N-Channel PowerTrench® MOSFET 100V, 61A, 16mΩ Features Applications • r DS(ON) = 14mΩ (Typ.), VGS = 10V, ID = 61A • DC/DC Converters and Off-line UPS • Qg(tot) = 41nC (Typ.), VGS = 10V • Distributed Power Architectures and VRMs • Low Miller Charge • Primary Switch for 24V and 48V Systems • Low QRR Body Diode • High Voltage Synchronous Rectifier • UIS Capability (Single Pulse and Repetitive Pulse) • Direct Injection / Diesel Injection Systems • Qualified to AEC Q101 • 42V Automotive Load Control • RoHS Compliant • Electronic Valve Train Systems Formerly developmental type 82769 D DRAIN (FLANGE) GATE G S SOURCE TO-263AB FDB SERIES MOSFET Maximum Ratings TC = 25°C unless otherwise noted Symbol VDSS Drain to Source Voltage Parameter Ratings 100 Units V VGS Gate to Source Voltage ±20 V Continuous (TC = 25oC, VGS = 10V) 61 A Continuous (TC = 100oC, VGS = 10V) 43 A 9 A Drain Current ID Continuous (Tamb = 25oC, VGS = 10V) with RθJA = 43oC/W) Pulsed EAS PD TJ, TSTG Figure 4 A Single Pulse Avalanche Energy (Note 1) 182 mJ Power dissipation 150 W Derate above 25oC 1.0 W/oC Operating and Storage Temperature o -55 to 175 C Thermal Characteristics RθJC Thermal Resistance Junction to Case TO-263 RθJA Thermal Resistance Junction to Ambient TO-263 RθJA Thermal Resistance Junction to Ambient TO-263, 1in2 copper pad area (Note 2) 1.0 o C/W 62 o C/W 43 o C/W This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/ Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html. All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification. ©2008 Fairchild Semiconductor Corporation 1 FDB3652_F085 Rev. A1 FDB3652_F085 N-Channel PowerTrench® MOSFET October 2008 FDB3652_F085 Device Marking FDB3652 Device FDB3652_F085 Package TO-263AB Reel Size 330mm Tape Width 24mm Quantity 800 units Electrical Characteristics TC = 25°C unless otherwise noted Symbol Parameter Test Conditions Min Typ Max Units 100 - - - V - 1 - - 250 µA VGS = ±20V - - ±100 nA V Off Characteristics BVDSS Drain to Source Breakdown Voltage IDSS Zero Gate Voltage Drain Current IGSS Gate to Source Leakage Current ID = 250µA, VGS = 0V VDS = 80V VGS = 0V TC= 150oC On Characteristics VGS(TH) rDS(ON) Gate to Source Threshold Voltage Drain to Source On Resistance VGS = VDS, ID = 250µA 2 - 4 ID = 61A, VGS = 10V - 0.014 0.016 ID = 30A, VGS = 6V - 0.018 0.026 ID = 61A, VGS = 10V, TJ = 175oC - 0.035 0.043 - 2880 - pF - 390 - pF - 100 - pF 41 53 nC - 5 6.5 nC - 15 - nC - 10 - nC - 10 - nC Ω Dynamic Characteristics CISS Input Capacitance COSS Output Capacitance CRSS Reverse Transfer Capacitance Qg(TOT) Total Gate Charge at 10V VGS = 0V to 10V Qg(TH) Threshold Gate Charge VGS = 0V to 2V Qgs Gate to Source Gate Charge Qgs2 Gate Charge Threshold to Plateau Qgd Gate to Drain “Miller” Charge VDS = 25V, VGS = 0V, f = 1MHz VDD = 50V ID = 61A Ig = 1.0mA FDB3652_F085 N-Channel PowerTrench® MOSFET Package Marking and Ordering Information Switching Characteristics (VGS = 10V) tON Turn-On Time - - 146 ns td(ON) Turn-On Delay Time - 12 - ns tr Rise Time td(OFF) Turn-Off Delay Time tf tOFF - 85 - ns - 26 - ns Fall Time - 45 - ns Turn-Off Time - - 107 ns V VDD = 50V, ID = 61A VGS = 10V, RGS = 6.8Ω Drain-Source Diode Characteristics ISD = 61A - - 1.25 ISD = 30A - - 1.0 V Reverse Recovery Time ISD = 61A, dISD/dt = 100A/µs - - 62 ns Reverse Recovered Charge ISD = 61A, dISD/dt = 100A/µs - - 45 nC VSD Source to Drain Diode Voltage trr QRR Notes: 1: Starting T J = 25°C, L = 0.228mH, IAS = 40A. 2: Pulse Width = 100s ©2008 Fairchild Semiconductor Corporation 2 FDB3652 _F085 Rev. A1 1.2 75 ID, DRAIN CURRENT (A) POWER DISSIPATION MULTIPLIER 1.0 0.8 0.6 0.4 50 25 0.2 0 0 0 25 50 75 100 150 125 175 25 50 75 TC , CASE TEMPERATURE (o C) 100 125 150 175 TC, CASE TEMPERATURE (oC) Figure 1. Normalized Power Dissipation vs Ambient Temperature Figure 2. Maximum Continuous Drain Current vs Case Temperature 2 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 ZθJC, NORMALIZED THERMAL IMPEDANCE 1 PDM FDB3652_F085 N-Channel PowerTrench® MOSFET Typical Characteristics TC = 25°C unless otherwise noted 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC SINGLE PULSE 0.01 10-5 10-4 10-3 10-2 10-1 100 101 t , RECTANGULAR PULSE DURATION (s) Figure 3. Normalized Maximum Transient Thermal Impedance 1000 TC = 25oC IDM, PEAK CURRENT (A) FOR TEMPERATURES ABOVE 25oC DERATE PEAK TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION CURRENT AS FOLLOWS: 175 - TC I = I25 150 VGS = 10V 100 50 10-5 10-4 10-3 10-2 10-1 100 101 t, PULSE WIDTH (s) Figure 4. Peak Current Capability ©2008 Fairchild Semiconductor Corporation 3 FDB3652_F085 Rev. A1 1000 500 If R = 0 tAV = (L)(I AS)/(1.3*RATED BVDSS - VDD) If R ¼ 0 tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1] IAS, AVALANCHE CURRENT (A) ID, DRAIN CURRENT (A) 10µs 100 100µs 10 OPERATION IN THIS AREA MAY BE LIMITED BY rDS(ON) 1ms 1 10ms SINGLE PULSE TJ = MAX RATED TC = 25oC 100 STARTING TJ = 25oC 10 STARTING TJ = 150oC DC 0.1 1 1 10 100 VDS, DRAIN TO SOURCE VOLTAGE (V) 200 10 NOTE: Refer to Fairchild Application Notes AN7514 and AN7515 Figure 5. Forward Bias Safe Operating Area Figure 6. Unclamped Inductive Switching Capability 125 125 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V VGS = 10V 75 TJ = 175o C 50 o o TJ = 25 C VGS = 7V 100 ID, DRAIN CURRENT (A) 100 ID , DRAIN CURRENT (A) 0.1 1 tAV, TIME IN AVALANCHE (ms) 0.01 TJ = -55 C VGS = 6V 75 FDB3652_F085 N-Channel PowerTrench® MOSFET Typical Characteristics TC = 25°C unless otherwise noted TC = 25oC 50 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 25 25 VGS = 5V 0 0 3 4 5 6 VGS , GATE TO SOURCE VOLTAGE (V) 7 0 Figure 7. Transfer Characteristics 4 Figure 8. Saturation Characteristics 20 3.0 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX NORMALIZED DRAIN TO SOURCE ON RESISTANCE DRAIN TO SOURCE ON RESISTANCE(mΩ) 1 2 3 VDS , DRAIN TO SOURCE VOLTAGE (V) 18 VGS = 6V 16 14 VGS = 10V PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 2.5 2.0 1.5 1.0 0.5 VGS = 10V, I D = 61A 12 0 0 20 40 ID, DRAIN CURRENT (A) 60 -80 Figure 9. Drain to Source On Resistance vs Drain Current ©2008 Fairchild Semiconductor Corporation -40 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) 200 Figure 10. Normalized Drain to Source On Resistance vs Junction Temperature 4 FDB3652_F085 Rev. A1 1.4 1.2 VGS = VDS, ID = 250µA NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE ID = 250µA NORMALIZED GATE THRESHOLD VOLTAGE 1.2 1.0 0.8 0.6 0.4 -80 0 40 80 120 160 TJ, JUNCTION TEMPERATURE (oC) 200 -80 0 40 80 120 160 TJ , JUNCTION TEMPERATURE (oC) 200 10 VGS , GATE TO SOURCE VOLTAGE (V) CISS = CGS + CGD C, CAPACITANCE (pF) -40 Figure 12. Normalized Drain to Source Breakdown Voltage vs Junction Temperature 5000 COSS ≅ CDS + CGD CRSS = CGD 100 VGS = 0V, f = 1MHz 1 10 VDS, DRAIN TO SOURCE VOLTAGE (V) 100 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 61A ID = 30A 2 0 Figure 13. Capacitance vs Drain to Source Voltage ©2008 Fairchild Semiconductor Corporation VDD = 50V 0 40 0.1 1.0 0.9 -40 Figure 11. Normalized Gate Threshold Voltage vs Junction Temperature 1000 1.1 FDB3652_F085 N-Channel PowerTrench® MOSFET Typical Characteristics TC = 25°C unless otherwise noted 10 20 30 Qg, GATE CHARGE (nC) 40 50 Figure 14. Gate Charge Waveforms for Constant Gate Currents 5 FDB3652_F085 Rev. A1 VDS BVDSS tP L VDS VARY tP TO OBTAIN IAS + RG REQUIRED PEAK IAS VDD VDD - VGS DUT tP IAS 0V 0 0.01Ω tAV Figure 15. Unclamped Energy Test Circuit Figure 16. Unclamped Energy Waveforms VDS VDD Qg(TOT) VDS L VGS VGS VGS = 10V + Qgs2 VDD - FDB3652_F085 N-Channel PowerTrench® MOSFET Test Circuits and Waveforms DUT VGS = 2V Ig(REF) 0 Qg(TH) Qgs Qgd Ig(REF) 0 Figure 17. Gate Charge Test Circuit Figure 18. Gate Charge Waveforms VDS tON tOFF td(ON) td(OFF) RL tr VDS tf 90% 90% + VGS VDD - 10% 0 10% DUT 90% RGS VGS 50% 50% PULSE WIDTH VGS 0 Figure 19. Switching Time Test Circuit ©2008 Fairchild Semiconductor Corporation 10% Figure 20. Switching Time Waveforms 6 FDB3652_F085 Rev. A1 RθJA = 26.51+ 19.84/(0.262+Area) EQ.2 RθJA = 26.51+ 128/(1.69+Area) EQ.3 60 RθJA (o C/W) (T –T ) JM A P D M = ----------------------------R θ JA 80 40 (EQ. 1) In using surface mount devices such as the TO-263 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power dissipation ratings. Precise determination of PDM is complex and influenced by many factors: 20 0.1 1 10 (0.645) (6.45) AREA, TOP COPPER AREA in2 (cm2 ) (64.5) Figure 21. Thermal Resistance vs Mounting Pad Area 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 2. The number of copper layers and the thickness of the board. 3. The use of external heat sinks. 4. The use of thermal vias. 5. Air flow and board orientation. 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. FDB3652_F085 N-Channel PowerTrench® MOSFET Thermal Resistance vs. Mounting Pad Area The maximum rated junction temperature, TJM , and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM , in an application. Therefore the application’s ambient temperature, TA (oC), and thermal resistance RθJA (oC/W) must be reviewed to ensure that TJM is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part. Fairchild provides thermal information to assist the designer’s preliminary application evaluation. Figure 21 defines the RθJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2 or 3. Equation 2 is used for copper area defined in inches square and equation 3 is for area in centimeter square. The area, in square inches or square centimeters is the top copper area including the gate and source pads. R θ JA 19.84 ( 0.262 + Area ) = 26.51 + ------------------------------------- (EQ. 2) Area in Iches Squared R θ JA 128 ( 1.69 + Area ) = 26.51 + ---------------------------------- (EQ. 3) Area in Centimeter Squared ©2008 Fairchild Semiconductor Corporation 7 FDB3652_F085 Rev. A1 LDRAIN DPLCAP 10 Dbody 7 5 DbodyMOD Dbreak 5 11 DbreakMOD Dplcap 10 5 DplcapMOD RLDRAIN RSLC1 51 5 51 ESLC EVTHRES + 19 8 + LGATE GATE 1 11 + 17 EBREAK 18 - 50 RDRAIN 6 8 ESG DBREAK + RSLC2 Ebreak 11 7 17 18 108.2 Eds 14 8 5 8 1 Egs 13 8 6 8 1 Esg 6 10 6 8 1 Evthres 6 21 19 8 1 Evtemp 20 6 18 22 1 It 8 17 1 DRAIN 2 5 EVTEMP RGATE + 18 22 9 20 21 16 DBODY MWEAK 6 MMED MSTRO RLGATE Lgate 1 9 7.16e-9 Ldrain 2 5 1.0e-9 Lsource 3 7 2.29e-9 LSOURCE CIN 8 7 SOURCE 3 RSOURCE RLSOURCE RLgate 1 9 71.6 RLdrain 2 5 10 RLsource 3 7 22.9 Mmed 16 6 8 8 MmedMOD Mstro 16 6 8 8 MstroMOD Mweak 16 21 8 8 MweakMOD S1A 12 S2A 13 8 15 14 13 S1B RBREAK 17 18 RVTEMP S2B 13 CA CB 6 8 Rbreak 17 18 RbreakMOD 1 Rdrain 50 16 RdrainMOD 5.7e-3 Rgate 9 20 1.06 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 Rsource 8 7 RsourceMOD 6.5e-3 Rvthres 22 8 RvthresMOD 1 Rvtemp 18 19 RvtempMOD 1 S1a 6 12 13 8 S1AMOD S1b 13 12 13 8 S1BMOD S2a 6 15 14 13 S2AMOD S2b 13 15 14 13 S2BMOD 5 8 EDS - IT 14 + + EGS 19 VBAT + - 8 22 RVTHRES FDB3652_F085 N-Channel PowerTrench® MOSFET PSPICE Electrical Model .SUBCKT FDP3652 2 1 3 rev March 2002 Ca 12 8 1.1e-9 Cb 15 14 1.1e-9 Cin 6 8 2.8e-9 Vbat 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*150),7))} .MODEL DbodyMOD D (IS=1.5E-11 N=1.06 RS=2.5e-3 TRS1=2.4e-3 TRS2=1.1e-6 + CJO=1.9e-9 M=5.8e-1 TT=2.5e-8 XTI=3.9) .MODEL DbreakMOD D (RS=2.7e-1 TRS1=1e-3 TRS2=-8.9e-6) .MODEL DplcapMOD D (CJO=7e-10 IS=1e-30 N=10 M=0.58) .MODEL MmedMOD NMOS (VTO=3.6 KP=5.5 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=1.06) .MODEL MstroMOD NMOS (VTO=4.3 KP=110 IS=1e-30 N=10 TOX=1 L=1u W=1u) .MODEL MweakMOD NMOS (VTO=3 KP=0.03 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=1.06e1 RS=.1) .MODEL RbreakMOD RES (TC1=1.05e-3 TC2=1e-6) .MODEL RdrainMOD RES (TC1=1.7e-2 TC2=3.2e-5) .MODEL RSLCMOD RES (TC1=1e-3 TC2=1e-7) .MODEL RsourceMOD RES (TC1=1e-3 TC2=1e-6) .MODEL RvthresMOD RES (TC1=-5.3e-3 TC2=-1.2e-5) .MODEL RvtempMOD RES (TC1=-3.3e-3 TC2=1.3e-6) .MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-8 VOFF=-5) .MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-5 VOFF=-8) .MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-1 VOFF=0.5) .MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=0.5 VOFF=-1) .ENDS Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. ©2008 Fairchild Semiconductor Corporation 8 FDB3652_F085 Rev. A1 dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod RDRAIN 6 8 ESG EVTHRES + 19 8 + spe.ebreak n11 n7 n17 n18 = 108.2 spe.eds n14 n8 n5 n8 = 1 GATE 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evthres n6 n21 n19 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 LGATE EVTEMP RGATE + 18 22 9 20 21 11 DBODY 16 MWEAK 6 EBREAK + 17 18 - MMED MSTRO RLGATE CIN 8 LSOURCE 7 RSOURCE i.it n8 n17 = 1 RLSOURCE S1A l.lgate n1 n9 = 7.16e-9 l.ldrain n2 n5 = 1.0e-9 l.lsource n3 n7 = 2.29e-9 res.rlgate n1 n9 = 71.6 res.rldrain n2 n5 = 10 res.rlsource n3 n7 = 22.9 DBREAK 50 - 12 S2A 13 8 CA 15 14 13 S1B RBREAK 17 18 RVTEMP S2B 13 CB EGS - 19 IT 14 + + 6 8 SOURCE 3 FDB3652_F085 N-Channel PowerTrench® MOSFET SABER Electrical Model REV March 2002 template FDP3652 n2,n1,n3 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (isl=1.5e-11,nl=1.06,rs=2.5e-3,trs1=2.4e-3,trs2=1.1e-6,cjo=1.9e-9,m=5.8e-1,tt=2.5e-8,xti=3.9) dp..model dbreakmod = (rs=2.7e-1,trs1=1e-3,trs2=-8.9e-6) dp..model dplcapmod = (cjo=7e-10,isl=10e-30,nl=10,m=0.58) m..model mmedmod = (type=_n,vto=3.6,kp=5.5,is=1e-30, tox=1) m..model mstrongmod = (type=_n,vto=4.3,kp=110,is=1e-30, tox=1) m..model mweakmod = (type=_n,vto=3,kp=0.03,is=1e-30, tox=1,rs=.1) sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-8,voff=-5) LDRAIN DPLCAP 5 sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-5,voff=-8) DRAIN 2 sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-1,voff=0.5) 10 sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=0.5,voff=-1) RLDRAIN RSLC1 c.ca n12 n8 = 1.1e-9 51 c.cb n15 n14 = 1.1e-9 RSLC2 c.cin n6 n8 = 2.8e-9 ISCL VBAT 5 8 EDS - m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u + 8 22 RVTHRES res.rbreak n17 n18 = 1, tc1=1.05e-3,tc2=1e-6 res.rdrain n50 n16 = 5.7e-3, tc1=1.7e-2,tc2=3.2e-5 res.rgate n9 n20 = 1.06 res.rslc1 n5 n51 = 1e-6, tc1=1e-3,tc2=1e-7 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 6.5e-3, tc1=1e-3,tc2=1e-6 res.rvthres n22 n8 = 1, tc1=-5.3e-3,tc2=-1.2e-5 res.rvtemp n18 n19 = 1, tc1=-3.3e-3,tc2=1.3e-6 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/150))** 7)) } } ©2008 Fairchild Semiconductor Corporation 9 FDB3652_F085 Rev. A1 th JUNCTION FDP3652 CTHERM1 TH 6 1e-2 CTHERM2 6 5 1.5e-2 CTHERM3 5 4 2e-2 CTHERM4 4 3 2.1e-2 CTHERM5 3 2 2.2e-2 CTHERM6 2 TL 9e-2 RTHERM1 CTHERM1 6 RTHERM1 TH 6 2.7e-2 RTHERM2 6 5 2.8e-2 RTHERM3 5 4 7.8e-2 RTHERM4 4 3 9e-2 RTHERM5 3 2 2.7e-1 RTHERM6 2 TL 2.87e-1 CTHERM2 RTHERM2 5 SABER Thermal Model CTHERM3 RTHERM3 SABER thermal model FDP3652 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 =1e-2 ctherm.ctherm2 6 5 =1.5e-2 ctherm.ctherm3 5 4 =2e-2 ctherm.ctherm4 4 3 =2.1e-2 ctherm.ctherm5 3 2 =2.2e-2 ctherm.ctherm6 2 tl =9e-2 4 CTHERM4 RTHERM4 3 rtherm.rtherm1 th 6 =2.7e-2 rtherm.rtherm2 6 5 =2.8e-2 rtherm.rtherm3 5 4 =7.8e-2 rtherm.rtherm4 4 3 =9e-2 rtherm.rtherm5 3 2 =2.7e-1 rtherm.rtherm6 2 tl =2.87e-1 } CTHERM5 RTHERM5 2 CTHERM6 RTHERM6 tl ©2008 Fairchild Semiconductor Corporation FDB3652_F085 N-Channel PowerTrench® MOSFET SPICE Thermal Model REV 23 March 2002 10 CASE FDB3652_F085 Rev. A1 FRFET® Global Power ResourceSM Green FPS™ Green FPS™ e-Series™ GTO™ IntelliMAX™ ISOPLANAR™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ MotionMax™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR® Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ EcoSPARK® EfficentMax™ EZSWITCH™ * ™ ® Fairchild® Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ FlashWriter® * FPS™ F-PFS™ Programmable Active Droop™ QFET® QS™ Quiet Series™ RapidConfigure™ tm TinyBoost™ TinyBuck™ TinyLogic® TINYOPTO™ ™ TinyPower™ Saving our world, 1mW /W /kW at a time™ TinyPWM™ SmartMax™ TinyWire™ SMART START™ μSerDes™ SPM® STEALTH™ SuperFET™ UHC® SuperSOT™-3 Ultra FRFET™ SuperSOT™-6 UniFET™ SuperSOT™-8 VCX™ SupreMOS™ VisualMax™ SyncFET™ XS™ ® ® tm PDP SPM™ Power-SPM™ PowerTrench® PowerXS™ The Power Franchise® * EZSWITCH™ and FlashWriter® are trademarks of System General Corporation, used under license by Fairchild Semiconductor. DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD’S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are 2. A critical component in any component of a life support, device, or intended for surgical implant into the body or (b) support or sustain life, system whose failure to perform can be reasonably expected to cause and (c) whose failure to perform when properly used in accordance with the failure of the life support device or system, or to affect its safety or instructions for use provided in the labeling, can be reasonably effectiveness. expected to result in a significant injury of the user. ANTI-COUNTERFEITING POLICY Fairchild Semiconductor Corporation’s Anti-Counterfeiting Policy. Farichild’s Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Farichild strongly encourages customers to purchase Farichild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild’s quality standards for handing and storage and provide access to Farichild’s full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Farichild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative / In Design Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. No Identification Needed Full Production Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. Obsolete Not In Production Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. Rev. I37 ©2008 Fairchild Semiconductor Corporation 11 FDB3652_F085 Rev. A1 FDB3652_F085 N-Channel PowerTrench® MOSFET TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.