Micron MT16VDDT25664AG-265 Ddr sdram unbuffered dimm Datasheet

256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
DDR SDRAM
UNBUFFERED DIMM
MT16VDDT3264A – 256MB
MT16VDDT6464A – 512MB
MT16VDDT12864A – 1GB
MT16VDDT25664A – 2GB (ADVANCE)‡
For the latest data sheet, please refer to the Micron Web
site: www.micron.com/products/modules
Features
Figure 1: 184-Pin DIMM (MO-206)
• 184-pin, dual in-line memory module (DIMM)
• Fast data transfer rates: PC2100 or PC2700
• Utilizes 266 MT/s and 333 MT/s DDR SDRAM
components
• 256MB (32 Meg x 64), 512MB (64 Meg x 64), 1GB
(128 Meg x 64), and 2GB (256 Meg x 64)
• VDD = VDDQ = +2.5V
• VDDSPD = +2.3V to +3.6V
• 2.5V I/O (SSTL_2 compatible)
• Commands entered on each positive CK edge
• DQS edge-aligned with data for READs; centeraligned with data for WRITEs
• Internal, pipelined double data rate (DDR)
architecture; two data accesses per clock cycle
• Bidirectional data strobe (DQS) transmitted/
received with data—i.e., source-synchronous data
capture
• Differential clock inputs (CK and CK#)
• Four internal device banks for concurrent operation
• Programmable burst lengths: 2, 4, or 8
• Auto precharge option
• Auto Refresh and Self Refresh Modes
• 15.6µs (256MB), 7.8125µs (512MB, 1GB, and 2GB)
maximum average periodic refresh interval
• Serial Presence Detect (SPD) with EEPROM
• Programmable READ CAS latency
• Gold edge contacts
Standard 1.25in. (31.75mm)
Low-Profile 1.15in. (29.21mm)
OPTIONS
MARKING
• Package
G
184-pin DIMM (standard)
1
Y
184-pin DIMM (lead-free)
2
• Memory Clock, Speed, CAS Latency
-335
6ns/166MHz (333 MT/s)
CL = 2.5
-2621
7.5ns/133 MHz (266 MT/s) CL = 2
-26A1
7.5ns/133 MHz (266 MT/s) CL = 2
-265
7.5ns/133 MHz (266 MT/s) CL = 2.5
• PCB
See page 2 note
Standard 1.25in. (31.75mm)
See page 2 note
Low-Profile 1.20in. (30.48mm)
NOTE:
1. Consult Micron for product availability.
2. CL = CAS (READ) Latency.
Table 1:
Address Table
Refresh Count
Row Addressing
Device Bank Addressing
Device Configuration
Column Addressing
Module Rank Addressing
pdf: 09005aef80739fa5, source: 09005aef807397e5
DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN
‡PRODUCTS
256MB
512MB
1GB
2GB
4K
4K (A0–A11)
4 (BA0, BA1)
128Mb (16 Meg x 8)
1K (A0–A9)
2 (S0#, S1#)
8K
8K (A0–A12)
4 (BA0, BA1)
256Mb (32 Meg x 8)
1K (A0–A9)
2 (S0#, S1#)
8K
8K (A0–A12)
4 (BA0, BA1)
512Mb (64 Meg x 8)
2K (A0–A9, A11)
2 (S0#, S1#)
8K
16K (A0–A13)
4 (BA0, BA1)
1Gb (128 Meg x 8)
2K (A0–A9, A11)
2 (S0#, S1#)
1
©2004 Micron Technology, Inc.
AND SPECIFICATIONS DISCUSSED HEREIN ARE FOR EVALUATION AND REFERENCE PURPOSES ONLY AND ARE SUBJECT TO CHANGE BY
MICRON WITHOUT NOTICE. PRODUCTS ARE ONLY WARRANTED BY MICRON TO MEET MICRON’S PRODUCTION DATA SHEET SPECIFICATIONS.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
Table 2:
Part Numbers and Timing Parameters
PART NUMBER
MT16VDDT3264AG-335__
MT16VDDT3264AY-335__
MT16VDDT3264AG-262__
MT16VDDT3264AY-262__
MT16VDDT3264AG-26A__
MT16VDDT3264AY-26A__
MT16VDDT3264AG-265__
MT16VDDT3264AY-265__
MT16VDDT6464AG-335__
MT16VDDT6464AY-335__
MT16VDDT6464AG-262__
MT16VDDT6464AY-262__
MT16VDDT6464AG-26A__
MT16VDDT6464AY-26A__
MT16VDDT6464AG-265__
MT16VDDT6464AY-265__
MT16VDDT12864AG-335__
MT16VDDT12864AY-335__
MT16VDDT12864AG-262__
MT16VDDT12864AY-262__
MT16VDDT12864AG-26A__
MT16VDDT12864AY-26A__
MT16VDDT12864AG-265__
MT16VDDT12864AY-265__
MT16VDDT25664AG-335__
MT16VDDT25664AY-335__
MT16VDDT25664AG-262__
MT16VDDT25664AY-262__
MT16VDDT25664AG-26A__
MT16VDDT25664AY-26A__
MT16VDDT25664AG-265__
MT16VDDT25664AY-265__
MODULE
DENSITY
CONFIGURATION
MODULE
BANDWIDTH
MEMORY CLOCK/
DATA RATE
LATENCY
(CL - tRCD - tRP)
256MB
256MB
256MB
256MB
256MB
256MB
256MB
256MB
512MB
512MB
512MB
512MB
512MB
512MB
512MB
512MB
1GB
1GB
1GB
1GB
1GB
1GB
1GB
1GB
2GB
2GB
2GB
2GB
2GB
2GB
2GB
2GB
32 Meg x 64
32 Meg x 64
32 Meg x 64
32 Meg x 64
32 Meg x 64
32 Meg x 64
32 Meg x 64
32 Meg x 64
64 Meg x 64
64 Meg x 64
64 Meg x 64
64 Meg x 64
64 Meg x 64
64 Meg x 64
64 Meg x 64
64 Meg x 64
128 Meg x 64
128 Meg x 64
128 Meg x 64
128 Meg x 64
128 Meg x 64
128 Meg x 64
128 Meg x 64
128 Meg x 64
256 Meg x 64
256 Meg x 64
256 Meg x 64
256 Meg x 64
256 Meg x 64
256 Meg x 64
256 Meg x 64
256 Meg x 64
2.7 GB/s
2.7 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
2.7 GB/s
2.7 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
2.7 GB/s
2.7 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
2.7 GB/s
2.7 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
2.1 GB/s
6ns/333 MT/s
6ns/333 MT/s
7.5ns/266 MT/s
7.5ns/266 MT/s
7.5ns/266 MT/s
7.5ns/266 MT/s
7.5ns/266 MT/s
7.5ns/266 MT/s
6ns/333 MT/s
6ns/333 MT/s
7.5ns/266 MT/s
7.5ns/266 MT/s
7.5ns/266 MT/s
7.5ns/266 MT/s
7.5ns/266 MT/s
7.5ns/266 MT/s
6ns/333 MT/s
6ns/333 MT/s
7.5ns/266 MT/s
7.5ns/266 MT/s
7.5ns/266 MT/s
7.5ns/266 MT/s
7.5ns/266 MT/s
7.5ns/266 MT/s
6ns/333 MT/s
6ns/333 MT/s
7.5ns/266 MT/s
7.5ns/266 MT/s
7.5ns/266 MT/s
7.5ns/266 MT/s
7.5ns/266 MT/s
7.5ns/266 MT/s
2.5-3-3
2.5-3-3
2-2-2
2-2-2
2-3-3
2-3-3
2.5-3-3
2.5-3-3
2.5-3-3
2.5-3-3
2-2-2
2-2-2
2-3-3
2-3-3
2.5-3-3
2.5-3-3
2.5-3-3
2.5-3-3
2-2-2
2-2-2
2-3-3
2-3-3
2.5-3-3
2.5-3-3
2.5-3-3
2.5-3-3
2-2-2
2-2-2
2-3-3
2-3-3
2.5-3-3
2.5-3-3
NOTE:
All part numbers end with a two-place code (not shown), designating component and PCB revisions. Consult factory for
current revision codes. Example: MT16VDDT6464AG-265A1.
pdf: 09005aef80739fa5, source: 09005aef807397e5
DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN
2
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
Table 3:
Table 4:
Pin Assignment
(184-Pin DIMM Front)
Pin Assignment
(184-Pin DIMM Back)
PIN SYMBOL PIN SYMBOL PIN SYMBOL PIN SYMBOL
PIN SYMBOL PIN SYMBOL PIN SYMBOL PIN SYMBOL
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
93
94
95
96
97
98
VREF
DQ0
VSS
DQ1
DQS0
DQ2
VDD
DQ3
NC
NC
VSS
DQ8
DQ9
DQS1
VDDQ
CK1
CK1#
VSS
DQ10
DQ11
CKE0
VDDQ
DQ16
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
DQ17
DQS2
VSS
A9
DQ18
A7
VDDQ
DQ19
A5
DQ24
VSS
DQ25
DQS3
A4
VDD
DQ26
DQ27
A2
VSS
A1
DNU
DNU
VDD
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
DNU
A0
DNU
VSS
DNU
BA1
DQ32
VDDQ
DQ33
DQS4
DQ34
VSS
BA0
DQ35
DQ40
VDDQ
WE#
DQ41
CAS#
VSS
DQS5
DQ42
DQ43
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
VDD
NC
DQ48
DQ49
VSS
CK2#
CK2
VDDQ
DQS6
DQ50
DQ51
VSS
NC
DQ56
DQ57
VDD
DQS7
DQ58
DQ59
VSS
NC
SDA
SCL
VSS
DQ4
DQ5
VDDQ
DM0
DQ6
99
DQ7
100
VSS
101
NC
102
NC
103
NC
104 VDDQ
105 DQ12
106 DQ13
107 DM1
108
VDD
109 DQ14
110 DQ15
111 CKE1
112 VDDQ
113
NC
114 DQ20
115 NC/A12
116
117
118
119
120
121
VSS
DQ21
A11
DM2
VDD
DQ22
139
140
141
142
143
144
VSS
DNU
A10
DNU
VDDQ
DNU
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
A8
DQ23
VSS
A6
DQ28
DQ29
VDDQ
DM3
A3
DQ30
VSS
DQ31
DNU
DNU
VDDQ
CK0
CK0#
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
VSS
DQ36
DQ37
VDD
DM4
DQ38
DQ39
VSS
DQ44
RAS#
DQ45
VDDQ
S0#
S1#
DM5
VSS
DQ46
162
163
164
165
166
DQ47
NC
VDDQ
DQ52
DQ53
2 NC/A13
167
168
VDD
169 DM6
170 DQ54
171 DQ55
172 VDDQ
173
NC
174 DQ60
175 DQ61
176
VSS
177 DM7
178 DQ62
179 DQ63
180 VDDQ
181
SA0
182
SA1
183
SA2
184 VDDSPD
NOTE:
1. Pin 115 is No Connect for 256MB, or A12 for 512MB, 1GB, 2GB.
2. Pin 167 is No Connect (NC) for 256MB, 512MB, and 1GB, or A13 for 2GB.
Figure 2: Pin Locations: 184-Pin DIMM
Front View
Standard 1.25in. (31.75mm)
Front View
Low-Profile 1.15in. (29.21mm)
U10
U1
U2
U3
U4
PIN 1
U6
PIN 52
U7
U8
U9
U3
Back View
U6
U4
PIN 52
PIN 1
PIN 92
PIN 53
U2
U1
U7
U8
PIN 53
U9
PIN 92
Back View
U19
U10
PIN 184
U11
U12
U13
PIN 145
U15
U17
U18
U19
PIN 184
PIN 93
PIN 144
Indicates a VDD or VDDQ pin
pdf: 09005aef80739fa5, source: 09005aef807397e5
DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN
U16
U18
U17
U14
U16
PIN 145
3
U12
U11
PIN 93
PIN 144
Indicates a VDD or VDDQ pin
Indicates a VSS pin
U13
Indicates a VSS pin
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
Table 5:
Pin Descriptions
Pin numbers may not correlate with symbols; refer to Pin Assignment tables on page 3 for more information
PIN NUMBERS
SYMBOL
TYPE
63, 65, 154
WE#, CAS#, RAS#
Input
16, 17, 75, 76, 137, 138
CK0, CK0#, CK1,
CK1#, CK2, CK2#
21, 111
CKE0, CKE1
157, 158
S0#, S1#
52, 59
BA0, BA1
27, 29, 32, 37, 41, 43, 48,
115 (512MB, 1GB, 2GB), 118,
122, 125, 130, 141, 167 (2GB)
A0–A11
(256MB)
A0–A12
(512MB, 1GB)
A0–A13
(2GB)
5, 14, 25, 36, 56, 67, 78, 86
DQS0–DQS7
97, 107, 119, 129, 149, 159,
169, 177
DM0–DM7
pdf: 09005aef80739fa5, source: 09005aef807397e5
DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN
DESCRIPTION
Command Inputs: RAS#, CAS#, and WE# (along with S#) define
the command being entered.
Input Clock: CK, CK# are differential clock inputs. All address and
control input signals are sampled on the crossing of the
positive edge of CK,and negative edge of CK#. Output data
(DQs and DQS) is referenced to the crossings of CK and CK#.
Input Clock Enable: CKE HIGH activates and CKE LOW deactivates
the internal clock, input buffers and output drivers. Taking
CKE LOW provides PRECHARGE POWER-DOWN and SELF
REFRESH operations (all device banks idle), or ACTIVE POWERDOWN (row ACTIVE in any device bank). CKE is synchronous
for POWER-DOWN entry and exit, and for SELF REFRESH entry.
CKE is asynchronous for SELF REFRESH exit and for disabling
the outputs. CKE must be maintained HIGH throughout read
and write accesses. Input buffers (excluding CK, CK# and CKE)
are disabled during POWER-DOWN. Input buffers (excluding
CKE) are disabled during SELF REFRESH. CKE is an SSTL_2 input
but will detect an LVCMOS LOW level after VDD is applied and
until CKE is first brought HIGH. After CKE is brought HIGH, it
becomes an SSTL_2 input only.
Input Chip Selects: S# enables (registered LOW) and disables
(registered HIGH) the command decoder. All commands are
masked when S# is registered HIGH. S# is considered part of
the command code.
Input Bank Address: BA0 and BA1 define to which device bank an
ACTIVE, READ, WRITE, or PRECHARGE command is being
applied.
Input Address Inputs: Provide the row address for ACTIVE
commands, and the column address and auto precharge bit
(A10) for READ/WRITE commands, to select one location out of
the memory array in the respective device bank. A10 sampled
during a PRECHARGE command determines whether the
PRECHARGE applies to one device bank (A10 LOW, device
bank selected by BA0, BA1) or all device banks (A10 HIGH). The
address inputs also provide the op-code during a MODE
REGISTER SET command. BA0 and BA1 define which mode
register (mode register or extended mode register) is loaded
during the LOAD MODE REGISTER command.
Input/ Data Strobe: Output with READ data, input with WRITE data.
Output DQS is edge-aligned with READ data, centered in WRITE data.
Used to capture data.
Input Data Write Mask: DM LOW allows WRITE operation. DM HIGH
blocks WRITE operation. DM lines do not affect READ
operation.
4
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
Table 5:
Pin Descriptions (Continued)
Pin numbers may not correlate with symbols; refer to Pin Assignment tables on page 3 for more information
PIN NUMBERS
SYMBOL
2, 4, 6, 8, 12, 13, 19, 20, 23,
24, 28, 31, 33, 35, 39, 40, 53,
55, 57, 60, 61, 64, 68, 69, 72,
73, 79, 80, 83, 84, 87, 88, 94,
95, 98, 99, 105, 106, 109, 110,
114, 117, 121, 123, 126, 127,
131, 133, 146, 147, 150, 151,
153, 155, 161, 162, 165, 166,
170, 171, 174, 175, 178, 179
92
DQ0–DQ63
181,182, 183
SA0–SA2
91
SDA
1
15, 22, 30, 54, 62, 77, 96, 104,
112, 128, 136, 143, 156, 164,
172, 180
7, 38, 46, 70, 85, 108, 120,
148, 168
3, 11, 18, 26, 34, 42, 50, 58,
66, 74, 81, 89, 93, 100, 116,
124, 132, 139, 145, 152, 160,
176
184
44, 45, 47, 49, 51, 134, 135,
140, 142, 144
9, 10, 71, 82, 90, 101, 102,
103, 113, 115 (256MB), 163,
167 (256MB, 512MB, 1GB),
173
VREF
VDDQ
pdf: 09005aef80739fa5, source: 09005aef807397e5
DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN
SCL
TYPE
DESCRIPTION
Input/ Data I/Os: Data bus.
Output
Input
Serial Clock for Presence-Detect: SCL is used to synchronize the
presence-detect data transfer to and from the module.
Input Presence-Detect Address Inputs: These pins are used to
configure the presence-detect device.
Input/ Serial Presence-Detect Data: SDA is a bidirectional pin used to
Output transfer addresses and data into and out of the presencedetect device.
Supply SSTL_2 reference voltage.
Supply DQ Power Supply: +2.5V ±0.2V.
VDD
Supply Power Supply: +2.5V ±0.2V.
VSS
Supply Ground.
VDDSPD
DNU
NC
Supply Serial EEPROM positive power supply: +2.3V to +3.6V.
—
Do Not Use: These pins are not connected on these modules,
but are assigned pins on other modules in this product family.
—
No Connect: These pins should be left unconnected.
5
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
Figure 3: Functional Block Diagram – Standard PCB
S1#
S0#
DQS0
DQS4
DM0
DM4
DM CS# DQS
DQ
U1
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DM CS# DQS
DQ
DQ U17
DQ
DQ
DQ
DQ
DQ
DQ
DQS1
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
DM CS# DQS
DQ
DQ U13
DQ
DQ
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
U5
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
DM CS# DQS
DQ
U6
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
DQ U12
DQ
DQ
DQ
DQ
DQ
DQ
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
DM CS# DQS
DQ
DQ U11
DQ
DQ
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
U7
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
DM CS# DQS
DQ
U8
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
U10
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQS5
DM1
DM5
DM CS# DQS
DQ
DQ U16
DQ
DQ
DQ
DQ
DQ
DQ
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
DM CS# DQS
DQ
U2
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQS2
DQS6
DM2
DM6
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
DM CS# DQS
DQ
DQ
U3
DQ
DQ
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
DQ U15
DQ
DQ
DQ
DQ
DQ
DQ
DQS3
DQS7
DM3
DM7
DM CS# DQS
DQ
U14
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
DM CS# DQS
DQ
U4
DQ
DQ
DQ
DQ
DQ
DQ
DQ
120
BA0, BA1
A0-A11 (256MB)
A0-A12 (512MB, 1GB)
A0-A13 (2GB)
RAS#
CAS#
WE#
3
3
3
3
3
3
3
CK0
CK0#
BA0, BA1: DDR SDRAMS
A0-A11: DDR SDRAMS
3pF
A0-A12: DDR SDRAMS
120
A0-A13: DDR SDRAMS
CAS#: DDR SDRAMS
120
WE#: DDR SDRAMS
CKE0: DDR SDRAMS U1, U3, U6, U8, U11, U13, U14, U16
CKE0
CKE1: DDR SDRAMS U2, U4, U5, U7, U10, U12, U15, U17
DDR SDRAMS
VDD
DDR SDRAMS
VREF
DDR SDRAMS
VSS
DDR SDRAMS
SCL
WP
U7-U12
A0
U19
A1 A2
SDA
SA0 SA1 SA2
Standard modules use the following SDRAM devices:
MT46V16M8TG (256MB); MT46V32M8TG (512MB); MT46V64M8TG (1GB);
MT46V128M8TG (2GB)
NOTE:
1. All resistor values are 22Ω unless otherwise specified.
2. Per industry standard, Micron modules utilize various component speed
grades, as referenced in the module part number guide at
www.micron.com/numberguide.
pdf: 09005aef80739fa5, source: 09005aef807397e5
DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN
CK2
CK2#
SERIAL PD
SPD/EEPROM
VDDQ
U1-U3,
U16-U18
CK1
CK1#
RAS#: DDR SDRAMS
CKE1
VDDSPD
U4, U6,
U13, U15
Lead-free modules use the following SDRAM devices:
MT46V16M8P (256MB); MT46V32M8P (512MB); MT46V64M8P (1GB);
MT46V128M8P (2GB)
6
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
Figure 4: Functional Block Diagram – Low-Profile PCB
S1#
S0#
DQS0
DQS4
DM0
DM4
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DM CS# DQS
DQ
DQ
DQ
DQ U11
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
DQ
DQ
U1
DQ
DQ
DQ
DQ
DQ
DQS1
DM CS# DQS
DQ
DQ
DQ
U6
DQ
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
DQ
DQ
DQ U16
DQ
DQ
DQ
DQ
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
DM CS# DQS
DQ
DQ
DQ
U7
DQ
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
DQ
DQ
DQ U17
DQ
DQ
DQ
DQ
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
DM CS# DQS
DQ
DQ
DQ
U8
DQ
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
DQ
DQ
DQ U18
DQ
DQ
DQ
DQ
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
DM CS# DQS
DQ
DQ
DQ
U9
DQ
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
DQ
DQ
DQ U19
DQ
DQ
DQ
DQ
DQS5
DM1
DM5
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
DM CS# DQS
DQ
DQ
DQ
U2
DQ
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
DQ
DQ
DQ U12
DQ
DQ
DQ
DQ
DQS2
DQS6
DM2
DM6
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
DM CS# DQS
DQ
DQ
DQ
DQ U13
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
DQ
DQ
U3
DQ
DQ
DQ
DQ
DQ
DQS3
DQS7
DM3
DM7
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
BA0, BA1
DM CS# DQS
DQ
DQ
DQ
U4
DQ
DQ
DQ
DQ
DQ
DM CS# DQS
DQ
DQ
DQ
DQ U14
DQ
DQ
DQ
DQ
SERIAL PD
BA0, BA1: DDR SDRAMS
A0-A11 (256MB)
A0-A11: DDR SDRAMS
A0-A12 (512MB, 1GB)
A0-A12: DDR SDRAMS
SCL
WP
U10
A0
RAS#
CAS#
RAS#: DDR SDRAMS
CKE0
CKE0: DDR SDRAMS U1–U4, U6–U9
CKE1
CKE1: DDR SDRAMS U11, U14, U16–U19
120
WE#: DDR SDRAMS
WE#
A1
A2
VDDSPD
SDA
DDR SDRAMS
VDD
DDR SDRAMS
VREF
DDR SDRAMS
VSS
DDR SDRAMS
CAS#: DDR SDRAMS
3pF
DDR
SDRAM
X4
SPD
VDDQ
SA0 SA1 SA2
CK0
CK0#
120
CK1
CK1#
3pF
DDR
CK2
SDRAM
CK2#
X6
120
DDR
SDRAM
X6
3pF
Standard modules use
MT46V16M8TG for 256MB; MT46V32M8TG for 512MB; MT46V64M8TG
for 1GB
NOTE:
1. All resistor values are 22Ω unless otherwise specified.
2. Per industry standard, Micron modules utilize various component speed
grades, as referenced in the module part number guide at
www.micron.com/numberguide.
pdf: 09005aef80739fa5, source: 09005aef807397e5
DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
Lead-free modules use
MT46V16M8P for 256MB; MT46V32M8P for 512MB; MT46V64M8P for
1GB
7
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
General Description
The pipelined, multibank architecture of DDR
SDRAM modules allows for concurrent operation,
thereby providing high effective bandwidth by hiding
row precharge and activation time.
An auto refresh mode is provided, along with a
power-saving power-down mode. All inputs are compatible with the JEDEC Standard for SSTL_2. All outputs are SSTL_2, Class II compatible. For more
information regarding DDR SDRAM operation, refer to
the 128Mb, 256Mb, 512Mb, or 1Gb DDR SDRAM component data sheets.
The
MT16VDDT3264A,
MT16VDDT6464A,
MT16VDDT12864A, and MT16VDDT25664A are highspeed CMOS, dynamic random-access, 256MB,
512MB, 1GB and 2GB memory modules organized in
x64 configuration. DDR SDRAM modules use internally configured quad-bank DDR SDRAM devices.
DDR SDRAM modules use a double data rate architecture to achieve high-speed operation. Double data
rate architecture is essentially a 2n-prefetch architecture with an interface designed to transfer two data
words per clock cycle at the I/O pins. A single read or
write access for the DDR SDRAM module effectively
consists of a single 2n-bit wide, one-clock-cycle data
transfer at the internal DRAM core and two corresponding n-bit wide, one-half-clock-cycle data transfers at the I/O pins.
A bidirectional data strobe (DQS) is transmitted
externally, along with data, for use in data capture at
the receiver. DQS is an intermittent strobe transmitted
by the DDR SDRAM during READs and by the memory
controller during WRITEs. DQS is edge-aligned with
data for READs and center-aligned with data for
WRITEs.
DDR SDRAM modules operate from differential
clock inputs (CK and CK#); the crossing of CK going
HIGH and CK# going LOW will be referred to as the
positive edge of CK. Commands (address and control
signals) are registered at every positive edge of CK.
Input data is registered on both edges of DQS, and output data is referenced to both edges of DQS, as well as
to both edges of CK.
Read and write accesses to DDR SDRAM modules
are burst oriented; accesses start at a selected location
and continue for a programmed number of locations
in a programmed sequence. Accesses begin with the
registration of an ACTIVE command, which is then followed by a READ or WRITE command. The address
bits registered coincident with the ACTIVE command
are used to select the device bank and row to be
accessed (BA0, BA1 select devices bank; A0–A11 select
device row for 256MB; A0–A12 select device row for
512MB, 1GB; A0–A13 select device row for 2GB). The
address bits registered coincident with the READ or
WRITE command are used to select the device bank
and the starting device column location for the burst
access.
DDR SDRAM modules provide for programmable
READ or WRITE burst lengths of 2, 4, or 8 locations. An
auto precharge function may be enabled to provide a
self-timed row precharge that is initiated at the end of
the burst access.
pdf: 09005aef80739fa5, source: 09005aef807397e5
DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN
Serial Presence-Detect Operation
DDR SDRAM modules incorporate serial presencedetect (SPD). The SPD function is implemented using
a 2,048-bit EEPROM. This nonvolatile storage device
contains 256 bytes. The first 128 bytes can be programmed by Micron to identify the module type and
various SDRAM organizations and timing parameters.
The remaining 128 bytes of storage are available for
use by the customer. System READ/WRITE operations
between the master (system logic) and the slave
EEPROM device (DIMM) occur via a standard I2C bus
using the DIMM’s SCL (clock) and SDA (data) signals,
together with SA (2:0), which provide eight unique
DIMM/EEPROM addresses. Write protect (WP) is tied
to ground on the module, permanently disabling hardware write protect.
Mode Register Definition
The mode register is used to define the specific
mode of operation of the DDR SDRAM. This definition
includes the selection of a burst length, a burst type, a
CAS latency and an operating mode, as shown in
Figure 5, Mode Register Definition Diagram, on page 9.
The mode register is programmed via the MODE REGISTER SET command (with BA0 = 0 and BA1 = 0) and
will retain the stored information until it is programmed again or the device loses power (except for
bit A8, which is self-clearing).
Reprogramming the mode register will not alter the
contents of the memory, provided it is performed correctly. The mode register must be loaded (reloaded)
when all device banks are idle and no bursts are in
progress, and the controller must wait the specified
time before initiating the subsequent operation. Violating either of these requirements will result in
unspecified operation.
8
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
Figure 5: Mode Register Definition
Diagram
Mode register bits A0–A2 specify the burst length,
A3 specifies the type of burst (sequential or interleaved), A4–A6 specify the CAS latency, and A7–A11
(256MB) or A7–A12 (512MB, 1GB), or A7–A13 (2GB)
specify the operating mode.
256MB Module
BA1 BA0 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
Address Bus
Burst Type
13 12
0* 0*
Accesses within a given burst may be programmed
to be either sequential or interleaved; this is referred to
as the burst type and is selected via bit M3.
The ordering of accesses within a burst is determined by the burst length, the burst type and the starting column address, as shown in Table 6, Burst
Definition Table, on page 10.
11 10 9 8 7 6 5 4 3 2 1 0
Operating Mode CAS Latency BT Burst Length
Mode Register (Mx)
* M13 and M12 (BA0 and BA1) must be “0, 0” to select the
base mode register (vs. the extended mode register).
512MB and 1GB Modules
BA1 BA0 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
14 13 12 11 10 9 8
Operating Mode
0* 0*
Burst Length
7
6 5 4 3 2 1 0
CAS Latency BT Burst Length
Mode Register (Mx)
* M14 and M13 (BA0 and BA1) must be “0, 0” to select the
base mode register (vs. the extended mode register).
Read and write accesses to the DDR SDRAM are
burst oriented, with the burst length being programmable, as shown in Figure 5, Mode Register Definition
Diagram. The burst length determines the maximum
number of column locations that can be accessed for a
given READ or WRITE command. Burst lengths of 2, 4,
or 8 locations are available for both the sequential and
the interleaved burst types.
Reserved states should not be used, as unknown
operation or incompatibility with future versions may
result.
When a READ or WRITE command is issued, a block
of columns equal to the burst length is effectively
selected. All accesses for that burst take place within
this block, meaning that the burst will wrap within the
block if a boundary is reached. The block is uniquely
selected by A1–Ai when the burst length is set to two,
by A2-Ai when the burst length is set to four and by A3Ai when the burst length is set to eight (where Ai is the
most significant column address bit for a given configuration; see Note 5, of Table 6, Burst Definition Table,
on page 10). The remaining (least significant) address
bit(s) is (are) used to select the starting location within
the block. The programmed burst length applies to
both READ and WRITE bursts.
2GB Module
BA1 BA0 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
15 14
0* 0*
13 12 11 10
9
8
7
Operating Mode
6
5
4
3
2
1
* M15 and M14 (BA1 and BA0)
must be “0, 0” to select the
base mode register (vs. the
extended mode register).
0
Mode Register (Mx)
Burst Length
M2 M1 M0
M3 = 0
0
0
0
Reserved
0
0
1
2
0
1
0
4
0
1
1
8
1
0
0
Reserved
1
0
1
Reserved
1
1
0
Reserved
1
1
1
Reserved
Burst Type
M3
0
Sequential
1
Interleaved
CAS Latency
M6 M5 M4
0
0
0
Reserved
0
0
1
Reserved
0
1
0
2
0
1
1
Reserved
1
0
0
Reserved
1
0
1
Reserved
The READ latency is the delay, in clock cycles,
between the registration of a READ command and the
availability of the first bit of output data. The latency
can be set to 2 or 2.5 clocks, as shown in Figure 6, CAS
Latency Diagram.
1
1
0
2.5
1
1
1
Reserved
M13 M12 M11 M10 M9 M8 M7
9
Address Bus
CAS Latency BT Burst Length
Read Latency
pdf: 09005aef80739fa5, source: 09005aef807397e5
DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN
Address Bus
M6-M0
Operating Mode
0
0
0
0
0
0
0
Valid
Normal Operation
0
0
0
0
0
1
0
Valid
Normal Operation/Reset DLL
-
-
-
-
-
-
-
-
All other states reserved
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
Table 6:
ORDER OF ACCESSES WITHIN
A BURST
STARTING
COLUMN
ADDRESS
BURST
LENGTH
Figure 6: CAS Latency Diagram
Burst Definition Table
TYPE =
SEQUENTIAL
T0
T1
T2
READ
NOP
NOP
T3
T3n
CK
TYPE =
INTERLEAVED
COMMAND
NOP
CL = 2
A0
2
T2n
CK#
0
1
0-1
1-0
0-1
1-0
0-1-2-3
1-2-3-0
2-3-0-1
3-0-1-2
0-1-2-3
1-0-3-2
2-3-0-1
3-2-1-0
DQS
DQ
A1 A0
0
0
1
1
4
0
1
0
1
CK#
T0
T1
T2
READ
NOP
NOP
8
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
COMMAND
T3n
NOP
CL = 2.5
0-1-2-3-4-5-6-7
1-2-3-4-5-6-7-0
2-3-4-5-6-7-0-1
3-4-5-6-7-0-1-2
4-5-6-7-0-1-2-3
5-6-7-0-1-2-3-4
6-7-0-1-2-3-4-5
7-0-1-2-3-4-5-6
DQS
0-1-2-3-4-5-6-7
1-0-3-2-5-4-7-6
2-3-0-1-6-7-4-5
3-2-1-0-7-6-5-4
4-5-6-7-0-1-2-3
5-4-7-6-1-0-3-2
6-7-4-5-2-3-0-1
7-6-5-4-3-2-1-0
DQ
Burst Length = 4 in the cases shown
Shown with nominal tAC, tDQSCK, and tDQSQ
TRANSITIONING DATA
1. For a burst length of two, A1–Ai select the two-dataelement block; A0 selects the first access within the
block.
2. For a burst length of four, A2–Ai select the four-dataelement block; A0–A1 select the first access within the
block.
3. For a burst length of eight, A3–Ai select the eight-dataelement block; A0–A2 select the first access within the
block.
4. Whenever a boundary of the block is reached within a
given sequence above, the following access wraps
within the block.
5. i = 9 for 256MB, 512MB;
i = 9, 11 for 1GB, 2GB.
Operating Mode
The normal operating mode is selected by issuing a
MODE REGISTER SET command with bits A7–A11
(256MB), A7–A12 (512MB, 1GB), or A7–A13 (2GB) each
set to zero, and bits A0–A6 set to the desired values. A
DLL reset is initiated by issuing a MODE REGISTER
SET command with bits A7 and A9–A11 (256MB), A7
and A9–A12 (512MB, 1GB), or A7 and A9–A13
(2GB)each set to zero, bit A8 set to one, and bits A0–A6
set to the desired values. Although not required by the
Micron device, JEDEC specifications recommend
when a LOAD MODE REGISTER command is issued to
reset the DLL, it should always be followed by a LOAD
MODE REGISTER command to select normal operating mode.
All other combinations of values for A7–A11
(256MB), A7–A12 (512MB, 1GB), or A7–A13 (2GB) are
reserved for future use and/or test modes. Test modes
CAS Latency (CL) Table
ALLOWABLE OPERATING
CLOCK FREQUENCY (MHZ)
SPEED
CL = 2
CL = 2.5
-335
-262
-26A
-265
75 ≤ f ≤ 133
75 ≤ f ≤ 133
75 ≤ f ≤ 133
75 ≤ f ≤ 100
75 ≤ f ≤ 167
75 ≤ f ≤ 133
75 ≤ f ≤ 133
75 ≤ f ≤ 133
pdf: 09005aef80739fa5, source: 09005aef807397e5
DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN
DON’T CARE
If a READ command is registered at clock edge n,
and the latency is m clocks, the data will be available
nominally coincident with clock edge n + m. Figure 7,
CAS Latency (CL) Table, indicates the operating frequencies at which each CAS latency setting can be
used.
Reserved states should not be used as unknown
operation or incompatibility with future versions may
result.
NOTE:
Table 7:
T3
CK
A2 A1 A0
0
0
0
0
1
1
1
1
T2n
10
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
Figure 7: Extended Mode Register
Definition Diagram
and reserved states should not be used because
unknown operation or incompatibility with future versions may result.
256MB Module
BA1 BA0 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
Extended Mode Register
The extended mode register controls functions
beyond those controlled by the mode register; these
additional functions are DLL enable/disable and output drive strength. These functions are controlled via
the bits shown in Figure 7, Extended Mode Register
Definition Diagram. The extended mode register is
programmed via the LOAD MODE REGISTER command to the mode register (with BA0 = 1 and BA1 = 0)
and will retain the stored information until it is programmed again or the device loses power. The
enabling of the DLL should always be followed by a
LOAD MODE REGISTER command to the mode register (BA0/BA1 both LOW) to reset the DLL.
The extended mode register must be loaded when
all device banks are idle and no bursts are in progress,
and the controller must wait the specified time before
initiating any subsequent operation. Violating either
of these requirements could result in unspecified operation.
13 12 11 10 9 8 7 6 5
Operating Mode
01 11
4
3
1
2
Extended Mode
Register (Ex)
DS DLL
512MB and 1GB Modules
BA1 BA0 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
14 13 12 11 10 9 8 7 6 5
Operating Mode
01 11
4
3
1
2
0
Address Bus
Extended Mode
Register (Ex)
DS DLL
2GB Module
BA1 BA0 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
15 14 13 12 11 10 9 8 7 6 5
Operating Mode
01 11
4
3
2
The DLL must be enabled for normal operation.
DLL enable is required during power-up initialization
and upon returning to normal operation after having
disabled the DLL for the purpose of debug or evaluation. (When the device exits self refresh mode, the DLL
is enabled automatically.) Any time the DLL is enabled,
200 clock cycles with CKE HIGH must occur before a
READ command can be issued.
1
0
E13 E12 E11 E10 E9 E8 E7 E6 E5 E4 E3 E2
E1, E0
Address Bus
Extended Mode
Register (Ex)
DS DLL
DLL Enable/Disable
pdf: 09005aef80739fa5, source: 09005aef807397e5
DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN
0
Address Bus
E0
DLL
0
Enable
1
Disable
E1
Drive Strength
0
Normal
Operating Mode
0
0
0
0
0
0
0
0
0
0
0
0
Valid
Reserved
–
–
–
–
–
–
–
–
–
–
–
–
–
Reserved
NOTE:
1. BA1 and BA0 (E13 and E12 for 256MB, E14 and E13 for
512MB, 1GB, or E15 and E14 for 2GB) must be “0, 1” to
select the Extended Mode Register (vs. the base Mode
Register).
2. QFC# is not supported.
11
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
Commands
Table 8, Commands Truth Table, and Table 9, DM
Operation Truth Table, provide a general reference of
available commands. For a more detailed description
Table 8:
of commands and operations, refer to the 128Mb,
256Mb, 512Mb, or 1Gb DDR SDRAM component data
sheets.
Commands Truth Table
CKE is HIGH for all commands shown except SELF REFRESH; all states and sequences not shown are illegal or reserved
NAME (FUNCTION)
CS#
RAS#
CAS#
WE#
ADDR
NOTES
H
L
L
L
L
L
L
L
L
X
H
L
H
H
H
L
L
L
X
H
H
L
L
H
H
L
L
X
H
H
H
L
L
L
H
L
X
X
Bank/Row
Bank/Col
Bank/Col
X
Code
X
Op-Code
1
1
2
3
3
4
5
6, 7
8
DESELECT (NOP)
NO OPERATION (NOP)
ACTIVE (Select bank and activate row)
READ (Select bank and column, and start READ burst)
WRITE (Select bank and column, and start WRITE burst)
BURST TERMINATE
PRECHARGE (Deactivate row in bank or banks)
AUTO REFRESH or SELF REFRESH (Enter self refresh mode)
LOAD MODE REGISTER
NOTE:
1. DESELECT and NOP are functionally interchangeable.
2. BA0–BA1 provide device bank address and A0–A11 (256MB), A0–A12 (512MB, 1GB), or A0–A13 (2GB) provide row
address.
3. BA0–BA1 provide device bank address; A0–A9 (256MB, 512MB) or A0–A9, A11(1GB, 2GB), provide column address; A10
HIGH enables the auto precharge feature (nonpersistent), and A10 LOW disables the auto precharge feature.
4. Applies only to read bursts with auto precharge disabled; this command is undefined (and should not be used) for READ
bursts with auto precharge enabled and for WRITE bursts.
5. A10 LOW: BA0–BA1 determine which device bank is precharged. A10 HIGH: all device banks are precharged and BA0–
BA1 are “Don’t Care.”
6. This command is AUTO REFRESH if CKE is HIGH, SELF REFRESH if CKE is LOW.
7. Internal refresh counter controls row addressing; all inputs and I/Os are “Don’t Care” except for CKE.
8. BA0–BA1 select either the mode register or the extended mode register (BA0 = 0, BA1 = 0 select the mode register; BA0
= 1, BA1 = 0 select extended mode register; other combinations of BA0–BA1 are reserved). A0–A11 (256MB), A0–A12
(512MB, 1GB), or A0–A13 (2GB) provide the op-code to be written to the selected mode register.
Table 9:
DM Operation Truth Table
Used to mask write data; provided coincident with the corresponding data
NAME (FUNCTION)
WRITE Enable
WRITE Inhibit
pdf: 09005aef80739fa5, source: 09005aef807397e5
DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN
12
DM
DQS
L
H
Valid
X
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
Absolute Maximum Ratings
Stresses greater than those listed may cause permanent damage to the device. This is a stress rating only,
and functional operation of the device at these or any
other conditions above those indicated in the opera-
tional sections of this specification is not implied.
Exposure to absolute maximum rating conditions for
extended periods may affect reliability.
Voltage on VDD Supply
Relative to VSS . . . . . . . . . . . . . . . . . . . . -1V to +3.6V
Voltage on VDDQ Supply
Relative to VSS . . . . . . . . . . . . . . . . . . . . -1V to +3.6V
Voltage on VREF and Inputs
Relative to VSS . . . . . . . . . . . . . . . . . . . . -1V to +3.6V
Voltage on I/O Pins
Relative to VSS . . . . . . . . . . . . -0.5V to VDDQ +0.5V
Operating Temperature
TA (ambient) . . . . . . . . . . . . . . . . . . . . .. 0°C to +70°C
Storage Temperature (plastic) . . . . . . -55°C to +150°C
Short Circuit Output Current. . . . . . . . . . . . . . . 50mA
Table 10: DC Electrical Characteristics and Operating Conditions
Notes: 1–5, 14, 48; notes appear on pages 20–23; 0°C ≤ TA ≤ +70°C
PARAMETER/CONDITION
SYMBOL
Supply Voltage
I/O Supply Voltage
I/O Reference Voltage
I/O Termination Voltage (system)
Input High (Logic 1) Voltage
Input Low (Logic 0) Voltage
INPUT LEAKAGE CURRENT
Command/
Any input 0V ≤ VIN ≤ VDD, VREF pin 0V ≤ VIN ≤ Address, RAS#,
1.35V (All other pins not under test = 0V)
CAS#, WE#
CKE, S#
CK0, CK0#
CK1, CK1#
CK2, CK2#
DM
OUTPUT LEAKAGE CURRENT
DQ, DQS
(DQs are disabled; 0V ≤ VOUT ≤ VDDQ)
OUTPUT LEVELS
High Current (VOUT = VDDQ-0.373V, minimum VREF, minimum VTT)
Low Current (VOUT = 0.373V, maximum VREF, maximum VTT)
VDD
VDDQ
VREF
VTT
VIH(DC)
VIL(DC)
MIN
MAX
UNITS
NOTES
V
V
V
V
V
V
32, 36
32, 36, 39
6, 39
7, 39
25
25
µA
47
2.3
2.7
2.3
2.7
0.49 × VDDQ 0.51 × VDDQ
VREF - 0.04 VREF + 0.04
VREF + 0.15 VDD + 0.3
-0.3
VREF - 0.15
-32
32
-16
-8
-12
16
8
12
IOZ
-4
-10
4
10
µA
47
IOH
IOL
-16.8
16.8
–
–
mA
mA
33, 34
II
Table 11: AC Input Operating Conditions
Notes: 1–5, 14, 48, 49; notes appear on pages 20–23; 0°C ≤ TA ≤ +70°C; VDD = VDDQ = +2.5V ±0.2V
PARAMETER/CONDITION
Input High (Logic 1) Voltage
Input Low (Logic 0) Voltage
I/O Reference Voltage
pdf: 09005aef80739fa5, source: 09005aef807397e5
DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN
SYMBOL
MIN
MAX
UNITS
NOTES
VIH(AC)
VIL(AC)
VREF(AC)
VREF + 0.310
–
0.49 × VDDQ
–
VREF - 0.310
0.51 × VDDQ
V
V
V
12, 25, 35
12, 25, 35
6
13
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
Table 12: IDD Specifications and Conditions – 256MB
DDR SDRAM components only
Notes: 1–5, 8, 10, 14, 48; notes appear on pages 20–23; 0°C ≤ TA ≤ +70°C; VDD = VDDQ = +2.5V ±0.2V
MAX
-26A/
-265 UNITS NOTES
PARAMETER/CONDITION
SYM
-335
-262
OPERATING CURRENT: One device bank; Active-Precharge; tRC = tRC
(MIN); tCK = tCK (MIN); DQ, DM and DQS inputs changing once per clock
cyle; Address and control inputs changing once every two clock cycles
OPERATING CURRENT: One device bank; Active -Read Precharge;
Burst = 2; tRC = tRC (MIN); tCK = tCK (MIN); IOUT = 0mA; Address and
control inputs changing once per clock cycle
PRECHARGE POWER-DOWN STANDBY CURRENT: All device banks
idle; Power-down mode; tCK = tCK (MIN); CKE = (LOW)
IDD0a
1,024
904
864
mA
20, 42
IDD1a
1,104
984
984
mA
20, 42
IDD2Nb
48
48
48
mA
21, 28,
44
IDD2Fb
720
720
640
mA
45
IDD3Pb
400
400
320
mA
21, 28,
44
IDD3Nb
800
800
720
mA
40
IDD4Ra
1,144
1,064
1,024
mA
20, 42
IDD4Wa
1,144
1,024
1,024
mA
20
IDD5b
4,240
3,520
3,520
mA
IDD5Ab
80
80
80
mA
20, 24,
44
IDD6b
IDD7a
48
48
32
mA
9
2,864
2,664
2,624
mA
20, 43
IDLE STANDBY CURRENT: CS# = HIGH; All device banks idle; tCK = tCK
MIN; CKE = HIGH; Address and other control inputs changing once
per clock cycle. VIN = VREF for DQ, DQS, and DM
ACTIVE POWER-DOWN STANDBY CURRENT: One device bank active;
Power-down mode; tCK = tCK (MIN); CKE = LOW
ACTIVE STANDBY CURRENT: CS# = HIGH; CKE = HIGH; One device
bank; Active-Precharge; tRC = tRAS (MAX); tCK = tCK (MIN); DQ, DM
andDQS inputs changing twice per clock cycle; Address and other
control inputs changing once per clock cycle
OPERATING CURRENT: Burst = 2; Reads; Continuous burst; One bank
active; Address and control inputs chan-ging once per clock cycle; tCK
= tCK (MIN); IOUT = 0mA
OPERATING CURRENT: Burst = 2; Writes; Continuous burst; One
device bank active; Address and control inputs changing once per
clock cycle; tCK = tCK (MIN); DQ, DM, and DQS inputs changing twice
per clock cycle
tREFC = tRFC (MIN)
AUTO REFRESH CURRENT
t
REFC = 15.625µs
SELF REFRESH CURRENT: CKE ≤ 0.2V
OPERATING CURRENT: Four device bank interleaving READs (BL = 4)
with auto precharge, tRC = tRC (MIN); tCK = tCK (MIN); Address and
control inputs change only during Active READ, or WRITE commands
NOTE:
a: Value calculated as one module rank in this operating condition, and all other module ranks in IDD2p (CKE LOW) mode.
b: Value calculated reflects all module ranks in this operating condition.
pdf: 09005aef80739fa5, source: 09005aef807397e5
DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN
14
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
Table 13: IDD Specifications and Conditions – 512MB
DDR SDRAM Components only
Notes: 1–5, 8, 10, 14, 48; notes appear on pages 20–23; 0°C ≤ TA ≤ +70°C; VDD = VDDQ = +2.5V ±0.2V
MAX
PARAMETER/CONDITION
OPERATING CURRENT: One device bank; Active-Precharge;
t
RC = tRC (MIN); tCK = tCK (MIN); DQ, DM and DQS inputs
changing once per clock cyle; Address and control inputs
changing once every two clock cycles
OPERATING CURRENT: One device bank; Active -Read
Precharge; Burst = 4; tRC = tRC (MIN); tCK = tCK (MIN);
IOUT = 0mA; Address and control inputs changing once per
clock cycle
PRECHARGE POWER-DOWN STANDBY CURRENT: All device
banks idle; Power-down mode; tCK = tCK (MIN); CKE =
(LOW)
IDLE STANDBY CURRENT: CS# = HIGH; All device banks idle;
tCK = tCK MIN; CKE = HIGH; Address and other control
inputs changing once per clock cycle. VIN = VREF for DQ,
DQS, and DM
ACTIVE POWER-DOWN STANDBY CURRENT: One device
bank active; Power-down mode; tCK = tCK (MIN); CKE =
LOW
ACTIVE STANDBY CURRENT: CS# = HIGH; CKE = HIGH; One
device bank; Active-Precharge; tRC = tRAS (MAX);
tCK = tCK (MIN); DQ, DM andDQS inputs changing twice per
clock cycle; Address and other control inputs changing once
per clock cycle
OPERATING CURRENT: Burst = 2; Reads; Continuous burst;
One bank active; Address and control inputs changing once
per clock cycle; tCK = tCK (MIN); IOUT = 0mA
OPERATING CURRENT: Burst = 2; Writes; Continuous burst;
One device bank active; Address and control inputs
changing once per clock cycle; tCK = tCK (MIN); DQ, DM, and
DQS inputs changing twice per clock cycle
t
AUTO REFRESH CURRENT
REFC = tRFC (MIN)
tREFC
SYM
-335
-262
-26A/
-265
UNITS
NOTES
a
1,032
1,032
992
mA
20, 42
IDD1a
1,392
1,312
1,192
mA
20, 42
IDD2Pb
64
64
64
mA
21, 28,
44
IDD2Fb
800
720
720
mA
45
IDD3Pb
480
400
400
mA
21, 28,
44
IDD3Nb
960
800
800
mA
40
IDD4Ra
1,432
1,232
1,232
mA
20, 42
IDD4Wa
1,432
1,232
1,232
mA
20
IDD5b
4,080
3,760
3,760
mA
20, 44
IDD5Ab
96
96
96
mA
20, 44
IDD0
= 7.8125µs
SELF REFRESH CURRENT: CKE ≤ 0.2V
b
OPERATING CURRENT: Four device bank interleaving READs
(BL = 4) with auto precharge, tRC = tRC (MIN); tCK = tCK
(MIN); Address and control inputs change only during Active
READ, or WRITE commands
IDD6
IDD7a
64
64
64
mA
9
3,312
2,832
2,832
mA
20, 43
NOTE:
a: Value calculated as one module rank in this operating condition, and all other module ranks in IDD2p (CKE LOW) mode.
b: Value calculated reflects all module ranks in this operating condition.
pdf: 09005aef80739fa5, source: 09005aef807397e5
DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN
15
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
Table 14: IDD Specifications and Conditions – 1GB
DDR SDRAM Components only
Notes: 1–5, 8, 10, 14, 48; notes appear on pages 20–23; 0°C ≤ TA ≤ +70°C; VDD = VDDQ = +2.5V ±0.2VV
MAX
PARAMETER/CONDITION
OPERATING CURRENT: One device bank; Active-Precharge; tRC =
tRC (MIN); tCK = tCK (MIN); DQ, DM and DQS inputs changing once
per clock cyle; Address and control inputs changing once every two
clock cycles
OPERATING CURRENT: One device bank; Active -Read Precharge;
Burst = 4; tRC = tRC (MIN); tCK = tCK (MIN); IOUT = 0mA; Address and
control inputs changing once per clock cycle
PRECHARGE POWER-DOWN STANDBY CURRENT: All device banks
idle; Power-down mode; tCK = tCK (MIN); CKE = (LOW)
IDLE STANDBY CURRENT: CS# = HIGH; All device banks idle; tCK =
tCK MIN; CKE = HIGH; Address and other control inputs changing
once per clock cycle. VIN = VREF for DQ, DQS, and DM
ACTIVE POWER-DOWN STANDBY CURRENT: One device bank
active; Power-down mode; tCK = tCK (MIN); CKE = LOW
ACTIVE STANDBY CURRENT: CS# = HIGH; CKE = HIGH; One device
bank; Active-Precharge; tRC = tRAS (MAX); tCK = tCK (MIN); DQ, DM
andDQS inputs changing twice per clock cycle; Address and other
control inputs changing once per clock cycle
OPERATING CURRENT: Burst = 2; Reads; Continuous burst; One
bank active; Address and control inputs changing once per clock
cycle; tCK = tCK (MIN); IOUT = 0mA
OPERATING CURRENT: Burst = 2; Writes; Continuous burst; One
device bank active; Address and control inputs changing once per
clock cycle; tCK = tCK (MIN); DQ, DM, and DQS inputs changing
twice per clock cycle
tREFC = tRFC (MIN)
AUTO REFRESH CURRENT
tREFC
= 7.8125µs
SYM
-335
-262
-26A/
-265
a
IDD0
1,080
1,080
960
mA
20, 42
IDD1a
1,320
1,320
1,200
mA
20, 42
IDD2Pb
80
80
80
mA
21, 28,
44
IDD2Fb
720
720
640
mA
45
IDD3Pb
560
560
480
mA
21, 28,
44
IDD3Nb
800
800
720
mA
40
IDD4Ra
1,360
1,360
1,200
mA
20, 42
IDD4Wa
1,440
1,280
1,120
mA
20
IDD5b
4,640
4,640
4,480
mA
20, 44
160
160
160
mA
20, 44
b
IDD5A
UNITS NOTES
SELF REFRESH CURRENT: CKE ≤ 0.2V
I
DD6b
80
80
80
mA
9
OPERATING CURRENT: Four device bank interleaving READs (BL = 4)
with auto precharge, tRC = tRC (MIN); tCK = tCK (MIN); Address and
control inputs change only during Active READ, or WRITE
commands
IDD7a
3,280
3,240
2,840
mA
20, 43
NOTE:
a: Value calculated as one module rank in this operating condition, and all other module ranks in IDD2p (CKE LOW) mode.
b: Value calculated reflects all module ranks in this operating condition.
pdf: 09005aef80739fa5, source: 09005aef807397e5
DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN
16
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
Table 15: IDD Specifications and Conditions – 2GB
DDR SDRAM Components only
Notes: 1–5, 8, 10, 14, 48; notes appear on pages 20–23; 0°C ≤ TA ≤ +70°C; VDD = VDDQ = +2.5V ±0.2VV
MAX
PARAMETER/CONDITION
OPERATING CURRENT: One device bank; Active-Precharge; tRC =
tRC (MIN); tCK = tCK (MIN); DQ, DM and DQS inputs changing once
per clock cyle; Address and control inputs changing once every two
clock cycles
OPERATING CURRENT: One device bank; Active -Read Precharge;
Burst = 4; tRC = tRC (MIN); tCK = tCK (MIN); IOUT = 0mA; Address and
control inputs changing once per clock cycle
PRECHARGE POWER-DOWN STANDBY CURRENT: All device banks
idle; Power-down mode; tCK = tCK (MIN); CKE = (LOW)
IDLE STANDBY CURRENT: CS# = HIGH; All device banks idle; tCK =
tCK MIN; CKE = HIGH; Address and other control inputs changing
once per clock cycle. VIN = VREF for DQ, DQS, and DM
ACTIVE POWER-DOWN STANDBY CURRENT: One device bank
active; Power-down mode; tCK = tCK (MIN); CKE = LOW
ACTIVE STANDBY CURRENT: CS# = HIGH; CKE = HIGH; One device
bank; Active-Precharge; tRC = tRAS (MAX); tCK = tCK (MIN); DQ, DM
andDQS inputs changing twice per clock cycle; Address and other
control inputs changing once per clock cycle
OPERATING CURRENT: Burst = 2; Reads; Continuous burst; One
bank active; Address and control inputs changing once per clock
cycle; tCK = tCK (MIN); IOUT = 0mA
OPERATING CURRENT: Burst = 2; Writes; Continuous burst; One
device bank active; Address and control inputs changing once per
clock cycle; tCK = tCK (MIN); DQ, DM, and DQS inputs changing
twice per clock cycle
tREFC = tRFC (MIN)
AUTO REFRESH CURRENT
tREFC
= 7.8125µs
SYM
-335
-262
-26A/
-265
a
IDD0
1,080
1,080
1,240
mA
20, 42
IDD1a
1,320
1,320
1,520
mA
20, 42
IDD2Pb
80
80
160
mA
21, 28,
44
IDD2Fb
720
720
960
mA
45
IDD3Pb
560
560
480
mA
21, 28,
44
IDD3Nb
720
720
720
mA
40
IDD4Ra
1,360
1,360
1,680
mA
20, 42
IDD4Wa
1,280
1,280
1,760
mA
20
IDD5b
4,640
4,640
5,280
mA
20, 44
160
160
160
mA
20, 44
b
IDD5A
UNITS NOTES
SELF REFRESH CURRENT: CKE ≤ 0.2V
I
DD6b
80
80
144
mA
9
OPERATING CURRENT: Four device bank interleaving READs (BL = 4)
with auto precharge, tRC = tRC (MIN); tCK = tCK (MIN); Address and
control inputs change only during Active READ, or WRITE
commands
IDD7a
3,280
3,240
3,960
mA
20, 43
NOTE:
a: Value calculated as one module rank in this operating condition, and all other module ranks in IDD2p (CKE LOW) mode.
b: Value calculated reflects all module ranks in this operating condition.
pdf: 09005aef80739fa5, source: 09005aef807397e5
DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN
17
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
Table 16: Capacitance
Note: 11; notes appear on pages 20–23
PARAMETER
SYMBOL
MIN
MAX
UNITS
CIO
CI1
CI1
CI2
CI3
8
32
16
11
12
10
48
24
15
18
pF
pF
pF
pF
pF
Input/Output Capacitance: DQ, DQS, DM
Input Capacitance: Command and Address
Input Capacitance: S#, CKE
Input Capacitance: CK0, CK0#
Input Capacitance: CK1, CK1#; CK2, CK2#
Table 17: DDR SDRAM Component Electrical Characteristics and Recommended
AC Operating Conditions
Notes: 1–5, 13-15, 29, 48, 49; notes appear on pages 20–23; 0°C ≤ TA ≤ +70°C; VDD = VDDQ = +2.5V ±0.2V
AC CHARACTERISTICS
-335
PARAMETER
-262
-26A/-265
SYMBOL
MIN
MAX
MIN
MAX
MIN
MAX UNITS NOTES
Access window of DQs from CK/
CK#
CK high-level width
tAC
-0.7
+0.7
-0.75
+0.75
-0.75
+0.75
ns
tCH
0.45
0.55
0.45
0.55
0.45
0.55
tCK
26
CK low-level width
tCL
0.45
0.55
0.45
0.55
0.45
0.55
tCK
26
6
13
7.5
13
7.5
13
ns
41, 46
7.5
13
7.5/10
13
7.5/10
13
ns
41, 46
Clock cycle time
CL = 2.5
CL = 2
tCK
(2.5)
tCK
(2)
DQ and DM input hold time relative to DQS
tDH
0.45
0.5
0.5
ns
23, 27
DQ and DM input setup time relative to DQS
tDS
0.45
0.5
0.5
ns
23, 27
ns
27
tDIPW
1.75
tDQSCK
-0.60
tDQSH
0.35
0.35
0.35
tCK
DQS input low pulse width
tDQSL
0.35
0.35
0.35
tCK
DQS-DQ skew, DQS to last DQ valid, per group,
per access
Write command to first DQS latching transition
tDQSQ
DQ and DM input pulse width (for each input)
Access window of DQS from CK/
CK#
DQS input high pulse width
DQS falling edge to CK rising setup time
DQS falling edge from CK rising hold time
Half clock period
Data-out high-impedance window from CK/CK#
tDQSS
1.75
+0.60
-0.75
0.45
0.75
1.25
1.75
+0.75
-0.75
0.5
0.75
1.25
0.75
+0.75
ns
0.5
ns
1.25
tCK
DSS
0.2
0.2
0.2
t
tDSH
0.2
0.2
0.2
tCK
t
t
t
t
t
HP
t
HZ
CH,tCL
+0.70
CH,tCL
+0.75
CH,tCL
+0.75
22, 23
CK
ns
31
ns
16, 37
Data-out low-impedance window from CK/CK#
tLZ
-0.70
-0.75
-0.75
ns
16, 37
Address and control input hold time (fast slew
rate)
Address and control input setup time (fast slew
rate)
Address and control input hold time (slow slew
rate)
tIH
0.75
0.90
.90
ns
12
t
ISF
0.75
0.90
.90
ns
12
tIH
0.80
1
1
ns
12
pdf: 09005aef80739fa5, source: 09005aef807397e5
DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN
F
S
18
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
Table 17: DDR SDRAM Component Electrical Characteristics and Recommended
AC Operating Conditions (Continued)
Notes: 1–5, 13-15, 29, 48, 49; notes appear on pages 20–23; 0°C ≤ TA ≤ +70°C; VDD = VDDQ = +2.5V ±0.2V
AC CHARACTERISTICS
PARAMETER
Address and control input setup time (slow slew
rate)
Address and Control input pulse width (for
each input)
LOAD MODE REGISTER command cycle time
-335
SYMBOL
MIN
MAX UNITS NOTES
ISS
1
1
ns
tIPW
2.2
2.2
2.2
ns
15
ns
HP -
ns
t
QH
Data hold skew factor
tQHS
ACTIVE to PRECHARGE command
tRAS
ACTIVE to READ with Auto precharge
command
ACTIVE to ACTIVE/AUTO REFRESH command
period
AUTO REFRESH command period 256MB,
512MB, 1GB
2GB
ACTIVE to READ or WRITE delay
tRAP
tRC
MIN
12
MRD
t
DQ-DQS hold, DQS to first DQ to go non-valid,
per access
MAX
-26A/-265
0.80
t
MIN
-262
MAX
15
t
t
t
tQHS
tQHS
tQHS
HP -
HP -
0.55
42
70,000
0.75
40
120,000
40
0.75
ns
120,000
ns
15
15
20
ns
60
60
65
ns
75
75
75
ns
120
15
120
15
120
20
ns
ns
12
22, 23
31, 49
44
tRFC
tRCD
tRP
15
DQS read preamble
tRPRE
0.9
1.1
0.9
1.1
0.9
1.1
tCK
38
DQS read postamble
tRPST
0.4
0.6
0.4
0.6
0.4
0.6
tCK
38
ACTIVE bank a to ACTIVE bank b command
tRRD
12
15
15
ns
tWPRE
0.25
0.25
0.25
tCK
tWPRES
0
0
0
tWPST
0.4
tWR
15
15
15
ns
tWTR
1
1
1
tCK
PRECHARGE command period
DQS write preamble
DQS write preamble setup time
DQS write postamble
Write recovery time
Internal WRITE to READ command delay
na
Data valid output window
REFRESH to REFRESH command
interval
256MB
512MB, 1GB,
2GB
Average periodic refresh interval 256MB
512MB, 1GB,
2GB
Terminating voltage delay to VDD
0.6
tQH -tDQSQ
0.4
20
0.6
tQH -tDQSQ
0.4
ns
0.6
tQH -tDQSQ
ns
18, 19
tCK
17
ns
22
tREFC
140.6
70.3
140.6
70.3
140.6
70.3
µs
µs
21
21
tREFI
15.6
7.8
15.6
7.8
15.6
7.8
µs
µs
21
21
tVTD
Exit SELF REFRESH to non-READ command
tXSNR
Exit SELF REFRESH to READ command
t
pdf: 09005aef80739fa5, source: 09005aef807397e5
DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN
15
XSRD
0
0
0
75
75
75
200
200
200
19
ns
ns
t
CK
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
Notes
1. All voltages referenced to VSS.
2. Tests for AC timing, IDD, and electrical AC and DC
characteristics may be conducted at nominal reference/supply voltage levels, but the related specifications and device operation are guaranteed for
the full voltage range specified.
3. Outputs measured with equivalent load:
12.
VTT
Output
(VOUT)
13.
50Ω
Reference
Point
30pF
14.
4. AC timing and IDD tests may use a VIL-to-VIH
swing of up to 1.5V in the test environment, but
input timing is still referenced to VREF (or to the
crossing point for CK/CK#), and parameter specifications are guaranteed for the specified AC input
levels under normal use conditions. The minimum slew rate for the input signals used to test
the device is 1V/ns in the range between VIL(AC)
and VIH(AC).
5. The AC and DC input level specifications are as
defined in the SSTL_2 Standard (i.e., the receiver
will effectively switch as a result of the signal
crossing the AC input level, and will remain in that
state as long as the signal does not ring back
above [below] the DC input LOW [HIGH] level).
6. VREF is expected to equal VDDQ/2 of the transmitting device and to track variations in the DC level
of the same. Peak-to-peak noise (non-common
mode) on VREF may not exceed ±2 percent of the
DC value. Thus, from VDDQ/2, VREF is allowed
±25mV for DC error and an additional ±25mV for
AC noise. This measurement is to be taken at the
nearest VREF bypass capacitor.
7. VTT is not applied directly to the device. VTT is a
system supply for signal termination resistors, is
expected to be set equal to VREF and must track
variations in the DC level of VREF.
8. IDD is dependent on output loading and cycle
rates. Specified values are obtained with minimum cycle time at CL = 2 for -262, and -26A, CL =
2.5 for -335 and -265 with the outputs open.
9. Enables on-chip refresh and address counters.
10. IDD specifications are tested after the device is
properly initialized, and is averaged at the defined
cycle rate.
11. This parameter is sampled. VDD = +2.5V ±0.2V,
VDDQ = +2.5V ±0.2V, VREF = VSS, f = 100 MHz, TA =
pdf: 09005aef80739fa5, source: 09005aef807397e5
DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN
15.
16.
17.
18.
19.
20.
21.
20
25°C, VOUT (DC) = VDDQ/2, VOUT (peak to peak) =
0.2V. DM input is grouped with I/O pins, reflecting
the fact that they are matched in loading.
For slew rates less than 1 V/ns and greater than or
equal to 0.5 V/ns. If slew rate is less than 0.5 V/ns,
timing must be derated: tIS has an additional 50ps
per each 100mV/ns reduction in slew rate from
500mV/ns, while tIH is unaffected. If slew rate
exceeds 4.5V/ns, functionality is uncertain.
The CK/CK# input reference level (for timing referenced to CK/CK#) is the point at which CK and
CK# cross; the input reference level for signals
other than CK/CK# is VREF.
Inputs are not recognized as valid until VREF stabilizes. Exception: during the period before VREF
stabilizes, CKE ≤ 0.3 x VDDQ is recognized as LOW.
The output timing reference level, as measured at
the timing reference point indicated in Note 3, is
VTT.
t
HZ and tLZ transitions occur in the same access
time windows as valid data transitions. These
parameters are not referenced to a specific voltage
level, but specify when the device output is no
longer driving (HZ) or begins driving (LZ).
The intent of the Don’t Care state after completion
of the postamble is the DQS-driven signal should
either be high, low, or high-Z and that any signal
transition within the input switching region must
follow valid input requirements. That is, if DQS
transitions high [above VIHDC (MIN)] then it must
not transition low (below VIHDC) prior to
t
DQSH(MIN).
This is not a device limit. The device will operate
with a negative value, but system performance
could be degraded due to bus turnaround.
It is recommended that DQS be valid (HIGH or
LOW) on or before the WRITE command. The
case shown (DQS going from High-Z to logic
LOW) applies when no WRITEs were previously in
progress on the bus. If a previous WRITE was in
progress, DQS could be HIGH during this time,
depending on tDQSS.
MIN (tRC or tRFC) for IDD measurements is the
smallest multiple of tCK that meets the minimum
absolute value for the respective parameter. tRAS
(MAX) for IDD measurements is the largest multiple of tCK that meets the maximum absolute
value for tRAS.
The refresh period 64ms. This equates to an average refresh rate of 15.625µs (256MB) or 7.8125µs
(512MB, 1GB, 2GB). However, an AUTO REFRESH
command must be asserted at least once every
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
22.
23.
24.
25.
140.6µs (256MB) or 70.3µs (512MB, 1GB, 2GB);
burst refreshing or posting by the DRAM controller greater than eight refresh cycles is not allowed.
The valid data window is derived by achieving
other specifications: tHP (tCK/2), tDQSQ, and tQH
(tQH = tHP - tQHS). The data valid window derates
directly porportional with the clock duty cycle
and a practical data valid window can be derived.
The clock is allowed a maximum duty cycle variation of 45/55, beyond which functionality is
uncertain. Figure 8, Derating Data Valid Window
tHP - tQHS, shows derating curves for duty cycles
ranging between 50/50 and 45/55.
Each byte lane has a corresponding DQS.
This limit is actually a nominal value and does not
result in a fail value. CKE is HIGH during
REFRESH command period (tRFC [MIN]) else
CKE is LOW (i.e., during standby).
To maintain a valid level, the transitioning edge of
the input must:
a. Sustain a constant slew rate from the current
AC level through to the target AC level, VIL (AC)
or VIH (AC).
26.
27.
28.
29.
30.
b. Reach at least the target AC level.
c. After the AC target level is reached, continue to
maintain at least the target DC level, VIL (DC)
or VIH (DC).
JEDEC specifies CK and CK# input slew rate must
be ≥ 1V/ns (2V/ns differentially).
DQ and DM input slew rates must not deviate
from DQS by more than 10 percent. If the DQ/
DM/DQS slew rate is less than 0.5V/ns, timing
must be derated: 50ps must be added to tDS and
tDH for each 100mv/ns reduction in slew rate. If
slew rate exceeds 4V/ns, functionality is uncertain.
VDD must not vary more than 4 percent if CKE is
not active while any bank is active.
The clock is allowed up to ±150ps of jitter. Each
timing parameter is allowed to vary by the same
amount.
t
HP min is the lesser of tCL minimum and tCH
minimum actually applied to the device CK and
CK# inputs, collectively during bank active.
Figure 8: Derating Data Valid Window
tHP
- tQHS
3.8
3.750
3.700
3.6
3.650
3.600
3.550
3.500
3.4
3.450
3.400
3.2
3.350
3.300
-262/-26A/-265 @ tCK = 10ns
-262/-26A/-265 @ tCK = 7.5ns
NA -335 @ tCK = 6ns
ns
3.0
3.250
2.8
2.6
2.500
2.463
2.425
2.388
2.4
2.350
2.313
2.275
2.238
2.200
2.163
2.2
2.125
2.0
1.8
50/50
49.5/50.5
49/51
48.5/52.5
48/52
47.5/53.5
47/53
46.5/54.5
46/54
45.5/55.5
45/55
Clock Duty Cycle
pdf: 09005aef80739fa5, source: 09005aef807397e5
DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN
21
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
31. READs and WRITEs with auto precharge are not
allowed to be issued until tRAS (MIN) can be satisfied prior to the internal precharge command
being issued.
32. Any positive glitch in the nominal voltage must be
less than 1/3 of the clock and not more than
+400mV or 2.9V, whichever is less. Any negative
glitch must be less than 1/3 of the clock cycle and
not exceed either 300mV or 2.2V, whichever is
more positive. However, the DC average cannot be
below 2.3V minimum.
33. Normal Output Drive Curves:
a. The full variation in driver pull-down current
from minimum to maximum process, temperature and voltage will lie within the outer
bounding lines of the V-I curve of Figure 9,
Pull-Down Characteristics.
b. The variation in driver pull-down current
within nominal limits of voltage and temperature is expected, but not guaranteed, to lie
within the inner bounding lines of the V-I
curve of Figure 9, Pull-Down Characteristics.
c. The full variation in driver pull-up current
from minimum to maximum process, temperature and voltage will lie within the outer
bounding lines of the V-I curve of Figure 10,
Pull-Up Characteristics.
d. The variation in driver pull-up current within
nominal limits of voltage and temperature is
expected, but not guaranteed, to lie within the
inner bounding lines of the V-I curve of Figure
10, Pull-Up Characteristics.
e. The full variation in the ratio of the maximum
to minimum pull-up and pull-down current
should be between 0.71 and 1.4, for device
34.
35.
36.
37.
38.
39.
40.
Figure 9: Pull-Down Characteristics
pdf: 09005aef80739fa5, source: 09005aef807397e5
DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN
drain-to-source voltages from 0.1V to 1.0 Volt,
and at the same voltage and temperature.
f. The full variation in the ratio of the nominal
pull-up to pull-down current should be unity
±10 percent, for device drain-to-source voltages from 0.1V to 1.0V.
The voltage levels used are derived from a minimum VDD level and the referenced test load. In
practice, the voltage levels obtained from a properly terminated bus will provide significantly different voltage values.
VIH overshoot: VIH (MAX) = VDDQ + 1.5V for a
pulse width ≤ 3ns and the pulse width can not be
greater than 1/3 of the cycle rate. VIL undershoot:
VIL (MIN) = -1.5V for a pulse width ≤ 3ns and the
pulse width can not be greater than 1/3 of the
cycle rate.
VDD and VDDQ must track each other.
t
HZ (MAX) takes precedence over tDQSCK (MAX)
+ tRPST (MAX) condition. tLZ (MIN) will prevail
over tDQSCK (MIN) + tRPRE (MAX) condition.
t
RPST end point and tRPRE begin point are not
referenced to a specific voltage level but specify
when the device output is no longer driving
(tRPST), or begins driving (tRPRE).
During initialization, VDDQ, VTT, and VREF must
be equal to or less than VDD + 0.3V. Alternatively,
VTT may be 1.35V maximum during power up,
even if VDD/VDDQ are 0V, provided a minimum of
42Ω of series resistance is used between the VTT
supply and the input pin.
For -335, -262, -26A and -265 speed grades, IDD3N
is specified to be 35mA per DDR SDRAM at 100
MHz.
Figure 10: Pull-Up Characteristics
22
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
41. The current Micron part operates below the slowest JEDEC operating frequency of 83 MHz. As
such, future die may not reflect this option.
42. Random addressing changing and 50 percent of
data changing at every transfer.
43. Random addressing changing and 100 percent of
data changing at every transfer.
44. CKE must be active (high) during the entire time a
refresh command is executed. That is, from the
time the AUTO REFRESH command is registered,
CKE must be active at each rising clock edge, until
tREF later.
45. IDD2N specifies the DQ, DQS, and DM to be
driven to a valid high or low logic level. IDD2Q is
similar to IDD2F except IDD2Q specifies the
pdf: 09005aef80739fa5, source: 09005aef807397e5
DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN
46.
47.
48.
49.
23
address and control inputs to remain stable.
Although IDD2F, IDD2N, and IDD2Q are similar,
IDD2F is “worst case.”
Whenever the operating frequency is altered, not
including jitter, the DLL is required to be reset.
This is followed by 200 clock cycles.
Leakage number reflects the worst case leakage
possible through the module pin, not what each
memory device contributes.
When an input signal is HIGH or LOW, it is
defined as a steady state logic HIGH or logic LOW.
The -335 speed grade will operate with tRAS (MIN)
= 40ns and tRAS (MAX) = 120,000ns at any slower
frequency.
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
Initialization
Figure 11: Initialization Flow Diagram
To ensure device operation the DRAM must be initialized as described below:
1. Simultaneously apply power to VDD and VDDQ.
2. Apply VREF and then VTT power.
3. Assert and hold CKE at a LVCMOS logic low.
4. Provide stable CLOCK signals.
5. Wait at least 200µs.
6. Bring CKE high and provide at least one NOP or
DESELECT command. At this point the CKE input
changes from a LVCMOS input to a SSTL2 input
only and will remain a SSTL_2 input unless a
power cycle occurs.
7. Perform a PRECHARGE ALL command.
8. Wait at least tRP time, during this time NOPs or
DESELECT commands must be given.
9. Using the LMR command program the Extended
Mode Register (E0 = 0 to enable the DLL and E1 =
0 for normal drive or E1 = 1 for reduced drive, E2
through En must be set to 0; where n = most significant bit).
10. Wait at least tMRD time, only NOPs or DESELECT
commands are allowed.
11. Using the LMR command program the Mode Register to set operating parameters and to reset the
DLL. Note at least 200 clock cycles are required
between a DLL reset and any READ command.
12. Wait at least tMRD time, only NOPs or DESELECT
commands are allowed.
13. Issue a PRECHARGE ALL command.
14. Wait at least tRP time, only NOPs or DESELECT
commands are allowed.
15. Issue an AUTO REFRESH command (Note this
may be moved prior to step 13).
16. Wait at least tRFC time, only NOPs or DESELECT
commands are allowed.
17. Issue an AUTO REFRESH command (Note this
may be moved prior to step 13).
18. Wait at least tRFC time, only NOPs or DESELECT
commands are allowed.
19. Although not required by the Micron device,
JEDEC requires a LMR command to clear the DLL
bit (set M8 = 0). If a LMR command is issued the
same operating parameters should be utilized as
in step 11.
20. Wait at least tMRD time, only NOPs or DESELECT
commands are allowed.
21. At this point the DRAM is ready for any valid command. Note 200 clock cycles are required between
step 11 (DLL Reset) and any READ command.
pdf: 09005aef80739fa5, source: 09005aef807397e5
DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN
Step
24
1
VDD and VDDQ Ramp
2
Apply VREF and VTT
3
CKE must be LVCMOS Low
4
Apply stable CLOCKs
5
Wait at least 200us
6
Bring CKE High with a NOP command
7
PRECHARGE ALL
8
Assert NOP or DESELECT for tRP time
9
Configure Extended Mode Register
10
Assert NOP or DESELECT for tMRD time
11
Configure Load Mode Register and reset DLL
12
Assert NOP or DESELECT for tMRD time
13
PRECHARGE ALL
14
Assert NOP or DESELECT for tRP time
15
Issue AUTO REFRESH command
16
Assert NOP or DESELECT commands for tRFC
17
Issue AUTO REFRESH command
18
Assert NOP or DESELECT for tRFC time
19
Optional LMR command to clear DLL bit
20
Assert NOP or DESELECT for tMRD time
21
DRAM is ready for any valid command
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
Figure 12: Component Case Temperature vs. Air Flow
100
Ambient Temperature = 25º C
90
Tmax- memory stress software
Degrees Celsius
80
70
Tave- memory stress software
60
50
Tave- 3D gaming software
40
30
Minimum Air Flow
20
2.0
1.0
0.5
0.0
Air Flow (meters/sec)
NOTE:
1. Micron Technology, Inc. recommends a minimum air flow of 1 meter/second (~197 LFM) across the module.
2. The component case temperature measurements shown above were obtained experimentally. The typical system to be
used for experimental purposes is a dual-processor 600 MHz work station, fully loaded, with four comparable registered
memory modules. Case temperatures charted represent worst-case component locations on modules installed in the
internal slots of the system.
3. Temperature versus air speed data is obtained by performing experiments with the system motherboard removed from
its case and mounted in a Eiffel-type low air speed wind tunnel. Peripheral devices installed on the system motherboard
for testing are the processor(s) and video card, all other peripheral devices are mounted outside of the wind tunnel test
chamber.
4. The memory diagnostic software used for determining worst-case component temperatures is a memory diagnostic software application developed for internal use by Micron Technology, Inc.
pdf: 09005aef80739fa5, source: 09005aef807397e5
DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN
25
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
SPD Clock and Data Conventions
SPD Acknowledge
Data states on the SDA line can change only during
SCL LOW. SDA state changes during SCL HIGH are
reserved for indicating start and stop conditions (as
shown in Figure 13, Data Validity, and Figure 14, Definition of Start and Stop).
Acknowledge is a software convention used to indicate successful data transfers. The transmitting device,
either master or slave, will release the bus after transmitting eight bits. During the ninth clock cycle, the
receiver will pull the SDA line LOW to acknowledge
that it received the eight bits of data (as shown in Figure 15, Acknowledge Response From Receiver).
The SPD device will always respond with an
acknowledge after recognition of a start condition and
its slave address. If both the device and a WRITE operation have been selected, the SPD device will respond
with an acknowledge after the receipt of each subsequent eight-bit word. In the read mode the SPD device
will transmit eight bits of data, release the SDA line and
monitor the line for an acknowledge. If an acknowledge is detected and no stop condition is generated by
the master, the slave will continue to transmit data. If
an acknowledge is not detected, the slave will terminate further data transmissions and await the stop
condition to return to standby power mode.
SPD Start Condition
All commands are preceded by the start condition,
which is a HIGH-to-LOW transition of SDA when SCL
is HIGH. The SPD device continuously monitors the
SDA and SCL lines for the start condition and will not
respond to any command until this condition has been
met.
SPD Stop Condition
All communications are terminated by a stop condition, which is a LOW-to-HIGH transition of SDA when
SCL is HIGH. The stop condition is also used to place
the SPD device into standby power mode.
Figure 13: Data Validity
Figure 14: Definition of Start and Stop
SCL
SCL
SDA
SDA
DATA STABLE
DATA
CHANGE
DATA STABLE
START
BIT
STOP
BIT
Figure 15: Acknowledge Response From Receiver
SCL from Master
8
9
Data Output
from Transmitter
Data Output
from Receiver
Acknowledge
pdf: 09005aef80739fa5, source: 09005aef807397e5
DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN
26
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
Table 18: EEPROM Device Select Code
The most significant bit (b7) is sent first
DEVICE TYPE IDENTIFIER
SELECT CODE
CHIP ENABLE
RW
b7
b6
b5
b4
b3
b2
b1
b0
1
0
0
1
1
1
0
0
SA2
SA2
SA1
SA1
SA0
SA0
RW
RW
Memory Area Select Code (two arrays)
Protection Register Select Code
Table 19: EEPROM Operating Modes
MODE
RW BIT
WC
BYTES
1
0
1
1
0
0
VIH or VIL
VIH or VIL
VIH or VIL
VIH or VIL
VIL
VIL
1
1
1
≥1
1
≤ 16
Current Address Read
Random Address Read
Sequential Read
Byte Write
Page Write
INITIAL SEQUENCE
START, Device Select, RW = ‘1’
START, Device Select, RW = ‘0’, Address
reSTART, Device Select, RW = ‘1’
Similar to Current or Random Address Read
START, Device Select, RW = ‘0’
START, Device Select, RW = ‘0’
Figure 16: SPD EEPROM Timing Diagram
tF
t HIGH
tR
t LOW
SCL
t SU:STA
t HD:STA
t SU:DAT
t HD:DAT
t SU:STO
SDA IN
t DH
t AA
t BUF
SDA OUT
UNDEFINED
pdf: 09005aef80739fa5, source: 09005aef807397e5
DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN
27
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
Table 20: Serial Presence-Detect EEPROM DC Operating Conditions
All voltages referenced to VSS; VDDSPD = +2.3V to +3.6V
PARAMETER/CONDITION
SYMBOL
MIN
MAX
UNITS
VDDSPD
VIH
VIL
VOL
ILI
ILO
ISB
ICC
2.3
VDD × 0.7
-1
–
–
–
–
–
3.6
VDD + 0.5
VDD +0.3
0.4
10
10
30
2
V
V
V
V
µA
µA
µA
mA
SUPPLY VOLTAGE
INPUT HIGH VOLTAGE: Logic 1; All inputs
INPUT LOW VOLTAGE: Logic 0; All inputs
OUTPUT LOW VOLTAGE: IOUT = 3mA
INPUT LEAKAGE CURRENT: VIN = GND to VDD
OUTPUT LEAKAGE CURRENT: VOUT = GND to VDD
STANDBY CURRENT: SCL = SDA = VDD - 0.3V; All other inputs = VSS or VDD
POWER SUPPLY CURRENT: SCL clock frequency = 100 KHz
Table 21: Serial Presence-Detect EEPROM AC Operating Conditions
All voltages referenced to VSS; VDDSPD = +2.3V to +3.6V
PARAMETER/CONDITION
SCL LOW to SDA data-out valid
Time the bus must be free before a new transition can start
Data-out hold time
SDA and SCL fall time
Data-in hold time
Start condition hold time
Clock HIGH period
Noise suppression time constant at SCL, SDA inputs
Clock LOW period
SDA and SCL rise time
SCL clock frequency
Data-in setup time
Start condition setup time
Stop condition setup time
WRITE cycle time
SYMBOL
MIN
MAX
UNITS
NOTES
tAA
0.2
1.3
200
0.9
µs
µs
ns
ns
µs
µs
µs
ns
µs
µs
KHz
ns
µs
µs
ms
1
tBUF
tDH
tF
tHD:DAT
tHD:STA
tHIGH
300
0
0.6
0.6
tI
tLOW
50
1.3
tR
0.3
400
fSCL
tSU:DAT
tSU:STA
t
SU:STO
tWRC
100
0.6
0.6
10
2
2
3
4
NOTE:
1. To avoid spurious START and STOP conditions, a minimum delay is placed between SCL = 1 and the falling or rising
edge of SDA.
2. This parameter is sampled.
3. For a reSTART condition, or following a WRITE cycle.
4. The SPD EEPROM WRITE cycle time (tWRC) is the time from a valid stop condition of a write sequence to the end of
the EEPROM internal erase/program cycle. During the WRITE cycle, the EEPROM bus interface circuit is disabled, SDA
remains HIGH due to pull-up resistor, and the EEPROM does not respond to its slave address.
pdf: 09005aef80739fa5, source: 09005aef807397e5
DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN
28
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
Table 22: Serial Presence-Detect Matrix (256MB, 512MB, and 1GB)
“1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”; notes appear on page 31
BYTE
DESCRIPTION
ENTRY (VERSION)
0
1
2
3
Number of SPD Bytes Used by Micron
Total Number of Bytes in SPD Device
Fundamental Memory Type
Number of Row Addresses on
Assembly
Number of Column Addresses on
Assembly
Number of Physical Ranks on DIMM
Module Data Width
Module Data Width (Continued)
Module Voltage Interface Levels
128
256
SDRAM DDR
12, 13
80
08
07
0C
80
08
07
0D
80
08
07
0D
10, 11
0A
0A
0B
02
40
00
04
60
70
75
70
75
2
40
00
04
60
70
75
70
75
2
40
00
04
60
70
75
70
75
00
80
08
00
82
08
00
82
08
00
01
00
01
00
01
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
MT16VDDT3264A MT16VDDT6464A MT16VDDT12864A
2
64
0
SSTL 2.5V
6ns (-335)
SDRAM Cycle Time, tCK, (CAS Latency
7ns
(-262/-26A)
= 2.5) (See note 1)
7.5ns (-265)
0.7ns (-335)
SDRAM Access From Clock, tAC
0.75ns
(-262/-26A/-265)
(CAS Latency = 2.5)
None
Module Configuration Type
15.62µs, 7.8µs/SELF
Refresh Rate/Type
8
SDRAM Device Width (Primary DDR
SDRAM)
None
Error-Checking DDR SDRAM Data Width
1 clock
Minimum Clock Delay, Back-to-Back
Random Column Access
2, 4, 8
Burst Lengths Supported
4
Number of Banks on DDR SDRAM Device
2,
2.5
CAS Latencies Supported
0
CS Latency
1
WE Latency
Unbuffered/Diff.
SDRAM Module Attributes
Clock
Fast/Concurrent AP
SDRAM Device Attributes: General
7.5ns (-335/-262/-26A)
SDRAM Cycle Time, tCK
10ns (-265
(CAS Latency = 2)
0E
04
0C
01
02
20
0E
04
0C
01
02
20
0E
04
0C
01
02
20
C0
75
A0
C0
75
A0
C0
75
A0
0.7ns (-335)
0.75ns (-262/-26A/-265)
70
75
70
75
70
75
24
SDRAM Access From CK, tAC
(CAS Latency = 2)
25
SDRAM Cycle Time, tCK
(CAS Latency = 1.5)
N/A
00
00
00
26
SDRAM Access From CK, tAC
(CAS Latency = 1.5)
N/A
00
00
00
27
Minimum Row Precharge Time, tRP
(see note 4)
18ns (-335)
15ns (-262)
20ns (-26A/-265)
48
3C
50
48
3C
50
48
3C
50
pdf: 09005aef80739fa5, source: 09005aef807397e5
DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN
29
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
Table 22: Serial Presence-Detect Matrix (256MB, 512MB, and 1GB) (Continued)
“1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”; notes appear on page 31
BYTE
28
29
30
31
DESCRIPTION
12ns (-335)
Minimum Row Active to Row Active,
t
15ns
(-262/-26A/-265)
RRD
18ns (-335)
Minimum Ras# to CAS# Delay, tRCD
15ns (-262)
(see note 4)
20ns (-26A/-265)
42ns (-335)
Minimum RAS# Pulse Width, tRAS,
45ns (-262/-26A/-265)
(see note 2)
Module Rank Density
32
Address and Command Setup Time,
tIS, (see note 3)
33 Address and Command Hold Time,
tIH, (see note 3)
34 Data/Data Mask Input Setup Time,
tDS
35 Data/Data Mask Input
Hold Time, tDH
36-40 Reserved
41 Min Active Auto Refresh Time, tRC
42
43
SDRAM Device Max DQS-DQ Skew
Time, tDQSQ
45 SDRAM Device Max Read Data Hold
Skew Factor, tQHS
46-61 Reserved
47 DIMM Height
46-61 Reserved
62 SPD Revision
63 Checksum For Bytes 0-62
Manufacturer’s JEDEC ID Code
Manufacturer’s JEDEC ID Code
Manufacturing Location
Module Part Number (ASCII)
PCB Identification Code
Identification Code (Continued)
Year of Manufacture in BCD
pdf: 09005aef80739fa5, source: 09005aef807397e5
DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN
MT16VDDT3264A MT16VDDT6464A MT16VDDT12864A
30
3C
30
3C
30
3C
48
3C
50
2A
2D
48
3C
50
2A
2D
48
3C
50
2A
2D
128MB, 256MB,
512MB
0.8ns (-335)
1.0ns (-262-26A/-265)
20
40
80
80
A0
80
A0
80
A0
0.8ns (-335)
1.0ns (-262/-26A/-265)
80
A0
80
A0
80
A0
0.45ns (-335)
0.5ns (-262/-26A/-265)
45
50
45
50
45
50
0.45ns (-335)
0.5ns (-262/-26A/-265)
45
50
45
50
45
50
00
3C
41
48
4B
00
3C
41
48
4B
00
3C
41
48
4B
30
34
30
34
30
34
0.45ns (-335)
0.5ns (-262/-26A/-265)
2D
32
2D
32
2D
32
0.55ns (-335)
0.75ns (-262/-26A/-265)
55
75
55
75
55
75
00
01/11
00
10
05/15
98/A8
C5/D5
F5/05
2C
FF
01–0C
Variable Data
Variable Data
00
Variable Data
00
01/11
00
10
28/38
BB/CB
E8/F8
18/28
2C
FF
01–0C
Variable Data
Variable Data
00
Variable Data
00
01/11
00
10
69/79
FC/0C
29/39
59/69
2C
FF
01–0C
Variable Data
Variable Data
00
Variable Data
60ns (-335/-262)
65ns (-26A/-265)
72ns (-335)
Minimum Auto Refresh to Active/
tRFC 75ns (-262/-26A/-265)
Auto Refresh Command Period,
12ns (-335)
SDRAM Device Max Cycle Time,
tCKMAX
13ns (-262/-26A/-265)
44
64
65-71
72
73-90
91
92
93
ENTRY (VERSION)
Standard/Low-Profile
Release 1.0
-335
-262
-26A
-265
MICRON
(Continued)
01–12
0
30
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
Table 22: Serial Presence-Detect Matrix (256MB, 512MB, and 1GB) (Continued)
“1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”; notes appear on page 31
BYTE
DESCRIPTION
ENTRY (VERSION)
94 Week of Manufacture in BCD
95-98 Module Serial Number
99-127 Manufacturer-Specific Data (RSVD)
MT16VDDT3264A MT16VDDT6464A MT16VDDT12864A
Variable Data
Variable Data
–
Variable Data
Variable Data
–
Variable Data
Variable Data
–
NOTE:
1. Value for -26A tCK set to 7ns (0x70) for optimum BIOS compatibility. Actual device spec. value is 7.5ns.
2. The value of tRAS used for -26A/-265 modules is calculated from tRC - tRP. Actual device spec. value is 40 ns.
3. The JEDEC SPD specification allows fast or slow slew rate values for these bytes. The worst-case (slow slew rate) value is
represented here. Systems requiring the fast slew rate setup and hold values are supported, provided the faster minimum slew rate is met.
4. The value of tRP, tRCD and tRAP for -335 modules indicated as 18ns to align with industry specifications; actual DDR
SDRAM device specification is 15ns.
pdf: 09005aef80739fa5, source: 09005aef807397e5
DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN
31
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
Table 23: Serial Presence-Detect Matrix (2GB)
“1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”; notes appear on page 31
BYTE
0
1
2
3
4
5
6
7
8
9
DESCRIPTION
Number of SPD Bytes Used by Micron
Total Number of Bytes in SPD Device
Fundamental Memory Type
Number of Row Addresses on Assembly
Number of Column Addresses on Assembly
Number of Physical Ranks on DIMM
Module Data Width
Module Data Width (Continued)
Module Voltage Interface Levels
SDRAM Cycle Time, tCK, (CAS Latency = 2.5) (See note
1)
ENTRY (VERSION)
MT16VDDT25664A
128
256
SDRAM DDR
14
11
2
64
0
SSTL 2.5V
6ns (-335)
7ns (-262/-26A)
7.5ns (-265)
0.7ns (-335)
0.75ns (-262/-26A/-265)
None
15.62µs, 7.8µs/SELF
8
None
1 clock
80
08
07
0E
0B
02
40
00
04
60
70
75
70
75
00
82
08
00
01
2, 4, 8
4
2, 2.5
0
1
Unbuffered/Diff. Clock
Fast/Concurrent AP
7.5ns (-335/-262/-26A)
10ns (-265)
0.7ns (-335)
0.75ns (-262/-26A/-265)
N/A
0E
04
0C
01
02
20
C0
75
A0
70
75
00
10
SDRAM Access From Clock, tAC, (CAS Latency = 2.5)
11
12
13
14
15
16
17
18
19
20
21
22
23
Module Configuration Type
Refresh Rate/Type
SDRAM Device Width (Primary DDR SDRAM)
Error-Checking DDR SDRAM Data Width
Minimum Clock Delay, Back-to-Back Random Column
Access
Burst Lengths Supported
Number of Banks on DDR SDRAM Device
CAS Latencies Supported
CS Latency
WE Latency
SDRAM Module Attributes
SDRAM Device Attributes: General
SDRAM Cycle Time, tCK, (CAS Latency = 2)
24
SDRAM Access From CK, tAC, (CAS Latency = 2)
25
SDRAM Cycle Time, tCK, (CAS Latency = 1.5)
26
SDRAM Access From CK, tAC, (CAS Latency = 1.5)
N/A
00
27
Minimum Row Precharge Time, tRP (see note 4)
28
Minimum Row Active to Row Active, tRRD
29
Minimum Ras# to CAS# Delay, tRCD (see note 4)
30
Minimum RAS# Pulse Width, tRAS, (see note 2)
31
32
Module Rank Density
18ns (-335)
15ns (-262)
20ns (-26A/-265)
12ns (-335)
15ns (-262/-26A/-265)
18ns (-335)
15ns (-262)
20ns (-26A/-265)
42ns (-335)
45ns (-262/-26A/-265)
1GB
0.8ns (-335)
1.0ns (-262-26A/-265)
48
3C
50
30
3C
48
3C
50
2A
2D
01
80
A0
Address and Command Setup Time, tIS, (see note 3)
pdf: 09005aef80739fa5, source: 09005aef807397e5
DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN
32
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
Table 23: Serial Presence-Detect Matrix (2GB) (Continued)
“1”/“0”: Serial Data, “driven to HIGH”/“driven to LOW”; notes appear on page 31
BYTE
DESCRIPTION
33
Address and Command Hold Time, tIH, (See note 2)
34
Data/Data Mask Input Setup Time, tDS
35
Data/Data Mask Input Hold Time, tDH
36-40
41
ENTRY (VERSION)
MT16VDDT25664A
0.8ns (-335)
1.0ns (-262/-26A/-265)
0.45ns (-335)
0.5ns (-262/-26A/-265)
0.45ns (-335)
0.5ns (-262/-26A/-265)
60ns (-335/-262)
65ns (-26A/-265)
120ns (all speed grades)
80
A0
45
50
45
50
00
3C
41
78
12ns (-335)
13ns (-262/-26A/-265)
0.45ns (-335)
0.5ns (-262/-26A/-265)
0.55ns (-335)
0.75ns (-262/-26A/-265)
30
34
2D
32
55
75
Reserved
Min Active Auto Refresh Time tRC
42
Minimum Auto Refresh to Active/ Auto Refresh
Command Period, tRFC
43
SDRAM Device Max Cycle Time tCKMAX
44
SDRAM Device Max DQS-DQ Skew Time tDQSQ
45
46-61
47
46-61
62
63
SDRAM Device Max Read Data Hold Skew Factor
tQHS
Reserved
DIMM Height
Reserved
SPD Revision
Checksum For Bytes 0-62
64
65-71
72
73-90
91
92
93
94
95-98
99-127
Manufacturer’s JEDEC ID Code
Manufacturer’s JEDEC ID Code
Manufacturing Location
Module Part Number (ASCII)
PCB Identification Code
Identification Code (Continued)
Year of Manufacture in BCD
Week of Manufacture in BCD
Module Serial Number
Manufacturer-specific Data (RSVD)
Standard/Low-Profile
Release 1.0
-335
-262
-26A
-265
MICRON
(Continued)
01–12
0
00
01/11
00
10
1B/2B
AB/BB
D8/E8
1C/2C
2C
FF
01–0C
Variable Data
Variable Data
00
Variable Data
Variable Data
Variable Data
–
NOTE:
1. Value for -26A tCK set to 7ns (0x70) for optimum BIOS compatibility. Actual device spec. value is 7.5ns.
2. The value of tRAS used for -26A/-265 modules is calculated from tRC - tRP. Actual device spec. value is 40 ns.
3. The JEDEC SPD specification allows fast or slow slew rate values for these bytes. The worst-case (slow slew rate) value is
represented here. Systems requiring the fast slew rate setup and hold values are supported, provided the faster minimum slew rate is met.
4. The value of tRP, tRCD and tRAP for -335 modules indicated as 18ns to align with industry specifications; actual DDR
SDRAM device specification is 15ns.
pdf: 09005aef80739fa5, source: 09005aef807397e5
DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN
33
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
Figure 17: 184-PIN DDR DIMM Dimensions – Standard PCB
0.157 (4.00)
MAX
FRONT VIEW
5.256 (133.50)
5.244 (133.20)
0.079 (2.00) R
(4X)
U1
U2
U3
U4
U6
U7
U8
U9
1.256 (31.9)
1.244 (31.6)
0.700 (17.78)
TYP.
0.098 (2.50) D
(2X)
0.091 (2.30) TYP.
0.035 (0.90) R
PIN 1
PIN 92
0.250 (6.35) TYP.
0.050 (1.27)
TYP.
0.091 (2.30)
TYP.
0.054 (1.37)
0.046 (1.17)
0.040 (1.02)
TYP.
4.750 (120.65)
BACK VIEW
U19
U10
U11
U12
U13
PIN 184
U15
U16
U18
PIN 93
0.150 (3.80)
1.95 (49.53)
U17
2.55 (64.77)
0.150 (3.80) 0.394 (10.00)
TYP.
TYP.
NOTE:
All dimensions are in inches (millimeters); MAX or typical where noted.
MIN
pdf: 09005aef80739fa5, source: 09005aef807397e5
DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN
34
Micron Technology, Inc., reserves the right to change products or specifications without notice.
©2004 Micron Technology, Inc.
256MB, 512MB, 1GB, 2GB (x64, DR)
184-PIN DDR SDRAM UDIMM
Figure 18: 184-PIN DDR DIMM Dimensions – Low-Profile PCB
5.256 (133.50)
5.244 (133.20)
U10
.00) R
(4X)
U2
U1
U3
U7
U6
U4
U8
U9
1.156 (29.36)
1.144 (29.06)
0.700 (17.78)
TYP.
.50) D
(2X)
0) TYP.
0.035 (0.90) R
PIN 1
PIN 92
0.250 (6.35) TYP.
0.050 (1.27)
TYP.
0.091 (2.30)
TYP.
0.
0.
0.040 (1.02)
TYP.
4.750 (120.65) TYP.
BACK VIEW
U19
U18
U17
U14
U16
U13
U12
U11
PIN 93
PIN 184
0.150 (3.80) 0.394 (10.00)
TYP
TYP
NOTE:
All dimensions arein inches (millimeters); MAX or typical where noted.
MIN
Data Sheet Designation
devices. Although considered final, these specifications are subject to change, as further product development and data characterization sometimes occur.
The Released designation applies to MT16VDDT3264A,
MT16VDDT6464A, and MT16VDDT12864A only.
Advance: This datasheet contains initial descriptions of products still under development. The
Advance designation applies to MT16VDDT25664A
only.
Released (No Mark): This data sheet contains minimum and maximum limits specified over the complete
power supply and temperature range for production
®
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900
E-mail: [email protected], Internet: http://www.micron.com, Customer Comment Line: 800-932-4992
Micron, the M logo, and the Micron logo are trademarks and/or service marks of Micron Technology, Inc.
All other trademarks are the property of their respective owners.
pdf: 09005aef80739fa5, source: 09005aef807397e5
DD16C32_64_128_256x64AG.fm - Rev. C 9/04 EN
35
Micron Technology, Inc., reserves the right to change products or specifications without notice..
©2004 Micron Technology, Inc
Similar pages