IRF IRF6648 Rohs compliant containing no lead and bromide Datasheet

PD - 97043C
IRF6648
DirectFET™ Power MOSFET ‚
RoHs Compliant Containing No Lead and Bromide 
l Low Profile (<0.7 mm)
l Dual Sided Cooling Compatible 
l Ultra Low Package Inductance
l Optimized for High Frequency Switching 
l Optimized for Synchronous Rectification for 5V
to 12V outputs
l Ideal for 24V input Primary Side Forward Converters
l Low Conduction Losses
l Compatible with Existing Surface Mount Techniques 
Typical values (unless otherwise specified)
l
VDSS
VGS
RDS(on)
60V max ±20V max 5.5mΩ@ 10V
Qg
tot
36nC
Qgd
14nC
DirectFET™
ISOMETRIC
MN
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
SH
SJ
SP
MZ
MN
Description
The IRF6648 combines the latest HEXFET® power MOSFET silicon technology with advanced DirectFETTM packaging to
achieve the lowest on-state resistance in a package that has the footprint of an SO-8 and only 0.7 mm profile. The DirectFET
package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase,
infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods
and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving
previous best thermal resistance by 80%.
The IRF6648 is an optimized switch for use in synchronous rectification circuits with 5-12Vout, and is also ideal for use as a
primary side switch in 24Vin forward converters. The reduced total losses in the device coupled with the high level of thermal
performance enables high efficiency and low temperatures, which are key for system reliability improvements, and makes this
device ideal for high performance isolated DC-DC converters.
Absolute Maximum Ratings
Parameter
VDS
VGS
ID @ TC = 25°C
ID @ TC = 70°C
IDM
IS @ TC = 25°C
IS @ TC = 70°C
ISM
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
e
f
f
Pulsed Drain Current
Continuous Source Current (Body Diode)
Continuous Source Current (Body Diode)
Pulsed Source Current (Body Diode)
e
f
f
Max.
Units
60
±20
86
69
260
81
52
260
V
A
Notes:
„ TC measured with thermocouple mounted to top (Drain) of part.
 Click on this section to link to the appropriate technical paper.
‚ Click on this section to link to the DirectFET Website.
ƒ Repetitive rating; pulse width limited by max. junction temperature.
www.irf.com
1
02/28/06
IRF6648
Electrical Characteristic @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Conditions
Typ. Max. Units
VGS = 0V, ID = 250µA
BVDSS
Drain-to-Source Breakdown Voltage
60
–––
–––
∆ΒVDSS/∆TJ
RDS(on)
Breakdown Voltage Temp. Coefficient
–––
0.076
–––
Static Drain-to-Source On-Resistance
–––
5.5
7.0
VGS(th)
Gate Threshold Voltage
3.0
4.0
4.9
V
∆VGS(th)/∆TJ
IDSS
Gate Threshold Voltage Coefficient
–––
-11
–––
mV/°C
Drain-to-Source Leakage Current
–––
–––
20
µA
VDS = 60V, VGS = 0V
–––
–––
250
IGSS
Gate-to-Source Forward Leakage
–––
–––
100
nA
VGS = 20V
Gate-to-Source Reverse Leakage
–––
–––
-100
Forward Transconductance
31
–––
–––
Total Gate Charge
–––
36
50
gfs
Qg
Qgs1
Pre-Vth Gate-to-Source Charge
–––
7.5
–––
Qgs2
Post-Vth Gate-to-Source Charge
–––
2.7
–––
V
V/°C Reference to 25°C, ID = 1mA
mΩ VGS = 10V, ID = 17A g
VDS = VGS, ID = 150µA
VDS = 48V, VGS = 0V, TJ = 125°C
VGS = -20V
S
VDS = 10V, ID = 17A
VDS = 30V
nC
VGS = 10V
Qgd
Gate-to-Drain Charge
–––
14
21
ID = 17A
Qgodr
–––
12
–––
See Fig. 14
Qsw
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
17
–––
Qoss
Output Charge
–––
21
–––
nC
RG (Internal)
Gate Resistance
–––
1.0
–––
Ω
td(on)
tr
Turn-On Delay Time
Rise Time
–––
–––
16
29
–––
–––
td(off)
Turn-Off Delay Time
–––
28
–––
tf
Fall Time
–––
13
–––
Ciss
Input Capacitance
–––
2120
–––
Coss
Output Capacitance
–––
600
–––
Crss
Reverse Transfer Capacitance
–––
170
–––
Coss
Output Capacitance
–––
2450
–––
ƒ = 1.0MHz
VGS = 0V, VDS = 1.0V, f=1.0MHz
Coss
Output Capacitance
–––
440
–––
VGS = 0V, VDS = 48V, f=1.0MHz
Min.
Typ. Max. Units
VDS = 16V, VGS = 0V
VDD = 30V, VGS = 10Vg
ID = 17A
ns
RG= 6.2Ω
See Fig. 16
VGS = 0V
pF
VDS = 25V
Avalanche Characteristics
Parameter
EAS
Single Pulse Avalanche Energy
–––
–––
47
mJ
Conditions
TJ = 25°C, IS = 34A, RG = 25Ω
L = 0.082mH. See Fig. 13
Diode Characteristics
Conditions
Parameter
Min.
Typ. Max. Units
VSD
Diode Forward Voltage
–––
–––
1.3
V
TJ = 25°C, IS = 17A, VGS = 0V g
trr
Reverse Recovery Time
–––
31
47
ns
TJ = 25°C, IF = 17A, VDD = 30V
Qrr
Reverse Recovery Charge
–––
37
56
nC
di/dt = 100A/µs g
Notes:
Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
www.irf.com
IRF6648
Absolute Maximum Ratings
h
h
f
Max.
Units
2.8
1.8
89
270
-40 to + 150
W
Parameter
Power Dissipation
Power Dissipation
Power Dissipation
Peak Soldering Temperature
Operating Junction and
Storage Temperature Range
PD @TA = 25°C
PD @TA = 70°C
PD @TC = 25°C
TP
TJ
TSTG
°C
Thermal Resistance
Parameter
hj
ij
fj
RθJA
RθJA
RθJC
RθJ-PCB
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Case
Junction-to-PCB Mounted
Typ.
Max.
–––
12.5
–––
1.0
45
–––
1.4
–––
Units
°C/W
Thermal Response ( Z thJC )
10
1
D = 0.50
0.20
0.10
0.1
0.05
τJ
0.02
0.01
0.01
R1
R1
τJ
τ1
R2
R2
R3
R3
τC
τ1
τ2
τ2
Ci= τi/Ri
Ci= τi/Ri
SINGLE PULSE
( THERMAL RESPONSE )
τ3
τ3
τC
Ri (°C/W) τi (sec)
0.17199 0.000044
0.67673 0.001660
0.54961 0.007649
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 1. Maximum Effective Transient Thermal Impedance, Junction-to-Case 
Notes:
† Surface mounted on 1 in. square Cu, steady state (still air).
‡ Used double sided cooling, mounted on 1 in. square Cu board
ˆ Rθ is measured at TJ of approximately 90°C.
PCB with small clip heatsink (still air).
Note
www.irf.com
†
Note
†
Note
‡
3
IRF6648
1000
1000
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
10V
8.0V
7.0V
6.0V
100
BOTTOM
100
10
6.0V
6.0V
10
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 150°C
Tj = 25°C
1
1
0.1
1
10
0.1
Fig 3. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000
2.0
ID = 86A
Typical RDS(on) (Normalized)
ID, Drain-to-Source Current (A)
VDS = 10V
≤60µs PULSE WIDTH
100
T J = 150°C
T J = 25°C
T J = -40°C
10
1
0.1
VGS = 10V
1.5
1.0
0.5
2
4
6
8
10
12.0
VGS = 0V,
f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = C gd
VGS, Gate-to-Source Voltage (V)
ID= 17A
Coss = Cds + Cgd
Ciss
Coss
1000
20 40 60 80 100 120 140 160
Fig 5. Normalized On-Resistance vs. Temperature
Fig 4. Typical Transfer Characteristics
10000
-60 -40 -20 0
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
C, Capacitance (pF)
10
V DS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Crss
100
10.0
VDS= 48V
VDS= 30V
8.0
6.0
4.0
2.0
0.0
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 6. Typical Capacitance vs.Drain-to-Source Voltage
4
1
0
5
10
15
20
25
30
35
40
QG, Total Gate Charge (nC)
Fig 7. Typical Total Gate Charge vs
Gate-to-Source Voltage
www.irf.com
IRF6648
30
RDS(on), Drain-to -Source On Resistance (m Ω)
60
T J = 25°C
ID = 17A
Vgs = 7.0V
Vgs = 8.0V
Vgs = 10V
Vgs = 15V
25
Typical RDS(on) ( mΩ)
50
40
30
20
T J = 125°C
10
4
6
8
15
10
5
T J = 25°C
0
20
0
10
12
14
0
16
20
40
Fig 8. Typical On-Resistance vs. Gate Voltage
100
Fig 9. Typical On-Resistance vs. Drain Current
1000
6.0
Typical VGS(th) , Gate threshold Voltage (V)
ISD, Reverse Drain Current (A)
80
ID, Drain Current (A)
VGS, Gate -to -Source Voltage (V)
T J = 150°C
T J = 25°C
T J = -40°C
100
10
1
VGS = 0V
0
5.0
4.0
ID = 150µA
ID = 250µA
3.0
ID = 1.0mA
ID = 1.0A
2.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
-75 -50 -25
VSD, Source-to-Drain Voltage (V)
1000
25
50
75 100 125 150
Fig 11. Typical Threshold Voltage vs.
Junction Temperature
200
EAS , Single Pulse Avalanche Energy (mJ)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
100
0
T J , Temperature ( °C )
Fig 10. Typical Source-Drain Diode Forward Voltage
ID, Drain-to-Source Current (A)
60
1msec
10
10msec
1
Tc = 25°C
Tj = 150°C
Single Pulse
ID
180
TOP
12A
18A
BOTTOM 34A
160
140
120
100
80
60
40
20
0
0.1
0
1
10
VDS, Drain-to-Source Voltage (V)
Fig12. Maximum Safe Operating Area
www.irf.com
100
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 13. Maximum Avalanche Energy vs. Drain Current
5
IRF6648
Current Regulator
Same Type as D.U.T.
Id
Vds
50KΩ
Vgs
.2µF
12V
.3µF
D.U.T.
+
V
- DS
Vgs(th)
VGS
3mA
IG
ID
Qgs1 Qgs2
Qgd
Qgodr
Current Sampling Resistors
Fig 14a. Gate Charge Test Circuit
Fig 14b. Gate Charge Waveform
V(BR)DSS
15V
DRIVER
L
VDS
D.U.T
RG
V20V
GS
tp
+
V
- DD
IAS
A
I AS
0.01Ω
tp
Fig 15a. Unclamped Inductive Test Circuit
VDS
VGS
RD
VDS
90%
D.U.T.
RG
+
- VDD
10V
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 16a. Switching Time Test Circuit
6
Fig 15b. Unclamped Inductive Waveforms
10%
VGS
td(on)
tr
td(off)
tf
Fig 16b. Switching Time Waveforms
www.irf.com
IRF6648
D.U.T
Driver Gate Drive
+
ƒ
+
‚
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
VDD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
D=
Period
P.W.
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
-
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 17. Diode Reverse Recovery Test Circuit for N-Channel
HEXFET® Power MOSFETs
DirectFET™ Substrate and PCB Layout, MN Outline
(Medium Size Can, N-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
G = GATE
D = DRAIN
S = SOURCE
D
S
D
G
D
www.irf.com
S
D
7
IRF6648
DirectFET™ Outline Dimension, MN Outline
(Medium Size Can, N-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
&+/'05+105
/'64+%
+/2'4+#.
%1&'
/+0
/#:
/+0
/#:
#
$
%
&
'
(
)
*
,
-
.
/
0
2
DirectFET™ Part Marking
8
www.irf.com
IRF6648
DirectFET™ Tape & Reel Dimension (Showing component orientation).
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6648). For 1000 parts on 7" reel,
order IRF6648TR1
REEL DIMENSIONS
STANDARD OPTION (QTY 4800)
TR1 OPTION
IMPERIAL
METRIC
METRIC
MIN
CODE
MAX
MAX
MAX
MIN
MIN
12.992
A
330.0
177.77 N.C
N.C
N.C
0.795
B
20.2
19.06
N.C
N.C
N.C
0.504
C
12.8
13.5
0.520
13.2
12.8
0.059
D
1.5
1.5
N.C
N.C
N.C
3.937
E
100.0
58.72
N.C
N.C
N.C
F
N.C
N.C
N.C
0.724
18.4
13.50
G
0.488
12.4
11.9
0.567
14.4
12.01
H
0.469
11.9
11.9
0.606
15.4
12.01
(QTY 1000)
IMPERIAL
MAX
MIN
N.C
6.9
0.75
N.C
0.53
0.50
0.059
N.C
2.31
N.C
N.C
0.53
0.47
N.C
0.47
N.C
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.02/06
www.irf.com
9
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/
Similar pages