PHILIPS BT162240DGG 16-bit inverting buffer/driver with 30ohm series termination resistor Datasheet

INTEGRATED CIRCUITS
74ABT162240
74ABTH162240
16-bit inverting buffer/driver with 30
series termination resistors
Product specification
Supersedes data of 1998 Jan 16
IC23 Data Handbook
1998 Feb 25
Philips Semiconductors
Product specification
16-bit inverting buffer/driver with 30Ω series
termination resistors (3-State)
FEATURES
74ABT162240
74ABTH162240
DESCRIPTION
• 16-bit bus interface
• 3-State buffers
• Output capability: +12mA/-32mA
• TTL input and output switching levels
• Bus-hold data inputs eliminate the need for external pull-up
The 74ABT162240 is a high-performance BiCMOS device which
combines low static and dynamic power dissipation with high speed.
This device is an inverting 16-bit buffer that is ideal for driving bus
lines. The device features four Output Enables (1OE, 2OE, 3OE,
4OE), each controlling four of the 3-State outputs.
Two options are available, 74ABT162240 which does not have the
bus hold feature and 74ABTH162240 which incorporates the bus
hold feature.
resistors to hold unused inputs
• Live insertion/extraction permitted
• Power-up 3-State
• 74ABTH162240 incorporates bus hold data inputs which eliminate
the need for external pull up resistors to hold unused inputs
• Latch-up protection exceeds 500mA per JEDEC Std 17
• ESD protection exceeds 2000V per MIL STD 883 Method 3015
and 200V per Machine Model
QUICK REFERENCE DATA
SYMBOL
CONDITIONS
Tamb = 25°C
PARAMETER
TYPICAL
UNIT
2.7
2.6
ns
tPLH
tPHL
Propagation delay
nAx to nYx
CL = 50pF;
VCC =
CIN
Input capacitance nOE
VI = 0V or 3.0V
4
pF
Output capacitance
Outputs disabled; VO = 0V or
6
pF
COUT
ICCZ
ICCL
supply
Quiescent su
ly current
Outputs disabled; VCC =
500
µA
Outputs low; VCC = 5.5V
8
mA
ORDERING INFORMATION
TEMPERATURE RANGE
OUTSIDE NORTH AMERICA
NORTH AMERICA
DWG NUMBER
48-Pin Plastic SSOP Type III
PACKAGES
–40°C to +85°C
74ABT162240 DL
BT162240 DL
SOT370-1
48-Pin Plastic TSSOP Type II
–40°C to +85°C
74ABT162240 DGG
BT162240 DGG
SOT362-1
48-Pin Plastic SSOP Type III
–40°C to +85°C
74ABTH162240 DL
BH162240 DL
SOT370-1
48-Pin Plastic TSSOP Type II
–40°C to +85°C
74ABTH162240 DGG
BH162240 DGG
SOT362-1
LOGIC SYMBOL
47
46
44
43
1
41
40
38
37
48
1A0
1Y0
1A1
1Y1
1A2
1Y2
1A3
1Y3
2
36
3
35
5
33
6
32
1OE
25
2A0
2Y0
2A1
2Y1
2A2
2Y2
2A3
2Y3
2OE
8
30
9
29
11
27
12
26
24
3A0
3Y0
3A1
3Y1
3A2
3Y2
3A3
3Y3
13
14
16
17
3OE
4A0
4Y0
4A1
4Y1
4A2
4Y2
4A3
4Y3
19
20
22
23
4OE
SH00090
1998 Feb 25
2
853-1825 19019
Philips Semiconductors
Product specification
16-bit inverting buffer/driver with 30Ω series
termination resistors (3-State)
LOGIC SYMBOL (IEEE/IEC)
1OE
1
2OE
48
EN2
3OE
25
EN3
4OE
1A1
1A2
1A3
1A4
2A1
2A2
2A3
2A4
3A1
3A2
3A3
3A4
4A1
4A2
4A3
4A4
24
47
74ABT162240
74ABTH162240
PIN CONFIGURATION
EN1
EN4
1OE
1
48
2OE
1Y0
2
47
1A0
1Y1
3
46
1A1
GND
4
45
GND
1Y2
5
44
1A2
1Y3
6
43
1A3
42
VCC
2
1Y1
46
3
1Y2
44
VCC
7
5
1Y3
2Y0
8
41
2A0
43
6
1Y4
2Y1
9
40
2A1
8
2Y1
GND
10
39
GND
2Y2
2Y2
11
38
2A2
11
2Y3
2Y3
12
37
2A3
12
2Y4
3Y0
13
36
3A0
3Y1
14
35
3A1
GND
15
34
GND
3Y2
16
33
3A2
3Y4
17
32
3A3
VCC
18
31
VCC
4Y0
19
30
4A0
4Y1
20
29
4A1
GND
21
28
GND
4Y2
22
27
4A2
4Y3
23
26
4A3
4OE
24
25
3OE
1
41
1
1∇
2∇
40
9
38
37
36
1
3∇
35
14
33
16
32
30
29
27
26
13
17
1
4∇
19
20
22
23
3Y1
3Y2
3Y3
3Y4
4Y1
4Y2
4Y3
4Y4
SH00085
SA00013
FUNCTION TABLE
Inputs
Outputs
nOE
nAx
nYx
L
L
H
L
H
L
H
X
Z
H = High voltage level
L = Low voltage level
X = Don’t care
Z = High Impedance “off ” state
1998 Feb 25
3
Philips Semiconductors
Product specification
16-bit inverting buffer/driver with 30Ω series
termination resistors (3-State)
SCHEMATIC OF Y OUTPUTS
VCC
27Ω
OUTPUT
27Ω
GND
SA00042
PIN DESCRIPTION
PIN NUMBER
SYMBOL
47, 46, 44, 43,
41, 40, 38, 37,
36, 35, 33, 32,
30, 29, 27, 26
1A0-1A3
2A0-2A3
3A0-3A3
4A0-4A3
Data inputs
2, 3, 5, 6,
8, 9, 11, 12,
13, 14, 16, 17,
19, 20, 22, 23
1Y0-1Y3
2Y0-2Y3
3Y0-3Y3
4Y0-4Y3
Data outputs
1, 48, 25, 24
1OE, 2OE,
3OE, 4OE
4, 10, 15, 21,
28, 34, 39, 45
GND
Ground (0V)
7, 18, 31, 42
VCC
Positive supply voltage
1998 Feb 25
NAME AND FUNCTION
Output enables
4
74ABT162240
74ABTH162240
Philips Semiconductors
Product specification
16-bit inverting buffer/driver with 30Ω series
termination resistors (3-State)
74ABT162240
74ABTH162240
ABSOLUTE MAXIMUM RATINGS1, 2
PARAMETER
SYMBOL
VCC
IIK
DC input diode current
VI
DC input voltage3
IOK
DC output diode current
VOUT
CONDITIONS
RATING
DC supply voltage
VI < 0
DC output voltage3
IOUT
DC output
out ut current
Tstg
Storage temperature range
UNIT
-0.5 to +7.0
V
–18
mA
–1.2 to +7.0
V
VO < 0
–50
mA
Output in Off or High state
–0.5 to +5.5
V
Output in Low state
128
Output in High state
-64
mA
-65 to +150
°C
NOTES:
1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the
device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to
absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction
temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150°C.
3. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.
RECOMMENDED OPERATING CONDITIONS
SYMBOL
VCC
LIMITS
PARAMETER
MIN
DC supply voltage
MAX
UNIT
4.5
5.5
V
0
VCC
V
VI
Input voltage
VIH
High-level input voltage
VIL
Input voltage
0.8
V
IOH
High-level output current
–32
mA
IOL
Low-level output current
32
mA
Low-level output current; current duty cycle ≤ 50%; f ≥ 1kHz
12
∆t/∆v
Input transition rise or fall rate; Outputs enabled
Tamb
Operating free-air temperature range
1998 Feb 25
2.0
5
V
0
10
ns/V
–40
+85
°C
Philips Semiconductors
Product specification
16-bit inverting buffer/driver with 30Ω series
termination resistors (3-State)
74ABT162240
74ABTH162240
DC ELECTRICAL CHARACTERISTICS
LIMITS
SYMBOL
PARAMETER
Min
VIK
Input clamp voltage
VOH
High-level output voltage
VOL
II
Low-level out
output
ut voltage
Input leakage current
VCC = 4.5V; IIK = –18mA
II
Bus Hold current A inputs3
74ABTH162240
Max
–1.2
Min
Max
–1.2
V
2.5
2.9
2.5
V
VCC = 5.0V; IOH = –3mA; VI = VIL or VIH
3.0
3.4
3.0
V
VCC = 4.5V; IOH = –32mA; VI = VIL or VIH
2.0
2.4
2.0
V
VCC = 4.5V; IOL = 8mA; VI = VIL or VIH
0.65
0.65
V
VCC = 4.5V; IOL = 12mA; VI = VIL or VIH
0.80
0.80
V
±0.01
±1.0
±1.0
µA
±0.01
±1
±1
µA
VCC = 5.5V; VI = GND or 5.5V
VCC = 5.5V; VI = VCC
Control
pins
Data pins
ins
VCC = 5.5V; VI = 0
IHOLD
Typ
–0.9
UNIT
VCC = 4.5V; IOH = –3mA; VI = VIL or VIH
VCC = 5.5V; VI = VCC or GND
In
ut leakage current
Input
74ABTH162240
Tamb = –40°C
to +85°C
Tamb = +25°C
TEST CONDITIONS
VCC = 4.5V; VI = 0.8V
0.01
1
1
µA
–2
–3
–5
µA
50
50
VCC = 4.5V; VI = 2.0V
–75
–75
VCC = 5.5V; VI = 0 to 5.5V
±500
µA
Power-off leakage current
VCC = 0.0V; VO or VI ≤ 4.5V
±5.0
±100
±100
µA
Power-up/down 3-State
output current
VCC = 2.0V; VO = 0.5V; VI = GND or VCC;
VOE = VCC
±5.0
±50
±50
µA
IOZH
3-State output High current
VCC = 5.5V; VO = 2.7V; VI = VIL or VIH
1.0
10
10
µA
IOZL
3-State output Low current
VCC = 5.5V; VO = 0.5V; VI = VIL or VIH
–1.0
–10
–10
µA
ICEX
Output high leakage current
VCC = 5.5V; VO = 5.5V; VI = GND or VCC
1.0
50
50
µA
IOFF
IPU/IPD
IO
Output
current1
ICCH
ICCL
Quiescent su
supply
ly current
ICCZ
VCC = 5.5V; VO = 2.5V
–70
–180
–180
mA
VCC = 5.5V; Outputs High, VI = GND or VCC
–50
0.5
1.0
–50
1.0
mA
VCC = 5.5V; Outputs Low, VI = GND or VCC
8
19
19
mA
VCC = 5.5V; Outputs 3-State;
VI = GND or VCC
0.5
1.0
1.0
mA
∆ICC
Additional supply current per
input pin2
74ABT162240
Outputs enabled, one input at 3.4V, other
inputs at VCC or GND; VCC = 5.5V
10
200
200
µA
∆ICC
Additional supply current per
input pin2
74ABTH162240
Outputs enabled, one input at 3.4V, other
inputs at VCC or GND; VCC = 5.5V
0.2
1.0
1.0
mA
NOTES:
1. Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
2. This is the increase in supply current for each input at 3.4V.
3. This is the bus hold overdrive current required to force the input to the opposite logic state.
1998 Feb 25
6
Philips Semiconductors
Product specification
16-bit inverting buffer/driver with 30Ω series
termination resistors (3-State)
74ABT162240
74ABTH162240
AC CHARACTERISTICS
GND = 0V; tR = tF = 2.5ns; CL = 50pF; RL = 500Ω; Tamb = -40°C to +85°C.
LIMITS
SYMBOL
PARAMETER
Tamb = +25°C
VCC = +5.0V
WAVEFORM
Tamb = –40°C to +85°C
VCC = +5.0V ±0.5V
Min
Typ
Max
Min
Max
UNIT
tPLH
tPHL
Propagation delay
nAx to nYx
1
1.0
1.0
2.7
2.6
3.8
3.2
1.0
1.0
4.2
3.7
ns
tPZH
tPZL
Output enable time
to High and Low level
2
1.2
1.0
2.3
2.9
3.2
3.8
1.2
1.0
4.0
4.7
ns
tPHZ
tPLZ
Output disable time
from High and Low level
2
1.6
1.4
3.0
2.8
4.1
3.8
1.6
1.4
4.7
4.0
ns
AC WAVEFORMS
VM = 1.5V, VIN = GND to 2.7V
nOE INPUT
VM
VM
0V
nAx INPUT
tPZL
VM
VM
tPLZ
3.5V
0
tPHL
VM
nYx OUTPUT
tPLH
VOL + 0.3V
VOH
tPHZ
tPZH
nYx OUTPUT
VM
VOL
VOH
VM
nYx OUTPUT
VOL
VM
VOH – 0.3V
0V
SH00091
SH00092
Waveform 1. Input (nAx) to Output (nYx) Propagation Delays
1998 Feb 25
Waveform 2. 3-State Output Enable and Disable Times
7
Philips Semiconductors
Product specification
16-bit inverting buffer/driver with 30Ω series
termination resistors (3-State)
74ABT162240
74ABTH162240
TEST CIRCUIT AND WAVEFORMS
VCC
7.0V
OPEN
PULSE
GENERATOR
VOUT
VIN
RL
tW
90%
GND
VM
NEGATIVE
PULSE
CL
10%
0V
RL
tTHL (tF)
tTLH (tR)
tTLH (tR)
tTHL (tF)
90%
POSITIVE
PULSE
Test Circuit for 3-State Outputs
AMP (V)
90%
VM
VM
10%
10%
tW
SWITCH POSITION
TEST
SWITCH
tPLZ
closed
tPZL
7V
All other
open
AMP (V)
VM
10%
D.U.T.
RT
90%
0V
VM = 1.5V
Input Pulse Definition
INPUT PULSE REQUIREMENTS
DEFINITIONS
FAMILY
RL = Load resistor; see AC CHARACTERISTICS for value.
CL = Load capacitance includes jig and probe capacitance;
see AC CHARACTERISTICS for value.
RT = Termination resistance should be equal to ZOUT of
pulse generators.
74ABT16
Amplitude
Rep. Rate
tW
tR
tF
3.0V
1MHz
500ns
2.5ns
2.5ns
SH00093
1998 Feb 25
8
Philips Semiconductors
Product specification
16-bit inverting buffer/driver with 30Ω Series
Termination Resistors (3-State)
SSOP48: plastic shrink small outline package; 48 leads; body width 7.5 mm
1998 Feb 25
9
74ABT162240
74ABTH162240
SOT370-1
Philips Semiconductors
Product specification
16-bit inverting buffer/driver with 30Ω Series
Termination Resistors (3-State)
TSSOP48: plastic thin shrink small outline package; 48 leads; body width 6.1mm
1998 Feb 25
10
74ABT162240
74ABTH162240
SOT362-1
Philips Semiconductors
Product specification
16-bit inverting buffer/driver with 30Ω Series
Termination Resistors (3-State)
NOTES
1998 Feb 25
11
74ABT162240
74ABTH162240
Philips Semiconductors
Product specification
16-bit inverting buffer/driver with 30 series
termination resistors (3-State)
74ABT162240
74ABTH162240
Data sheet status
Data sheet
status
Product
status
Definition [1]
Objective
specification
Development
This data sheet contains the design target or goal specifications for product development.
Specification may change in any manner without notice.
Preliminary
specification
Qualification
This data sheet contains preliminary data, and supplementary data will be published at a later date.
Philips Semiconductors reserves the right to make chages at any time without notice in order to
improve design and supply the best possible product.
Product
specification
Production
This data sheet contains final specifications. Philips Semiconductors reserves the right to make
changes at any time without notice in order to improve design and supply the best possible product.
[1] Please consult the most recently issued datasheet before initiating or completing a design.
Definitions
Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For
detailed information see the relevant data sheet or data handbook.
Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or
at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended
periods may affect device reliability.
Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips
Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or
modification.
Disclaimers
Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications
do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard
cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless
otherwise specified.
 Copyright Philips Electronics North America Corporation 1998
All rights reserved. Printed in U.S.A.
Philips Semiconductors
811 East Arques Avenue
P.O. Box 3409
Sunnyvale, California 94088–3409
Telephone 800-234-7381
print code
Document order number:
yyyy mmm dd
12
Date of release: 05-96
9397-750-03482
Similar pages