMI0 P3.2/SOMI0 P3.2/SOMI0 S29 P3.1/SIMO0/S30 42 I/O P3.1/SIMO0 P3.1/SIMO0 P3.1/SIMO0 P3.1/SIMO0 P3.1/SIMO0 S30 P3.0/STE0/S31 43 I/O P3.0/STE0 P3.0/STE0 P3.0/STE0 P3.0/STE0 P3.0/STE0 S31 S20–S23 S27 , , , 19 SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P5.1/S0 NAME I/O NO 000X XXXX 001X XXXX 010X XXX 011X XXXX 100X XXXX 101X XXXX 110X XXXX 111X XXXX P5.1/S0 12 I/O P5.1 S0 P5.0/S1 13 I/O P5.0 S1 S2–S33 14–45 O P4.7/S34 46 I/O P4.7 P4.7 P4.7 P4.7 P4.7 P4.7 P4.6/S35 47 I/O P4.6 P4.6 P4.6 P4.6 P4.6 P4.6 P4.5/S36 48 I/O P4.5 P4.5 P4.5 P4.5 P4.5 P4.5 P4.5 S36 P4.4/S36 48 I/O P4.4 P4.4 P4.4 P4.4 P4.4 P4.4 P4.4 S37 P4.3/S36 48 I/O P4.3 P4.3 P4.3 P4.3 P4.3 P4.3 P4.3 S38 P4.2/S36 48 I/O P4.2 P4.2 P4.2 P4.2 P4.2 P4.2 P4.2 S39 S2–S33 S34 S35 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Table 6. MSP430x44xIPZ Terminal Functions, Selected by Bits 5/6/7 in LCD Mode Control Register LCDM BITS 5/6/7 IN LCD MODE CONTROL REGISTER LCDM TERMINAL NAME P5.1/S0 I/O NO 000X XXXX 001X XXXX 010X XXX 011X XXXX 100X XXXX 101X XXXX 110X XXXX 111X XXXX 12 I/O P5.1 S0 P5.0/S1 13 I/O P5.0 S2–S33 14–45 O P4.7/S34 46 I/O P4.6/S35 47 I/O P4.6 P4.6 P4.6 P4.6 P4.6 P4.6 P4.5/UCLK1/S36 48 I/O P4.5/UCLK1 P4.5UCLK1 P4.5/UCLK1 P4.5/UCLK1 P4.5/UCLK1 P4.5/UCLK1 P4.5/UCLK1 S36 P4.4/SOMI1/S37 49 I/O P4.4/SOMI1 P4.4/SOMI1 P4.4/SOMI1 P4.4/SOMI1 P4.4/SOMI1 P4.4/SOMI1 P4.4/SOMI1 S37 P4.3/SIMO1/S38 50 I/O P4.3/SIMO1 P4.3/SIMO1 P4.3/SIMO1 P4.3/SIMO1 P4.3/SIMO1 P4.3/SIMO1 P4.3/SIMO1 S38 P4.2/STE1/S39 51 I/O P4.2/STE1 P4.2/STE1 P4.2/STE1 P4.2/STE1 P4.2/STE1 P4.2/STE1 P4.2/STE1 S39 S1 S2–S33 P4.7 P4.7 P4.7 P4.7 P4.7 P4.7 S34 S35 , , , BITS 5/6/7 IN LCD MODE CONTROL REGISTER LCDM TERMINAL SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 20 Table 5. MSP430x43xIPZ Terminal Functions, Selected by Bits 5/6/7 in LCD Mode Control Register LCDM SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 watchdog timer The primary function of the watchdog timer (WDT) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals. USART0 The MSP430x43x and the MSP430x44x have one hardware universal synchronous/asynchronous receive transmit (USART0) peripheral module that is used for serial data communication. The USART supports synchronous SPI (3 or 4 pin) and asynchronous UART communication protocols, using double-buffered transmit and receive channels. USART1 (MSP430x44x Only) The MSP430x44x has a second hardware universal synchronous/asynchronous receive transmit (USART1) peripheral module that is used for serial data communication. The USART supports synchronous SPI (3 or 4 pin) and asynchronous UART communication protocols, using double-buffered transmit and receive channels. Operation of USART1 is identical to USART0. timer_A3 Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. timer_B7 (MSP430x44x Only) Timer_B7 is a 16-bit timer/counter with seven capture/compare registers. Timer_B7 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B7 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. timer_B3 (MSP430x43x Only) Timer_B3 is a 16-bit timer/counter with three capture/compare registers. Timer_B3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. comparator_A The primary function of the comparator_A module is to support precision slope analog–to–digital conversions, battery–voltage supervision, and monitoring of external analog signals. ADC12 The ADC12 module supports fast, 12-bit analog-to-digital conversions. The module implements a 12-bit SAR core, sample select control, reference generator and a 16 word conversion-and-control buffer. The conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored without any CPU intervention. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 21 SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 peripheral file map PERIPHERALS WITH WORD ACCESS Watchdog Watchdog timer control WDTCTL 0120h Timer_B7 _ Timer_B3 (see Note 6) Capture/compare register 6 TBCCR6 019Eh Capture/compare register 5 TBCCR5 019Ch Capture/compare register 4 TBCCR4 019Ah Capture/compare register 3 TBCCR3 0198h Capture/compare register 2 TBCCR2 0196h Capture/compare register 1 TBCCR1 0194h Capture/compare register 0 TBCCR0 0192h Timer_B register TBR 0190h Capture/compare control 6 TBCCTL6 018Eh Capture/compare control 5 TBCCTL5 018Ch Capture/compare control 4 TBCCTL4 018Ah Capture/compare control 3 TBCCTL3 0188h Capture/compare control 2 TBCCTL2 0186h Capture/compare control 1 TBCCTL1 0184h Capture/compare control 0 TBCCTL0 0182h Timer_B control TBCTL 0180h Timer_B interrupt vector TBIV 011Eh Timer_A3 _ Reserved 017Eh Reserved 017Ch Reserved 017Ah Reserved 0178h Capture/compare register 2 TACCR2 0176h Capture/compare register 1 TACCR1 0174h Capture/compare register 0 TACCR0 0172h Timer_A register TAR 0170h Reserved 016Eh Reserved 016Ch Reserved 016Ah Reserved Multiply py (MSP430x44x only) 0168h Capture/compare control 2 TACCTL2 0166h Capture/compare control 1 TACCTL1 0164h Capture/compare control 0 TACCTL0 0162h Timer_A control TACTL 0160h Timer_A interrupt vector TAIV 012Eh Sum extend SUMEXT 013Eh Result high word RESHI 013Ch Result low word RESLO 013Ah Second operand OP2 0138h Multiply signed + accumulate/operand1 MACS 0136h Multiply + accumulate/operand1 MAC 0134h Multiply signed/operand1 MPYS 0132h Multiply unsigned/operand1 MPY 0130h NOTE 4: Timer_B7 in the MSP430x44x family has seven CCRs; Timer_B3 in the MSP430x43x family has three CCRs. 22 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 peripheral file map (continued) PERIPHERALS WITH WORD ACCESS (CONTINUED) Flash ADC12 Flash control 3 FCTL3 012Ch Flash control 2 FCTL2 012Ah Flash control 1 FCTL1 0128h Conversion memory 15 ADC12MEM15 015Eh Conversion memory 14 ADC12MEM14 015Ch Conversion memory 13 ADC12MEM13 015Ah Conversion memory 12 ADC12MEM12 0158h Conversion memory 11 ADC12MEM11 0156h Conversion memory 10 ADC12MEM10 0154h Conversion memory 9 ADC12MEM9 0152h Conversion memory 8 ADC12MEM8 0150h Conversion memory 7 ADC12MEM7 014Eh Conversion memory 6 ADC12MEM6 014Ch Conversion memory 5 ADC12MEM5 014Ah Conversion memory 4 ADC12MEM4 0148h Conversion memory 3 ADC12MEM3 0146h Conversion memory 2 ADC12MEM2 0144h Conversion memory 1 ADC12MEM1 0142h Conversion memory 0 ADC12MEM0 0140h Interrupt-vector-word register ADC12IV 01A8h Inerrupt-enable register ADC12IE 01A6h Inerrupt-flag register ADC12IFG 01A4h Control register 1 ADC12CTL1 01A2h Control register 0 ADC12CTL0 01A0h ADC memory-control register15 ADC12MCTL15 08Fh ADC memory-control register14 ADC12MCTL14 08Eh ADC memory-control register13 ADC12MCTL13 08Dh ADC memory-control register12 ADC12MCTL12 08Ch ADC memory-control register11 ADC12MCTL11 08Bh ADC memory-control register10 ADC12MCTL10 08Ah ADC memory-control register9 ADC12MCTL9 089h ADC memory-control register8 ADC12MCTL8 088h ADC memory-control register7 ADC12MCTL7 087h ADC memory-control register6 ADC12MCTL6 086h ADC memory-control register5 ADC12MCTL5 085h ADC memory-control register4 ADC12MCTL4 084h ADC memory-control register3 ADC12MCTL3 083h ADC memory-control register2 ADC12MCTL2 082h ADC memory-control register1 ADC12MCTL1 081h ADC memory-control register0 ADC12MCTL0 080h POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 23 SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 peripheral file map (continued) PERIPHERALS WITH BYTE ACCESS LCD LCD memory 20 : LCD memory 16 LCD memory 15 : LCD memory 1 LCD control and mode LCDM20 : LCDM16 LCDM15 : LCDM1 LCDCTL 0A4h : 0A0h 09Fh : 091h 090h USART1 (Only in ‘x44x) Transmit buffer U1TXBUF 07Fh Receive buffer U1RXBUF 07Eh Baud rate U1BR1 07Dh Baud rate U1BR0 07Ch Modulation control U1MCTL 07Bh Receive control U1RCTL 07Ah Transmit control U1TCTL 079h USART control U1CTL 078h Transmit buffer U0TXBUF 077h Receive buffer U0RXBUF 076h Baud rate U0BR1 075h Baud rate U0BR0 074h Modulation control U0MCTL 073h Receive control U0RCTL 072h Transmit control U0TCTL 071h USART control U0CTL 070h Comparator_A port disable CAPD 05Bh Comparator_A control2 CACTL2 05Ah Comparator_A control1 CACTL1 059h BrownOUT, SVS SVS control register (Reset by brownout signal) SVSCTL 056h FLL+ Clock FLL+ Control1 FLL_CTL1 054h FLL+ Control0 FLL_CTL0 053h System clock frequency control SCFQCTL 052h System clock frequency integrator SCFI1 051h System clock frequency integrator SCFI0 050h Basic Timer1 BT counter2 BT counter1 BT control BTCNT2 BTCNT1 BTCTL 047h 046h 040h Port P6 Port P6 selection P6SEL 037h Port P6 direction P6DIR 036h Port P6 output P6OUT 035h Port P6 input P6IN 034h Port P5 selection P5SEL 033h Port P5 direction P5DIR 032h Port P5 output P5OUT 031h Port P5 input P5IN 030h USART0 Comparator_A p _ Port P5 24 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 peripheral file map (continued) PERIPHERALS WITH BYTE ACCESS Port P4 Port P3 Port P2 Port P1 Special functions p Port P4 selection P4SEL 01Fh Port P4 direction P4DIR 01Eh Port P4 output P4OUT 01Dh Port P4 input P4IN 01Ch Port P3 selection P3SEL 01Bh Port P3 direction P3DIR 01Ah Port P3 output P3OUT 019h Port P3 input P3IN 018h Port P2 selection P2SEL 02Eh Port P2 interrupt enable P2IE 02Dh Port P2 interrupt-edge select P2IES 02Ch Port P2 interrupt flag P2IFG 02Bh Port P2 direction P2DIR 02Ah Port P2 output P2OUT 029h Port P2 input P2IN 028h Port P1 selection P1SEL 026h Port P1 interrupt enable P1IE 025h Port P1 interrupt-edge select P1IES 024h Port P1 interrupt flag P1IFG 023h Port P1 direction P1DIR 022h Port P1 output P1OUT 021h Port P1 input P1IN 020h SFR module enable2 ME2 005h SFR module enable1 ME1 004h SFR interrupt flag2 IFG2 003h SFR interrupt flag1 IFG1 002h SFR interrupt enable2 IE2 001h SFR interrupt enable1 IE1 000h absolute maximum ratings over operating free-air temperature (unless otherwise noted)† Voltage applied at VCC to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to 4.1 V Voltage applied to any pin (referenced to VSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –0.3 V to VCC + 0.3 V Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 mA Storage temperature, Tstg: (unprogrammed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to 150°C (programmed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to 85°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE: All voltages referenced to VSS. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 25 SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 recommended operating conditions MIN NOM MAX UNITS Supply voltage during program execution, VCC (AVCC = DVCC1 = DVCC2 = VCC) MSP430F43x, MSP430F44x 1.8 3.6 V Supply voltage during flash memory programming, VCC (AVCC = DVCC1 = DVCC2 = VCC) MSP430F43x, MSP430F44x 2.7 3.6 V Supply voltage during program execution, SVS enabled (see Note 1), VCC (AVCC = DVCC1 = DVCC2 = VCC) MSP430F43x, MSP430F44x 2 3.6 V 0 0 V –40 85 °C Supply voltage, VSS (AVSS = DVSS1 = DVSS2 = VSS) MSP430x43x MSP430x44x Operating free-air temperature range, TA LFXT1 crystal frequency, f(LFXT1) (see Note 2) LF selected, XTS_FLL=0 Watch crystal XT1 selected, XTS_FLL=1 Ceramic resonator XT1 selected, XTS_FLL=1 Crystal Ceramic resonator XT2 crystal cr stal frequency, freq enc f(XT2) Crystal 32.768 kHz 450 8000 kHz 1000 8000 kHz 450 8000 1000 8000 DC 4.15 DC 8 257 476 kHz 3 ms kH kHz Processor frequency freq enc (signal MCLK) MCLK), f(System) VCC = 1.8 V VCC = 3.6 V Flash-timing-generator frequency, f(FTG) MSP430F43x, MSP430F44x Cumulative program time, t(CPT) (see Note 3) VCC = 2.7 V/3.6 V MSP430F43x MSP430F44x Mass erase time, t(MEras) (See the flash memory, timing generator, control register FCTL2 section and Note 4) VCC = 2.7 V/3.6 V Low-level input voltage (TCK, TMS, TDI, RST/NMI), VIL (excluding Xin, Xout) VCC = 2.2 V/3 V VSS VSS + 0.6 V High-level input voltage (TCK, TMS, TDI, RST/NMI), VIH (excluding Xin, Xout) VCC = 2.2 V/3 V 0.8 × VCC VCC V VCC = 2.2 V/3 V VSS 0.8 × VCC 0.2 × VCC V Input levels at Xin and Xout VIL(Xin, Xout) VIH(Xin, Xout) 200 MH MHz ms VCC NOTES: 1. The minimum operating supply voltage is defined according to the trip point where POR is going active by decreasing the supply voltage. POR is going inactive when the supply voltage is raised above the minimum supply voltage plus the hysteresis of the SVS circuitry. 2. In LF mode, the LFXT1 oscillator requires a watch crystal. In XT1 mode, LFXT1 accepts a ceramic resonator or a crystal. 3. The cumulative program time must not be exceeded during a block-write operation. This parameter is only relevant if segment write option is used. 4. The mass erase duration generated by the flash timing generator is at least 11.1 ms. The cumulative mass erase time needed is 200 ms. This can be achieved by repeating the mass erase operation until the cumulative mass erase time is met (a minimum of 19 cycles may be required). 26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 typical characteristics f (MHz) 8 MHz ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ Supply voltage range, ’F43x/’F44x, during program execution 4.15 MHz 1.8 2.7 3 Supply Voltage – V Supply voltage range, ’F43x/’F44x, during flash memory programming 3.6 Figure 1. Frequency vs Supply Voltage, MSP430F43x or MSP430F44x electrical characteristics over recommended operating free-air temperature (unless otherwise noted) supply current into AVCC + DVCC excluding external current PARAMETER TEST CONDITIONS Active mode, (see Note 1) f(MCLK) = f(SMCLK) = 1 MHz, f(ACLK) = 32,768 Hz XTS=0, SELM=(0,1) F43x, F44x 40°C to 85°C TA = –40°C I(LPM0) Low ower mode, (LPM0) Low-power (see Note 1) F43x, F44x TA = –40°C 40°C to 85°C I(LPM2) Low-power mode, (LPM2), f(MCLK) = f (SMCLK) = 0 MHz, MHz f(ACLK) = 32,768 Hz, SCG0 = 0 (see Note 2) I(AM) TA = –40°C 40°C to 85°C TA = –40°C TA = 25°C I(LPM3) Low ower mode, (LPM3) Low-power f((MCLK)) = f((SMCLK)) = 0 MHz, f(ACLK) = 32,768 32 768 Hz, Hz SCG0 = 1 (see Note 3) TA = 60°C TA = 85°C TA = –40°C TA = 25°C TA = 60°C TA = 85°C TA = –40°C TA = 25°C I(LPM4) Low-power mode, (LPM4) f(MCLK) = 0 MHz MHz, f(SMCLK) = 0 MHz MHz, f(ACLK) = 0 Hz, SCG0 = 1 (see Note 2) TA = 60°C TA = 85°C TA = –40°C TA = 25°C TA = 60°C TA = 85°C MIN NOM MAX VCC = 2.2 V 280 350 VCC = 3 V 420 560 VCC = 2.2 V VCC = 3 V 32 45 55 70 VCC = 2.2 V 11 14 VCC = 3 V 17 22 UNIT A µA VCC = 2.2 22V VCC = 3 V 22V VCC = 2.2 VCC = 3 V 1 1.5 1.1 1.5 2 3 3.5 6 1.8 2.2 1.6 1.9 2.5 3.5 4.2 7.5 0.1 0.5 0.1 0.5 0.7 1.1 1.7 3 0.1 0.5 0.1 0.5 0.8 1.2 1.9 3.5 µA A µA A µA A µA A A µA µA A NOTES: 1. Timer_B is clocked by f(DCOCLK) = 1 MHz. All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. 2. All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. 3. All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. The current consumption in LPM3 is measured with active Basic Timer1 and LCD (ACLK selected). The current consumption of the Comparator_A and the SVS module are specified in the respective sections. The LPM3 currents are characterized with a KDS Daishinku DT–38 (6 pF) crystal and OSCCAP=1. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 27 SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) Current consumption of active mode versus system frequency, F-version: I(AM) = I(AM) [1 MHz] × f(System) [MHz] Current consumption of active mode versus supply voltage, F-version: I(AM) = I(AM) [3 V] + 175 µA/V × (VCC – 3 V) SCHMITT-trigger inputs – ports P1, P2, P3, P4, P5, and P6; RST/NMI; JTAG: TCK, TMS, TDI, TDO PARAMETER TEST CONDITIONS VIT+ Positi e going input Positive-going inp t threshold voltage oltage VIT– Negati e going inp Negative-going inputt threshold voltage oltage Vhys h Input voltage hysteresis (VIT IT+ – VIT IT–) MIN TYP MAX VCC = 2.2 V VCC = 3 V VCC = 2.2 V 1.1 1.5 1.5 1.9 0.4 0.9 VCC = 3 V VCC = 2.2 V 0.9 1.3 0.3 1.1 VCC = 3 V 0.5 1 UNIT V V V outputs – ports P1, P2, P3, P4, P5, and P6 PARAMETER VOH VOL High level output voltage High-level Low level output voltage Low-level TEST CONDITIONS MIN IOH(max) = –1.5 mA, IOH(max) = –6 mA, VCC = 2.2 V, VCC = 2.2 V, See Note 1 IOH(max) = –1.5 mA, IOH(max) = –6 mA, VCC = 3 V, VCC = 3 V, See Note 1 IOL(max) = 1.5 mA, IOL(max) = 6 mA, VCC = 2.2 V, VCC = 2.2 V, See Note 1 IOL(max) = 1.5 mA, IOL(max) = 6 mA, VCC = 3 V, VCC = 3 V, See Note 1 See Note 2 See Note 2 See Note 2 See Note 2 TYP MAX VCC–0.25 VCC–0.6 VCC VCC VCC–0.25 VCC–0.6 VCC VCC VSS VSS VSS+0.25 VSS+0.6 VSS VSS VSS+0.25 VSS+0.6 UNIT V V NOTES: 1. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±12 mA to satisfy the maximum specified voltage drop. 2. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±48 mA to satisfy the maximum specified voltage drop. 28 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 typical characteristics TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE 25 TA = 25°C VCC = 2.2 V P2.7 14 12 I OL – Typical Low-level Output Current – mA I OL – Typical Low-level Output Current – mA 16 TA = 85°C 10 8 6 4 2 0 0.0 0.5 1.0 1.5 2.0 VCC = 3 V P2.7 TA = 85°C 15 10 5 0 0.0 2.5 TA = 25°C 20 0.5 VOL – Low-Level Output Voltage – V 1.0 Figure 2 I OL – Typical High-level Output Current – mA I OL – Typical High-level Output Current – mA –6 –8 TA = 85°C –12 TA = 25°C 0.5 3.0 3.5 0 VCC = 2.2 V P2.7 –4 –14 0.0 2.5 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE 0 –10 2.0 Figure 3 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE –2 1.5 VOL – Low-Level Output Voltage – V 1.0 1.5 2.0 2.5 VOH – High-Level Output Voltage – V VCC = 3 V P2.7 –5 –10 –15 –20 TA = 85°C –25 –30 0.0 TA = 25°C 0.5 1.0 1.5 2.0 2.5 3.0 3.5 VOH – High-Level Output Voltage – V Figure 5 Figure 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 29 SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) output frequency PARAMETER f(Px.y) (1 ≤ x ≤ 6, 6 0 ≤ y ≤ 7) CL = 20 pF, F, IL = ±1.5 mA f(ACLK) f(MCLK) P1.1/TA0/MCLK, P1 1/TA0/MCLK P1.5/TACLK/ P1 5/TACLK/ ACLK P1.4/TBCLK/SMCLK P1 4/TBCLK/SMCLK CL = 20 pF F TEST CONDITIONS MIN TYP MAX VCC = 2.2 V VCC = 3 V DC 5 DC 7.5 f(System) UNIT MH MHz MHz f(SMCLK) f(ACLK) = f(LFXT1) = f(XT1) f(ACLK) = f(LFXT1) = f(LF) P1.5/TACLK/ACLK, CL = 20 pF F VCC = 2.2 V / 3 V t(Xdc) Duty cycle of output frequency 40% f(ACLK) = f(LFXT1) f(MCLK) = f(XT1) P1.1/TA0/MCLK, CL = 20 pF, VCC = 2.2 V / 3 V 70% 50% f(MCLK) = f(DCOCLK) 40% 60% 50%– 15 ns 50% 50%+ 15 ns 40% 60% 50%– 15 ns 50% 50%+ 15 ns f(SMCLK) = f(XT2) P1.4/TBCLK/SMCLK, CL = 20 pF, VCC = 2.2 V / 3 V 60% 30% f(SMCLK) = f(DCOCLK) inputs Px.x, TAx, TBx PARAMETER t(int) External interrupt timing g TEST CONDITIONS VCC 2.2 V/3 V P t P1, P1 P2: P2 P1.x P1 to t P2.x, P2 external t l trigger ti i l Port signal for the interrupt flag, (see Note 1) TA0, TA1, TA2 (see Note 2) TA0 TA1 t(cap) f(TAext) f(TBext) Timer_A, _ , Timer_B _ capture timing Timer_A, Timer_B clock frequency externally applied to pin MIN 2.2 V 62 3V 50 2.2 V/3 V 1.5 2.2 V 62 3V 50 TB0, TB1, TB2, TB3, TB4, TB5, TB6 (see Note 3) TACLK TBCLK TACLK, TBCLK, INCLK: t(H) = t(L) TYP MAX 1.5 UNIT cycle ns cycle ns 2.2 V 8 3V 10 MHz f(TAint) 2.2 V 8 Timer_A, Timer_B clock SMCLK or ACLK signal selected MHz f(BTAint) frequency 3V 10 NOTES: 1. The external signal sets the interrupt flag every time the minimum t(int) cycle and time parameters are met. It may be set even with trigger signals shorter than t(int). Both the cycle and timing specifications must be met to ensure the flag is set. t(int) is measured in MCLK cycles. 2. The external capture signal triggers the capture event every time the minimum t(cap) cycle and time parameters are met. A capture may be triggered with capture signals even shorter than t(cap). Both the cycle and timing specifications must be met to ensure a correct capture of the 16-bit timer value and to ensure the flag is set. 3. Seven capture/compare registers in ’x44x and three capture/compare registers in ’x43x. wake-up LPM3 PARAMETER TEST CONDITIONS f = 1 MHz td(LPM3) Delay time f = 2 MHz POST OFFICE BOX 655303 TYP MAX UNIT 6 VCC = 2.2 V/3 V f = 3 MHz 30 MIN • DALLAS, TEXAS 75265 6 6 µs SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) leakage current (see Notes 1 and 2) PARAMETER Ilkg(P1.x) Ilkg(P6.x) Leakage current TEST CONDITIONS Port P1 Port 1: V(P1.x) Port P6 Port 6: V(P6.x) MIN TYP MAX ±50 VCC = 2 2.2 2 V/3 V ±50 UNIT nA NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted. 2. The port pin must be selected as input and there must be no optional pullup or pulldown resistor. RAM PARAMETER TEST CONDITIONS VRAMh MIN CPU halted (see Note 1) TYP MAX 1.6 UNIT V NOTE 1: This parameter defines the minimum supply voltage when the data in program memory RAM remain unchanged. No program execution should take place during this supply voltage condition. LCD PARAMETER V(33) V(23) V(13) V(33) – V(03) 2.5 Voltage at P5.5/R13 R03 = VSS Input leakage g P5.5/R13 = VCC/3 P5.6/R23 = 2 × VCC/3 Segment line voltage g I(Sxx) 3 µA, µA (S ) = –3 2.5 No load at all segment and common lines lines, VCC = 3 V VCC = 3 V V(Sxx3) POST OFFICE BOX 655303 TYP MAX UNIT VCC + 0.2 [V(33)–V(03)] × 2/3 + V(03) [V(33)–V(03)] × 1/3 + V(03) VCC = 3 V Voltage at R33 to R03 I(R23) V(Sxx0) V(Sxx1) V(Sxx2) MIN Voltage at P5.6/R23 Analog voltage oltage I(R03) I(R13) TEST CONDITIONS Voltage at P5.7/R33 V VCC + 0.2 ±20 ±20 nA ±20 V(03) V(13) V(03) – 0.1 V(13) – 0.1 V(23) V(33) V(23) – 0.1 V(33) + 0.1 • DALLAS, TEXAS 75265 V 31 SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) Comparator_A (see Note 1) PARAMETER TEST CONDITIONS I(CC) CAON 1 CARSEL CAON=1, CARSEL=0, 0 CAREF CAREF=0 0 I(Refladder/RefDiode) CAON=1, CARSEL=0, CAREF=1/2/3, No load at P2.3/CA0/TA1 P2 3/CA0/TA1 and P2.4/CA1/TA2 V(Ref025) Voltage @ 0.25 V MAX VCC = 2.2 V VCC = 3 V 25 40 45 60 VCC = 2.2 V 30 50 VCC = 3 V 45 71 UNIT µA A µA A PCA0=1, CARSEL=1, CAREF=1, No load at P2.3/CA0 and P2.4/CA1 VCC = 2.2 V / 3 V 0.23 0.24 0.25 node PCA0=1, CARSEL=1, CAREF=2, No load at P2.3/CA0 and P2.4/CA1 VCC = 2.2V / 3 V 0.47 0.48 0.5 PCA0=1, CARSEL=1, CAREF=3, No load at P2.3/CA0 P2 3/CA0 and P2.4/CA1; P2 4/CA1; TA = 85°C VCC = 2.2 V 390 480 540 VCC = 3 V 400 490 550 Common-mode input voltage range CAON=1 VCC = 2.2 V / 3 V 0 VCC–1 Offset voltage See Note 2 VCC = 2.2 V / 3 V –30 30 mV Input hysteresis CAON = 1 VCC = 2.2 V / 3 V VCC = 2.2 V 0 0.7 1.4 mV 160 210 300 80 150 240 1.4 1.9 3.4 0.9 1.5 2.6 130 210 300 80 150 240 1.4 1.9 3.4 CC V V(Ref050) V CC CC V(RefVT) Vp–VS Vhys TYP node CC Voltage @ 0.5 V VIC MIN TA = 25 25°C, C, Overdrive 10 mV, without filter: CAF = 0 t(response LH) TA = 25 25°C C Overdrive 10 mV, with filter: CAF = 1 TA = 25 25°C C Overdrive 10 mV, without filter: CAF = 0 t(response HL) 25°C, TA = 25 C, Overdrive 10 mV, with filter: CAF = 1 mV VCC = 3 V VCC = 2.2 V VCC = 3 V VCC = 2.2 V VCC = 3 V VCC = 2.2 V V ns µss ns µss VCC = 3 V 0.9 1.5 2.6 NOTES: 1. The leakage current for the Comparator_A terminals is identical to Ilkg(Px.x) specification. 2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements. The two successive measurements are then summed together. 32 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 typical characteristics REFERENCE VOLTAGE vs FREE-AIR TEMPERATURE REFERENCE VOLTAGE vs FREE-AIR TEMPERATURE 650 650 VCC = 3 V VCC = 2.2 V VREF – Reference Voltage – V VREF – Reference Voltage – V 600 Typical 550 500 450 400 –45 –25 –5 15 35 55 75 600 Typical 550 500 450 400 –45 95 TA – Free-Air Temperature – °C –25 –5 15 35 55 75 95 TA – Free-Air Temperature – °C Figure 6. V(RefVT) vs Temperature Figure 7. V(RefVT) vs Temperature 0 V VCC 0 1 CAF CAON Low-Pass Filter V+ V– + _ 0 0 1 1 To Internal Modules CAOUT Set CAIFG Flag τ ≈ 2 µs Figure 8. Block Diagram of Comparator_A Module VCAOUT Overdrive V– 400 mV V+ t(response) Figure 9. Overdrive Definition POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 33 SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) POR/brownout reset (BOR) (see Note 1) PARAMETER TEST CONDITIONS td(BOR) VCC(start) MIN dVCC/dt ≤ 3 V/s (see Figure 10) V(B_IT–) Vhys(B_IT–) Note 2)) MAX UNIT 2000 µs 0.7 × V(B_IT–) dVCC/dt ≤ 3 V/s (see Figure 10 through Figure 12) dVCC/dt ≤ 3 V/s (see Figure 10) Brownout (see ( TYP 70 130 V 1.71 V 180 mV Pulse length needed at RST/NMI pin to accepted reset internally, t(reset) 2 µs VCC = 2.2 V/3 V NOTES: 1. The current consumption of the brownout module is already included in the ICC current consumption data. The voltage level V(B_IT–) + Vhys(B_IT–) is ≤ 1.8V. 2. During power up, the CPU begins code execution following a period of td(BOR) after VCC = V(B,IT–) + Vhys(B,IT–). The default FLL+ settings must not be changed until VCC ≥ VCC(min). See the MSP430x4xx Family User’s Guide (SLAU056) for more information on the brownout/SVS circuit. typical characteristics VCC Vhys(B_IT–) V(B_IT–) VCC(start) 1 0 t d(BOR) Figure 10. POR/Brownout Reset (BOR) vs Supply Voltage VCC 3V 2 VCC(min)– V VCC = 3 V Typical Conditions 1.5 1 VCC(min) 0.5 0 0.001 1 1000 1 ns tpw – Pulse Width – µs 34 t pw POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 ns tpw – Pulse Width – µs SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 Figure 11. VCC(min) Level With a Square Voltage Drop to Generate a POR/Brownout Signal typical characteristics VCC VCC(min)– V 2 1.5 t pw 3V VCC = 3 V Typical Conditions 1 VCC(min) 0.5 0 0.001 tf = tr 1 1000 tf tr tpw – Pulse Width – µs tpw – Pulse Width – µs Figure 12. VCC(min) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal electrical characteristics over recommended operating free-air temperature (unless otherwise noted) SVS (supply voltage supervisor/monitor) PARAMETER TEST CONDITIONS MIN t(SVSR) dVCC/dt > 30 V/ms (see Figure 13) dVCC/dt ≤ 30 V/ms 5 td(SVSon) tsettle SVSon, switch from VLD=0 to VLD ≠ 0, VCC = 3 V VLD ≠ 0‡ 20 V(SVSstart) VLD ≠ 0, VCC/dt ≤ 3 V/s (see Figure 13) 1.55 VLD = 1 VCC/dt ≤ 3 V/s (see Figure 13) VLD = 2 .. 14 Vhys(B_IT–) hys(B IT–) VCC/dt ≤ 3 V/s (see Figure 13), external voltage applied on A7 VCC/dt ≤ 3 V/s (see Figure 13) V(SVS IT ) (SVS_IT–) VCC/dt ≤ 3 V/s (see Figure 13), external voltage applied on A7 VLD = 15 70 120 V(SVS_IT–) x 0.004 MAX UNIT 150 µs 2000 µs 150 µs 12 µs 1.7 V 155 mV V(SVS_IT–) x 0.008 4.4 10.4 VLD = 1 1.8 1.9 2.05 VLD = 2 1.94 2.1 2.25 VLD = 3 2.05 2.2 2.37 VLD = 4 2.14 2.3 2.48 VLD = 5 2.24 2.4 2.6 VLD = 6 2.33 2.5 2.71 VLD = 7 2.46 2.65 2.86 VLD = 8 2.58 2.8 3 VLD = 9 2.69 2.9 3.13 VLD = 10 2.83 3.05 3.29 VLD = 11 2.94 3.2 VLD = 12 3.11 3.35 3.42 3.61† VLD = 13 3.24 VLD = 14 3.43 3.5 3.7† 3.76† 3.99† VLD = 15 1.1 1.2 1.3 10 15 ICC(SVS) VLD ≠ 0, VCC = 2.2 V/3 V (see Note 1) † The recommended operating voltage range is limited to 3.6 V. POST OFFICE BOX 655303 NOM • DALLAS, TEXAS 75265 mV V µA 35 SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 ‡ tsettle is the settling time that the comparator o/p needs to have a stable level after VLD is switched VLD ≠ 0 to a different VLD value somewhere between 2 and 15. The overdrive is assumed to be > 50 mV. NOTE 1: The current consumption of the SVS module is not included in the ICC current consumption data. Software Sets VLD>0: SVS is Active VCC V(SVS_IT–) V(SVSstart) Vhys(SVS_IT–) Vhys(B_IT–) V(B_IT–) VCC(start) Brownout BrownOut Region Brownout Region 1 0 SVSOut 1 td(BOR) SVS Circuit is Active From VLD > to VCC < V(B_IT–) 0 td(SVSon) Set POR 1 td(SVSR) undefined 0 Figure 13. SVS Reset (SVSR) vs Supply Voltage 36 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 t d(BOR) SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 VCC 3V t pw 2 Rectangular Drop VCC(min)– V 1.5 Triangular Drop 1 1 ns 1 ns 0.5 VCC t pw 3V 0 1 10 100 1000 tpw – Pulse Width – µs VCC(min) tf = tr tf tr t – Pulse Width – µs Figure 14. VCC(min) With a Square Voltage Drop and a Triangle Voltage Drop to Generate an SVS Signal POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 37 SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) DCO PARAMETER f(DCOCLK) TEST CONDITIONS N(DCO)=01E0h, FN_8=FN_4=FN_3=FN_2=0, D = 2, DCOPLUS= 0 f(DCO2) FN 8 FN 4 FN 3 FN 2 0 , DCO+ FN_8=FN_4=FN_3=FN_2=0 DCO = 1 f(DCO27) FN 8 FN 4 FN 3 FN 2 0 DCO+ FN_8=FN_4=FN_3=FN_2=0, DCO = 1, 1 (see Note 1) FN_8=FN_4=FN_3=0, FN_2=1 FN_2=1; DCO+ = 1 f(DCO2) f(DCO27) FN 8 FN 4 FN 3 0 FN FN_8=FN_4=FN_3=0, FN_2=1; 2 1 DCO DCO+ = 1 1, (see Note 1) f(DCO2) FN 8 FN 4 0 FN 3 1 FN 2 x DCO+ DCO = 1 FN_8=FN_4=0, FN_3= 1, FN_2=x; f(DCO27) FN 8 FN 4 0 FN FN_8=FN_4=0, FN_3= 3 1 1, FN FN_2=x;, 2 DCO DCO+ = 1 1, (see Note 1) f(DCO2) FN 8 0 FN_4= FN_8=0, FN 4 1, 1 FN_3= FN 3 FN_2=x; FN 2 DCO+ DCO = 1 f(DCO27) FN 8 0 FN FN_8=0, FN_4=1, 4 1 FN FN_3= 3 FN FN_2=x; 2 DCO DCO+ = 1 1, (see Note 1) f(DCO2) FN 8 1 FN FN_8=1, FN_4=FN_3=FN_2=x; 4 FN 3 FN 2 DCO DCO+ = 1 f(DCO27) FN 8 1 FN 4 FN 3 FN 2 x DCO = 1, 1 (see Note 1) FN_8=1,FN_4=FN_3=FN_2=x,DCO+ S f(NDCO)+1 = f(NDCO) Dt MIN TYP 0.3 0.65 1.25 VCC = 3 V VCC = 2.2 V 0.3 0.7 1.3 2.5 5.6 10.5 VCC = 3 V VCC = 2.2 V 2.7 6.1 11.3 0.7 1.3 2.3 VCC = 3 V VCC = 2.2 V 0.8 1.5 2.5 5.7 10.8 18 VCC = 3 V VCC = 2.2 V 6.5 12.1 20 1.2 2 3 VCC = 3 V VCC = 2.2 V 1.3 2.2 3.5 9 15.5 25 VCC = 3 V VCC = 2.2 V 10.3 17.9 28.5 1.8 2.8 4.2 VCC = 3 V VCC = 2.2 V 2.1 3.4 5.2 13.5 21.5 33 16 26.6 41 VCC = 2.2 V/3 V VCC = 2.2 V VCC = 3 V VCC = 2.2 V 4.2 6.2 4.2 6.3 9.2 21 32 46 VCC = 3 V 2 < TAP ≤ 20 30 46 70 1.06 MH MHz MH MHz MH MHz MH MHz MHz MH MHz MH MHz MH MHz MH MHz MHz 1.13 1.1 VCC = 2.2 V VCC = 3 V UNIT MHz 2.8 Drift with VCC variation, N(DCO) = 01E0h, FN_8=FN_4=FN_3=FN_2=0 D = 2, DCO+ = 0 (see Note 2) DV 1 VCC = 3 V VCC = 2.2 V TAP > 20 Tem erature drift, N(DCO) = 01E0h, FN_8=FN_4=FN_3=FN_2=0 Temperature D = 2, DCO+ = 0, (see Note 2) MAX 1.17 –0.2 –0.3 –0.4 –0.2 –0.3 –0.4 0 5 15 %/_C %/V NOTES: 1. Do not exceed the maximum system frequency. 2. This parameter not production tested. f f f (DCO) f (DCO3V) (DCO) (DCO20 C) 1.0 1.0 0 1.8 2.4 3.0 3.6 VCC – V –40 –20 0 20 40 60 Figure 15. DCO Frequency vs Supply Voltage VCC and vs Ambient Temperature 38 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 85 TA – °C SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 f(DCO) Legend Tolerance at Tap 27 DCO Frequency Adjusted by Bits 29 to 2 5 in SCFI1 {N (DCO)} Tolerance at Tap 2 Overlapping DCO Ranges: uninterrupted frequency range FN_2=0 FN_3=0 FN_4=0 FN_8=0 FN_2=1 FN_3=0 FN_4=0 FN_8=0 FN_2=x FN_3=1 FN_4=0 FN_8=0 FN_2=x FN_3=x FN_4=1 FN_8=0 FN_2=x FN_3=x FN_4=x FN_8=1 Figure 16. Five Overlapping DCO Ranges Controlled by FN_x Bits electrical characteristics over recommended operating free-air temperature (unless otherwise noted) crystal oscillator, LFXT1 oscillator (see Notes 1 and 2) PARAMETER C(XIN) C(XOUT) Integrated input inp t capacitance Integrated output o tp t capacitance TEST CONDITIONS MIN TYP OSCCAP = 0, VCC = 2.2 V / 3 V 0 OSCCAP = 1, VCC = 2.2 V / 3 V 10 OSCCAP = 2, VCC = 2.2 V / 3 V 14 OSCCAP = 3, VCC = 2.2 V / 3 V 18 OSCCAP = 0, VCC = 2.2 V / 3 V 0 OSCCAP = 1, VCC = 2.2 V / 3 V 10 OSCCAP = 2, VCC = 2.2 V / 3 V 14 MAX UNIT pF pF OSCCAP = 3, VCC = 2.2 V / 3 V 18 NOTES: 1. The parasitic capacitance from the package and board may be estimated to be 2 pF. The effective load capacitor for the crystal is (X(CIN) x X(COUT)) / (X(CIN) + X(COUT)). This is independent of XST_FLL. 2. To improve EMI on the low-power LFXT1 oscillator, particularly in the LF mode (32 kHz), the following guidelines should be observed. – Keep as short of a trace as possible between the F43x/44x and the crystal. – Design a good ground plane around the oscillator pins. – Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. – Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. – Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins. – If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins. – Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This signal is no longer required for the serial programming adapter. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 39 SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) crystal oscillator, XT2 oscillator (see Note 1) PARAMETER XCIN XCOUT XINL XINH Integrated input capacitance TEST CONDITIONS Integrated output capacitance VCC = 2.2 V/3 V VCC = 2.2 V/3 V Input levels at XIN XIN, XOUT VCC = 2.2 2 2 V/3 V MIN NOM VSS 0.8 × VCC MAX UNIT 2 pF 2 pF 0.2 × VCC V VCC V NOTE 1: The oscillator needs capacitors at both terminals, with values specified by the crystal manufacturer. USART0, USART1 (see Note 1) PARAMETER t(τ) ( ) USART0/1: deglitch time TEST CONDITIONS VCC = 2.2 V VCC = 3 V MIN NOM MAX 200 430 800 150 280 500 UNIT ns NOTE 1: The signal applied to the USART0/1 receive signal/terminal (URXD0/1) should meet the timing requirements of t(t) to ensure that the URXS flip-flop is set. The URXS flip-flop is set with negative pulses meeting the minimum-timing condition of t(t). The operating conditions to set the flag must be met independently from this timing constraint. The deglitch circuitry is active only on negative transitions on the URXD0/1 line. 40 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit ADC, power supply and input range conditions (see Note 1) PARAMETER AVCC Analog supply voltage TEST CONDITIONS AVCC and DVCC are connected together AVSS and DVSS are connected together V(AVSS) = V(DVSS) = 0 V 0 mA ≤ I(Load) ≤ 0.5 mA VCC(min) CC( i ) 0.5 mA ≤ I(Load) ≤ 1.5 mA VO(REF+) O(REF ) IL(VREF+) L(VREF ) IL(VREF+)† Positive built-in reference voltage output REF2_5 V = 1 for 2.5-V built-in reference REF2 5 V = 0 for 1 5V REF2_5 1.5-V built-in reference I(VREF+) ≤ I(VREF+_max) Load current out of VREF+ terminal Load-current regulation VREF+ terminal I((VREF+)) = 500 µA ±100 µA Analog input voltage ~0.75 0 75 V; REF2_5 V = 0 I(VREF+) = 500 µA ± 100 µA Analog input voltage ~1.25 V; REF2_5 V = 1 VCC = 3 V MIN NOM MAX 2.2 3.6 VREF+ VREF+ + 150 mV VREF+ VREF+ + 350 mV 2.4 2.5 UNIT V 2.6 V VCC = 2.2 V/3 V 1.44 VCC = 2.2 V VCC = 3 V 0.01 1.5 1.56 –0.5 –1 mA VCC = 2.2 V ±2 VCC = 3 V ±2 VCC = 3 V ±2 LSB 20 ns LSB IL(VREF+)‡ Load current regulation VREF+ terminal I(VREF+) =100 µA → 900 µA, VCC = 3 V, ax ~0.5 x VREF+ C(VREF+) (VREF ) = 5 µF Error of conversion result ≤ 1 LSB Vref(VREF+) Positive external reference voltage input VeREF+ > VREF–/VeREF– (see Note 2) 1.4 V(AVCC) V Vref(VREF– /VeREF–) Negative external reference voltage input VeREF+ > VREF–/VeREF– (see Note 3) 0 1.2 V † Not production tested, limits characterized ‡ Not production tested, limits verified by design NOTES: 1. The leakage current is defined in the leakage current table with P6.x/Ax parameter. 2. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements. 3. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 41 SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 12-bit ADC, power supply and input range conditions (continued) PARAMETER (VeREF+ – VREF–/VeREF–) Differential external reference voltage input VI(P6.x/Ax) Analog input voltage range (see Note 2) TEST CONDITIONS VeREF+ > VREF–/VeREF– (see Note 1) All P6.0/A0 to P6.7/A7/SVSin terminals. Analog inputs selected in ADC12MCTLx register and P6Sel.x=1 0 ≤ x ≤ 7; V(AVSS) ≤ VI(P6.x/Ax) ≤ V(AVCC) f(ADC12CLK) = 5 MHz VCC = 2.2 V ADC12ON = 1, REFON = 0 SHT0=0, SHT1=0, VCC = 3 V ADC12DIV=0 Operating supply current into AVCC terminal (see Note 3) Operating supply current into AVCC terminal (see Note 4) IDD(ADC12) IDD(REF+) MIN f(ADC12CLK) = 5 MHz ADC12ON = 0, REFON = 1, 2_5V = 1 NOM MAX UNIT 1.4 V(AVCC) V 0 V(AVCC) V 0.65 1.3 0.8 1.6 VCC = 3 V 0.5 0.8 VCC = 2.2 V 0.5 0.8 VCC = 3 V 0.5 0.8 mA mA f((ADC12CLK)) = 5 MHz ADC12ON = 0, 0 REFON = 1, 2_5V = 0 O erating su Operating supply ly current (see Note 4) NOTES: 1. The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements. 2. The analog input voltage range must be within the selected reference voltage range VR+ to VR– for valid conversion results 3. The internal reference supply current is not included in current consumption parameter IDD(ADC12). 4. The internal reference current is supplied via terminal AVCC. Consumption is independent of the ADC12ON control bit, unless a conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion. 12-bit ADC, built-in reference (see Note 1) PARAMETER TEST CONDITIONS MIN NOM MAX UNIT IDD(VeREF+) Static input current (see Note 2) 0 V ≤ VeREF+ ≤ V(AVCC) VCC = 2.2 V/3 V ±1 µA IDD(VREF–/VeREF–) Static input current (see Note 2) 0 V ≤ VeREF– ≤ V(AVCC) VCC = 2.2 V/3 V ±1 µA C(VREF+) Capacitance at pin VREF+ (see Note 3) REFON = 1, 0 mA ≤ I(VREF+) ≤ I(VREF_max) VCC = 2.2 V/3 V Ci‡ Input capacitance (see Note 4) Only one terminal can be selected at one time, P6.x/Ax VCC = 2.2 V Zi‡ Input MUX ON resistance (see Note 4) 0 V ≤ V(Ax) ≤ V(AVCC) T(REF+)† Temperature coefficient of built-in reference I(VREF+) is a constant in the range of 0 mA ≤ I(VREF+) ≤ 1 mA 5 µF 10 40 pF VCC = 3 V 2000 Ω VCC = 2.2 V/3 V ±100 ppm/°C † Not production tested, limits characterized ‡ Not production tested, limits verified by design NOTES: 1. The voltage source on VeREF+ and VREF–/VeREF– needs to have low-dynamic impedance for 12-bit accuracy to allow the charge to settle for this accuracy (See Figure 9 and Figure 10). 2. The external reference is used during conversion to charge and discharge the capacitance array. The dynamic impedance should follow the recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy. 3. The internal buffer operational amplifier and the accuracy specifications require an external capacitor. 4. The input capacitance is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy. All INL and DNL tests uses two capacitors between pins VREF+ and AVSS and VREF–/VeREF– and AVSS: 10-µF tantalum and 100-nF ceramic. 42 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 timing requirements 12-bit ADC, timing parameters PARAMETER Settle time of internal reference voltage (see Figure 17 and Note 1) ts(REF_ON)† TEST CONDITIONS MIN I(VREF+) = 0.5 mA, C(VREF+) = 10 µF, VREF+ = 1.5 V, V(AVCC) = 2.2 V Error of conversion result ≤ ±2 LSB 2.2V/3V f(ADC12OSC) ADC12DIV=0 [f(ADC12CLK) = f(ADC12OSC)] VCC = 2.2 V/3 V tc AVCC(min)≤ V(AVCC)≤AVCC(max), VCC = 2.2 V/3 C(VREF+) ≥ 5 µF, internal oscillator, V fOSC = 3.7 MHz to 6.3 MHz AVCC(min) ≤ V(AVCC) ≤ AVCC(max), External fADC12CLK from ACLK or MCLK or SMCLK: ADC12SSEL ≠ 0 ts(ADC12ON)‡ t(Sample) (S l )‡ Settle time of the ADC Sampling time MAX 17 f(ADC12CLK) Con ersion time Conversion NOM AVCC(min) ≤ V(AVCC) ≤ AVCC(max) (see Note 2) V(AVCC_min) < V(AVCC) < VCC = 3 V V(AVCC_max) Ri(source) = 400 Ω, Zi = 1000 Ω, Ci = 30 pF τ = [Ri(source) x+ Zi] x Ci, VCC = 2.2 V (see Note 3) 5 UNIT ms MHz 37 3.7 63 6.3 MHz 2.06 3.51 µs 13×ADC12DIV× 1/fADC12CLK µs 100 ns 1220 ns 1400 † Not production tested, limits characterized ‡ Not production tested, limits verified by design NOTES: 1. The condition is that the error in a conversion started after ts(REF_ON) is less than ±0.5 LSB. The settling time depends on the external capacitive load. 2. The condition is that the error in a conversion started after ts(ADC12ON) is less than ±0.5 LSB. The reference and input signal are already settled. 3. Ten Tau (τ) are needed to get an error of less than ±0.5 LSB. t(Sample) = 10 x (Ri + Zi) x Ci + 800 ns C(VREF+) 100 µF t(REF_ON) ~ 0.66 x C(VREF+) [ms] With C(VREF+) in µF 10 µF 1 µF 0 1 ms 10 ms 100 ms t(REF_ON) Figure 17. Typical Settling Time of Internal Reference t(REF_ON) vs External Capacitor on VREF+ POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 43 SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) 12-bit ADC, linearity parameters, VCC = 2.2 V/3 V PARAMETER TEST CONDITIONS MIN NOM 1.4 V ≤ (VeREF+ – VREF–/VeREF–) min ≤ 1.6 V E(I) Integral linearity linearit error ED Differential linearity error (VeREF+ – VREF–/VeREF–)min ≤ (VeREF+ – VREF–/VeREF–), C(VREF+) = 10 µF (tantalum) and 100 nF (ceramic) EO Offset error (VeREF+ – VREF–/VeREF–)min ≤ (VeREF+ – VREF–/VeREF–), internal impedance of source Ri < 100 Ω, C(VREF+) = 10 µF (tantalum) and 100 nF (ceramic) EG Gain error E(T) Total unadjusted error MAX ±2 ±1.7 LSB ±1 LSB ±2 ±4 LSB (VeREF+ – VREF–/VeREF–)min ≤ (VeREF+ – VREF–/VeREF–), C(VREF+) = 10 µF (tantalum) and 100 nF (ceramic) ±1.1 ±2 LSB (VeREF+ – VREF–/VeREF–)min ≤ (VeREF+ – VREF–/VeREF–), C(VREF+) = 10 µF (tantalum) and 100 nF (ceramic) ±2 ±5 LSB 1.6 V < (VeREF+ – VREF–/VeREF–) min ≤ [V(AVCC)] From Power Supply DVCC1/DVCC2 + – 10 µ F DVSS1/DVSS2 100 nF AVCC + – 10 µ F Apply External Reference (VeREF+) or Use Internal Reference (VREF+) AVSS 10 µ F MSP430F44x VREF+ or VeREF+ 100 nF VREF–/VeREF– + – 10 µ F MSP430F43x 100 nF + – Apply External Reference 100 nF Figure 18. Supply Voltage and Reference Voltage Design VREF–/VeREF– External Supply 44 UNIT POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 From Power Supply DVCC1/DVCC2 + – 10 µ F DVSS1/DVSS2 100 nF AVCC + – 10 µ F Apply External Reference (VeREF+) or Use Internal Reference (VREF+) AVSS MSP430F44x 100 nF VREF+ or VeREF+ + – 10 µ F MSP430F43x 100 nF Reference Is Internally Switched to AVSS VREF–/VeREF– Figure 19. Supply Voltage and Reference Voltage Design VREF–/VeREF– = AVSS, Internally Connected electrical characteristics over recommended operating free-air temperature (unless otherwise noted) 12-bit ADC, temperature sensor and built-in Vmid PARAMETER ICC(SENSOR) Operating supply current into AVCC terminal (see Note 1) TEST CONDITIONS V(REFON) = 0, INCH = 0Ah, ADC12ON = NA, TA = 25_C MIN NOM MAX VCC = 2.2 V 40 120 VCC = 3 V 60 160 UNIT µA A V(SENSOR)† ADC12ON = 1, INCH = 0Ah, TA = 0°C 2 V/3 V VCC = 2 2.2 986 986±5% mV TC(SENSOR)† ADC12ON = 1 1, INCH = 0Ah 2 V/3 V VCC = 2 2.2 3 55 3.55 3 55±3% 3.55±3% mV/°C ts(SENSOR)† Sample time required if channel 10 is selected (see Note 2) ADC12ON = 1, INCH = 0Ah, Error of conversion result ≤ 1 LSB VCC = 2 2.2 2 V/3 V V(MID) AVCC divider di ider at channel 11 ADC12ON = 1, INCH = 0Bh, V(MID) is ~0.5 x V(AVCC) VCC = 2.2 V VCC = 3 V t(ON_VMID) (ON VMID) On-time On time if channel 11 is selected (see Note 3) ADC12ON = 1, INCH = 0Bh, Error of conversion result ≤ 1 LSB 2 V/3 V VCC = 2 2.2 µss 30 1.1 1.1±0.04 1.5 1.5±0.04 NA V ns † Not production tested, limits characterized ‡ Not production tested, limits verified by design NOTES: 1. The sensor current ISENSOR is consumed if (ADC12ON = 1 and V(REFON) = 1), or (ADC12ON=1 AND INCH=0Ah and sample signal is high). Therefore, it includes the constant current through the sensor and the reference. 2. The typical equivalent impedance of the sensor is 51 kΩ. The sample time needed is the sensor-on time t(SENSOR_ON) 3. The on-time t(ON_VMID) is identical to sampling time t(Sample); no additional on time is needed. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 45 SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 JTAG, program memory and fuse PARAMETER f(TCK) JTAG/Testt JTAG/T (see Note 4) JTAG/fuse (see Note 2) I(FB) I(DD-PGM) I(DD-Erase) t(retention) ( t ti ) NOTES: 1. 2. 3. 4. 46 MIN TCK freq frequency enc VCC = 2.2 V VCC = 3 V Pull-up resistors on TMS, TCK, TDI (see Note 1) VCC = 2.2 V/3 V Supply voltage during fuse blow condition, TA = 25°C VCC(FB) V(FB) TEST CONDITIONS NOM DC 5 DC 10 25 60 Fuse-blow voltage, F versions (see Note 3) F versions only F-versions Current from DVCC when erase is active Write/erase cycles 104 Data retention TJ = 25°C 100 MH MHz kΩ 7 100 VCC = 2.7 V/3.6 V VCC = 2.7 V/3.6 V UNIT V 6 Supply current on TDI with fuse blown Current from DVCC when programming is active 90 2.5 Time to blow the fuse F-versions F versions only (see Note 4) MAX mA 1 ms 3 5 mA 3 5 10 5 mA cycles years TMS, TDI, and TCK pull-up resistors are implemented in all F versions. Once the fuse is blown, no further access to the MSP430 JTAG/test feature is possible. The JTAG block is switched to bypass mode. The supply voltage to blow the fuse is applied to the TDI pin. f(TCK) may be restricted to meet the timing requirements of the module selected. Duration of the program/erase cycle is determined by f(FTG) applied to the flash timing controller. It can be calculated as follows: t(word write) = 35 1/f(FTG) t(block write, byte 0) = 30 1/f(FTG) t(block write, byte 1 – 63) = 20 1/f(FTG) t(block write, sequence end) = 6 1/f (FTG) t(mass erase) = 5297 1/f(FTG) t(segment erase) = 4819 1/f(FTG) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 input/output schematic Port P1, P1.0 to P1.5, input/output with Schmitt-trigger Pad Logic CAPD.x P1SEL.x 0: Input 1: Output 0 P1DIR.x Direction Control From Module P1OUT.x 1 0 P1.x 1 Module X OUT Bus Keeper P1.0/TA0 P1.1/TA0/MCLK P1.2/TA1 P1.3/TBOutH/SVSOut P1.4/TBCLK/SMCLK P1.5/TACLK/ACLK P1IN.x EN D Module X IN P1IE.x P1IRQ.x P1IFG.x Q EN Set Interrupt Edge Select P1IES.x Note: 0 < x< 5 Note: Port function is active if CAPD.x = 0 Direction PnOUT.x Control From Module P1SEL.x Module X OUT PnSel.x PnDIR.x P1Sel.0 P1DIR.0 P1DIR.0 P1OUT.0 Out0 sig. P1Sel.1 P1DIR.1 P1DIR.1 P1OUT.1 MCLK P1Sel.2 P1DIR.2 P1DIR.2 P1OUT.2 Out1 sig. P1Sel.3 P1DIR.3 P1DIR.3 P1OUT.3 SVSOut † † PnIN.x Module X IN P1IN.0 CCI0A P1IN.1 CCI0B † † † PnIE.x PnIFG.x PnIES.x P1IE.0 P1IFG.0 P1IES.0 P1IE.1 P1IFG.1 P1IES.1 P1IE.2 P1IFG.2 P1IES.2 P1IN.2 CCI1A P1IN.3 TBOutH ‡ P1IE.3 P1IFG.3 P1IES.3 ‡ TBCLK P1IE.4 P1IFG.4 P1IES.4 P1IE.5 P1IFG.5 P1IES.5 P1Sel.4 P1DIR.4 P1DIR.4 P1OUT.4 SMCLK P1IN.4 P1Sel.5 P1DIR.5 P1DIR.5 P1OUT.5 ACLK P1IN.5 TACLK † † Timer_A ‡ Timer_B POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 47 SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 input/output schematic (continued) Port P1, P1.6, P1.7, input/output with Schmitt-trigger Pad Logic Note: Port function is active if CAPD.6 = 0 CAPD.6 P1SEL.6 0: Input 1: Output 0 P1DIR.6 P1.6/ CA0 1 P1DIR.6 0 P1OUT.6 1 DVSS Bus Keeper P1IN.6 EN unused D P1IE.7 P1IRQ.07 EN Interrupt Edge Select Q P1IFG.7 Set P1IES.x P1SEL.x Comparator_A P2CA AVcc CAREF CAEX CA0 CAF CCI1B + to Timer_Ax – CA1 2 CAREF Reference Block Pad Logic CAPD.7 Note: Port function is active if CAPD.7 = 0 P1SEL.7 0: input 1: output 0 P1DIR.7 P1.7/ CA1 1 P1DIR.7 0 P1OUT.7 1 DVSS Bus keeper P1IN.7 EN unused D P1IE.7 P1IRQ.07 EN Q P1IFG.7 Set Interrupt Edge Select P1IES.7 48 P1SEL.7 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 input/output schematic (continued) port P2, P2.0, P2.4 to P2.5, input/output with Schmitt-trigger Pad Logic DVSS DVSS P2SEL.x 0: Input 1: Output 0 P2DIR.x Direction Control From Module 1 0 1 P2OUT.x Module X OUT Bus Keeper P2.0/TA2 P2.4/UTXD0 P2IN.x P2.5/URXD0 EN Module X IN D P2IE.x P2IRQ.x P2IFG.x EN Interrupt Edge Select Q Set P2IES.x Note: P2SEL.x x {0,4,5} PnSel.x PnDIR.x Dir. Control from module PnOUT.x Module X OUT PnIN.x Module X IN PnIE.x PnIFG.x P2Sel.0 P2DIR.0 P2DIR.0 P2OUT.0 Out2 sig. † P2IN.0 CCI2A † P2IE.0 P2IFG.0 P2IES.0 P2IN.4 unused P2IE.4 P2IFG.4 P2IES.4 P2IN.5 URXD0 ‡ P2IE.5 P2IFG.5 P2IES.5 P2Sel.4 P2DIR.4 DVCC P2OUT.4 UTXD0 P2Sel.5 P2DIR.5 DVSS P2OUT.5 DVSS ‡ PnIES.x †Timer_A ‡USART0 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 49 SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 input/output schematic (continued) port P2, P2.1 to P2.3, input/output with Schmitt-trigger Pad Logic DVSS DVSS Module IN of pin P1.3/TBOutH/SVSOut P1DIR.3 P1SEL.3 P2SEL.x 0: Input 1: Output 0 P2DIR.x Direction Control From Module P2OUT.x 1 0 1 Module X OUT Bus Keeper P2.1/TB0 P2.2/TB1 P2IN.x P2.3/TB2 EN D Module X IN P2IE.x P2IRQ.x Q P2IFG.x EN Interrupt Edge Select Set P2IES.x Note: P2SEL.x 1<x <3 PnSel.x PnDIR.x Dir. Control from module PnOUT.x Module X OUT PnIN.x P2Sel.1 P2DIR.1 P2DIR.1 P2OUT.1 Out0 sig. † P2IN.1 Module X IN PnIE.x PnIFG.x CCI0A † CCI0B P2IE.1 P2IFG.1 P2IES.1 P2IE.2 P2IFG.2 P2IES.2 P2IE.3 P2IFG.3 P2IES.3 P2Sel.2 P2DIR.2 P2DIR.2 P2OUT.2 Out1 sig. † P2IN.2 CCI1A † CCI1B P2Sel.3 P2DIR.3 P2DIR.3 P2OUT.3 Out2 sig. † P2IN.3 CCI2A † CCI2B †Timer_B 50 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 PnIES.x SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 input/output schematic (continued) port P2, P2.6 to P2.7, input/output with Schmitt-trigger 0: Port active 1: Segment xx function active Pad Logic Port/LCD‡ Segment xx‡ P2SEL.x 0: Input 1: Output 0 P2DIR.x Direction Control From Module 1 0 P2OUT.x 1 Module X OUT Bus Keeper P2.6/CAOUT/S19‡ P2.7/ADC12CLK/S18‡ P2IN.x ‡Segment function only available with MSP430x43xIPN EN D Module X IN P2IE.x P2IRQ.x P2IFG.x EN Q Set Interrupt Edge Select P2IES.x Note: P2SEL.x 6<x <7 PnSel.x PnDIR.x Dir. Control from module PnOUT.x Module X OUT PnIN.x Module X IN PnIE.x PnIFG.x PnIES.x ‡ Port/LCD P2Sel.6 P2DIR.6 P2DIR.6 P2OUT.6 CAOUT † P2IN.6 unused P2IE.6 P2IFG.6 P2IES.6 0: LCDM<40h ‡ P2Sel.7 P2DIR.7 P2DIR.7 P2OUT.7 ADC12CLK§ P2IN.7 unused P2IE.7 P2IFG.7 P2IES.7 0: LCDM<40h ‡ † Comparator_A ‡Port/LCD signal is 1 only with MSP430xIPN and LCDM ≥40h. § ADC12 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 51 SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 input/output schematic (continued) port P3, P3.0 to P3.3, input/output with Schmitt-trigger MSP430x43xIPN (80-Pin) Only 0: Port active 1: Segment xx function active LCDM.5 LCDM.6 LCDM.7 Pad Logic Segment xx x43xIPZ and x44xIPZ have not segment Function on Port P3: Both lines are low. P3SEL.x 0: Input 1: Output 0 P3DIR.x Direction Control From Module 1 0 1 P3OUT.x Module X OUT Bus Keeper P3.0/STEO/S31† P3.1/SIMO0/S30† P3.2/SOMI0/S29† P3.3/UCLK0/S28† P3IN.x EN Module X IN Note: D 0<x<3 Direction PnOUT.x Control From Module Module X OUT PnIN.x Module X IN DVSS P3IN.0 STE0(in) DCM_SIMO0 P3OUT.1 SIMO0(out) P3IN.1 SIMO0(in) P3DIR.2 DCM_SOMI0 P3OUT.2 SOMIO(out) P3IN.2 SOMI0(in) P3DIR.3 DCM_UCLK0 P3OUT.3 UCLK0(out) P3IN.3 UCLK0(in) PnSel.x PnDIR.x P3Sel.0 P3DIR.0 P3Sel.1 P3DIR.1 P3Sel.2 P3Sel.3 DVSS P3OUT.0 † S24 to S31 shared with port function only at MSP430x43xIPN (80-pin QFP) Direction Control for SIMO0 and UCLK0 SYNC MM 52 DCM_SIMO0 DCM_UCLK0 Direction Control for SOMI0 SYNC MM STC STC STE STE POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 DCM_SOMI0 SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 port P3, P3.4 to P3.7, input/output with Schmitt-trigger LCDM.7† or DVSS‡ 0: Port active 1: Segment xx function active Pad Logic Segmentxx† or DVSS‡ TBoutHiZ# or DVSS§ P3SEL.x 0: Input 1: Output 0 P3DIR.x Direction Control From Module P3OUT.x 1 0 1 Module XOUT Bus Keeper ’x43xIPN ’x43xIPZ 80-Pin 100-Pin ’x44x P3IN.x P3.4/S27 P3.5/S26 P3.6/S25 P3.7/S24 EN Module X IN Note: D P3.4 P3.5 P3.6 P3.7 P3.4/TB3 P3.5/TB4 P3.6/TB5 P3.7/TB6 4<x <7 Module IN of pin P1.3/TBOutH/SVSOut P1DIR.3 P1SEL.3 P3DIR.x P3SEL.x TBoutHiZ PnSel.x PnDIR.x Dir. Control from module PnOUT.x P3Sel.4 P3DIR.4 P3DIR.4 P3OUT.4 P3Sel.5 P3DIR.5 P3DIR.5 P3OUT.5 P3Sel.6 P3DIR.6 P3DIR.6 P3OUT.6 P3Sel.7 P3DIR.7 P3DIR.7 P3OUT.7 Module X OUT DVSS OUT3 DVSS OUT4 DVSS OUT5 DVSS OUT6 § # § # § # § # PnIN.x P3IN.4 P3IN.5 P3IN.6 P3IN.7 Module X IN unused § CCI3A/B# unused § CCI4A/B# unused § CCI5A/B# unused § CCI6A/B# † MSP430x43xIPN ‡ MSP430x43xIPZ, MSP430x44xIPZ § MSP430x43x # MSP430x44x POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 53 SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 input/output schematic (continued) port P4, P4.0 to P4.7, input/output with Schmitt-trigger 0: Port active 1: Segment xx function active Pad Logic Port/LCD§ Segment xx P4SEL.x 0: Input 1: Output 0 P4DIR.x Direction Control From Module 1 0 1 P4OUT.x Module X OUT Bus Keeper x43xIPN 80-Pin QFP: x43xIPZ 100-Pin QFP: P4.7/S2 P4.6/S3 P4.5/S4 P4.3/S6 P4.4/S5 P4.2/S7 P4.1/S8 P4.0/S9 P4.7/S34 P4.6/S35 P4.5/S36 P4.3/S37 P4.4/S38 P4.2/S39 P4.0 P4.1 x44x P4IN.x EN Module X IN Note: D 0<x<7 PnSel.x PnDIR.x Direction Control From Module PnOUT.x P4Sel.0 P4DIR.0 P4DIR.0† DVCC‡ P4OUT.0 P4Sel.1 P4DIR.1 P4DIR.1† DVSS‡ P4Sel.2 P4DIR.2 P4Sel.3 P4DIR.3 P4Sel.4 P4DIR.4 P4Sel.5 P4DIR.5 P4Sel.6 P4DIR.4 P4Sel.7 P4DIR.5 Module X PnIN.x Module X IN DVSS† UTXD1‡ P4IN.0 unused P4OUT.1 DVSS P4IN.1 unused† URXD1‡ P4DIR.2† DVSS‡ P4OUT.2 DVSS P4IN.2 unused† STE1(in)‡ P4DIR3.† DCM_SIMO1‡ P4OUT.3 DVSS† SIMO1(out)‡ P4IN.3 unused† SIMO1(in)‡ P4OUT.4 DVSS† SOMI1(out)‡ P4IN.4 unused SOMI1(in)‡ P4OUT.5 DVSS† UCLK1(out)‡ P4IN.5 unused† UCLK1(in)‡ P4DIR.6 P4OUT.6 DVSS P4IN.6 unused P4DIR.7 P4OUT.7 DVSS P4IN.7 unused P4DIR4.† DCM_SOMI1‡ P4DIR5.† DCM_UCLK1‡ OUT † Signal at MSP430x43x ‡ Signal at MSP430x44x § DEVICE 54 PORT BITS PORT FUNCTION LCD SEG. FUNCTION x43xIPN 80-pin QFP P4.0 . . .P4.7 LCDM < 020h LCDM ≥ 020h x43xIPZ 100-pin QFP P4.2 . . .P4.5 LCDM < 0E0h LCDM ≥ 0E0h x44xIPZ 100-pin QFP P4.6 . . .P4.7 LCDM < 0C0h LCDM ≥ 0C0h POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P4.7/S34 P4.6/S35 P4.5/UCLK1/S36 P4.4/SMO1/S37 P4.3/SIMO1/S38 P4.2/STE1/S39 P4.1/URXD1 P4.0/UTXD1 SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 input/output schematic (continued) Direction Control for SIMO1 and UCLK1 Direction Control for SOMI1 SYNC SYNC MM DCM_SIMO1 DCM_UCLK1 MM DCM_SOMI1 STC STC STE STE port P5, P5.0 to P5.1, input/output with Schmitt-trigger 0: Port active 1: Segment function active Port/LCD Segment Pad Logic Segment Port Pad Logic P5SEL.x 0 P5DIR.x Direction Control From Module 0: Input 1 1: Output 0 P5OUT.x 1 Module X OUT Bus Keeper P5.0/S1 P5.1/S0 P5IN.x EN Module X IN Note: D 0 <x <1 PnSel.x PnDIR.x P5Sel.0 P5DIR.0 P5Sel.1 P5DIR.1 PnOUT.x Module X OUT PnIN.x Module X IN Segment P5DIR.0 P5OUT.0 DVSS P5IN.0 unused S1 0: LCDM<20h P5DIR.1 P5OUT.1 DVSS P5IN.1 unused S0 0: LCDM<20h Dir. Control from module POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 Port/LCD 55 SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 input/output schematic (continued) port P5, P5.2 to P5.4, input/output with Schmitt-trigger 0: Port active 1: LCD function active Port/LCD LCD signal Pad Logic P5SEL.x 0: Input 1: Output 0 P5DIR.x Direction Control From Module 1 0 1 P5OUT.x Module X OUT Bus Keeper P5.2/COM1 P5.3/COM2 P5.4/COM3 P5IN.x EN Module X IN D Note: 56 2<x <4 PnSel.x PnDIR.x Dir. Control from module PnOUT.x Module X OUT PnIN.x Module X IN P5Sel.2 P5DIR.2 P5DIR.2 P5OUT.2 DVSS P5IN.2 unused COM1 P5SEL.2 P5Sel.3 P5DIR.3 P5DIR.3 P5OUT.3 DVSS P5IN.3 unused COM2 P5SEL.3 P5Sel.4 P5DIR.4 P5DIR.4 P5OUT.4 DVSS P5IN.4 unused COM3 P5SEL.4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 LCD signal Port/LCD SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 input/output schematic (continued) port P5, P5.5 to P5.7, input/output with Schmitt-trigger 0: Port active 1: LCD function active Port/LCD LCD signal Pad Logic P5SEL.x 0: Input 1: Output 0 P5DIR.x Direction Control From Module 1 0 1 P5OUT.x Module X OUT Bus Keeper P5.5/R13 P5.6/R23 P5.7/R33 P5IN.x EN Module X IN D Note: 5<x <7 PnSel.x PnDIR.x Dir. Control from module PnOUT.x Module X OUT PnIN.x Module X IN P5Sel.5 P5DIR.5 P5DIR.5 P5OUT.5 DVSS P5IN.5 unused R13 P5SEL.5 P5Sel.6 P5DIR.6 P5DIR.6 P5OUT.6 DVSS P5IN.6 unused R23 P5SEL.6 P5Sel.7 P5DIR.7 P5DIR.7 P5OUT.7 DVSS P5IN.7 unused R33 P5SEL.7 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 LCD signal Port/LCD 57 SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 input/output schematic (continued) port P6, P6.0 to P6.6, input/output with Schmitt-trigger P6SEL.x 0 P6DIR.x Direction Control From Module 1 0: Input 1: Output Pad Logic P6.0/A0 .. P6.6/A6 0 P6OUT.x Module X OUT 1 Bus Keeper P6IN.x EN Module X IN D From ADC To ADC x: Bit Identifier, 0 to 6 for Port P6 NOTE: Analog signals applied to digital gates can cause current flow from the positive to the negative terminal. The throughput current flows if the analog signal is in the range of transitions 0→1 or 1←0. The value of the throughput current depends on the driving capability of the gate. For MSP430, it is approximately 100 µA. Use P6SEL.x=1 to prevent throughput current. P6SEL.x should be set, even if the signal at the pin is not being used by the ADC12. PnSel.x PnDIR.x Dir. Control From Module PnOUT.x Module X OUT PnIN.x Module X IN P6Sel.0 P6DIR.0 P6DIR.0 P6OUT.0 DVSS P6IN.0 unused P6Sel.1 P6DIR.1 P6DIR.1 P6OUT.1 DVSS P6IN.1 unused P6Sel.2 P6DIR.2 P6DIR.2 P6OUT.2 DVSS P6IN.2 unused P6Sel.3 P6DIR.3 P6DIR.3 P6OUT.3 DVSS P6IN.3 unused P6Sel.4 P6DIR.4 P6DIR.4 P6OUT.4 DVSS P6IN.4 unused P6Sel.5 P6DIR.5 P6DIR.5 P6OUT.5 DVSS P6IN.5 unused P6Sel.6 P6DIR.6 P6DIR.6 P6OUT.6 DVSS P6IN.6 unused NOTE: The signal at pins P6.x/Ax is used by the 12-bit ADC module. 58 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 input/output schematic (continued) port P6, P6.7, input/output with Schmitt-trigger P6SEL.x VLP(SVS)=15 0 P6DIR.x Direction Control From Module 1 0: Input 1: Output Pad Logic P6.7/A7/SVSin 0 P6OUT.x Module X OUT 1 Bus Keeper P6IN.x EN Module X IN D From ADC To ADC To Brownout/SVS Module x: Bit Identifier, 7 for Port P6 NOTE: Analog signals applied to digital gates can cause current flow from the positive to the negative terminal. The throughput current flows if the analog signal is in the range of transitions 0→1 or 1←0. The value of the throughput current depends on the driving capability of the gate. For MSP430, it is approximately 100 µA. Use P6SEL.x=1 to prevent throughput current. P6SEL.x should be set, even if the signal at the pin is not being used by the ADC12. PnSel.x PnDIR.x Dir. Control From Module PnOUT.x Module X OUT PnIN.x Module X IN P6Sel.7 P6DIR.7 P6DIR.7 P6OUT.7 DVSS P6IN.7 unused NOTE: The signal at pins P6.x/Ax is used by the 12-bit ADC module. The signal at pin P6.7/A7/SVSin is also connected to the input multiplexer in the module brownout/supply voltage supervisor. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 59 SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 input/output schematic (continued) JTAG pins TMS, TCK, TDI, TDO/TDI, input/output with Schmitt-trigger or output TDO Controlled by JTAG Controlled by JTAG TDO/TDI JTAG Controlled by JTAG DVCC TDI Burn and Test Fuse TDI Test and Emulation DVCC TMS Module TMS DVCC TCK TCK RST/NMI Tau ~ 50 ns Brownout TCK 60 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 G D U S G D U S SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 JTAG fuse check mode MSP430 devices that have the fuse on the TDI terminal have a fuse check mode that tests the continuity of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check current (I(TF)) of 1 mA at 3 V can flow from the TDI pin to ground if the fuse is not burned. Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption. Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse check mode has the potential to be activated. The fuse check current only flows when the fuse check mode is active and the TMS pin is in a low state (see Figure 20). Therefore, the additional current flow can be prevented by holding the TMS pin high (default condition). The JTAG pins are terminated internally and therefore do not require external termination. Time TMS Goes Low After POR TMS I(TF) I(TDI) Figure 20. Fuse Check Mode Current MSP430x43x, MSP430x44x POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 61 SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 MECHANICAL DATA PN (S-PQFP-G80) PLASTIC QUAD FLATPACK 0,27 0,17 0,50 0,08 M 41 60 61 40 80 21 0,13 NOM 1 20 Gage Plane 9,50 TYP 12,20 SQ 11,80 14,20 SQ 13,80 0,25 0°–ā7° 0,05 MIN 0,75 0,45 1,45 1,35 Seating Plane 0,08 1,60 MAX 4040135/B 11/96 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Falls within JEDEC MS-026 62 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS344B – JANUARY 2002 – REVISED OCTOBER 2002 MECHANICAL DATA PZ (S-PQFP-G100) PLASTIC QUAD FLATPACK 0,27 0,17 0,50 75 0,08 M 51 76 50 100 26 1 0,13 NOM 25 12,00 TYP Gage Plane 14,20 SQ 13,80 16,20 SQ 15,80 0,05 MIN 1,45 1,35 0,25 0°–ā7° 0,75 0,45 Seating Plane 0,08 1,60 MAX 4040149/B 11/96 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Falls within JEDEC MS-026 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 63 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright 2003, Texas Instruments Incorporated