AD ADD8708WSTZ-REEL 18-channel gamma buffer with regulator Datasheet

18-Channel Gamma Buffer
with Regulator
ADD8708
FEATURES
FUNCTIONAL BLOCK DIAGRAM
MASK-PROGRAMMABLE
REGULATOR RESISTORS
FB
VREG OUT VDD VDD
700Ω*
GND
1.2V
700Ω*
GAMMA
BUFFERS
+
–
VOUT18
VIN18
700Ω*
VOUT17
VIN17
700Ω*
VOUT16
VIN16
700Ω*
APPLICATIONS
LCD TV panels
LCD monitor panels
VOUT15
VIN15
700Ω*
VOUT14
VIN14
700Ω*
VOUT13
VIN13
GENERAL DESCRIPTION
The ADD8708 is an 18-channel integrated gamma reference for
use in high resolution LCD TV and monitors panels. The output buffers feature high current drive and low offset voltage to
provide an accurate and stable gamma curve. The top nine
channels swing to VDD; the lower nine channels swing to GND.
Integrating the gamma setup resistors drastically reduces the
external component count while increasing the gamma curve
accuracy. To accommodate multiple column drivers and panel
architectures, the ADD8708 is mask programmable to a 0.2%
resolution using the on-chip 500 resistor string. An on-board
voltage regulator provides a fixed input for the resistor string,
isolating the gamma curve from the supply ripple.
The ADD8708 is specified over the temperature range of
–40°C to +105°C and comes in both a 48-lead, Pb-free,
lead-frame chip-scale package and a Pb-free, low-profile,
quad flat package.
700Ω*
VOUT12
VIN12
700Ω*
VOUT11
VIN11
700Ω*
VOUT10
VIN10
700Ω*
VOUT9
VIN9
700Ω*
VOUT8
VIN8
700Ω*
VOUT7
VIN7
700Ω*
VOUT6
VIN6
700Ω*
VOUT5
VIN5
700Ω*
VOUT4
VIN4
700Ω*
VOUT3
VIN3
700Ω*
VOUT2
VIN2
700Ω*
VOUT1
VIN1
MASK-PROGRAMMABLE
RESISTOR STRING
*ESD PROTECTION RESISTORS
GND GND
04614-001
18 precision gamma reference outputs
Mask-programmable gamma resistors:
0.2% resolution and 0.1% accuracy
Mask-programmable voltage regulator: 0.4% accuracy
Upper 9 buffers swing to VDD
Lower 9 buffers swing to GND
Single-supply operation: 7.5 V to 16.5 V
Gamma current drive: 15 mA per channel
Peak output current: 150 mA
Output voltage stable under load conditions
Pin-to-pin compatible with ADD8709
48-lead, Pb-free LQFP and LFCSP
Figure 1. 48-Lead LQFP or LFCSP
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable.
However, no responsibility is assumed by Analog Devices for its use, nor for any
infringements of patents or other rights of third parties that may result from its use.
Specifications subject to change without notice. No license is granted by implication
or otherwise under any patent or patent rights of Analog Devices. Trademarks and
registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.326.8703
© 2004 Analog Devices, Inc. All rights reserved.
ADD8708
TABLE OF CONTENTS
Electrical Characteristics ................................................................. 3
Absolute Maximum Ratings............................................................ 4
ESD Caution.................................................................................. 4
Pin Configuration and Function Descriptions............................. 5
Typical Performance Characteristics ............................................. 7
Application Notes ........................................................................... 10
Tap Point Selection..................................................................... 10
Voltage Regulator ....................................................................... 11
Maximum Power Dissipation ................................................... 11
Land Pattern................................................................................ 11
Operating Temperature Range ................................................. 12
Typical Applications Circuit.......................................................... 14
Tap Point and Regulator Voltage Request Form......................... 15
Outline Dimensions ....................................................................... 16
Ordering Guide........................................................................... 16
REVISION HISTORY
10/04—Revision 0: Initial Version
Rev. 0 | Page 2 of 16
ADD8708
ELECTRICAL CHARACTERISTICS
VDD = 16 V, TA @ 25°C, unless otherwise noted.
Table 1.
Parameter
GAMMA CURVE CHARACTERISTICS
Accuracy
Programming Resolution
Total Resistor String
BUFFER CHARACTERISTICS
OUTPUTS
Output Voltage Range (Ch18 to Ch10)
Output Voltage Range (Ch9 to Ch1)
Output vs. Load (Ch18, Ch17, Ch2, Ch1)
Output vs. Load (Ch16 to Ch3)
INPUTS
Offset Voltage
Offset Voltage Drift
Input Bias Current
Input Voltage Range (Ch18 to Ch10)
Input Voltage Range (Ch9 to Ch1)
DYNAMIC PERFORMANCE
Slew Rate
Bandwidth
Settling Time to 0.1%
Phase Margin
Power Supply Rejection Ratio
SR
BW
tS
Фo
PSRR
VOLTAGE REGULATOR
Programmable Range
Initial Regulator Accuracy
Dropout Voltage
VREG OUT
VACC
VDO
Line Regulation
Load Regulation
Maximum Load Current
Feedback Reference Voltage
Feedback Input Bias Current
Symbol
Conditions
RACC1
RRES
RTOTAL
500 segments
VOUT
VOUT
∆VOUT2
∆VOUT2
IL = 100 µA
IL = 100 µA
IL = 20 mA
IL = 5 mA
VOS
∆VOS/∆T
IB
VIN
VIN
REGLINE
REGLOAD
IO
VREF
IB FB
Min
Typ
Max
Unit
0.1
0.2
15
0.4
%
%
kΩ
VDD
VDD − 1.4
V
V
mV
mV
15
mV
µV/°C
µA
V
V
1.4
0
15
5
5
20
0.5
−40°C ≤ TA ≤ +105°C
−40°C ≤ TA ≤ +105°C
1.4
0
RL = 10 kΩ, CL = 200 pF
–3 dB, RL = 10 kΩ, CL = 200 pF
1 V, RL = 10 kΩ, CL = 200 pF
RL = 10 kΩ, CL = 200 pF
VDD = 7 V to 17 V,
−40°C ≤ TA ≤ +105°C
4
68
6
4.5
1.1
55
90
5
No load; VREG OUT = 14.4V
IL = 100 µA
IL = 5 mA
VIN = 8.5 V to 16.5 V, VOUT = 8 V
IO = 100 µA to 10 mA
−40°C ≤ TA ≤ +105°C
−40°C ≤ TA ≤ +105°C
SYSTEM ACCURACY
Total Error3, 4
VTotal Error
−40°C ≤ TA ≤ +105°C
POWER SUPPLY
Supply Voltage
Supply Current
VDD
ISY
No load; −40°C ≤ TA ≤ +105°C
0.4
100
310
0.01
0.02
V/µs
MHz
µs
Degrees
dB
VDD − 0.6
1.5
150
350
0.20
0.10
5
-150
150
V
nA
0.5
3
%
9.5
16
16
V
mA
Gamma curve accuracy includes resistor matching and buffer errors, but excludes the regulator error.
∆VOUT is the shift from the desired output voltage under the specified current load.
Total error is the difference between the designed and actual output voltage divided by the actual regulator output voltage or full-scale voltage.
4
Total error includes regulator error, resistor string error, bias current effects, and buffer offset voltage.
2
3
Rev. 0 | Page 3 of 16
V
%
mV
mV
%/V
%/mA
mA
1.2
10
7.5
1
1.5
VDD
VDD − 1.4
ADD8708
ABSOLUTE MAXIMUM RATINGS
Table 2.
Parameter
Supply Voltage (VDD)
Input Voltage
Storage Temperature Range
Operating Temperature Range1
Junction Temperature Range
Lead Temperature Range (Soldering, 60 sec)
ESD Tolerance (HBM)
ESD Tolerance (MM)
Rating
18 V
−0.5 V to VDD
−65°C to +150°C
−40°C to +105°C
–65°C to +150°C
300°C
±1500 V
±200 V
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
sections of this specification is not implied. Exposure to
absolute maximum rating conditions for extended periods may
affect device reliability.
Table 3. Package Characteristics
Package Type
LFCSP (CP)
LQFP (ST)
θJA2
28.3
N/A
θJA3
47.7
74.57
Unit
°C/W
°C/W
1
See the Application Notes section.
θJA for exposed pad soldered to JEDEC 4-layer board.
3
θJA for exposed pad not soldered down.
2
ESD CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on
the human body and test equipment and can discharge without detection. Although this product features
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance
degradation or loss of functionality.
Rev. 0 | Page 4 of 16
ADD8708
VOUT15
VOUT14
VOUT13
VDD
GND
VOUT12
VOUT11
46
45
44
43
42
41
40
39
38
37
5
32
VDD
VIN17
6
ADD8708
31
GND
VIN16
7
TOP VIEW
(Not to Scale)
30
VOUT6
VIN15
8
29
VOUT5
VIN14
9
28
VOUT4
VIN13 10
27
VOUT3
VIN12 11
26
VOUT2
VIN11 12
25
VOUT1
13
14
15
16
17
18
19
20
21
22
23
24
VDD
VOUT7
VIN18
GND
33
VIN1
4
VIN2
VOUT8
VREG OUT
VIN3
34
VIN4
3
VIN5
VOUT9
VDD
VIN6
35
VIN7
VOUT10
2
VIN8
36
GND
VIN9
1
VIN10
REGFB
04614-002
VOUT16
47
VOUT18
GND
48
VOUT17
VDD
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
Figure 2. Pin Configuration
Table 4. Pin Function Descriptions
Pin No.
1
Name
REGFB
2
3
4
GND
VDD
VREG OUT
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
VIN18
VIN17
VIN16
VIN15
VIN14
VIN13
VIN12
VIN11
VIN10
VIN9
VIN8
VIN7
VIN6
VIN5
VIN4
VIN3
VIN2
VIN1
GND
VDD
1
Description
Regulator Feedback. Compares a percentage of the regulator output to the internal 1.2 V voltage
reference. Internal resistors are used to program the desired regulator output voltage.
Ground. Normally 0 V.
Supply Voltage. Normally 16 V.
Regulator output voltage. Provides reference voltage to resistor string and is internally connected to
the top of the resistor string.
Buffer inputs. Normally floating.1
Ground. Normally 0 V.
Supply Voltage. Normally 16 V.
External resistors can be added to modify the internal resistor string to change the gamma voltage. An external resistor calculator is available upon request from your
local sales office.
Rev. 0 | Page 5 of 16
ADD8708
Pin No.
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
Name
VOUT1
VOUT2
VOUT3
VOUT4
VOUT5
VOUT6
GND
VDD
VOUT7
VOUT8
VOUT9
VOUT10
VOUT11
VOUT12
GND
VDD
VOUT13
VOUT14
VOUT15
VOUT16
VOUT17
VOUT18
GND
VDD
Description
Buffer Outputs. These buffers can swing to ground.
Ground. Normally 0 V.
Supply voltage. Normally 16 V.
Buffer Output. These buffers can swing to ground.
Buffer Output. These buffers can swing to VDD.
Ground. Normally 0 V.
Normally 16 V.
Buffer Outputs. These buffers can swing to VDD.
Ground. Normally 0 V.
Supply voltage. Normally 16 V.
Rev. 0 | Page 6 of 16
ADD8708
TYPICAL PERFORMANCE CHARACTERISTICS
20
ISINK = 25mA
15
25
ISINK = 15mA
0
ILOAD = 0mA
–5
–10
–15
–20
ISOURCE = 25mA
–30
–35
–20 –10
ISOURCE = 15mA ISOURCE = 5mA
0
10
20
30 40 50 60 70
TEMPERATURE (°C)
80
CH3 SINK
CH9 SINK
10
5
1
10
LOAD CURRENT (mA)
25
OUTPUT VOLTAGE ERROR (mV)
25
CH17 SOURCE
20
CH18 SOURCE
15
10
CH18 SINK
04614-004
5
CH17 SINK
1
10
LOAD CURRENT (mA)
20
CH1 SOURCE
15
CH1 SINK
5
1
10
LOAD CURRENT (mA)
100
Figure 7. Output Voltage Error vs. Load Current (Channels 1 and 2)
11
30
10V PULSE
120pF
320pF
520pF
1nF
10nF
10
25
9
8
AMPLITUDE (V)
20
15
10
CH10 SOURCE
6
5
4
3
CH10 SINK
2
5
CH16 SINK
1
10
LOAD CURRENT (mA)
7
1
0
–200
100
Figure 5. Output Voltage Error vs. Load Current (Channels 10 and 16)
04614-008
CH16 SOURCE
04614-005
OUTPUT VOLTAGE ERROR (mV)
CH2 SOURCE
CH2 SINK
10
0
0.1
100
Figure 4. Output Voltage Error vs. Load Current (Channels 17 and 18)
0
0.1
100
Figure 6. Output Voltage Error vs. Load Current (Channels 3 and 9)
30
OUTPUT VOLTAGE ERROR (mV)
CH9 SOURCE
15
0
0.1
90 100 110 120
Figure 3. Output Voltage Error vs. Temperature
0
0.1
CH3 SOURCE
04614-007
–25
20
04614-006
OUTPUT VOLTAGE ERROR (mV)
5
04614-003
OUTPUT VOLTAGE ERROR (mV)
ISINK = 5mA
10
0
200
400
600 800 1000 1200 1400 1600 1800
TIME (ns)
Figure 8. Gamma Buffers Transient Load Response vs. Capacitive Loading
Rev. 0 | Page 7 of 16
1000
0
900
100
800
200
DROPOUT VOLTAGE (mV)
700
600
500
400
300
300
400
500
600
700
04614-009
100
0
–0.30
04614-012
800
200
900
1000
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
OUTPUT CURRENT (mA)
–0.18 –0.10 –0.02
0.06
0.14
0.22
0.30
GAMMA OUTPUT ERROR DUE TO OFFSET AND
RESISTOR MATCHING (% OF FS)
Figure 9. Gamma Output Voltage Error
Figure 12. Dropout Voltage vs. Output Current
800
0.3
MAX ERROR EACH STEP
750
TYPICAL UNIT B
DROPOUT VOLTAGE (mV)
TYPICAL UNIT C
ERROR (%)
0.1
0
TYPICAL UNIT A
–0.1
04614-010
MIN ERROR EACH STEP
–0.3
1
2
3
4
5
6
7
8
OUTPUT CHANNEL
9
10
11
600
550
500
450
5mA
400
350
300
250
200
150
100
–0.2
0
10mA
700
650
0.2
0mA
50
0
–25 –15 –5
12
04614-013
NUMBER OF AMPLIFIERS
ADD8708
5
15
25 35 45 55 65
TEMPERATURE (°C)
75
85
95 105 115
Figure 13. Dropout Voltage vs. Temperature
Figure 10. Gamma Output Error per Channel (920 Parts)
14.5
15
14
14.4
13
REGULATOR OUTPUT (V)
11
9
ILOAD = 0mA
ILOAD = 5mA
8
7
6
5
ILOAD = 10mA
4
3
0 °C
14.2
+25°C
14.1
+55°C
14.0
+85°C
13.9
+95°C
13.8
+105°C
2
1
0
17 16 15 14 13 12 11 10 9 8 7 6
INPUT VOLTAGE (V)
5
4
3
2
1
04614-014
10
–20°C
14.3
04614-011
OUTPUT VOLTAGE (V)
12
13.7
13.6
0
0
2
4
6
8
10
12
14
LOAD CURRENT (mA)
16
18
Figure 14. Regulator Output vs. ILOAD over Temperature
Figure 11. Dropout Characteristics
Rev. 0 | Page 8 of 16
20
ADD8708
12
14.45
11
0mA
10
5mA
SUPPLY CURRENT (mA)
14.35
14.30
10mA
14.25
0
10
20
30 40 50 60 70
TEMPERATURE (°C)
80
8
7
6
5
4
3
2
04712-0-021
14.20
–20 –10
9
04614-018
REGULATOR OUTPUT (V)
14.40
1
0
0
90 100 110
Figure 15. Regulator Output vs. Temperature
2
4
6
8
10
12
SUPPLY VOLTAGE (V)
14
16
18
Figure 18. Supply Current vs. Supply Voltage
18
11.0
CLOAD = 1µF
–200
–400
14
TIME (100µs/DIV)
Figure 16. Regulator Line Transient Response
0
–20
–40
04614-017
LOAD CURRENT (mA)
20
OUTPUT VOLTAGE CHANGE (mV)
40
5
10.6
10.4
–20
0
20
40
60
TEMPERATURE (°C)
80
Figure 19. Supply Current vs. Temperature
CLOAD = 1µF
0.1
10.7
10.5
04614-016
15
10.8
04614-019
0
16
SUPPLY CURRENT (mA)
INPUT VOLTAGE (V)
200
10.9
OUTPUT VOLTAGE CHANGE (mV)
400
17
TIME (100µs/DIV)
Figure 17. Regulator Load Transient Response
Rev. 0 | Page 9 of 16
100
120
ADD8708
APPLICATION NOTES
TAP POINT 500
TAP POINT 3
TAP POINT 499
TAP POINT 2
TAP POINT 498
TAP POINT 1
TAP POINT 497
EACH R = 30Ω
TYPICALLY
The ADD8708 uses a single resistor string consisting of 500
individual elements. The tap points are mask programmable
and completely independent of each other. See the Tap Point
and Regulator Voltage Request Form in this data sheet.
VREG OUT
500–TPX
VINX
Figure 22. Gamma Buffers Tap Point Circuit
Tap point voltages can be derived from the following equation:
VOUT X =
In a typical panel application, the selected source drivers have
an internal gamma curve that is not ideal for the specific panel
(see Figure 21). The ADD8708 allows the gamma curve in the
source drivers to be adjusted appropriately, and also ensures
that all the source drivers have the same gamma curve.
VOUT18
VOUT17
VOUT16
VOUT15
VOUT14
VOUT13
VOUT12
VOUT11
VOUT10
VOUT9
VOUT8
VOUT7
VOUT6
VOUT5
VOUT4
VOUT3
VOUT2
VOUT1
14
12
GAMMA VOLTAGE (V)
OUT
Table 5. Typical Mask Implementation1
VDD = 16 V, VREG OUT = 14.4 V, 0 ≤ X ≤ 500
16
10
8
ORIGINAL GAMMA CURVE
IN SOURCE DRIVERS
6
PANEL GAMMA CURVE
CORRECTED BY ADD8708
4
04614-021
0
TPX
× VREG
500
where TPX is the desired tap point for the Xth channel.
Figure 20. 500 Mask-Programmable Resistor String
2
VOUTX
TPX
04614-020
TAP POINT 4
TAP POINT SELECTION
04614-022
The ADD8708 is a mask-programmable gamma reference
generator that allows source drivers to be optimized for the
different combinations of liquid crystals, glass sizes, etc. in
large LCD panels. It generates 18 gamma reference outputs
that can be mask-programmed in 0.2% increments using the
500 matched internal resistors (see Figure 20), so that every
point on the curve can be targeted within 0.1% of the desired
value.
GAMMA REFERENCE INPUT POINTS
Figure 21. Original and Corrected Gamma Curves
The matching and tracking accuracy of the internal resistors is
typically 0.1% with worst-case deviation from the desired curve
within 0.4% of the ideal gamma curve, over temperature.
Tap Point (X)
500
396
369
361
354
350
341
317
299
225
211
177
167
163
154
146
118
7
Voltage
14.400
11.405
10.627
10.397
10.195
10.080
9.821
9.130
8.611
6.480
6.077
5.098
4.810
4.694
4.435
4.205
3.398
0.202
Units
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
_______________________________
1
ADD8708 release samples do not have these typical values. The values on the
samples are nonmonotonic and can be provided upon request.
The ADD8708 also includes a low-dropout linear regulator to
provide a stable reference level for the gamma curve for
optimum panel performance.
Rev. 0 | Page 10 of 16
ADD8708
VOLTAGE REGULATOR
LAND PATTERN
The on-board voltage regulator provides a regulated voltage to
the resistor chain to provide stable gamma voltages.
The LFCSP package comes with a thermal pad. Soldering down
this thermal pad dramatically improves the heat dissipation of
the package. It is necessary to attach vias that connect the
soldered thermal pad to another layer on the board. This
provides an avenue to dissipate the heat away from the part.
Without vias, the heat is isolated directly under the part.
The two mask-programmable internal resistors, R1 and R2,
and a reference voltage set the output of the regulator. The
typical values of these parts are shown in Figure 23. In addition,
see the Tap Point and Regulator Voltage Request Form in this
data sheet.
R2
55kΩ
R1
5kΩ
+
–
04614-023
VREG OUT
VREF
1.2V
Figure 23. Voltage Regulator
The internal resistors have a typical accuracy of 0.1%. External
resistors can be used to adjust the regulator voltage; however, it
is not recommended. Please contact your local sales office for
further details.
Subdivide the solder paste, or stencil layer, for the thermal pad
to reduce solder balling and splatter. It is not critical how the
subdivisions are arranged, as long as the total coverage of the
solder paste for the thermal pad is greater than 50%. The land
pattern is critical to heat dissipation. A suggested land pattern is
shown in Figure 22.
The thermal pad is attached to the substrate. In the ADD8708,
the substrate is connected to VDD. To be electrically safe, the
thermal pad should be soldered to an area on the board that is
electrically isolated or connected to VDD. Attaching the thermal
pad to ground adversely affects the performance of the part.
MAXIMUM POWER DISSIPATION
The maximum safe power dissipation in the ADD8708 package
is limited by the associated rise in junction temperature (TJ) on
the die. At approximately 150°C, the glass transition temperature, the properties of the plastic change. Even temporarily
exceeding this temperature limit may change the stresses that
the package exerts on the die, permanently shifting the parametric performance of the ADD8708. Exceeding a junction
temperature of 175°C for an extended period can result in
changes in the silicon devices, potentially causing failure.
Rev. 0 | Page 11 of 16
ADD8708
OPERATING TEMPERATURE RANGE
The junction temperature is as follows:
VDD × IDQ = 16 V × 15 mA = 0.240 W
(VDD – VREG OUT) × ILOAD = (16 V – 14.4 V) × 5 mA = 0.008 W
PDIS = 0.240 W + 0.731 W + 0.008 W =0.979 W
TJ = TAMB + θJA × PDIS
where:
TAMB = ambient temperature.
θJA = junction-to-ambient thermal resistance, in °C/watt.
PDIS = power dissipated in the device, in watts.
Example 1
Exposed pad soldered down with via θJA = 28.3°C/W:
TJ = 95°C + (28.3°C/W) × (0.979 W) = 122.7°C
For the ADD8708, PDIS can be calculated by this equation:
PDIS = VDD × IDQ + Σ(IOUT X(+) × (VDD − VOUT X)) +
Σ(−IOUT X(−) × VOUT X) + (VDD – VREG OUT ) × ILOAD
where:
VDD × IDQ = nominal system power requirements.
IOUT X(+) × (VDD − VOUT X)= positive-current amplifier load
power dissipation (current comes from VDD).
−IOUT X(−) × VOUT X = negative-current amplifier load power
dissipation (current goes to GND).
(VDD – VREG OUT) × ILOAD = regulator load power dissipation.
In this example, TAMB = 95°C. To calculate PDIS, assume the
values in Table 6.
where 150°C is the maximum junction temperature that is
guaranteed before the part breaks down. The maximum process
limit is 125°C. Because TJ is < 150°C and < 125°C, this example
demonstrates a condition where the part should perform within
process limits.
Example 2
Exposed pad not soldered down θJA = 47.7°C/W:
TJ = 95°C + (47.7°C/W) × (0.979 W) = 141.7°C
In this example, TJ is < 150°C but > 125°C. Although the part
should not exhibit any damage in this situation, the process
limits have been exceeded. The part may no longer operate
as intended.
Table 6.
VOUT18
VOUT17
VOUT16
VOUT15
VOUT14
VOUT13
VOUT12
VOUT11
VOUT10
VOUT9
VOUT8
VOUT7
VOUT6
VOUT5
VOUT4
VOUT3
VOUT2
VOUT1
VOUT X (V)
14.400
11.405
10.627
10.397
10.195
10.080
9.821
9.130
8.611
6.480
6.077
5.098
4.810
4.694
4.435
4.205
3.398
0.202
IOUT X (mA)
4.3
5.2
−4.4
7.3
7.6
−3.9
8.3
7.9
−4.5
−4.2
5.6
−3.3
−6.9
5.7
3.5
9.6
−9.5
−7.2
Σ(IOUT X(+) × (VDD − VOUT X)) + Σ(−IOUT X(−) × VOUT X)
P (W)
0.00688
0.0239
0.0468
0.0409
0.0441
0.0393
0.0513
0.0543
0.0389
0.0272
0.0556
0.0168
0.0332
0.0644
0.0405
0.113
0.0323
0.00145
0.731
These examples show that soldering down the exposed pad is
important for proper heat dissipation. Under the same powerup and loading conditions, the unsoldered part has a higher
temperature than the soldered part. Therefore, it is strongly
advised that the exposed pad be soldered to VDD to maintain
part integrity.
Rev. 0 | Page 12 of 16
ADD8708
7.31mm
HEAT SINK
SOLDER PASTE AREA
5.40mm
1.90mm
1.60mm
5.78mm
5.93mm
0.69mm
0.5mm
0.075mm
0.33mm DIAMETER
THERMAL VIA
0.28mm
04614-024
0.075mm
1.60mm
Figure 24. 48-Pin LFCSP (CP-48) Land Pattern—Dimensions Shown in Millimeters
Notes:
1.
Areas in black represent the board metallization.
2.
Areas in white represent the solder mask and vias.
3.
Hatched area is for the heat sink solder paste.
4.
The thermal pad is electrically active. The solder mask opening should be 0.150 mm larger than the pad size, resulting in 0.075 mm
of clearance between the copper pad and solder mask.
Rev. 0 | Page 13 of 16
ADD8708
TYPICAL APPLICATIONS CIRCUIT
VREG OUT
VDD
NORMALLY
FB
OPEN
0.1µF
700Ω
55kΩ
5kΩ
1.2V
VIN18
VIN17
VIN16
VIN15
VIN14
VIN13
VIN12
VIN11
NORMALLY
OPEN
VIN10
VIN9
VIN8
VIN7
VIN6
VIN5
VIN4
VIN3
VIN2
VIN1
+
–
VOLTAGE
REGULATOR
GAMMA
BUFFERS
0Ω
TP18 = 500
700Ω
3.12kΩ
TP17 = 396
700Ω
810Ω
TP16 = 369
700Ω
240Ω
TP15 = 361
700Ω
210Ω
TP14 = 354
700Ω
120Ω
TP13 = 350
700Ω
270Ω
TP12 = 341
700Ω
720Ω
TP11 = 317
700Ω
540Ω
TP10 = 299
700Ω
2.22kΩ
TP9 = 225
700Ω
420Ω
TP8 = 211
700Ω
1.02kΩ
TP7 = 177
700Ω
300Ω
TP6 = 167
700Ω
120Ω
TP5 = 163
700Ω
270Ω
TP4 = 154
700Ω
240Ω
TP3 = 146
700Ω
840Ω
TP2 = 118
700Ω
3.33kΩ
TP1 = 7
700Ω
VOUT18
14.400V
VOUT17
11.405V
VOUT16
10.627V
VOUT15
10.397V
VOUT14
10.195V
VOUT13
10.080V
VOUT12
9.821V
VOUT11
9.130V
VOUT10
8.611V
VOUT9
6.480V
VOUT8
6.077V
VOUT7
5.098V
VOUT6
4.810V
VOUT5
4.694V
VOUT4
4.435V
VOUT3
4.205V
VOUT2
3.398V
VOUT1
0.202V
210Ω
ESD PROTECTION
RESISTORS
GND
GND
Figure 25. Typical Application Circuit
Rev. 0 | Page 14 of 16
GAMMA 18
GAMMA 17
GAMMA 16
GAMMA 15
GAMMA 14
GAMMA 13
GAMMA 12
GAMMA 11
GAMMA 10
GAMMA 9
GAMMA 8
GAMMA 7
GAMMA 6
GAMMA 5
GAMMA 4
GAMMA 3
GAMMA 2
GAMMA 1
GAMMA 18
GAMMA 17
GAMMA 16
GAMMA 15
GAMMA 14
GAMMA 13
GAMMA 12
GAMMA 11
GAMMA 10
GAMMA 9
GAMMA 8
GAMMA 7
GAMMA 6
GAMMA 5
GAMMA 4
GAMMA 3
GAMMA 2
GAMMA 1
GAMMA 18
GAMMA 17
GAMMA 16
GAMMA 15
GAMMA 14
GAMMA 13
GAMMA 12
GAMMA 11
GAMMA 10
GAMMA 9
GAMMA 8
GAMMA 7
GAMMA 6
GAMMA 5
GAMMA 4
GAMMA 3
GAMMA 2
GAMMA 1
04614-025
ESD PROTECTION
RESISTOR
16V
0.1µF
ADD8708
TAP POINT AND REGULATOR VOLTAGE REQUEST FORM
REGULATOR SECTION—VREG OUT
To ensure correct regulator operation VDD must exceed VREG by 600 mV minimum—that is, a VREG = 14.4 V requires a minimum
VDD = 15.0 V.
Parameter
VREG OUT
Value (6.9 V – 15.4 V)
TAP POINT SECTION
Gamma output voltages are calculated using the following formula:
VOUT =
TP × VREG OUT
500
A Microsoft® Excel spreadsheet is available which automatically calculates the best tap point based on VREG OUT and the desired output
voltages for each gamma output.
Output
VOUT18
VOUT17
VOUT16
VOUT15
VOUT14
VOUT13
VOUT12
VOUT11
VOUT10
VOUT9
VOUT8
VOUT7
VOUT6
VOUT5
VOUT4
VOUT3
VOUT2
VOUT1
Tap Point
CUSTOMER INFORMATION
Name:
____________________________________________
Company:
____________________________________________
Address:
____________________________________________
____________________________________________
Date:
____________________________________________
Please return this form to your local sales office.
Rev. 0 | Page 15 of 16
ADD8708
OUTLINE DIMENSIONS
7.00
BSC SQ
0.60 MAX
37
36
PIN 1
INDICATOR
TOP
VIEW
1
EXPOSED
PAD
5.25
5.10 SQ
4.95
(BOTTOM VIEW)
25
24
12
13
0.25 MIN
5.50
REF
0.80 MAX
0.65 TYP
12° MAX
PIN 1
INDICATOR
48
6.75
BSC SQ
0.50
0.40
0.30
1.00
0.85
0.80
0.30
0.23
0.18
0.60 MAX
0.05 MAX
0.02 NOM
0.50 BSC
0.20 REF
SEATING
PLANE
COPLANARITY
0.08
COMPLIANT TO JEDEC STANDARDS MO-220-VKKD-2
Figure 26. 48-Lead Lead Frame Chip Scale Package [LFCSP]
7 mm × 7 mm Body
(CP-48)
Dimensions shown in millimeters
0.75
0.60
0.45
9.00
BSC SQ
1.60
MAX
37
48
36
1
SEATING
PLANE
1.45
1.40
1.35
0.15
0.05
10°
6°
2°
SEATING
PLANE
PIN 1
7.00
BSC SQ
TOP VIEW
0.20
0.09
7°
3.5°
0°
0.08 MAX
COPLANARITY
(PINS DOWN)
VIEW A
25
12
13
0.50
BSC
24
0.27
0.22
0.17
VIEW A
ROTATED 90° CCW
COMPLIANT TO JEDEC STANDARDS MS-026BBC
Figure 27. 48-Lead Low Profile Quad Flat Package [LQFP]
(ST-48)
Dimensions shown in millimeters
ORDERING GUIDE
Model1
ADD8708WCPZ-REEL72
ADD8708WSTZ-REEL2
1
2
Temperature Range
–40°C to +105°C
–40°C to +105°C
Package Description
48-Lead Lead Frame Chip Scale Package
48-Lead Low Profile Quad Flat Package
Available in reels only.
Z = Pb-free part.
© 2004 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D04614–0–10/04(0)
Rev. 0 | Page 16 of 16
Package Option
CP-48
ST-48
Similar pages