DOMINANT Opto Technologies Innovating Illumination TM DATA SHEET Multi DomiLED Bi-Color : DKxx-MJS Multi DomiLED Synonymous with function and performance, the Multi DomiLED series is perfectly suited for a variety of cross-industrial applications due to its small package outline, durability and superior brightness. Features: > > > > > > > High brightness bi-color surface mount LED. 120° viewing angle. Small package outline (LxWxH) of 3.2 x 2.8 x 1.8mm. Qualified according to JEDEC moisture sensitivity Level 2. Compatible to IR reflow soldering. Environmental friendly; RoHS compliance. Compliance to automotive standard; AEC-Q101. Applications: > Signage: full colour display video notice board, signage, special effect lighting. > Lighting: architecture lighting, general lighting, garden light, channel light. > Automotive: interior application, eg: switches, telematics, climate control system, dashboard, etc. © 2005 DomiLED is a trademark of DOMINANT Opto Technologies. All rights reserved. Product specifications are subject to change without notice. 1 19/04/2017 V1.0 DOMINANT TM DKxx-MJS Opto Technologies Innovating Illumination Optical Characteristics at Tj=25˚C Part Ordering Number Viewing Angle˚ Color, λdom (nm) Chip #1 DKST-MJS-UV+WX-1 Super Red, 632nm Chip #2 True Green, 120 Luminous Intensity @ 20mA IV (mcd) Appx. 1.1 Chip #1 Chip #2 Min. Typ. Max. Min. Typ. Max. 450.0 715.0 1125.0 1125.0 1800.0 2850.0 525nm Electrical Characteristics at Tj=25˚C Vf @ If = 20mA Appx. 3.1 Min. (V) Typ. (V) Max. (V) Super Red 1.80 2.10 2.60 True Green 2.90 3.40 3.70 Absolute Maximum Ratings Maximum Value DC forward current Super Red; AlInGaP=30; Unit mA True Green; InGaN=20 Peak pulse current; (tp ≤ 10µs, Duty cycle = 0.005) Super Red ; AlInGaP=200; Reverse voltage True Green; InGaN=200 mA Super Red; AlInGaP=12; V True Green; InGaN=5 ESD threshold (HBM) 2000 V LED junction temperature 125 ˚C Operating temperature -40 … +100 ˚C Storage temperature -40 … +100 ˚C - Junction / ambient, RthJA (2 chips On) 575 K/W - Junction / solder point, RthJS (2 chips On) 380 K/W Thermal resistance 2 19/04/2017 V1.0 DOMINANT TM DKxx-MJS Opto Technologies Innovating Illumination Wavelength Grouping Color Group Wavelength distribution (nm) Appx. 2.2 Super Red Full 625 - 640 True Green Full 520 - 536 W 520 - 524 X 524 - 528 Y 528 - 532 Z 532 - 536 Luminous Intensity Group at Tj=25˚C Luminous Intensity @ IV (mcd) Appx. 1.1 Chip #1 Chip #2 Brightness Group UW 450.0...715.0 1125.0...1800.0 UX 450.0...715.0 1800.0...2850.0 VW 715.0...1125.0 1125.0...1800.0 VX 715.0...1125.0 1800.0...2850.0 3 19/04/2017 V1.0 DOMINANT TM DKxx-MJS Opto Technologies Innovating Illumination IV/IV(20mA) F); Tj = 25°C (AlInGaP) = f(IF);=Tf(I 1.6 1.6 IV/IV(20mA) j = 25°C (AlInGaP) Luminous Intensity Vs Forward Current 1.6 1.6Relative Relative Luminous Intensity Vs Forward Current IV/IV(20mA) = f(IF);=Tf(Ij =F);25°C (AlInGaP) I /I (20mA) T = 25°C (AlInGaP) V V j 1.4 1.4 1.6 1.41.6 1.4 1.2 1.2 1.4 1.21.4 1.2 15 10 15 10 10 10 10 5 5 Forward Current IF (mA) Relative Luminous Intensity Irel Luminous Irel Relative Relative Luminous IntensityIntensity Irel 20 15 20 15 15 15 15 10 15 10 10 10 10 5 5 0.2 0.4 0.2 0.4 0.2 0.2 0 5 05 2.9 2.9 3.0 3.0 3.1 3.1 3.2 3.2 3.3 3.3 3.4 3.4 3.5 3.5 3.6 3.6 0 2.80 2.8 3.3 2.8 2.8 2.9 2.9 3.0 3.0 3.1 3.1 3.2 3.2 3.3Voltage 3.4 3.4 3.5 3.5 3.6 3.6 Forward Forward Voltage VF (V) VF (V) 0 Forward Voltage V (V) 0 Forward Voltage Forward Voltage V (V) VFF (V) 2.8 2.8 2.9 2.9 3.0 3.0 3.1 3.1 3.2 3.2 3.3F 3.3 3.4 3.4 3.5 3.5 3.6 3.6 Relative Spectral Emission Relative Spectral Emission (V) Forward Voltage V Relative Spectral Emission (V) Forward Voltage V F 20mA; Irel =TRelative f(λ); Tj = 25°C; IF =Emission AllnGaP InGaN F Irel = f(λ); ISpectral 20mA; InGaN 20mA 20mA j = 25°C; F = AllnGaP Irel =TRelative f(λ); Tj = 25°C; IF = AllnGaP 20mA; Spectral Emission AllnGaP 20mA; InGaNInGaN 20mA 20mA 1.0 1.0Irel = f(λ); j = 25°C; IF = 1.0 I 1.0 Relative Emission Relative Spectral Emission = f(λ); Tj = 25°C; IF =Spectral AlInGaP 20mA; InGaN 20mA 0.9 rel 0.9 Irel = f(λ); IF = AllnGaP 20mA;20mA; InGaNInGaN 20mA20mA Irel =Tf(λ); Tj = 25°C; IF = AllnGaP j = 25°C; 0.9 0.91.0 1.0 0.8 0.8 0.80.9 0.8 0.9 AllnGaP InGaN InGaN AllnGaP 0.7 0.7 AllnGaP InGaN InGaN AllnGaP 0.70.8 0.7 0.8 0.6 0.6 InGaNInGaN AllnGaP AllnGaP 0.60.7 0.6 0.7 0.5 0.5 0.50.6 0.5 0.6 0.4 0.4 0.4 0.40.5 0.5 0.3 0.3 0.30.4 0.3 0.4 0.2 0.2 0.20.3 0.2 0.3 0.1 0.1 0.1 0.10.2 0.2 0.0 0.0 0.0 400 400 500 450 550 500 600 550 650 600 700 650 750 700 800 750 850 800 850 0.00.1350 0.1350 450 350 450 400 500 450 550 500 600 550 650 600 700 650 750 700 800 750 850 800 850 350 400 Wavelength Wavelength λ (nm)λ (nm) 0.0 0.0 Wavelength Wavelength λ (nm)λ (nm) 350 350 400 400 450 450 500 500 550 550 600 600 650 650 700 700 750 750 800 800 850 850 Relative Luminous Intensity Irel Luminous Irel RelativeRelative Luminous IntensityIntensity Irel 0 5 10 30 20 40 30 50 40 60 50 70 60 80 70 90 80 100 90 110 100 110 0 0 100 20 10 30 20 40 30 50 40 60 50 70 60 70 90 80 100 90 110 100 110 0 100 20 Temperature T(°C) Temperature T(°C) 80 Temperature 0 0 Temperature T(°C) T(°C) 0 10 0 20 10 30 20 40 30 50 40 60 50 70 60 80 70 90 80 100 90 110 100 110 Temperature T(°C) Temperature T(°C) Temperature T(°C) 05 5 10 5 Relative Luminous Intensity Irel Intensity Relative Luminous Intensity Relative RelativeLuminous Luminous Intensity Irel Irel Irel 0 Forward Current IF IF ForwardForward Current ICurrent F Forward Current IF IF ForwardForward CurrentCurrent IF 25 20 25 20 20 20 0.4 0.6 0.4 0.6 0.4 0.4 5 510 5 10 5 0 5 05 0 1.70 1.7 1.8 1.8 1.9 1.9 2.0 2.0 2.1 2.1 2.2 2.2 2.3 2.3 1.9 2.0 2.02.1 2.12.2 2.2 2.3 2.3 1.7 1.71.8 1.81.9 Forward Voltage Forward Voltage (V) Forward Voltage VF (V)VVFF (V) 0 0 Forward Voltage Forward Voltage VF (V) VF (V) 1.7 1.7 1.8 1.8 Forward 1.9 1.9 Current 2.0 2.0Vs 2.1Forward 2.2Voltage 2.1 2.2 2.3 2.3 ForwardCurrent Current VsVs Forward Voltage Forward Forward Voltage Forward Current Vs Forward Voltage = f(V ); T = 25°C (InGaN) I = f(V ); T = 25°C (InGaN) I FFForward F Forward j ForwardF Forward Current Vs Voltage VF (V) jVoltage Voltage VF (V) IIFF == f(V f(V = 25°C (InGaN) f(VTF); 25°C (InGaN) IF );=F); j Tj =(InGaN) 30 F Tj = 25°C 30 30 Forward Current Vs Forward Voltage Forward Current Vs Forward Voltage 30 ); f(V Tj =F);25°C (InGaN) IF = f(V Tj = 25°C (InGaN) IFF= 30 25 30 25 25 25 0.6 0.8 0.6 0.8 0.6 0.6 5 10 5 Forward Current IF F IF ForwardForward Current ICurrent F Forward Current IF IF ForwardForward CurrentCurrent IF 20 15 20 15 15 15 0.8 1.0 0.8 1.0 0.8 0.8 10 15 10 1015 10 F); Tj = 25°C (AlInGaP) IF = f(VIFF);= Tf(V j = 25°C (AlInGaP) Forward Current Vs Forward Voltage Forward Current Vs Forward Voltage ); f(V Tj =F);25°C (AlInGaP) IF = f(V Tj = 25°C (AlInGaP) IFF= 25 20 25 20 20 20 1.0 1.2 1.0 1.2 1.0 1.0 0.0 0.2 0.0 0.2 5 10 10 15 15 20 20 25 25 30 30 0.0 00.0 0 5 0 5 5 10 10 15 15 20 20 25 25 30 30 0 Forward Current IF (mA) Forward Current (mA) 0.0 0.0 Forward Current IIFF (mA) Forward Current I (mA) Forward Current 0 15 I15 20 F 20 25 25 30 30 F (mA) 0 5 5 10 10 Maximum Current Vs Temperature Maximum Current Vs Temperature Maximum Temperature Forward IF (mA) ICurrent = Vs f (T) Current IF (mA) IFCurrent =Forward f (T) FTemperature Maximum Current Vs IF = f (T) 35Maximum Current IF = f (T) 35 Vs Temperature 35 Maximum Current Vs Temperature 35 Maximum Current Vs Temperature AllnGaP AllnGaP =f(T) IFI= f (T) F IF = f (T) AllnGaP AllnGaP 30 30 35 35 30 30 AllnGaP AllnGaP 25 30 25 30 25 InGaN InGaN 25 InGaN InGaN 20 25 20 2025 20 InGaNInGaN 15 15 20 20 15 15 Forward Current Vs Forward Voltage Forward Current Vs Forward Voltage Forward Current Vs Forward Voltage IFIForward = f(V f(V );Tf(V T=Fj);25°C =Forward (AlInGaP) Vs Forward Voltage Tj25°C = (AlInGaP) 25°C (AlInGaP) IFF); F=Current Forward Voltage F =Current j Vs Forward Current I (mA) Relative Luminous Intensity Irel Luminous Irel Relative Relative Luminous IntensityIntensity Irel 30 25 30 25 25 25 0.2 0.2 0.4 0.20.4 0.2 0.0 0.0 0.2 0 5 5 10 10 15 15 20 20 25 25 30 30 0.00.2 00.0 0 5 5 10 10 15 15 20 20 25 25 30 30 0 Forward Current I (mA) Forward Current IF (mA) Forward Current IF F(mA) 0.0 0.0 Forward Current I (mA) Forward Current 0 5 10 10 15 I15 20 F 20 25 25 30 30 F (mA) 0 Relative 5 Luminous Intensity Vs Forward Current Relative LuminousIntensity Intensity VsVs Forward Current Relative Luminous Forward Current Relative Forward Current ILuminous /IV(20mA) =Tf(I T =Vs 25°C (InGaN) ILuminous =Forward f(IFCurrent );Intensity 25°C (InGaN) V F); Relative Intensity Vs Forward Current V/IV(20mA) j= Forward IFj (mA) Current I (mA) F I /I (20mA) = f(I ); Tj = IV/IV(20mA) =Tf(I ); Tj25°C =(InGaN) 25°C(InGaN) (InGaN) F 1.4 I /I (20mA) = f(I ); = 25°C V V F 1.4 V V F j Luminous Intensity Vs Forward Current 1.4 1.4Relative Relative Luminous Intensity Vs Forward Current IV/IV(20mA) = f(IF);=Tf(Ij =F);25°C (InGaN) IV/IV(20mA) Tj = 25°C (InGaN) 1.2 1.2 1.4 1.4 1.2 1.2 Forward Current IF (mA) ForwardForward Current ICurrent F (mA) IF (mA) Relative Luminous Intensity I (mA) Current Forward Forward Current IIF (mA) ForwardForward CurrentCurrent IF (mA) IF (mA) 30 30 30 30 1.0 1.0 1.2 1.01.2 1.0 0.8 0.8 1.0 0.81.0 0.8 0.6 0.6 0.8 0.60.8 0.6 0.4 0.4 0.6 0.40.6 0.4 Relative Luminous Intensity Irel rel Luminous Irel RelativeRelative Luminous IntensityIntensity Irel Intensity Luminous Relative Relative Luminous Intensity Irel Irel Luminous Irel RelativeRelative Luminous IntensityIntensity Irel Relative Luminous Intensity Vs Forward Current Relative Luminous Intensity Vs Forward Current Relative Luminous Intensity Vs Forward Current IV/IRelative (20mA) ==Intensity f(I Tj =TForward 25°C (AlInGaP) Intensity Vs Forward Current IVLuminous /IV(20mA) f(I ); 25°C (AlInGaP) /IV(20mA) f(IFF););=T 25°C VIVLuminous j = (AlInGaP) Relative Current j =FVs Wavelength λ (nm) Wavelength λλ (nm) Wavelength (nm) 4 19/04/2017 V1.0 0.4 R -0.6 -0.8 DOMINANT 0.2 TM Opto -1.0 Technologies Innovating Illumination -50 -30 -10 10 30 50 70 90 110 0.0 130 DKxx-MJS -50 -30 -10 j p 70 90 110 130 Radiation Pattern F 30° 20° 10° 0° 1.0 8.0 40° 0.8 6.0 4.0 2.0 100 0.0 0.6 Items to check: 1. Rated Current in each graph title 2. Relative value=1 @ rated current 0.4 3. Typ Vf @ rated current 4. Relative value=1 @ 25C degree 50° InGaN AllnGaP -2.0 60° -4.0 -6.0 70° AlInGaP -8.0 InGaN -10.0 10 -12.0 0.1 -50 -30 20 dom j dom 50 10.0 Allowable Forward Current IF( mA ) Relative Wavelength dom(nm)I ( mA ) Current Forward ∆λ Allowable F Allowable Forward Current Vs Duty Ratio Relative Wavelength Vs Junction Temperature Allowable Current Duty Ratio ( Forward T = 25°C; t ≤f(TVs 10μs) ∆λ = λ ( T-j λ= 25°C; (25°C) );) I = 20mA t ≤p=10μs dom 30 Junction Temperature T j(°C) Junction Temperature T j(°C) 1000 12.0 10 1 10 -10 30 50 10 70 Duty Ratio,%% Duty Ratio, 90 0.2 80° 110 0 90° 100 130 Junction Temperature T j(°C) Relative Forward Voltage Vs Junction Temperature Relative Wavelength Shift Vs Forward Current Relative Wavelength Shift Vs Forward λdom = f(I ); Tj = 25°C F Current 6.00 4.00 InGaN 2.00 0.00 -2.00 AlInGaP -4.00 -0.005 -8.00 -0.010 0 3 6 9 12 15 18 21 24 27 -0.030 30 -1.0 IV /IV (25°C) = f(Tj); IV = 20mA dom ∆λ Relative Wavelength dom(nm) Relative Relative Wavelength Wavelength ∆λ ∆λdom(nm) (nm) 1.6 AllnGaP 1.2 1.0 InGaN 0.8 0.6 0.4 0.2 -50 -30 -10 10 30 50 70 90 110 10.0 12.0 8.0 10.0 6.0 8.0 4.0 6.0 2.0 4.0 0.0 2.0 -2.0 0.0 -4.0 -2.0 -6.0 -4.0 -8.0 -6.0 -10.0 -8.0 -12.0 -10.0 -50 -12.0 130 -50 130 Junction Temperature Junction Temperature T j(°C) T j(°C) Junction Temperature Tj(°C) -30 -10 10 30 50 70 90 110 130 Relative Wavelength Vs Junction Temperature (°C) Tjj); ∆λdomJunction = λdom - λTemperature IF = 20mA dom (25°C) = f(T dom dom dom j F InGaN InGaN AlInGaP AlInGaP -30 -30 -10 -10 10 30 50 70 90 Junction Temperature T j(°C) 10 30 50 70 90 110 110 130 130 Junction Temperature (°C) (°C) Junction Temperature T jT j Relative Wavelength Shift Vs Forward Junction Temperature TT j(°C) Junction Temperature (°C) j 10.00 5 8.00 10.00 λrel Relative Luminous Intensity IrelI Intensity Luminous Relative rel 1.8 1.4 -50 110 70 130 90 150 110 Relative Wavelength Vs Junction Temperature Relative Wavelength Vs Junction Temperature 12.0 ∆λdom =∆λλdom - λdom (25°C) = f(T ); IF =20mA =λ -λ (25°C) = f(T ); I =j 20mA 2.0 0.0 InGaN -1.0 -0.8-30 -10 10 30 50 70 90 -50 -50 -30 -10 10 30 50 Relative Luminous Intensity Vs Junction Temperature RelativeI Luminous Temperature /I (25°C)Intensity = f(Tj);VsIFJunction = 20mA V V 130 -0.2 0.0 -0.8 -0.025 -0.6 Forward Current Current IFI(mA) Forward (mA) F e AllnGaP InGaN -0.4 -0.015 -0.2 -0.6 -0.020 -0.4 -6.00 -10.00 0.0 ∆Cx 0.2 0.000 2 Relative Luminous Intensity Irel Relative Luminous Intensity Irel 8.00 ∆Cx, ∆Cy Relative Wavelength λrelλrel(nm) Wavelength Relative 10.00 Relative Forward Voltage ∆VF (V)∆V∆V (V) Voltage Forward Relative Relative Forward Voltage F F (V) Relative Forward Voltage Vs Junction Temperature Chromaticity Coordinate Shift Vs Junction Temperature ∆V =F V VVFF);(25°C) = jf(T IF =20mA = FV=F- -f(T (25°C) = f(T ); IFj); = 20mA F∆V∆Cy ∆Cx, j IF = 20mA 1.0 Relative Forward Voltage Vs Junction Temperature 0.030 ∆VF = VF - VF(25°C) = f(Tj); IF = 20mA 0.025 0.8 1.0 0.020 0.6 0.8 0.015 0.4 ∆Cy 0.010 0.6 AllnGaP 0.2 0.005 0.4 6.00 8.00 Current 19/04/2017 V1.0 Relative Wavelength Shift Vs Forward Current 1 1 1 1 1 0 0 0 0 0 DOMINANT TM Bi-Color DKxx-NJS Opto Technologies DOMINANT Innovating Illumination TM DKxx-MJS Opto Technologies Innovating Illumination Multi DomiLED • Bi-Color DKxx-NJS Package Outlines TM Multi DomiLED • Bi-Color : DKxx-MJS Package Outlines (1) Chip#1 Cathode (2) Chip#1 Anode (3) Chip#2 Cathode (4) Chip#2 Anode Note : Primary thermal path is through Cathode lead of LED package for 1st Chip, Anode lead for 2nd Chip. Material Material Material Material Lead-frame Lead-frame Cu CuAlloy AlloyWith WithAg AgPlating Plating Package Package High Temperature Plastic, PPA High TemperatureResistant Resistant Plastic, PPA Encapsulant Epoxy Encapsulant Epoxy Soldering Leads Sn Plating Soldering Leads Sn Plating 5 6 23/11/2011 V1.0 19/04/2017 V1.0 DOMINANT TM DKxx-MJS Opto Technologies Innovating Illumination Recommended Solder Pad 7 19/04/2017 V1.0 • Reels come in quantity of 2000 units. • Reel diameter is 180 mm. TM TM TM TM TM TM PrimaxPlus 350m PrimaxPlus • 350 InGaN Yellow: MAZY-YZ PrimaxPlus 100mA Warm White: MA C A PrimaxPlus • 180 In Innovating Illumination PrimaxPlus 100mA Warm White: MA OptoYellow: Technologies PrimaxPlus 100mA Warm White: MAF-PSC • 350 InGaN MAZY-YZ PrimaxPlus •PrimaxPlus 350 InGaN Yellow: MAZY-YZHG Package PrimaxPlus 350m PrimaxPlus 350mA White: DOMINANT TM Prim Pr TM TM change without notice. Outlines change without notice. Outlines PrimaxPlus 100 InGaN White: PQW-SSG Package PrimaxPlus 100 InGaN White: PQW-SSG Package Primax • 175 InGaN White: MBWW-FSC Package Outli Primax • 175 InGaN White: MBWW-FSC Package Outlines Note : Primary thermal path is through Cathode lead of LED package Innovating Illumination change Engineering reference data are not verified. The specifications a Innovating Illumination change without notice. Engineering reference data are not verified. The specifications are subject to w Opto Technologies Opto Technologies Engineering reference data are not Engineering reference data not verified. The spe Note : Primary thermal path is are through Cathode lead ov Opto Technologies DOMINANTDOMINANT Opto Technologies DOMINANT DOMINANT Note : Primary thermal path is through Cathode l Innovating Illumination Innovating Illumination UND UNDER DEVELOPMEN Opto TechnologiesDOMINANT Opto Technologies DOMINANT Opto Technologi InGaN Wh Opto Technologies PrimaxPlus 100 InGaN TM Innovating Illumination Innovating Illumination TM TM Technologies Innovating Illumination Opto Opto Technologies Innovating Illumination DOMINANT DOMINANT DOMINANT DOMINANT Technologies Opto Opto Technologies TM TM lairetlaiMretaM emarf-edmaaerLf-daeL PrimaxPlus 100mA Warm White: MAF-PSC PrimaxPlus 100mA Warm White: MAF-PSC Taping and orientation TM Note : Primary is through l thermal path is thermal through path Cathode lead ofCathode LED pack DOMINANT DOMINANT Opto Technologies Note : Primary thermal path is through Cathode lead o Note : Primary thermal path is through Cathode lead of LED package. Engineering reference data are not v Opto Technologies Engineering reference data of are not package verified. The specifications change Illumination Note :Primax Primary path is through Cathode lead of LED package Note : Primary thermal path is thermal through Cathode lead LED • 175Innovating InGaN White: MBWW-FSC Package Outliwa PrimaxPlus 100 InGaN White: PQW-SSG Package change without notice. Outlines Note : Primary Innovating Illumination Innovating Illumination TM PrimaxPlus 350mA Whi PrimaxPlus 350mA White: PrimaxPlus InGaN Yellow: MAZY-YZHG Pac PrimaxPlus • 350• 350 InGaN Yellow: MAZY-YZHG Package Opto Technologies Engineering reference datanot areverified. not verified. Th Engineering reference data are The spe Technologies Opto Opto Technologies reference data not verified. ThePackage specifications arenotice. subject Engineering reference dataIllumination are notareMBWW-FSC verified. ThePackage specifications are subject tonoti change without Innovating change without Illumination Primax 175 InGaN White: Outlines Primax •Engineering 175•Innovating InGaN White: MBWW-FSC Outlines PrimaxPlus InGaN White: PQW-SSG Package Outlines PrimaxPlus 100 100 InGaN White: PQW-SSG Package Outlines change without notice. change without notice. TM SPNova • InGaN : NPW-RSZ Pa DOMINANT SPNova • InGaN WhiteWhite : NPW-RSZ Packag DOMINANT DomiLED • InGaN White: DDF-LJG Package OutI DomiLED • InGaN WarmWarm White: DDF-LJG Package 175 175Outline InGa Technologies Opto Opto Technologies DOMINANT DOMINANT Innovating Illumination Innovating Illumination PRELIMINA PRELIMINARY DOMINANT Technologies DOMINANT OptoOpto Technologies InGaN InGaN Wh Technologies Opto Opto Technologies UNDER DEVELO UNDER DEVELOPMEN DOMINANT Innovating Illumination DOMINANT Innovating Illumination DOMINANT Opto Technologies DOMINANT Opto Technologies DOMINANT Material TM SPNova •SPNova InGaN White : for NPW DOMINANT Material Material brightness Super brightness surface mo • LED InGaN W Super high surface mount au SPNova •high InGaN White : NPW-R DomiLED • InGaN Warm White: DDF-LJG Pac Opto Technologies TM DOMINANT Innovating Illumination DKxx-MJS DOMINANT Opto Technologi Opto Technologies TM UND TM TM PRELIMINARY Innovating Illumination Innovating Illumination DOMINANT DOMINANT Primax • 175Inn In Engineering r Opto Technologies Opto Technologies DomiLED • InGaN Warm White: DDF-LJG Pac 175 InGa DomiLED • InGaN Warm White: DDF-LJG Package Outline SPNova • InGaN W Super high brightness surface mo Op Material DOMINANT SPNova • InGaN WhitePackag : NPW DOMINANT SPNova • InGaN White : NPW-RSZ TM TM TM Prim DOMINANTD OP Material Illumination Material TM Super high brightness surface LED. Material Innovating 120 mount viewing angle. TM TM TM Innovating Illumination Material Innovating Illumination Innovating Illumination Opto Technologies Innovating Illumination Technologies Innovating Illumination Material Opto Technologies 120Opto viewing angle. Opto Technologies Compact package outline (LxW) Opto Technologies Opto Technologies Innovating Illumination DOMINANT DOMINANT DOMINANT TM TMMaterial Lead-frame DOMINANT M DOMINANT Compact package outline (LxW) of 3.7 x 3.5 mm. TM TM DOMINANT DOMINANT Cu Allo Ultra lowOpto height Technologies profile – 0.8 mm. TM TM Lead-frame DomiL Lead-frame Lead-frame Lead-frame Ultra low height profile – 0.8 mm. Low thermal resistance; Lead-frame Package PrimaxPlus 100 InG Primax • 175I Engineering DOM O Package Low thermal resistance. Package Package Superior corrosion robustness. Package Hig Lead-frame Innovatin Package High Temper CompatibleEncapsulant to IR reflow soldering. Opto Te Compatible to IREncapsulant reflow soldering Encapsulant Encapsulant Package Soldering Leads Encapsulant Encapsulant Soldering Leads Encapsulant Soldering Leads Note: This product is Pb free Note: This product is Pb free Soldering Leads Soldering Leads Soldering Leads Si DOMINANTD Innovating Illumination Opto Technologies Soldering Leads Note: This product is Pb free Innovating Illuminat DOMINANT Opto Technologi Dom DOMINAN 10 TM 24/09/13 8 7 PrimaxPlus 100 InGaN Warm White MAF-PSC -pv3.doc 09/05/14 PrimaxPlus 19/04/2017 V1.0 350 InGaN 8 DOMINANT TM DKxx-MJS Opto Technologies Innovating Illumination Packaging Specification 9 19/04/2017 V1.0 DOMINANT TM DKxx-MJS Opto Technologies Innovating Illumination Packaging Specification Moisture sensitivity level Barcode label DOMINANT Opto Technologies (L) Lot No : lotno ML TEMP 2 260˚C RoHS Compliant (P) Part No : partno (C) Cust No : partno (Q) Quantity : quantity (G) Grouping : group (D) D/C : date code Made in Malaysia (S) S/N : serial no Reel Label Moisture absorbent material + Moisture indicator The reel, moisture absorbent material and moisture indicator are sealed inside the moisture proof foil bag Weight Weight(gram) (gram) Average 1pc DomiLED/Multi DomiLED 1 completed bag (2000pcs) 0.034 0.034 240 ± 10 190 10 Cardboard Box DOMINANT TM For Multi DomiLED Cardboard Box Size Dimensions (mm) Empty Box Weight (kg) Reel / Box Super Small 325 x 225 x 190 0.38 9 reels MAX Small 325 x 225 x 280 0.54 15 reels MAX Medium 570 x 440 x 230 1.46 60 reels MAX Large 570 x 440 x 460 1.92 120 reels MAX 10 19/04/2017 V1.0 DOMINANT TM DKxx-MJS Opto Technologies Innovating Illumination Recommended Pb-free Soldering Profile Classification Reflow Profile (JEDEC J-STD-020C) 300 255-260˚C 10-30s 275 250 225 Temperature (˚C) Ramp-up 3˚C/sec max. 217˚C 200 60-150s 175 150 125 Rampdown 6˚C/sec max. 100 75 Preheat 60-180s 50 25 480s max 0 50 100 150 200 Time (sec) 11 19/04/2017 V1.0 DOMINANT TM DKxx-MJS Opto Technologies Innovating Illumination Appendix 1) Brightness: 1.1 Luminous intensity is measured with an internal reproducibility of ± 8 % and an expanded uncertainty of ± 11 % (according to GUM with a coverage factor of k=3). 1.2 Luminous flux is measured with an internal reproducibility of ± 8 % and an expanded uncertainty of ± 11 % (according to GUM with a coverage factor of k=3). 2) Color: 2.1 Chromaticity coordinate groups are measured with an internal reproducibility of ± 0.005 and an expanded uncertainty of ± 0.01 (accordingly to GUM with a coverage factor of k=3). 2.2 DOMINANT wavelength is measured with an internal reproducibility of ± 0.5nm and an expanded uncertainty of ± 1nm (accordingly to GUM with a coverage factor of k=3). 3) Voltage: 3.1 Forward Voltage, Vf is measured with an internal reproducibility of ± 0.05V and an expanded uncertainty of ± 0.1V (accordingly to GUM with a coverage factor of k=3). 12 19/04/2017 V1.0 DOMINANT TM DKxx-MJS Opto Technologies Innovating Illumination Revision History Page Subjects Date of Modification - Initail Release 19 Apr 2017 NOTE All the information contained in this document is considered to be reliable at the time of publishing. However, DOMINANT Opto Technologies does not assume any liability arising out of the application or use of any product described herein. DOMINANT Opto Technologies reserves the right to make changes to any products in order to improve reliability, function or design. DOMINANT Opto Technologies products are not authorized for use as critical components in life support devices or systems without the express written approval from the Managing Director of DOMINANT Opto Technologies. 13 19/04/2017 V1.0 DOMINANT TM Opto Technologies Innovating Illumination DKxx-MJS About Us DOMINANT Opto Technologies is a dynamic company that is amongst the world’s leading automotive LED manufacturers. With an extensive industry experience and relentless pursuit of innovation, DOMINANT’s state-of-art manufacturing and development capabilities have become a trusted and reliable brand across the globe. More information about DOMINANT Opto Technologies, a ISO/TS 16949 and ISO 14001 certified company, can be found under http://www.dominant-semi.com. Please contact us for more information: DOMINANT Opto Technologies Sdn. Bhd. Lot 6, Batu Berendam, FTZ Phase III, 75350 Melaka, Malaysia Tel: (606) 283 3566 Fax: (606) 283 0566 E-mail: [email protected]