MITSUBISHI IGBT MODULES CM150RL-12NF HIGH POWER SWITCHING USE CM150RL-12NF ¡IC ................................................................... 150A ¡VCES ............................................................ 600V ¡Insulated Type ¡7-elements in a pack APPLICATION AC drive inverters & Servo controls, etc OUTLINE DRAWING & CIRCUIT DIAGRAM Dimensions in mm L A B E L 11 120 106 ±0.5 7 40.78 17 2-φ5.5 MOUNTING HOLES 17 12 13.62 UP VP 1 1 CN 55 35 WP N 12 23 12 23 32 12 23 23.2 12 22 11.75 (13.5) 12 12 (SCREWING DEPTH) +1 W 10.75 (19.75) 22 –0.5 B V 16 8 U 3 1 6-M5 NUTS 1 P A B Housing Type of A and B (J.S.T.Mfg.Co.Ltd) A = B8P-VH-FB-B, B = B2P-VH-FB-B P UP-1 UP-2 B CN-7 CN-8 VP-1 VP-2 CN-5 CN-6 WP-1 WP-2 V U CN-3 CN-4 W CN-1 CN-2 N CIRCUIT DIAGRAM Feb. 2009 1 MITSUBISHI IGBT MODULES CM150RL-12NF HIGH POWER SWITCHING USE ABSOLUTE MAXIMUM RATINGS (Tj = 25°C, unless otherwise specified) INVERTER PART Symbol VCES VGES IC ICM IE (Note 1) IEM (Note 1) PC (Note 3) Parameter Collector-emitter voltage Gate-emitter voltage Collector current Emitter current Maximum collector dissipation Conditions G-E Short C-E Short DC, TC = 93°C*1 Pulse (Note 2) Pulse TC = 25°C (Note 2) Ratings 600 ±20 150 300 150 300 730 Unit V V A A A A W Ratings 600 ±20 75 150 430 600 75 Unit Ratings –40 ~ +150 –40 ~ +125 2500 2.5 ~ 3.5 2.5 ~ 3.5 350 Unit BRAKE PART Symbol VCES VGES IC ICM PC (Note 3) VRRM IFM Parameter Collector-emitter voltage Gate-emitter voltage Collector current Maximum collector dissipation Repetitive peak reverse voltage Forward current Conditions G-E Short C-E Short DC, TC = 102°C*1 Pulse TC = 25°C Clamp diode part Clamp diode part (Note 2) V V A A W V A (COMMON RATING) Symbol Tj Tstg Viso — — — Parameter Junction temperature Storage temperature Isolation voltage Torque strength Weight Conditions Terminals to base plate, f = 60Hz, AC 1 minute Main terminals M5 screw Mounting M5 screw Typical value °C °C Vrms N•m N•m g Feb. 2009 2 MITSUBISHI IGBT MODULES CM150RL-12NF HIGH POWER SWITCHING USE ELECTRICAL CHARACTERISTICS (Tj = 25°C, unless otherwise specified) INVERTER PART Test conditions Parameter Symbol Limits Typ. — Max. 1 Unit ICES Collector cutoff current VCE = VCES, VGE = 0V Min. — VGE(th) Gate-emitter threshold voltage IC = 15mA, VCE = 10V 6 7 8 V IGES Gate leakage current ±VGE = VGES, VCE = 0V — — — — — — — — — — — — — — — — — 4.2 — 1.7 1.7 — — — 600 — — — — — 2.5 — — — 0.085 — 0.5 2.2 — 23 2.8 0.9 — 120 100 300 300 150 — 2.8 0.17 0.31 µA Min. — Limits Typ. — Max. 1 6 7 8 V — — — — — — — — — — 8.3 — 1.7 1.7 — — — 300 — — — — 0.5 2.2 — 11.3 1.4 0.45 — 2.8 0.29 0.51 83 µA VCE(sat) Collector-emitter saturation voltage Cies Coes Cres QG td(on) tr td(off) tf trr (Note 1) Qrr (Note 1) VEC(Note 1) Rth(j-c)Q Rth(j-c)R Rth(c-f) RG Input capacitance Output capacitance Reverse transfer capacitance Total gate charge Turn-on delay time Turn-on rise time Turn-off delay time Turn-off fall time Reverse recovery time Reverse recovery charge Emitter-collector voltage Thermal resistance Contact thermal resistance Tj = 25°C Tj = 125°C IC = 150A, VGE = 15V VCE = 10V VGE = 0V VCC = 300V, IC = 150A, VGE = 15V VCC = 300V, IC = 150A VGE = ±15V RG = 4.2Ω, Inductive load IE = 150A IE = 150A, VGE = 0V IGBT part (1/6 module)*1 FWDi part (1/6 module)*1 Case to heat sink, Thermal compound Applied (1/6 module)*2 External gate resistance — 42 mA V nF nF nF nC ns ns ns ns ns µC V K/W K/W K/W Ω BRAKE PART Symbol Test conditions Parameter ICES Collector cutoff current VCE = VCES, VGE = 0V VGE(th) Gate-emitter threshold voltage IC = 7.5mA IGES Gate leakage current ±VGE = VGES, VCE = 0V VCE(sat) Collector-emitter saturation voltage Cies Coes Cres QG VFM Rth(j-c)Q Rth(j-c)R RG Input capacitance Output capacitance Reverse transfer capacitance Total gate charge Forward voltage drop Thermal resistance Tj = 25°C Tj = 125°C IC = 75A, VGE = 15V VCE = 10V VGE = 0V VCC = 300V, IC = 75A, VGE = 15V IF = 75A IGBT part*1 Clamp diode part*1 External gate resistance Unit mA V nF nF nF nC V K/W K/W Ω *1 : Case temperature (Tc) measured point is just under the chips. If you use this value, Rth(f-a) should be measured just under the chips. *2 : Typical value is measured by using thermally conductive grease of λ = 0.9[W/(m • K)]. Note 1. IE, VEC, trr & Qrr represent characteristics of the anti-parallel, emitter-collector free-wheel diode (FWDi). 2. Pulse width and repetition rate should be such that the device junction temperature (Tj) does not exceed Tjmax rating. 3. Junction temperature (Tj) should not increase beyond 150°C. 4. Pulse width and repetition rate should be such as to cause negligible temperature rise. Feb. 2009 3 MITSUBISHI IGBT MODULES CM150RL-12NF HIGH POWER SWITCHING USE PERFORMANCE CURVES COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) Tj = 25°C 15 13 250 12 200 150 11 100 10 50 0 COLLECTOR-EMITTER SATURATION VOLTAGE VCE (sat) (V) VGE = 20V 8 0 2 4 6 9 8 VGE = 15V 3 2 1 Tj = 25°C Tj = 125°C 0 50 100 150 200 250 COLLECTOR-EMITTER VOLTAGE VCE (V) COLLECTOR CURRENT IC (A) COLLECTOR-EMITTER SATURATION VOLTAGE CHARACTERISTICS (TYPICAL) FREE-WHEEL DIODE FORWARD CHARACTERISTICS (TYPICAL) 10 7 8 6 4 IC = 150A IC = 300A 2 5 3 2 102 7 5 3 2 Tj = 25°C Tj = 125°C IC = 60A 0 6 8 10 12 14 16 18 101 20 2 3 4 5 CAPACITANCE–VCE CHARACTERISTICS (TYPICAL) HALF-BRIDGE SWITCHING CHARACTERISTICS (TYPICAL) 103 SWITCHING TIME (ns) 7 5 Cies 7 5 Coes 100 7 5 1 EMITTER-COLLECTOR VOLTAGE VEC (V) 101 3 2 0 GATE-EMITTER VOLTAGE VGE (V) 7 5 3 2 300 103 Tj = 25°C 102 CAPACITANCE Cies, Coes, Cres (nF) 4 0 10 EMITTER CURRENT IE (A) COLLECTOR CURRENT IC (A) 300 COLLECTOR-EMITTER SATURATION VOLTAGE VCE (sat) (V) OUTPUT CHARACTERISTICS (TYPICAL) Cres 3 2 3 tf 2 td(off) 102 td(on) 7 5 tr 3 2 VGE = 0V 10–1 –1 10 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102 101 1 10 COLLECTOR-EMITTER VOLTAGE VCE (V) 2 3 5 7 102 Conditions: VCC = 300V VGE = ±15V RG = 4.2Ω Tj = 125°C Inductive load 2 3 5 7 103 COLLECTOR CURRENT IC (A) Feb. 2009 4 MITSUBISHI IGBT MODULES CM150RL-12NF TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (IGBT part & FWDi part) REVERSE RECOVERY CHARACTERISTICS OF FREE-WHEEL DIODE (TYPICAL) 103 NORMALIZED TRANSIENT THERMAL IMPEDANCE Zth (j–c) (ratio) REVERSE RECOVERY TIME trr (ns) REVERSE RECOVERY CURRENT lrr (A) HIGH POWER SWITCHING USE 7 5 3 2 102 7 5 Irr trr 3 2 101 1 10 2 3 5 7 102 Conditions: VCC = 300V VGE = ±15V RG = 4.2Ω Tj = 25°C Inductive load 2 3 5 7 103 IGBT part: 10–2 Per unit base = 7 5 Rth(j–c) = 0.17K/W FWDi part: 3 Per unit base = 2 Rth(j–c) = 0.31K/W –3 10 10–2 7 5 3 2 10–3 10–5 2 3 5 710–4 2 3 5 7 10–3 SWITCHING LOSS vs. GATE RESISTANCE (TYPICAL) 102 Esw(off) SWITCHING LOSS (mJ/pulse) 3 Esw(on) 2 100 Conditions: VCC = 300V VGE = ±15V RG = 4.2Ω Tj = 125°C Inductive load C snubber at bus 7 5 3 2 2 3 5 7 102 2 3 Conditions: VCC = 300V VGE = ±15V 3 IC = 150A Tj = 125°C 2 Inductive load C snubber at bus 101 Esw(off) 7 7 5 5 3 2 100 0 10 5 7 103 Esw(on) 2 3 5 7 101 2 3 5 7 102 COLLECTOR CURRENT IC (A) GATE RESISTANCE RG (Ω) RECOVERY LOSS vs. IE (TYPICAL) RECOVERY LOSS vs. GATE RESISTANCE (TYPICAL) 101 101 7 7 RECOVERY LOSS (mJ/pulse) SWITCHING LOSS (mJ/pulse) 7 5 3 2 SWITCHING LOSS vs. COLLECTOR CURRENT (TYPICAL) 5 5 3 2 Err 100 Conditions: VCC = 300V VGE = ±15V RG = 4.2Ω Tj = 125°C Inductive load C snubber at bus 7 5 3 2 10–1 1 10 10–1 7 5 3 2 TIME (s) 7 RECOVERY LOSS (mJ/pulse) 2 10–1 EMITTER CURRENT IE (A) 101 10–1 1 10 10–3 2 3 5 710–2 2 3 5 710–1 2 3 5 7 100 2 3 5 7 101 100 Single Pulse, 7 5 TC = 25°C 3 Under the chip 2 3 5 7 102 2 3 5 3 2 100 7 5 3 2 10–1 0 10 5 7 103 Err Conditions: VCC = 300V VGE = ±15V IE = 150A Tj = 125°C Inductive load C snubber at bus 2 3 5 7 101 2 3 5 7 102 GATE RESISTANCE RG (Ω) EMITTER CURRENT IE (A) Feb. 2009 5 MITSUBISHI IGBT MODULES CM150RL-12NF HIGH POWER SWITCHING USE GATE CHARGE CHARACTERISTICS (TYPICAL) GATE-EMITTER VOLTAGE VGE (V) 20 IC = 150A VCC = 200V 16 VCC = 300V 12 8 4 0 0 200 400 600 800 1000 GATE CHARGE QG (nC) Feb. 2009 6