July 1996 NDS335N N-Channel Logic Level Enhancement Mode Field Effect Transistor General Description Features These N -Channel logic level enhancement mode power field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance. These devices are particularly suited for low voltage applications in notebook computers, portable phones, PCMCIA cards, and other battery powered circuits where fast switching, and low in-line power loss are needed in a very small outline surface mount package. 1.7 A, 20 V. RDS(ON) = 0.14 Ω @ VGS= 2.7 V RDS(ON) = 0.11 Ω @ VGS= 4.5 V. Industry standard outline SOT-23 surface mount package using poprietary SuperSOTTM-3 design for superior thermal and electrical capabilities. High density cell design for extremely low RDS(ON). Exceptional on-resistance and maximum DC current capability. ________________________________________________________________________________ D S G Absolute Maximum Ratings T A = 25°C unless otherwise noted Symbol Parameter NDS335N Units VDSS Drain-Source Voltage 20 V VGSS Gate-Source Voltage - Continuous 8 V ID Maximum Drain Current - Continuous (Note 1a) 1.7 A - Pulsed PD Maximum Power Dissipation 10 (Note 1a) (Note 1b) TJ,TSTG Operating and Storage Temperature Range 0.5 W 0.46 -55 to 150 °C 250 °C/W 75 °C/W THERMAL CHARACTERISTICS RθJA Thermal Resistance, Junction-to-Ambient RθJC Thermal Resistance, Junction-to-Case (Note 1a) © 1997 Fairchild Semiconductor Corporation (Note 1) NDS335 Rev.C Electrical Characteristics (TA = 25°C unless otherwise noted) Symbol Parameter Conditions Min Typ Max Units OFF CHARACTERISTICS BVDSS Drain-Source Breakdown Voltage VGS = 0 V, ID = 250 µA IDSS Zero Gate Voltage Drain Current VDS = 16 V, VGS= 0 V 20 V TJ =125°C 1 µA 10 µA IGSSF Gate - Body Leakage, Forward VGS = 8 V, VDS = 0 V 100 nA IGSSR Gate - Body Leakage, Reverse VGS = -8 V, VDS = 0 V -100 nA 1 V ON CHARACTERISTICS (Note 2) VGS(th) Gate Threshold Voltage VDS = VGS, ID = 250 µA RDS(ON) Static Drain-Source On-Resistance VGS = 2.7 V, ID = 1.7 A 0.5 TJ =125°C 0.3 TJ =125°C VGS = 4.5 V, ID = 1.7 A ID(ON) gFS On-State Drain Current Forward Transconductance VGS = 2.7 V, VDS = 5 V 5 VGS = 4.5 V, VDS = 5 V 10 VDS = 5 V, ID = 1.7 A, 0.7 0.5 0.8 0.084 0.14 0.13 0.25 0.065 0.11 Ω A 6 S 240 pF 130 pF 40 pF DYNAMIC CHARACTERISTICS Ciss Input Capacitance Coss Output Capacitance Crss Reverse Transfer Capacitance VDS = 10 V, VGS = 0 V, f = 1.0 MHz SWITCHING CHARACTERISTICS (Note 2) td(on) Turn - On Delay Time tr Turn - On Rise Time td(off) Turn - Off Delay Time tf Turn - Off Fall Time Qg Total Gate Charge Qgs Gate-Source Charge Qgd Gate-Drain Charge VDD = 5 V, ID = 1 A, VGS = 4.5 V, RGen = 6 Ω VDS = 10 V, ID = 1.7 A, VGS = 4.5 V 8 20 ns 29 45 ns 28 40 ns 8 20 ns 6.4 9 nC 0.5 nC 2 nC NDS335 Rev.C Electrical Characteristics (TA = 25°C unless otherwise noted) Symbol Parameter Conditions Min Typ Max Units 0.42 A 10 A 1.2 V DRAIN-SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS IS Maximum Continuous Drain-Source Diode Forward Current ISM Maximum Pulsed Drain-Source Diode Forward Current VSD Drain-Source Diode Forward Voltage VGS = 0 V, IS = 0.42 A (Note 2) 0.8 Notes: 1. RθJA is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. RθJC is guaranteed by design while RθCA is determined by the user's board design. PD (t ) = T J−TA R θJ A(t ) = T J−TA R θJ C+RθCA(t ) = I 2D (t ) × RDS(ON ) TJ Typical RθJA using the board layouts shown below on 4.5"x5" FR-4 PCB in a still air environment: a. 250oC/W when mounted on a 0.02 in2 pad of 2oz copper. b. 270oC/W when mounted on a 0.001 in2 pad of 2oz copper. 1a 1b Scale 1 : 1 on letter size paper 2. Pulse Test: Pulse Width < 300µs, Duty Cycle < 2.0%. NDS335 Rev.C Typical Electrical Characteristics 2.5 2.0 R DS(on), NORMALIZED I D , DRAIN-SOURCE CURRENT (A) VGS =4.5V 3.0 4 2.7 3 2 1.5 1 0 0 0.4 0.8 1.2 1.6 DRAIN-SOURCE ON-RESISTANCE 1.75 5 1.5 VGS = 2.0V 1.25 2.5 3.0 0 1 2 VDS , DRAIN-SOURCE VOLTAGE (V) I R DS(on) , NORMALIZED DRAIN-SOURCE ON-RESISTANCE 1.6 VGS = 2.7V 1.4 1.2 1 0.8 3 4 5 , DRAIN CURRENT (A) VGS = 2.7 V 0 25 50 75 100 125 TJ = 125°C 1.5 1.25 25°C 1 -55°C 0.75 0.5 -25 150 0 1 2 25°C 125°C 4 3 2 1 0.5 1 V GS 1.5 2 2.5 , GATE TO SOURCE VOLTAGE (V) Figure 5. Transfer Characteristics. 3 GATE-SOURCE THRESHOLD VOLTAGE T = -55°C J V DS = 5.0V 4 5 Figure 4. On-Resistance Variation with Drain Current and Temperature. Figure 3. On-Resistance Variation with Temperature. 5 3 ID , DRAIN CURRENT (A) TJ , JUNCTION TEMPERATURE (°C) Vth , NORMALIZED R DS(ON), NORMALIZED DRAIN-SOURCE ON-RESISTANCE I D = 1.7A 0.6 -50 ID , DRAIN CURRENT (A) D 1.75 1.8 0 4.5 Figure 2. On-Resistance Variation with Drain Current and Gate Voltage. Figure 1. On-Region Characteristics. 0 3.5 0.75 0.5 2 2.7 1 1.3 1.2 V DS= V GS I D = 250µA 1.1 1 0.9 0.8 0.7 0.6 0.5 -50 -25 0 25 50 75 100 125 150 TJ , JUNCTION TEMPERATURE (°C) Figure 6. Gate Threshold Variation with Temperature. NDS335 Rev.C 1 1.12 I , REVERSE DRAIN CURRENT (A) I = 250µA D 1.08 1.04 1 0.96 0.92 -50 0.1 TJ = 125°C 0 J 25 50 75 100 125 -55°C 0.001 0 150 SD 0.6 0.8 1 1.2 , BODY DIODE FORWARD VOLTAGE (V) Figure 8. Body Diode Forward Voltage Variation with Source Current and Temperature. 5 VGS , GATE-SOURCE VOLTAGE (V) 400 C iss 200 100 C oss 50 10 0.1 0.4 V 600 20 0.2 , JUNCTION TEMPERATURE (°C) Figure 7. Breakdown Voltage Variation with Temperature. CAPACITANCE (pF) 25°C 0.01 0.0001 -25 T f = 1 MHz V GS = 0V C rss 0.5 DS 1 2 5 10 10V 15V 3 2 1 20 0 2 4 Q , DRAIN TO SOURCE VOLTAGE (V) Figure 9. Capacitance Characteristics. 6 t d(on) t off tr t d(off) tf 90% 90% V OUT D VOUT 10% 10% INVERTED DUT G 8 , GATE CHARGE (nC) t on RL V IN g Figure 10. Gate Charge Characteristics. VDD R GEN VDS = 5V I D = 1.7A 4 0 0.2 V VGS V GS = 0V S BV DSS , NORMALIZED DRAIN-SOURCE BREAKDOWN VOLTAGE Typical Electrical Characteristics (continued) 90% V IN 50% 50% S 10% PULSE WIDTH Figure 11. Switching Test Circuit. Figure 12. Switching Waveforms. NDS335 Rev.C Typical Electrical Characteristics (continued) 20 VDS = 5.0V 25°C 8 6 125°C 4 2 3 RD 1 2 3 4 5 N) LI 10 0.3 10s 0.1 0.01 0.1 0.2 0.5 V D DS 0.8 0.6 1a 1b 0.4 4.5"x5" FR-4 Board o TA = 25 C Still Air 0.2 0 0 0.1 0.2 0.3 2 5 10 20 30 2.4 2 1a 1.6 1b 4.5"x5" FR-4 Board o TA = 25 C Still Air VGS = 2.7V 1.2 0.8 0 0.4 0.1 2oz COPPER MOUNTING PAD AREA (in2 ) Figue 15. SuperSOTTM _ 3 Maximum Steady-State Power Dissipation versus Mounting Pad Area. 1 , DRAIN-SOURCE VOLTAGE (V) Figure 14. Maximum Safe Operating Area ID , STEADY-STATE DRAIN CURRENT (A) STEADY-STATE POWER DISSIPATION (W) 1 s DC VGS = 2.7V SINGLE PULSE RθJA =See Note1b TA = 25°C I , DRAIN CURRENT (A) Figure 13. Transconductance Variation with Drain Current and Temperature. 0m 1s FS g 0 S(O T MI 1 0.03 0 10 0u s 10m s 10 T J = -55°C 10 I D , DRAIN CURRENT (A) , TRANSCONDUCTANCE (SIEMENS) 12 0.2 0.3 0.4 2 2oz COPPER MOUNTING PAD AREA (in ) Figure 16. Maximum Steady-State Drain Current versus Copper Mounting Pad Area. Copper r(t), NORMALIZED EFFECTIVE TRANSIENT THERMAL RESISTANCE 1 0.5 0.2 D = 0.5 R θJA (t) = r(t) * R θJA R θJA = See Note 1b 0.2 0.1 0.1 0.05 0.05 0.02 0.01 0.005 P(pk) 0.02 t1 0.01 t2 TJ - TA = P * R θJA (t) Single Pulse Duty Cycle, D = t1 /t2 0.002 0.001 0.0001 0.001 0.01 0.1 t 1 , TIME (sec) 1 10 100 300 Figure 17. Transient Thermal Response Curve. Note : Characterization performed using the conditions described in note 1b. Transient thermal change depending on the circuit board design. response will NDS335 Rev.C