SLAS272F − JULY 2000 − REVISED JUNE 2004 D Low Supply-Voltage Range, 1.8 V . . . 3.6 V D Ultralow-Power Consumption: D D D D D D D D − Active Mode: 280 µA at 1 MHz, 2.2V − Standby Mode: 1.6 µA − Off Mode (RAM Retention): 0.1 µA Five Power-Saving Modes Wake-Up From Standby Mode in less than 6 µs 16-Bit RISC Architecture, 125-ns Instruction Cycle Time 12-Bit A/D Converter With Internal Reference, Sample-and-Hold and Autoscan Feature 16-Bit Timer_B With Seven Capture/Compare-With-Shadow Registers 16-Bit Timer_A With Three Capture/Compare Registers On-Chip Comparator Serial Onboard Programming, No External Programming Voltage Needed Programmable Code Protection by Security Fuse D Serial Communication Interface (USART), D D D Functions as Asynchronous UART or Synchronous SPI Interface − Two USARTs (USART0, USART1) — MSP430x14x(1) Devices − One USART (USART0) — MSP430x13x Devices Family Members Include: − MSP430F133: 8KB+256B Flash Memory, 256B RAM − MSP430F135: 16KB+256B Flash Memory, 512B RAM − MSP430F147, MSP430F1471†: 32KB+256B Flash Memory, 1KB RAM − MSP430F148, MSP430F1481†: 48KB+256B Flash Memory, 2KB RAM − MSP430F149, MSP430F1491†: 60KB+256B Flash Memory, 2KB RAM Available in 64-Pin Quad Flat Pack (QFP) and 64-pin QFN For Complete Module Descriptions, See the MSP430x1xx Family User’s Guide, Literature Number SLAU049 † The MSP430F14x1 devices are identical to the MSP430F14x devices with the exception that the ADC12 module is not implemented. description The Texas Instruments MSP430 family of ultralow-power microcontrollers consist of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with five low power modes is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that attribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less than 6 µs. The MSP430x13x and the MSP430x14x(1) series are microcontroller configurations with two built-in 16-bit timers, a fast 12-bit A/D converter (not implemented on the MSP430F14x1 devices), one or two universal serial synchronous/asynchronous communication interfaces (USART), and 48 I/O pins. Typical applications include sensor systems that capture analog signals, convert them to digital values, and process and transmit the data to a host system. The timers make the configurations ideal for industrial control applications such as ripple counters, digital motor control, EE-meters, hand-held meters, etc. The hardware multiplier enhances the performance and offers a broad code and hardware-compatible family solution. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 2000 − 2004, Texas Instruments Incorporated !"# $"%&! '#( '"! ! $#!! $# )# # # "# '' *+( '"! $!#, '# #!#&+ !&"'# #, && $##( POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 SLAS272F − JULY 2000 − REVISED JUNE 2004 AVAILABLE OPTIONS PACKAGED DEVICES TA PLASTIC 64-PIN QFP (PM) −40°C to 85°C MSP430F133IPM MSP430F135IPM MSP430F147IPM MSP430F1471IPM MSP430F148IPM MSP430F1481IPM MSP430F149IPM MSP430F1491IPM PLASTIC 64-PIN QFP (PAG) PLASTIC 64-PIN QFN (RTD) MSP430F133IPAG MSP430F135IPAG MSP430F147IPAG MSP430F148IPAG MSP430F149IPAG MSP430F133IRTD MSP430F135IRTD MSP430F147IRTD MSP430F1471IRTD MSP430F148IRTD MSP430F1481IRTD MSP430F149IRTD MSP430F1491IRTD pin designation, MSP430F133, MSP430F135 1 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 2 47 3 46 4 45 5 44 6 43 7 42 8 41 9 40 10 39 11 38 12 37 13 36 14 35 15 34 33 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 P1.5/TA0 P1.6/TA1 P1.7/TA2 P2.0/ACLK P2.1/TAINCLK P2.2/CAOUT/TA0 P2.3/CA0/TA1 P2.4/CA1/TA2 P2.5/Rosc P2.6/ADC12CLK P2.7/TA0 P3.0/STE0 P3.1/SIMO0 P3.2/SOMI0 P3.3/UCLK0 P3.4/UTXD0 DVCC P6.3/A3 P6.4/A4 P6.5/A5 P6.6/A6 P6.7/A7 VREF+ XIN XOUT VeREF+ VREF−/VeREF− P1.0/TACLK P1.1/TA0 P1.2/TA1 P1.3/TA2 P1.4/SMCLK P5.6/ACLK P5.5/SMCLK AVCC DVSS AV SS P6.2/A2 P6.1/A1 P6.0/A0 RST/NMI TCK TMS TDI/TCLK TDO/TDI XT2IN XT2OUT P5.7/TBOUTH PM, PAG, RTD PACKAGE (TOP VIEW) 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P5.4/MCLK P5.3 P5.2 P5.1 P5.0 P4.7/TBCLK P4.6 P4.5 P4.4 P4.3 P4.2/TB2 P4.1/TB1 P4.0/TB0 P3.7 P3.6 P3.5/URXD0 SLAS272F − JULY 2000 − REVISED JUNE 2004 pin designation, MSP430F147, MSP430F148, MSP430F149 1 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 2 47 3 46 4 45 5 44 6 43 7 42 8 41 9 40 10 39 11 38 12 37 13 36 14 35 15 34 33 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 P5.4/MCLK P5.3/UCLK1 P5.2/SOMI1 P5.1/SIMO1 P5.0/STE1 P4.7/TBCLK P4.6/TB6 P4.5/TB5 P4.4/TB4 P4.3/TB3 P4.2/TB2 P4.1/TB1 P4.0/TB0 P3.7/URXD1 P3.6/UTXD1 P3.5/URXD0 P1.5/TA0 P1.6/TA1 P1.7/TA2 P2.0/ACLK P2.1/TAINCLK P2.2/CAOUT/TA0 P2.3/CA0/TA1 P2.4/CA1/TA2 P2.5/Rosc P2.6/ADC12CLK P2.7/TA0 P3.0/STE0 P3.1/SIMO0 P3.2/SOMI0 P3.3/UCLK0 P3.4/UTXD0 DVCC P6.3/A3 P6.4/A4 P6.5/A5 P6.6/A6 P6.7/A7 VREF+ XIN XOUT VeREF+ VREF−/VeREF− P1.0/TACLK P1.1/TA0 P1.2/TA1 P1.3/TA2 P1.4/SMCLK P5.6/ACLK P5.5/SMCLK AVCC DVSS AVSS P6.2/A2 P6.1/A1 P6.0/A0 RST/NMI TCK TMS TDI/TCLK TDO/TDI XT2IN XT2OUT P5.7/TBOUTH PM, PAG, RTD PACKAGE (TOP VIEW) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 SLAS272F − JULY 2000 − REVISED JUNE 2004 pin designation, MSP430F1471, MSP430F1481, MSP430F1491 1 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 2 47 3 46 4 45 5 44 6 43 7 42 8 41 9 40 10 39 11 38 12 37 13 36 14 35 15 34 33 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 P1.5/TA0 P1.6/TA1 P1.7/TA2 P2.0/ACLK P2.1/TAINCLK P2.2/CAOUT/TA0 P2.3/CA0/TA1 P2.4/CA1/TA2 P2.5/Rosc P2.6 P2.7/TA0 P3.0/STE0 P3.1/SIMO0 P3.2/SOMI0 P3.3/UCLK0 P3.4/UTXD0 DVCC P6.3 P6.4 P6.5 P6.6 P6.7 Reserved XIN XOUT DVSS DVSS P1.0/TACLK P1.1/TA0 P1.2/TA1 P1.3/TA2 P1.4/SMCLK P5.6/ACLK P5.5/SMCLK AVCC DVSS AVSS P6.2 P6.1 P6.0 RST/NMI TCK TMS TDI/TCLK TDO/TDI XT2IN XT2OUT P5.7/TBOUTH PM, RTD PACKAGE (TOP VIEW) 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P5.4/MCLK P5.3/UCLK1 P5.2/SOMI1 P5.1/SIMO1 P5.0/STE1 P4.7/TBCLK P4.6/TB6 P4.5/TB5 P4.4/TB4 P4.3/TB3 P4.2/TB2 P4.1/TB1 P4.0/TB0 P3.7/URXD1 P3.6/UTXD1 P3.5/URXD0 SLAS272F − JULY 2000 − REVISED JUNE 2004 functional block diagrams MSP430x13x XIN XOUT DVCC DVSS AVCC P1 AVSS RST/NMI P2 8 ROSC Oscillator XT2IN System Clock XT2OUT ACLK 16KB Flash 512B RAM ADC12 SMCLK 8KB Flash 256B RAM 12-Bit 8 Channels <10µs Conv. P3 8 I/O Port 1/2 16 I/Os, with Interrupt Capability P4 8 P5 8 P6 8 I/O Port 3/4 16 I/Os 8 I/O Port 5/6 16 I/Os MCLK Test MAB, 4 Bit MAB,MAB, 16 Bit16-Bit JTAG CPU MCB Emulation Module Incl. 16 Reg. Bus Conv MDB, 16-Bit MDB, 16 Bit MDB, 8 Bit 4 TMS Watchdog Timer TCK TDI/TCLK 15/16-Bit TDO/TDI Timer_B3 Timer_A3 3 CC Reg Shadow Reg 3 CC Reg POR Comparator A USART0 UART Mode SPI Mode MSP430x14x XIN XOUT DVCC DVSS AVCC P1 AVSS RST/NMI 8 ROSC Oscillator XT2IN System Clock XT2OUT ACLK 60KB Flash 2KB RAM ADC12 SMCLK 48KB Flash 2KB RAM 32KB Flash 1KB RAM 12-Bit 8 Channels <10µs Conv. P2 P3 8 I/O Port 1/2 16 I/Os, with Interrupt Capability P4 8 P5 8 P6 8 I/O Port 3/4 16 I/Os 8 I/O Port 5/6 16 I/Os MCLK Test MAB, 4 Bit MAB,MAB, 16 Bit16-Bit JTAG CPU MCB Emulation Module Incl. 16 Reg. Bus Conv MDB, 16-Bit MDB, 16 Bit MDB, 8 Bit 4 TMS TCK TDI/TCLK TDO/TDI Hardware Multiplier MPY, MPYS MAC,MACS Watchdog Timer 15/16-Bit Timer_B7 Timer_A3 7 CC Reg Shadow Reg 3 CC Reg POST OFFICE BOX 655303 POR • DALLAS, TEXAS 75265 Comparator A USART0 USART1 UART Mode SPI Mode UART Mode SPI Mode 5 SLAS272F − JULY 2000 − REVISED JUNE 2004 functional block diagrams (continued) MSP430x14x1 XIN XOUT DVCC DVSS AVCC P1 AVSS RST/NMI 8 ROSC Oscillator XT2IN System Clock XT2OUT ACLK 60KB Flash 2KB RAM SMCLK 48KB Flash 2KB RAM 32KB Flash 1KB RAM P2 P3 8 I/O Port 1/2 16 I/Os, with Interrupt Capability P4 8 P5 8 P6 8 I/O Port 3/4 16 I/Os 8 I/O Port 5/6 16 I/Os MCLK Test MAB, 4 Bit MAB,MAB, 16 Bit16-Bit JTAG CPU MCB Emulation Module Incl. 16 Reg. Bus Conv MDB, 16-Bit MDB, 16 Bit MDB, 8 Bit 4 TMS TCK TDI/TCLK TDO/TDI 6 Hardware Multiplier MPY, MPYS MAC,MACS Watchdog Timer 15/16-Bit Timer_B7 Timer_A3 7 CC Reg Shadow Reg 3 CC Reg POST OFFICE BOX 655303 POR • DALLAS, TEXAS 75265 Comparator A USART0 USART1 UART Mode SPI Mode UART Mode SPI Mode SLAS272F − JULY 2000 − REVISED JUNE 2004 Terminal Functions MSP430x13x, MSP430x14x TERMINAL NAME NO. I/O DESCRIPTION AVCC AVSS 64 Analog supply voltage, positive terminal. Supplies the analog portion of the analog-to-digital converter. 62 Analog supply voltage, negative terminal. Supplies the analog portion of the analog-to-digital converter. DVCC 1 Digital supply voltage, positive terminal. Supplies all digital parts. DVSS 63 Digital supply voltage, negative terminal. Supplies all digital parts. P1.0/TACLK 12 I/O General-purpose digital I/O pin/Timer_A, clock signal TACLK input P1.1/TA0 13 I/O General-purpose digital I/O pin/Timer_A, capture: CCI0A input, compare: Out0 output/BSL transmit P1.2/TA1 14 I/O General-purpose digital I/O pin/Timer_A, capture: CCI1A input, compare: Out1 output P1.3/TA2 15 I/O General-purpose digital I/O pin/Timer_A, capture: CCI2A input, compare: Out2 output P1.4/SMCLK 16 I/O General-purpose digital I/O pin/SMCLK signal output P1.5/TA0 17 I/O General-purpose digital I/O pin/Timer_A, compare: Out0 output P1.6/TA1 18 I/O General-purpose digital I/O pin/Timer_A, compare: Out1 output P1.7/TA2 19 I/O General-purpose digital I/O pin/Timer_A, compare: Out2 output/ P2.0/ACLK 20 I/O General-purpose digital I/O pin/ACLK output P2.1/TAINCLK 21 I/O General-purpose digital I/O pin/Timer_A, clock signal at INCLK P2.2/CAOUT/TA0 22 I/O General-purpose digital I/O pin/Timer_A, capture: CCI0B input/Comparator_A output/BSL receive P2.3/CA0/TA1 23 I/O General-purpose digital I/O pin/Timer_A, compare: Out1 output/Comparator_A input P2.4/CA1/TA2 24 I/O General-purpose digital I/O pin/Timer_A, compare: Out2 output/Comparator_A input P2.5/ROSC P2.6/ADC12CLK 25 I/O General-purpose digital I/O pin/input for external resistor defining the DCO nominal frequency 26 I/O General-purpose digital I/O pin/conversion clock – 12-bit ADC P2.7/TA0 27 I/O General-purpose digital I/O pin/Timer_A, compare: Out0 output P3.0/STE0 28 I/O General-purpose digital I/O pin/slave transmit enable – USART0/SPI mode P3.1/SIMO0 29 I/O General-purpose digital I/O pin/slave in/master out of USART0/SPI mode P3.2/SOMI0 30 I/O General-purpose digital I/O pin/slave out/master in of USART0/SPI mode P3.3/UCLK0 31 I/O General-purpose digital I/O/USART0 clock: external input − UART or SPI mode, output – SPI mode P3.4/UTXD0 32 I/O General-purpose digital I/O pin/transmit data out – USART0/UART mode P3.5/URXD0 P3.6/UTXD1† 33 I/O General-purpose digital I/O pin/receive data in – USART0/UART mode 34 I/O General-purpose digital I/O pin/transmit data out – USART1/UART mode P3.7/URXD1† 35 I/O General-purpose digital I/O pin/receive data in – USART1/UART mode P4.0/TB0 36 I/O General-purpose digital I/O pin/Timer_B, capture: CCI0A or CCI0B input, compare: Out0 output P4.1/TB1 37 I/O General-purpose digital I/O pin/Timer_B, capture: CCI1A or CCI1B input, compare: Out1 output P4.2/TB2 P4.3/TB3† 38 I/O General-purpose digital I/O pin/Timer_B, capture: CCI2A or CCI2B input, compare: Out2 output 39 I/O General-purpose digital I/O pin/Timer_B, capture: CCI3A or CCI3B input, compare: Out3 output P4.4/TB4† P4.5/TB5† 40 I/O General-purpose digital I/O pin/Timer_B, capture: CCI4A or CCI4B input, compare: Out4 output 41 I/O General-purpose digital I/O pin/Timer_B, capture: CCI5A or CCI5B input, compare: Out5 output P4.6/TB6† 42 I/O General-purpose digital I/O pin/Timer_B, capture: CCI6A or CCI6B input, compare: Out6 output P4.7/TBCLK P5.0/STE1† 43 I/O General-purpose digital I/O pin/Timer_B, clock signal TBCLK input 44 I/O General-purpose digital I/O pin/slave transmit enable – USART1/SPI mode P5.1/SIMO1† P5.2/SOMI1† 45 I/O General-purpose digital I/O pin/slave in/master out of USART1/SPI mode 46 I/O General-purpose digital I/O pin/slave out/master in of USART1/SPI mode P5.3/UCLK1† 47 I/O General-purpose digital I/O pin/USART1 clock: external input − UART or SPI mode, output – SPI mode P5.4/MCLK 48 I/O General-purpose digital I/O pin/main system clock MCLK output 49 I/O General-purpose digital I/O pin/submain system clock SMCLK output P5.5/SMCLK † 14x devices only POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 SLAS272F − JULY 2000 − REVISED JUNE 2004 Terminal Functions (Continued) MSP430x13x, MSP430x14x (continued) TERMINAL NAME NO. I/O DESCRIPTION P5.6/ACLK 50 I/O General-purpose digital I/O pin/auxiliary clock ACLK output P5.7/TBOUTH 51 I/O General-purpose digital I/O pin/switch all PWM digital output ports to high impedance − Timer_B7: TB0 to TB6 P6.0/A0 59 I/O General-purpose digital I/O pin/analog input a0 – 12-bit ADC P6.1/A1 60 I/O General-purpose digital I/O pin/analog input a1 – 12-bit ADC P6.2/A2 61 I/O General-purpose digital I/O pin/analog input a2 – 12-bit ADC P6.3/A3 2 I/O General-purpose digital I/O pin/analog input a3 – 12-bit ADC P6.4/A4 3 I/O General-purpose digital I/O pin/analog input a4 – 12-bit ADC P6.5/A5 4 I/O General-purpose digital I/O pin/analog input a5 – 12-bit ADC P6.6/A6 5 I/O General-purpose digital I/O pin/analog input a6 – 12-bit ADC P6.7/A7 6 I/O General-purpose digital I/O pin/analog input a7 – 12-bit ADC RST/NMI 58 I Reset input, nonmaskable interrupt input port, or bootstrap loader start (in Flash devices). TCK 57 I Test clock. TCK is the clock input port for device programming test and bootstrap loader start (in Flash devices). TDI/TCLK 55 I Test data input or test clock input. The device protection fuse is connected to TDI/TCLK. TDO/TDI 54 I/O TMS 56 I Test mode select. TMS is used as an input port for device programming and test. VeREF+ VREF+ 10 I Input for an external reference voltage to the ADC 7 O Output of positive terminal of the reference voltage in the ADC VREF−/VeREF− 11 I Negative terminal for the ADC’s reference voltage for both sources, the internal reference voltage, or an external applied reference voltage XIN 8 I Input port for crystal oscillator XT1. Standard or watch crystals can be connected. XOUT 9 O Output terminal of crystal oscillator XT1 XT2IN 53 I Input port for crystal oscillator XT2. Only standard crystals can be connected. XT2OUT 52 O Output terminal of crystal oscillator XT2 QFN Pad NA NA 8 Test data output port. TDO/TDI data output or programming data input terminal QFN package pad connection to DVSS recommended. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS272F − JULY 2000 − REVISED JUNE 2004 Terminal Functions MSP430x14x1 TERMINAL NAME NO. I/O DESCRIPTION AVCC AVSS 64 Analog supply voltage, positive terminal. 62 Analog supply voltage, negative terminal. DVCC 1 Digital supply voltage, positive terminal. Supplies all digital parts. DVSS 63 Digital supply voltage, negative terminal. Supplies all digital parts. P1.0/TACLK 12 I/O General-purpose digital I/O pin/Timer_A, clock signal TACLK input P1.1/TA0 13 I/O General-purpose digital I/O pin/Timer_A, capture: CCI0A input, compare: Out0 output/BSL transmit P1.2/TA1 14 I/O General-purpose digital I/O pin/Timer_A, capture: CCI1A input, compare: Out1 output P1.3/TA2 15 I/O General-purpose digital I/O pin/Timer_A, capture: CCI2A input, compare: Out2 output P1.4/SMCLK 16 I/O General-purpose digital I/O pin/SMCLK signal output P1.5/TA0 17 I/O General-purpose digital I/O pin/Timer_A, compare: Out0 output P1.6/TA1 18 I/O General-purpose digital I/O pin/Timer_A, compare: Out1 output P1.7/TA2 19 I/O General-purpose digital I/O pin/Timer_A, compare: Out2 output P2.0/ACLK 20 I/O General-purpose digital I/O pin/ACLK output P2.1/TAINCLK 21 I/O General-purpose digital I/O pin/Timer_A, clock signal at INCLK P2.2/CAOUT/TA0 22 I/O General-purpose digital I/O pin/Timer_A, capture: CCI0B input/Comparator_A output/BSL receive P2.3/CA0/TA1 23 I/O General-purpose digital I/O pin/Timer_A, compare: Out1 output/Comparator_A input P2.4/CA1/TA2 24 I/O General-purpose digital I/O pin/Timer_A, compare: Out2 output/Comparator_A input P2.5/ROSC P2.6 25 I/O General-purpose digital I/O pin/input for external resistor defining the DCO nominal frequency 26 I/O General-purpose digital I/O pin P2.7/TA0 27 I/O General-purpose digital I/O pin/Timer_A, compare: Out0 output P3.0/STE0 28 I/O General-purpose digital I/O pin/slave transmit enable – USART0/SPI mode P3.1/SIMO0 29 I/O General-purpose digital I/O pin/slave in/master out of USART0/SPI mode P3.2/SOMI0 30 I/O General-purpose digital I/O pin/slave out/master in of USART0/SPI mode P3.3/UCLK0 31 I/O General-purpose digital I/O/USART0 clock: external input − UART or SPI mode, output – SPI mode P3.4/UTXD0 32 I/O General-purpose digital I/O pin/transmit data out – USART0/UART mode P3.5/URXD0 33 I/O General-purpose digital I/O pin/receive data in – USART0/UART mode P3.6/UTXD1 34 I/O General-purpose digital I/O pin/transmit data out – USART1/UART mode P3.7/URXD1 35 I/O General-purpose digital I/O pin/receive data in – USART1/UART mode P4.0/TB0 36 I/O General-purpose digital I/O pin/Timer_B, capture: CCI0A or CCI0B input, compare: Out0 output P4.1/TB1 37 I/O General-purpose digital I/O pin/Timer_B, capture: CCI1A or CCI1B input, compare: Out1 output P4.2/TB2 38 I/O General-purpose digital I/O pin/Timer_B, capture: CCI2A or CCI2B input, compare: Out2 output P4.3/TB3 39 I/O General-purpose digital I/O pin/Timer_B, capture: CCI3A or CCI3B input, compare: Out3 output P4.4/TB4 40 I/O General-purpose digital I/O pin/Timer_B, capture: CCI4A or CCI4B input, compare: Out4 output P4.5/TB5 41 I/O General-purpose digital I/O pin/Timer_B, capture: CCI5A or CCI5B input, compare: Out5 output P4.6/TB6 42 I/O General-purpose digital I/O pin/Timer_B, capture: CCI6A or CCI6B input, compare: Out6 output P4.7/TBCLK 43 I/O General-purpose digital I/O pin/Timer_B, clock signal TBCLK input P5.0/STE1 44 I/O General-purpose digital I/O pin/slave transmit enable – USART1/SPI mode P5.1/SIMO1 45 I/O General-purpose digital I/O pin/slave in/master out of USART1/SPI mode P5.2/SOMI1 46 I/O General-purpose digital I/O pin/slave out/master in of USART1/SPI mode P5.3/UCLK1 47 I/O General-purpose digital I/O pin/USART1 clock: external input − UART or SPI mode, output – SPI mode P5.4/MCLK 48 I/O General-purpose digital I/O pin/main system clock MCLK output P5.5/SMCLK 49 I/O General-purpose digital I/O pin/submain system clock SMCLK output POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 SLAS272F − JULY 2000 − REVISED JUNE 2004 Terminal Functions (Continued) MSP430x14x1 (continued) TERMINAL NAME NO. I/O DESCRIPTION P5.6/ACLK 50 I/O General-purpose digital I/O pin/auxiliary clock ACLK output P5.7/TBOUTH 51 I/O General-purpose digital I/O pin/switch all PWM digital output ports to high impedance − Timer_B7: TB0 to TB6 P6.0 59 I/O General-purpose digital I/O pin P6.1 60 I/O General-purpose digital I/O pin P6.2 61 I/O General-purpose digital I/O pin P6.3 2 I/O General-purpose digital I/O pin P6.4 3 I/O General-purpose digital I/O pin P6.5 4 I/O General-purpose digital I/O pin P6.6 5 I/O General-purpose digital I/O pin P6.7 6 I/O General-purpose digital I/O pin RST/NMI 58 I Reset input, nonmaskable interrupt input port, or bootstrap loader start (in Flash devices). TCK 57 I Test clock. TCK is the clock input port for device programming test and bootstrap loader start (in Flash devices). TDI/TCLK 55 I Test data input or test clock input. The device protection fuse is connected to TDI/TCLK. TDO/TDI 54 I/O TMS 56 I Test mode select. TMS is used as an input port for device programming and test. DVSS 10 I Connect to DVSS Reserved 7 DVSS 11 XIN XOUT Test data output port. TDO/TDI data output or programming data input terminal Reserved, do not connect externally I Connect to DVSS 8 I Input port for crystal oscillator XT1. Standard or watch crystals can be connected. 9 O Output terminal of crystal oscillator XT1 XT2IN 53 I Input port for crystal oscillator XT2. Only standard crystals can be connected. XT2OUT 52 O Output terminal of crystal oscillator XT2 QFN Pad NA NA 10 QFN package pad connection to DVSS recommended. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS272F − JULY 2000 − REVISED JUNE 2004 short-form description CPU The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. Program Counter PC/R0 Stack Pointer SP/R1 SR/CG1/R2 Status Register Constant Generator The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-to-register operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator respectively. The remaining registers are general-purpose registers. Peripherals are connected to the CPU using data, address, and control buses, and can be handled with all instructions. instruction set The instruction set consists of 51 instructions with three formats and seven address modes. Each instruction can operate on word and byte data. Table 1 shows examples of the three types of instruction formats; the address modes are listed in Table 2. CG2/R3 General-Purpose Register R4 General-Purpose Register R5 General-Purpose Register R6 General-Purpose Register R7 General-Purpose Register R8 General-Purpose Register R9 General-Purpose Register R10 General-Purpose Register R11 General-Purpose Register R12 General-Purpose Register R13 General-Purpose Register R14 General-Purpose Register R15 Table 1. Instruction Word Formats Dual operands, source-destination e.g. ADD R4,R5 R4 + R5 −−−> R5 Single operands, destination only e.g. CALL PC −−>(TOS), R8−−> PC Relative jump, un/conditional e.g. JNE R8 Jump-on-equal bit = 0 Table 2. Address Mode Descriptions ADDRESS MODE S D SYNTAX EXAMPLE OPERATION Register F F MOV Rs,Rd MOV R10,R11 Indexed F F MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) Symbolic (PC relative) F F MOV EDE,TONI M(EDE) −−> M(TONI) Absolute F F MOV &MEM,&TCDAT M(MEM) −−> M(TCDAT) R10 −−> R11 M(2+R5)−−> M(6+R6) Indirect F MOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) −−> M(Tab+R6) Indirect autoincrement F MOV @Rn+,Rm MOV @R10+,R11 M(R10) −−> R11 R10 + 2−−> R10 F MOV #X,TONI MOV #45,TONI Immediate NOTE: S = source #45 −−> M(TONI) D = destination POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 SLAS272F − JULY 2000 − REVISED JUNE 2004 operating modes The MSP430 has one active mode and five software selectable low-power modes of operation. An interrupt event can wake up the device from any of the five low-power modes, service the request and restore back to the low-power mode on return from the interrupt program. The following six operating modes can be configured by software: D Active mode AM; − All clocks are active D Low-power mode 0 (LPM0); − CPU is disabled ACLK and SMCLK remain active. MCLK is disabled D Low-power mode 1 (LPM1); − CPU is disabled ACLK and SMCLK remain active. MCLK is disabled DCO’s dc-generator is disabled if DCO not used in active mode D Low-power mode 2 (LPM2); − CPU is disabled MCLK and SMCLK are disabled DCO’s dc-generator remains enabled ACLK remains active D Low-power mode 3 (LPM3); − CPU is disabled MCLK and SMCLK are disabled DCO’s dc-generator is disabled ACLK remains active D Low-power mode 4 (LPM4); − 12 CPU is disabled ACLK is disabled MCLK and SMCLK are disabled DCO’s dc-generator is disabled Crystal oscillator is stopped POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS272F − JULY 2000 − REVISED JUNE 2004 interrupt vector addresses The interrupt vectors and the power-up starting address are located in the address range 0FFFFh − 0FFE0h. The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT WORD ADDRESS PRIORITY Power-up External Reset Watchdog Flash memory WDTIFG KEYV (see Note 1) Reset 0FFFEh 15, highest NMI Oscillator Fault Flash memory access violation NMIIFG (see Notes 1 & 4) OFIFG (see Notes 1 & 4) ACCVIFG (see Notes 1 & 4) (Non)maskable (Non)maskable (Non)maskable 0FFFCh 14 Timer_B7 (see Note 5) TBCCR0 CCIFG (see Note 2) Maskable 0FFFAh 13 Timer_B7 (see Note 5) TBCCR1 to 6 CCIFGs, TBIFG (see Notes 1 & 2) Maskable 0FFF8h 12 Comparator_A CAIFG Maskable 0FFF6h 11 Watchdog timer WDTIFG Maskable 0FFF4h 10 USART0 receive URXIFG0 Maskable 0FFF2h 9 USART0 transmit UTXIFG0 Maskable 0FFF0h 8 ADC12 (see Note 6) ADC12IFG (see Notes 1 & 2) Maskable 0FFEEh 7 Timer_A3 TACCR0 CCIFG (see Note 2) Maskable 0FFECh 6 Timer_A3 TACCR1 CCIFG, TACCR2 CCIFG, TAIFG (see Notes 1 & 2) Maskable 0FFEAh 5 I/O port P1 (eight flags) P1IFG.0 to P1IFG.7 (see Notes 1 & 2) Maskable 0FFE8h 4 Maskable 0FFE6h 3 0FFE4h 2 0FFE2h 1 0FFE0h 0, lowest USART1 receive URXIFG1 USART1 transmit UTXIFG1 I/O port P2 (eight flags) P2IFG.0 to P2IFG.7 (see Notes 1 & 2) Maskable NOTES: 1. 2. 3. 4. Multiple source flags Interrupt flags are located in the module. Nonmaskable: neither the individual nor the general interrupt-enable bit will disable an interrupt event. (Non)maskable: the individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable can not disable it. 5. Timer_B7 in MSP430x14x(1) family has 7 CCRs; Timer_B3 in MSP430x13x family has 3 CCRs. In Timer_B3 there are only interrupt flags TBCCR0, 1, and 2 CCIFGs and the interrupt-enable bits TBCCTL0, 1, and 2 CCIEs. 6. ADC12 is not implemented on the 14x1 devices. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 SLAS272F − JULY 2000 − REVISED JUNE 2004 special function registers Most interrupt and module-enable bits are collected in the lowest address space. Special-function register bits not allocated to a functional purpose are not physically present in the device. This arrangement provides simple software access. interrupt enable 1 and 2 7 Address 0h 6 UTXIE0 rw-0 URXIE0 rw-0 5 4 ACCVIE NMIIE rw-0 3 2 1 OFIE rw-0 rw-0 0 WDTIE rw-0 WDTIE: Watchdog-timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog timer is configured in interval timer mode. OFIE: Oscillator-fault-interrupt enable NMIIE: Nonmaskable-interrupt enable ACCVIE: Flash access violation interrupt enable URXIE0: USART0: UART and SPI receive-interrupt enable UTXIE0: USART0: UART and SPI transmit-interrupt enable 7 Address 6 01h 5 4 UTXIE1 URXIE1 rw-0 3 2 1 0 2 1 0 rw-0 URXIE1: USART1: UART and SPI receive-interrupt enable UTXIE1: USART1: UART and SPI transmit-interrupt enable interrupt flag register 1 and 2 7 Address 02h 6 UTXIFG0 rw-1 5 URXIFG0 3 NMIIFG rw-0 OFIFG rw-0 rw-1 WDTIFG rw-(0) WDTIFG: Set on watchdog timer overflow (in watchdog mode) or security key violation. Reset on VCC power up or a reset condition at the RST/NMI pin in reset mode. OFIFG: Flag set on oscillator fault NMIIFG: Set via RST/NMI pin URXIFG0: USART0: UART and SPI receive flag UTXIFG0: USART0: UART and SPI transmit flag Address 03h 7 6 5 4 UTXIFG1 URXIFG1 rw-1 14 4 3 rw-0 URXIFG1: USART1: UART and SPI receive flag UTXIFG1: USART1: UART and SPI transmit flag POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2 1 0 SLAS272F − JULY 2000 − REVISED JUNE 2004 module enable registers 1 and 2 7 UTXE0 Address 04h rw-0 6 URXE0 USPIE0 5 4 3 2 1 rw-0 URXE0: USART0: UART receive enable UTXE0: USART0: UART transmit enable USPIE0: USART0: SPI (synchronous peripheral interface) transmit and receive enable Address 0 7 6 05h 5 UTXE1 rw-0 4 URXE1 USPIE1 3 2 1 0 rw-0 URXE1: USART1: UART receive enable UTXE1: USART1: UART transmit enable USPIE1: USART1: SPI (synchronous peripheral interface) transmit and receive enable Bit Can Be Read and Written Bit Can Be Read and Written. It Is Reset by PUC. SFR Bit Not Present in Device Legend: rw: rw-0: memory organization MSP430F133 MSP430F135 MSP430F147 MSP430F1471 MSP430F148 MSP430F1481 MSP430F149 MSP430F1491 Memory Main: interrupt vector Main: code memory Size Flash Flash 8KB 0FFFFh − 0FFE0h 0FFFFh − 0E000h 16KB 0FFFFh − 0FFE0h 0FFFFh − 0C000h 32KB 0FFFFh − 0FFE0h 0FFFFh − 08000h 48KB 0FFFFh − 0FFE0h 0FFFFh − 04000h 60KB 0FFFFh − 0FFE0h 0FFFFh − 01100h Information memory Size Flash 256 Byte 010FFh − 01000h 256 Byte 010FFh − 01000h 256 Byte 010FFh − 01000h 256 Byte 010FFh − 01000h 256 Byte 010FFh − 01000h Boot memory Size ROM 1KB 0FFFh − 0C00h 1KB 0FFFh − 0C00h 1KB 0FFFh − 0C00h 1KB 0FFFh − 0C00h 1KB 0FFFh − 0C00h Size 256 Byte 02FFh − 0200h 512 Byte 03FFh − 0200h 1KB 05FFh − 0200h 2KB 09FFh − 0200h 2KB 09FFh − 0200h 16-bit 8-bit 8-bit SFR 01FFh − 0100h 0FFh − 010h 0Fh − 00h 01FFh − 0100h 0FFh − 010h 0Fh − 00h 01FFh − 0100h 0FFh − 010h 0Fh − 00h 01FFh − 0100h 0FFh − 010h 0Fh − 00h 01FFh − 0100h 0FFh − 010h 0Fh − 00h RAM Peripherals bootstrap loader (BSL) The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete description of the features of the BSL and its implementation, see the Application report Features of the MSP430 Bootstrap Loader, Literature Number SLAA089. BSL Function PM, PAG & RTD Package Pins Data Transmit 13 - P1.1 Data Receive 22 - P2.2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 SLAS272F − JULY 2000 − REVISED JUNE 2004 flash memory The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include: D Flash memory has n segments of main memory and two segments of information memory (A and B) of 128 bytes each. Each segment in main memory is 512 bytes in size. D Segments 0 to n may be erased in one step, or each segment may be individually erased. D Segments A and B can be erased individually, or as a group with segments 0−n. Segments A and B are also called information memory. D New devices may have some bytes programmed in the information memory (needed for test during manufacturing). The user should perform an erase of the information memory prior to the first use. 8 KB 16 KB 32 KB 48 KB 60 KB 0FFFFh 0FFFFh 0FFFFh 0FFFFh 0FFFFh 0FE00h 0FDFFh 0FE00h 0FDFFh 0FE00h 0FDFFh 0FE00h 0FDFFh 0FE00h 0FDFFh Segment 1 0FC00h 0FBFFh 0FC00h 0FBFFh 0FC00h 0FBFFh 0FC00h 0FBFFh 0FC00h 0FBFFh Segment 2 0FA00h 0F9FFh 0FA00h 0F9FFh 0FA00h 0F9FFh 0FA00h 0F9FFh 0FA00h 0F9FFh 0E400h 0E3FFh 0C400h 0C3FFh 08400h 083FFh 04400h 043FFh 01400h 013FFh 0E200h 0E1FFh 0C200h 0C1FFh 08200h 081FFh 04200h 041FFh 01200h 011FFh 0E000h 010FFh 0C000h 010FFh 08000h 010FFh 04000h 010FFh 01100h 010FFh 01080h 0107Fh 01080h 0107Fh 01080h 0107Fh 01080h 0107Fh 01080h 0107Fh 01000h 01000h 01000h 01000h 01000h Segment 0 w/ Interrupt Vectors Main Memory Segment n-1 Segment n Segment A Information Memory Segment B 16 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS272F − JULY 2000 − REVISED JUNE 2004 peripherals Peripherals are connected to the CPU through data, address, and control busses and can be handled using all instructions. For complete module descriptions, see the MSP430x1xx Family User’s Guide, literature number SLAU049. digital I/O There are six 8-bit I/O ports implemented—ports P1 through P6: D D D D All individual I/O bits are independently programmable. Any combination of input, output, and interrupt conditions is possible. Edge-selectable interrupt input capability for all the eight bits of ports P1 and P2. Read/write access to port-control registers is supported by all instructions. oscillator and system clock The clock system in the MSP430x13x and MSP43x14x(1) family of devices is supported by the basic clock module that includes support for a 32768-Hz watch crystal oscillator, an internal digitally-controlled oscillator (DCO) and a high frequency crystal oscillator. The basic clock module is designed to meet the requirements of both low system cost and low-power consumption. The internal DCO provides a fast turn-on clock source and stabilizes in less than 6 µs. The basic clock module provides the following clock signals: D Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal or a high frequency crystal. D Main clock (MCLK), the system clock used by the CPU. D Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules. watchdog timer The primary function of the watchdog timer (WDT) module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the module can be configured as an interval timer and can generate interrupts at selected time intervals. hardware multiplier (MSP430x14x and MSP430x14x1 Only) The multiplication operation is supported by a dedicated peripheral module. The module performs 16 16, 16 8, 8 16, and 8 8 bit operations. The module is capable of supporting signed and unsigned multiplication as well as signed and unsigned multiply and accumulate operations. The result of an operation can be accessed immediately after the operands have been loaded into the peripheral registers. No additional clock cycles are required. USART0 The MSP430x13x and the MSP430x14x(1) have one hardware universal synchronous/asynchronous receive transmit (USART0) peripheral module that is used for serial data communication. The USART supports synchronous SPI (3 or 4 pin) and asynchronous UART communication protocols, using double-buffered transmit and receive channels. USART1 (MSP430x14x and MSP430x14x1 Only) The MSP430x14x(1) has a second hardware universal synchronous/asynchronous receive transmit (USART1) peripheral module that is used for serial data communication. The USART supports synchronous SPI (3 or 4 pin) and asynchronous UART communication protocols, using double-buffered transmit and receive channels. Operation of USART1 is identical to USART0. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 17 SLAS272F − JULY 2000 − REVISED JUNE 2004 comparator_A The primary function of the comparator_A module is to support precision slope analog−to−digital conversions, battery−voltage supervision, and monitoring of external analog signals. ADC12 (Not implemented in the MSP430x14x1) The ADC12 module supports fast, 12-bit analog-to-digital conversions. The module implements a 12-bit SAR core, sample select control, reference generator and a 16 word conversion-and-control buffer. The conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored without any CPU intervention. timer_A3 Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Timer_A3 Signal Connections Input Pin Number Device Input Signal Module Input Name 12 - P1.0 TACLK TACLK ACLK ACLK SMCLK SMCLK 21 - P2.1 TAINCLK INCLK 13 - P1.1 TA0 CCI0A 22 - P2.2 TA0 CCI0B DVSS DVCC GND 14 - P1.2 15 - P1.3 TA1 VCC CCI1A CAOUT (internal) CCI1B DVSS DVCC GND TA2 VCC CCI2A ACLK (internal) CCI2B DVSS DVCC GND Module Block Module Output Signal Timer NA Output Pin Number 13 - P1.1 17 - P1.5 CCR0 TA0 27 - P2.7 14 - P1.2 18 - P1.6 CCR1 TA1 23 - P2.3 ADC12 (internal) 15 - P1.3 19 - P1.7 CCR2 TA2 24 - P2.4 VCC timer_B3 (MSP430x13x Only) Timer_B3 is a 16-bit timer/counter with three capture/compare registers. Timer_B3 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. 18 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS272F − JULY 2000 − REVISED JUNE 2004 timer_B7 (MSP430x14x and MSP430x14x1 Only) Timer_B7 is a 16-bit timer/counter with seven capture/compare registers. Timer_B7 can support multiple capture/compares, PWM outputs, and interval timing. Timer_B7 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Timer_B3/B7 Signal Connections† Input Pin Number Device Input Signal Module Input Name 43 - P4.7 TBCLK TBCLK Module Block Module Output Signal Timer NA Output Pin Number ACLK ACLK SMCLK SMCLK 43 - P4.7 TBCLK INCLK 36 - P4.0 TB0 CCI0A 36 - P4.0 36 - P4.0 TB0 CCI0B ADC12 (internal) DVSS DVCC GND 37 - P4.1 37 - P4.1 TB1 VCC CCI1A TB1 CCI1B DVSS DVCC GND 38 - P4.2 TB2 VCC CCI2A 38 - P4.2 TB2 CCI2B DVSS DVCC GND 39 - P4.3 39 - P4.3 TB3 VCC CCI3A TB3 CCI3B DVSS DVCC GND 40 - P4.4 TB4 VCC CCI4A 40 - P4.4 TB4 CCI4B DVSS DVCC GND 41 - P4.5 TB5 VCC CCI5A 41 - P4.5 TB5 CCI5B DVSS DVCC GND 42 - P4.6 TB6 VCC CCI6A ACLK (internal) CCI6B DVSS DVCC GND CCR0 TB0 37 - P4.1 ADC12 (internal) CCR1 TB1 38 - P4.2 CCR2 TB2 39 - P4.3 CCR3 TB3 40 - P4.4 CCR4 TB4 41 - P4.5 CCR5 TB5 42 - P4.6 CCR6 TB6 VCC † Timer_B3 implements three capture/compare blocks (CCR0, CCR1 and CCR2 only). POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 19 SLAS272F − JULY 2000 − REVISED JUNE 2004 peripheral file map PERIPHERALS WITH WORD ACCESS Watchdog Watchdog Timer control WDTCTL 0120h Timer_B7/ Timer_B3 (see Note 1) Timer_B interrupt vector TBIV 011Eh Timer_B control TBCTL 0180h Capture/compare control 0 TBCCTL0 0182h Capture/compare control 1 TBCCTL1 0184h Capture/compare control 2 TBCCTL2 0186h Capture/compare control 3 TBCCTL3 0188h Capture/compare control 4 TBCCTL4 018Ah Capture/compare control 5 TBCCTL5 018Ch Capture/compare control 6 TBCCTL6 018Eh Timer_B register TBR 0190h Capture/compare register 0 TBCCR0 0192h Capture/compare register 1 TBCCR1 0194h Capture/compare register 2 TBCCR2 0196h Capture/compare register 3 TBCCR3 0198h Capture/compare register 4 TBCCR4 019Ah Capture/compare register 5 TBCCR5 019Ch Capture/compare register 6 TBCCR6 019Eh Timer_A interrupt vector TAIV 012Eh Timer_A control TACTL 0160h Capture/compare control 0 TACCTL0 0162h Capture/compare control 1 TACCTL1 0164h Capture/compare control 2 TACCTL2 0166h Timer_A3 Reserved 0168h Reserved 016Ah Reserved 016Ch Reserved 016Eh Timer_A register TAR 0170h Capture/compare register 0 TACCR0 0172h Capture/compare register 1 TACCR1 0174h Capture/compare register 2 TACCR2 0176h Reserved 0178h Reserved 017Ah Reserved 017Ch Reserved Hardware Multiplier (MSP430x14x and MSP430x14x1 only) 017Eh Sum extend SUMEXT 013Eh Result high word RESHI 013Ch Result low word RESLO 013Ah Second operand OP2 0138h Multiply signed +accumulate/operand1 MACS 0136h Multiply+accumulate/operand1 MAC 0134h Multiply signed/operand1 MPYS 0132h Multiply unsigned/operand1 MPY 0130h NOTE 1: Timer_B7 in MSP430x14x(1) family has 7 CCRs, Timer_B3 in MSP430x13x family has 3 CCRs. 20 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS272F − JULY 2000 − REVISED JUNE 2004 peripheral file map (continued) PERIPHERALS WITH WORD ACCESS (CONTINUED) Flash Flash control 3 FCTL3 012Ch Flash control 2 FCTL2 012Ah Flash control 1 FCTL1 0128h ADC12 Conversion memory 15 (Not implemented in Conversion memory 14 the MSP430x14x1) Conversion memory 13 ADC12MEM15 015Eh ADC12MEM14 015Ch ADC12MEM13 015Ah Conversion memory 12 ADC12MEM12 0158h Conversion memory 11 ADC12MEM11 0156h Conversion memory 10 ADC12MEM10 0154h Conversion memory 9 ADC12MEM9 0152h Conversion memory 8 ADC12MEM8 0150h Conversion memory 7 ADC12MEM7 014Eh Conversion memory 6 ADC12MEM6 014Ch Conversion memory 5 ADC12MEM5 014Ah Conversion memory 4 ADC12MEM4 0148h Conversion memory 3 ADC12MEM3 0146h Conversion memory 2 ADC12MEM2 0144h Conversion memory 1 ADC12MEM1 0142h Conversion memory 0 ADC12MEM0 0140h Interrupt-vector-word register ADC12IV 01A8h Inerrupt-enable register ADC12IE 01A6h Inerrupt-flag register ADC12IFG 01A4h Control register 1 ADC12CTL1 01A2h Control register 0 ADC12CTL0 01A0h ADC memory-control register15 ADC12MCTL15 08Fh ADC memory-control register14 ADC12MCTL14 08Eh ADC memory-control register13 ADC12MCTL13 08Dh ADC memory-control register12 ADC12MCTL12 08Ch ADC memory-control register11 ADC12MCTL11 08Bh ADC memory-control register10 ADC12MCTL10 08Ah ADC memory-control register9 ADC12MCTL9 089h ADC memory-control register8 ADC12MCTL8 088h ADC memory-control register7 ADC12MCTL7 087h ADC memory-control register6 ADC12MCTL6 086h ADC memory-control register5 ADC12MCTL5 085h ADC memory-control register4 ADC12MCTL4 084h ADC memory-control register3 ADC12MCTL3 083h ADC memory-control register2 ADC12MCTL2 082h ADC memory-control register1 ADC12MCTL1 081h ADC memory-control register0 ADC12MCTL0 080h POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 21 SLAS272F − JULY 2000 − REVISED JUNE 2004 peripheral file map (continued) PERIPHERALS WITH BYTE ACCESS USART1 (MSP430x14x and MSP430x14x1 only) USART0 Comparator_A Basic Clock Port P6 Port P5 Port P4 Port P3 Port P2 22 Transmit buffer U1TXBUF 07Fh Receive buffer U1RXBUF 07Eh Baud rate U1BR1 07Dh Baud rate U1BR0 07Ch Modulation control U1MCTL 07Bh Receive control U1RCTL 07Ah Transmit control U1TCTL 079h USART control U1CTL 078h Transmit buffer U0TXBUF 077h Receive buffer U0RXBUF 076h Baud rate U0BR1 075h Baud rate U0BR0 074h Modulation control U0MCTL 073h Receive control U0RCTL 072h Transmit control U0TCTL 071h USART control U0CTL 070h Comparator_A port disable CAPD 05Bh Comparator_A control2 CACTL2 05Ah Comparator_A control1 CACTL1 059h Basic clock system control2 BCSCTL2 058h Basic clock system control1 BCSCTL1 057h DCO clock frequency control DCOCTL 056h Port P6 selection P6SEL 037h Port P6 direction P6DIR 036h Port P6 output P6OUT 035h Port P6 input P6IN 034h Port P5 selection P5SEL 033h Port P5 direction P5DIR 032h Port P5 output P5OUT 031h Port P5 input P5IN 030h Port P4 selection P4SEL 01Fh Port P4 direction P4DIR 01Eh Port P4 output P4OUT 01Dh Port P4 input P4IN 01Ch Port P3 selection P3SEL 01Bh Port P3 direction P3DIR 01Ah Port P3 output P3OUT 019h Port P3 input P3IN 018h Port P2 selection P2SEL 02Eh Port P2 interrupt enable P2IE 02Dh Port P2 interrupt-edge select P2IES 02Ch Port P2 interrupt flag P2IFG 02Bh Port P2 direction P2DIR 02Ah Port P2 output P2OUT 029h Port P2 input P2IN 028h POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS272F − JULY 2000 − REVISED JUNE 2004 peripheral file map (continued) PERIPHERALS WITH BYTE ACCESS (CONTINUED) Port P1 Special Functions Port P1 selection P1SEL 026h Port P1 interrupt enable P1IE 025h Port P1 interrupt-edge select P1IES 024h Port P1 interrupt flag P1IFG 023h Port P1 direction P1DIR 022h Port P1 output P1OUT 021h Port P1 input P1IN 020h SFR module enable 2 ME2 005h SFR module enable 1 ME1 004h SFR interrupt flag2 IFG2 003h SFR interrupt flag1 IFG1 002h SFR interrupt enable2 IE2 001h SFR interrupt enable1 IE1 000h absolute maximum ratings over operating free-air temperature (unless otherwise noted)† Voltage applied at VCC to VSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to + 4.1 V Voltage applied to any pin (see Note) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −0.3 V to VCC+0.3 V Diode current at any device terminal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 mA Storage temperature (unprogrammed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −55°C to 150°C Storage temperature (programmed device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . −40°C to 85°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTE: All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is applied to the TDI/TCLK pin when blowing the JTAG fuse. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 23 SLAS272F − JULY 2000 − REVISED JUNE 2004 recommended operating conditions PARAMETER MIN NOM MAX UNITS Supply voltage during program execution, VCC (AVCC = DVCC = VCC) MSP430F13x, MSP430F14x(1) 1.8 3.6 V Supply voltage during flash memory programming, VCC (AVCC = DVCC = VCC) MSP430F13x, MSP430F14x(1) 2.7 3.6 V 0.0 0.0 V −40 85 °C 450 8000 kHz 1000 8000 kHz 450 8000 1000 8000 DC 4.15 DC 8 Supply voltage, VSS (AVSS = DVSS = VSS) MSP430x13x MSP430x14x(1) Operating free-air temperature range, TA LFXT1 crystal frequency, f(LFXT1) (see Notes 1 and 2) LF selected, XTS=0 Watch crystal XT1 selected, XTS=1 Ceramic resonator XT1 selected, XTS=1 Crystal Ceramic resonator XT2 crystal frequency, f(XT2) Crystal VCC = 1.8 V VCC = 3.6 V Processor frequency (signal MCLK), f(System) 32768 Hz kHz MHz NOTES: 1. In LF mode, the LFXT1 oscillator requires a watch crystal. A 5.1MΩ resistor from XOUT to VSS is recommended when VCC < 2.5 V. In XT1 mode, the LFXT1 and XT2 oscillators accept a ceramic resonator or crystal up to 4.15MHz at VCC ≥ 2.2 V. In XT1 mode, the LFXT1 and XT2 oscillators accept a ceramic resonator or crystal up to 8MHz at VCC ≥ 2.8 V. 2. In LF mode, the LFXT1 oscillator requires a watch crystal. In XT1 mode, LFXT1 accepts a ceramic resonator or a crystal. f (MHz) 8.0 MHz ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎ Supply voltage range, ’F13x/’F14x(1), during program execution 4.15 MHz 1.8 V 2.7 V 3 V Supply Voltage − V Supply voltage range, ’F13x/’F14x(1), during flash memory programming 3.6 V Figure 1. Frequency vs Supply Voltage, MSP430F13x or MSP430F14x(1) 24 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS272F − JULY 2000 − REVISED JUNE 2004 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) supply current into AVCC + DVCC excluding external current PARAMETER TEST CONDITIONS NOM MAX VCC = 2.2 V 280 350 VCC = 3 V 420 560 VCC = 2.2 V 2.5 7 9 20 VCC = 2.2 V VCC = 3 V 32 45 55 70 VCC = 2.2 V 11 14 VCC = 3 V 17 22 0.8 1.5 0.9 1.5 TA = 85°C TA = −40°C 1.6 2.8 1.8 2.2 TA = 25°C TA = 85°C 1.6 1.9 2.3 3.9 0.1 0.5 0.1 0.5 0.8 2.5 0.1 0.5 0.1 0.5 0.8 2.5 Active mode, (see Note 1) f(MCLK) = f(SMCLK) = 1 MHz, f(ACLK) = 32,768 Hz XTS=0, SELM=(0,1) TA = −40°C to 85°C Active mode, (see Note 1) f(MCLK) = f(SMCLK) = 4 096 Hz, f(ACLK) = 4,096 Hz XTS=0, SELM=(0,1) XTS=0, SELM=3 TA = −40°C to 85°C I(LPM0) Low-power mode, (LPM0) (see Note 1) TA = −40°C to 85°C I(LPM2) Low-power mode, (LPM2), f(MCLK) = f (SMCLK) = 0 MHz, f(ACLK) = 32.768 Hz, SCG0 = 0 TA = −40°C to 85°C I(AM) I(AM) I(LPM3) Low-power mode, (LPM3) f(MCLK) = f(SMCLK) = 0 MHz, f(ACLK) = 32,768 Hz, SCG0 = 1 (see Note 2) TA = −40°C TA = 25°C I(LPM4) Low-power mode, (LPM4) f(MCLK) = 0 MHz, f(SMCLK) = 0 MHz, f(ACLK) = 0 Hz, SCG0 = 1 µA A VCC = 2.2 V VCC = 3 V VCC = 2.2 V TA = 85°C TA = −40°C TA = 25°C TA = 85°C UNIT A µA VCC = 3 V TA = −40°C TA = 25°C MIN VCC = 3 V A µA µA A µA µA µA µA NOTES: 1. Timer_B is clocked by f(DCOCLK) = 1 MHz. All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. 2. Timer_B is clocked by f(ACLK) = 32,768 Hz. All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. The current consumption in LPM2 and LPM3 are measured with ACLK selected. Current consumption of active mode versus system frequency, F-version I(AM) = I(AM) [1 MHz] × f(System) [MHz] Current consumption of active mode versus supply voltage, F-version I(AM) = I(AM) [3 V] + 175 µA/V × (VCC – 3 V) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 25 SLAS272F − JULY 2000 − REVISED JUNE 2004 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) SCHMITT-trigger inputs − Ports P1, P2, P3, P4, P5, and P6 PARAMETER TEST CONDITIONS VIT+ Positive-going input threshold voltage VIT− Negative-going input threshold voltage Vhys Input voltage hysteresis (VIT+ − VIT−) MIN TYP MAX VCC = 2.2 V VCC = 3 V VCC = 2.2 V 1.1 1.5 1.5 1.9 0.4 0.9 VCC = 3 V VCC = 2.2 V 0.90 1.3 0.3 1.1 0.5 1 VCC = 3 V UNIT V V V standard inputs − RST/NMI; JTAG: TCK, TMS, TDI/TCLK, TDO/TDI PARAMETER VIL VIH TEST CONDITIONS Low-level input voltage VCC = 2.2 V / 3 V High-level input voltage MIN TYP VSS 0.8×VCC MAX VSS+0.6 VCC UNIT V V inputs Px.x, TAx, TBx PARAMETER t(int) TEST CONDITIONS External interrupt timing Port P1, P2: P1.x to P2.x, external trigger signal for the interrupt flag, (see Note 1) TA0, TA1, TA2 t(cap) f(TAext) f(TBext) Timer_A, Timer_B capture timing Timer_A, Timer_B clock frequency externally applied to pin TB0, TB1, TB2, TB3, TB4, TB5, TB6 (see Note 2) TACLK, TBCLK, INCLK: t(H) = t(L) VCC 2.2 V/3 V MIN TYP MAX 1.5 2.2 V 62 3V 50 2.2 V 62 3V 50 UNIT cycle ns ns 2.2 V 8 3V 10 MHz f(TAint) 2.2 V 8 Timer_A, Timer_B clock SMCLK or ACLK signal selected MHz frequency f(TBint) 3V 10 NOTES: 1. The external signal sets the interrupt flag every time the minimum t(int) cycle and time parameters are met. It may be set even with trigger signals shorter than t(int). Both the cycle and timing specifications must be met to ensure the flag is set. t(int) is measured in MCLK cycles. 2. Seven capture/compare registers in ’x14x(1) and three capture/compare registers in ’x13x. leakage current (see Note 1) PARAMETER Ilkg(P1.x) Ilkg(P2.x) Leakage current (see Note 1) TEST CONDITIONS Port P1 V(P1.x) (see Note 2) V(P2.3) V(P2.4) (see Note 2) MIN TYP MAX VCC = 2.2 V/3 V Port P2 ±50 Ilkg(P6.x) Port P6 V(P6.x) (see Note 2) ±50 NOTES: 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted. 2. The port pin must be selected as input and there must be no optional pullup or pulldown resistor. 26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 UNIT ±50 nA SLAS272F − JULY 2000 − REVISED JUNE 2004 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) outputs − Ports P1, P2, P3, P4, P5, and P6 PARAMETER VOH VOL High-level output voltage Low-level output voltage TEST CONDITIONS MIN IOH(max) = −1 mA, IOH(max) = −6 mA, VCC = 2.2 V, VCC = 2.2 V, See Note 1 IOH(max) = −1 mA, IOH(max) = −6 mA, VCC = 3 V, VCC = 3 V, See Note 1 IOL(max) = 1.5 mA, IOL(max) = 6 mA, VCC = 2.2 V, VCC = 2.2 V, See Note 1 IOL(max) = 1.5 mA, IOL(max) = 6 mA, VCC = 3 V, VCC = 3 V, See Note 1 See Note 2 See Note 2 TYP MAX VCC−0.25 VCC−0.6 VCC VCC VCC−0.25 VCC−0.6 VCC VCC VSS VSS VSS+0.25 VSS+0.6 VSS VSS VSS+0.25 VSS+0.6 See Note 2 See Note 2 UNIT V V NOTES: 1. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±6 mA to satisfy the maximum specified voltage drop. 2. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±24 mA to satisfy the maximum specified voltage drop. output frequency PARAMETER fTAx fACLK, fMCLK, fSMCLK TEST CONDITIONS TA0..2, TB0−TB6, Internal clock source, SMCLK signal applied (see Note 1) CL = 20 pF TYP DC MAX UNIT fSystem MHz P5.6/ACLK, P5.4/MCLK, P5.5/SMCLK CL = 20 pF fSystem P2.0/ACLK CL = 20 pF, VCC = 2.2 V / 3 V tXdc MIN Duty cycle of output frequency, P1.4/SMCLK, CL = 20 pF, VCC = 2.2 V / 3 V fACLK = fLFXT1 = fXT1 fACLK = fLFXT1 = fLF fACLK = fLFXT1/n fSMCLK = fLFXT1 = fXT1 fSMCLK = fLFXT1 = fLF 40% 60% 30% 70% 50% 40% 60% 35% 65% fSMCLK = fLFXT1/n 50%− 15 ns 50% 50%− 15 ns fSMCLK = fDCOCLK 50%− 15 ns 50% 50%− 15 ns NOTE 1: The limits of the system clock MCLK has to be met; the system (MCLK) frequency should not exceed the limits. MCLK and SMCLK frequencies can be different. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 27 SLAS272F − JULY 2000 − REVISED JUNE 2004 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) outputs − Ports P1, P2, P3, P4, P5, and P6 (continued) TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE TYPICAL LOW-LEVEL OUTPUT CURRENT vs LOW-LEVEL OUTPUT VOLTAGE 25 TA = 25°C VCC = 2.2 V P2.7 14 12 I OL − Low-Level Output Current − mA I OL − Low-Level Output Current − mA 16 TA = 85°C 10 8 6 4 2 0 0.0 0.5 1.0 1.5 2.0 VCC = 3 V P2.7 20 TA = 85°C 15 10 5 0 0.0 2.5 TA = 25°C 0.5 VOL − Low-Level Output Voltage − V 1.0 Figure 2 2.5 3.0 3.5 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE 0 0 VCC = 2.2 V P2.7 I OH − High-Level Output Current − mA I OH − High-Level Output Current − mA 2.0 Figure 3 TYPICAL HIGH-LEVEL OUTPUT CURRENT vs HIGH-LEVEL OUTPUT VOLTAGE −2 1.5 VOL − Low-Level Output Voltage − V −4 −6 −8 −10 TA = 85°C −12 VCC = 3 V P2.7 −5 −10 −15 −20 TA = 85°C −25 TA = 25°C TA = 25°C −14 0.0 0.5 1.0 1.5 2.0 2.5 −30 0.0 VOH − High-Level Output Voltage − V 1.0 1.5 Figure 5 POST OFFICE BOX 655303 2.0 2.5 3.0 VOH − High-Level Output Voltage − V Figure 4 28 0.5 • DALLAS, TEXAS 75265 3.5 SLAS272F − JULY 2000 − REVISED JUNE 2004 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) wake-up LPM3 PARAMETER TEST CONDITIONS MIN TYP f = 1 MHz t(LPM3) f = 2 MHz Delay time MAX UNIT 6 6 VCC = 2.2 V/3 V f = 3 MHz µs 6 RAM PARAMETER TEST CONDITIONS VRAMh CPU HALTED (see Note 1) MIN TYP MAX 1.6 UNIT V NOTE 1: This parameter defines the minimum supply voltage when the data in program memory RAM remain unchanged. No program execution should take place during this supply voltage condition. Comparator_A (see Note 1) PARAMETER TEST CONDITIONS TYP MAX VCC = 2.2 V VCC = 3 V MIN 25 40 45 60 I(DD) CAON=1, CARSEL=0, CAREF=0 CAON=1, CARSEL=0, CAREF=1/2/3, no load at P2.3/CA0/TA1 and P2.4/CA1/TA2 VCC = 2.2 V 30 50 I(Refladder/Refdiode) VCC = 3 V 45 71 CAON =1 VCC = 2.2 V/3 V 0 PCA0=1, CARSEL=1, CAREF=1, no load at P2.3/CA0/TA1 and P2.4/CA1/TA2 VCC = 2.2 V/3 V 0.23 0.24 0.25 PCA0=1, CARSEL=1, CAREF=2, no load at P2.3/CA0/TA1 and P2.4/CA1/TA2 VCC = 2.2 V/3 V 0.47 0.48 0.5 PCA0=1, CARSEL=1, CAREF=3, no load at P2.3/CA0/TA1 and P2.4/CA1/TA2 TA = 85°C VCC = 2.2 V 390 480 540 VCC = 3 V 400 490 550 V(IC) V(Ref025) V(Ref050) Common-mode input voltage Voltage @ 0.25 V V node CC Voltage @ 0.5V V CC CC CC node VCC−1 UNIT µA µA V V(RefVT) (see Figure 6) V(offset) Vhys Offset voltage See Note 2 30 mV CAON=1 VCC = 2.2 V/3 V VCC = 2.2 V/3 V −30 Input hysteresis 0 0.7 1.4 mV TA = 25 25°C, C, Overdrive 10 mV, Without filter: CAF=0 VCC = 2.2 V VCC = 3 V 130 210 300 80 150 240 TA = 25 25°C, C, Overdrive 10 mV, With filter: CAF=1 VCC = 2.2 V VCC = 3 V 1.4 1.9 3.4 0.9 1.5 2.6 25°C, TA = 25 C, Overdrive 10 mV, Without filter: CAF=0 VCC = 2.2 V VCC = 3 V 130 210 300 80 150 240 TA = 25 25°C, C, Overdrive 10 mV, With filter: CAF=1 VCC = 2.2 V VCC = 3 V 1.4 1.9 3.4 0.9 1.5 2.6 t(response LH) t(response HL) mV ns µs ns µs NOTES: 1. The leakage current for the Comparator_A terminals is identical to Ilkg(Px.x) specification. 2. The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A inputs on successive measurements. The two successive measurements are then summed together. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 29 SLAS272F − JULY 2000 − REVISED JUNE 2004 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 650 650 VCC = 2.2 V V(REFVT) − Reference Volts −mV V(REFVT) − Reference Volts −mV VCC = 3 V 600 Typical 550 500 450 400 −45 −25 −5 15 35 55 75 600 Typical 550 500 450 400 −45 95 −25 −5 15 35 55 TA − Free-Air Temperature − °C 0 V VCC 1 CAF CAON Low Pass Filter V+ V− + _ 0 0 1 1 To Internal Modules CAOUT Set CAIFG Flag τ ≈ 2.0 µs Figure 8. Block Diagram of Comparator_A Module VCAOUT Overdrive V− 400 mV V+ t(response) Figure 9. Overdrive Definition 30 95 Figure 7. V(RefVT) vs Temperature, VCC = 2.2 V Figure 6. V(RefVT) vs Temperature, VCC = 3 V 0 75 TA − Free-Air Temperature − °C POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS272F − JULY 2000 − REVISED JUNE 2004 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) PUC/POR PARAMETER TEST CONDITIONS t(POR_Delay) Internal time delay to release POR VPOR VCC threshold at which POR release delay time begins (see Note 1) TA = −40°C TA = 25°C VCC threshold required to generate a POR (see Note 2) VCC |dV/dt| ≥ 1V/ms V(min) MIN VCC = 2.2 V/3 V TA = 85°C TYP MAX UNIT 150 250 µs 1.4 1.8 V 1.1 1.5 V 0.8 1.2 V 0.2 V t(reset) RST/NMI low time for PUC/POR Reset is accepted internally 2 µs NOTES: 1. VCC rise time dV/dt ≥ 1V/ms. 2. When driving VCC low in order to generate a POR condition, VCC should be driven to 200mV or lower with a dV/dt equal to or less than −1V/ms. The corresponding rising VCC must also meet the dV/dt requirement equal to or greater than +1V/ms. V VCC V POR No POR POR V (min) POR t Figure 10. Power-On Reset (POR) vs Supply Voltage 2 1.8 1.8 1.5 V POR − V 1.6 1.4 1.2 1.4 1.2 1 1.2 0.8 0.8 0.6 0.4 25°C 0.2 0 −40 −20 0 20 40 60 80 TA − Temperature − °C Figure 11. VPOR vs Temperature POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 31 SLAS272F − JULY 2000 − REVISED JUNE 2004 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) DCO (see Note 1) PARAMETER f(DCO03) f(DCO13) f(DCO23) f(DCO33) f(DCO43) f(DCO53) f(DCO63) f(DCO73) TEST CONDITIONS MIN Rsel = 0, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C Rsel = 1, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C Rsel = 2, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C Rsel = 3, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C Rsel = 4, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C Rsel = 5, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C Rsel = 6, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C MAX UNIT VCC = 2.2 V VCC = 3 V 0.08 0.12 0.15 0.08 0.13 0.16 VCC = 2.2 V VCC = 3 V 0.14 0.19 0.23 0.14 0.18 0.22 VCC = 2.2 V VCC = 3 V 0.22 0.30 0.36 0.22 0.28 0.34 VCC = 2.2 V VCC = 3 V 0.37 0.49 0.59 0.37 0.47 0.56 VCC = 2.2 V VCC = 3 V 0.61 0.77 0.93 0.61 0.75 0.90 VCC = 2.2 V VCC = 3 V 1 1.2 1.5 1 1.3 1.5 VCC = 2.2 V VCC = 3 V Rsel = 7, DCO = 3, MOD = 0, DCOR = 0, TA = 25°C NOM 1.6 1.9 2.2 1.69 2.0 2.29 2.4 2.9 3.4 2.7 3.2 3.65 fDCO40 × 1.7 fDCO40 × 2.1 fDCO40 × 2.5 VCC = 2.2 V VCC = 3 V f(DCO47) Rsel = 4, DCO = 7, MOD = 0, DCOR = 0, TA = 25°C VCC = 2.2 V/3 V f(DCO77) Rsel = 7, DCO = 7, MOD = 0, DCOR = 0, TA = 25°C VCC = 2.2 V VCC = 3 V S(Rsel) S(DCO) SR = fRsel+1 / fRsel SDCO = fDCO+1 / fDCO VCC = 2.2 V/3 V VCC = 2.2 V/3 V Dt Temperature drift, Rsel = 4, DCO = 3, MOD = 0 (see Note 2) VCC = 2.2 V VCC = 3 V DV Drift with VCC variation, Rsel = 4, DCO = 3, MOD = 0 (see Note 2) VCC = 2.2 V/3 V 4 4.5 4.9 4.4 4.9 5.4 1.35 1.65 2 1.07 1.12 1.16 −0.31 −0.36 −0.40 −0.33 −0.38 −0.43 0 5 10 MHz MHz MHz MHz MHz MHz MHz MHz MHz MHz %/°C %/V Frequency Variance NOTES: 1. The DCO frequency may not exceed the maximum system frequency defined by parameter processor frequency, f(System). 2. This parameter is not production tested. Max f DCO_7 Min Max f DCO_0 Min ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ 1 f DCOCLK ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ 2.2 3 VCC − V 0 1 Figure 12. DCO Characteristics 32 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 2 3 4 5 6 7 DCO SLAS272F − JULY 2000 − REVISED JUNE 2004 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) main DCO characteristics D Individual devices have a minimum and maximum operation frequency. The specified parameters for fDCOx0 to fDCOx7 are valid for all devices. D All ranges selected by Rsel(n) overlap with Rsel(n+1): Rsel0 overlaps with Rsel1, ... Rsel6 overlaps with Rsel7. D DCO control bits DCO0, DCO1, and DCO2 have a step size as defined by parameter SDCO. D Modulation control bits MOD0 to MOD4 select how often fDCO+1 is used within the period of 32 DCOCLK cycles. The frequency f(DCO) is used for the remaining cycles. The frequency is an average equal to f(DCO) × (2MOD/32 ). DCO when using ROSC (see Note 1) PARAMETER TEST CONDITIONS fDCO, DCO output frequency Rsel = 4, DCO = 3, MOD = 0, DCOR = 1, TA = 25°C Dt, Temperature drift Rsel = 4, DCO = 3, MOD = 0, DCOR = 1 VCC 2.2 V MIN NOM MAX 1.8±15% 3V UNIT MHz 1.95±15% MHz ±0.1 %/°C 10 %/V 2.2 V/3 V Dv, Drift with VCC variation Rsel = 4, DCO = 3, MOD = 0, DCOR = 1 2.2 V/3 V NOTES: 1. ROSC = 100kΩ. Metal film resistor, type 0257. 0.6 watt with 1% tolerance and TK = ±50ppm/°C. crystal oscillator, LFXT1 oscillator (see Note 1) PARAMETER CXIN CXOUT VIL VIH Integrated input capacitance Integrated output capacitance Input levels at XIN TEST CONDITIONS MIN NOM XTS=0; LF oscillator selected VCC = 2.2 V/3 V XTS=1; XT1 oscillator selected VCC = 2.2 V/3 V UNIT 12 pF 2 XTS=0; LF oscillator selected VCC = 2.2 V/3 V 12 pF XTS=1; XT1 oscillator selected VCC = 2.2 V/3 V VCC = 2.2 V/3 V (see Note 2) MAX 2 VSS 0.8 × VCC 0.2 × VCC V VCC V NOTES: 1. The oscillator needs capacitors at both terminals, with values specified by the crystal manufacturer. 2. Applies only when using an external logic-level clock source. Not applicable when using a crystal or resonator. crystal oscillator, XT2 oscillator (see Note 1) PARAMETER CXT2IN Input capacitance CXT2OUT Output capacitance VIL VIH Input levels at XT2IN TEST CONDITIONS MIN NOM VCC = 2.2 V/3 V VCC = 2.2 V/3 V MAX 2 pF 2 VCC = 2.2 V/3 V (see Note 2) VSS 0.8 × VCC UNIT pF 0.2 × VCC V VCC V NOTES: 1. The oscillator needs capacitors at both terminals, with values specified by the crystal manufacturer. 2. Applies only when using an external logic-level clock source. Not applicable when using a crystal or resonator. USART0, USART1 (see Note 1) PARAMETER t(τ) ( ) USART0/1: deglitch time TEST CONDITIONS VCC = 2.2 V VCC = 3 V MIN NOM MAX 200 430 800 150 280 500 UNIT ns NOTE 1: The signal applied to the USART0/1 receive signal/terminal (URXD0/1) should meet the timing requirements of t(τ) to ensure that the URXS flip-flop is set. The URXS flip-flop is set with negative pulses meeting the minimum-timing condition of t(τ). The operating conditions to set the flag must be met independently from this timing constraint. The deglitch circuitry is active only on negative transitions on the URXD0/1 line. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 33 SLAS272F − JULY 2000 − REVISED JUNE 2004 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit ADC, power supply and input range conditions (see Note 1) PARAMETER TEST CONDITIONS MIN AVCC Analog supply voltage AVCC and DVCC are connected together AVSS and DVSS are connected together V(AVSS) = V(DVSS) = 0 V V(P6.x/Ax) Analog input voltage range (see Note 2) All P6.0/A0 to P6.7/A7 terminals. Analog inputs selected in ADC12MCTLx register and P6Sel.x=1 0 ≤ x ≤ 7; V(AVSS) ≤ VP6.x/Ax ≤ V(AVCC) IADC12 Operating supply current into AVCC terminal (see Note 3) fADC12CLK = 5.0 MHz ADC12ON = 1, REFON = 0 SHT0=0, SHT1=0, ADC12DIV=0 Operating supply current into AVCC terminal (see Note 4) IREF+ CI † Input capacitance fADC12CLK = 5.0 MHz ADC12ON = 0, REFON = 1, REF2_5V = 1 fADC12CLK = 5.0 MHz ADC12ON = 0, REFON = 1, REF2_5V = 0 Only one terminal can be selected at one time, P6.x/Ax NOM MAX UNIT 2.2 3.6 V 0 VAVCC V 2.2 V 0.65 1.3 3V 0.8 1.6 3V 0.5 0.8 2.2 V 0.5 0.8 3V 0.5 0.8 mA mA mA 2.2 V 40 pF RI† Input MUX ON resistance 0V ≤ VAx ≤ VAVCC 3V 2000 Ω † Not production tested, limits verified by design NOTES: 1. The leakage current is defined in the leakage current table with P6.x/Ax parameter. 2. The analog input voltage range must be within the selected reference voltage range VR+ to VR− for valid conversion results. 3. The internal reference supply current is not included in current consumption parameter IADC12. 4. The internal reference current is supplied via terminal AVCC. Consumption is independent of the ADC12ON control bit, unless a conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion. 12-bit ADC, external reference (see Note 1) PARAMETER TEST CONDITIONS MIN NOM MAX UNIT VeREF+ Positive external reference voltage input VeREF+ > VREF−/VeREF− (see Note 2) 1.4 VAVCC V VREF− /VeREF− Negative external reference voltage input VeREF+ > VREF−/VeREF− (see Note 3) 0 1.2 V (VeREF+ − VREF−/VeREF−) Differential external reference voltage input VeREF+ > VREF−/VeREF− (see Note 4) 1.4 VAVCC V IVeREF+ IVREF−/VeREF− Static input current 0V ≤VeREF+ ≤ VAVCC ±1 µA 2.2 V/3 V Static input current 0V ≤ VeREF− ≤ VAVCC 2.2 V/3 V ±1 µA NOTES: 1. The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, Ci, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy. 2. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements. 3. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements. 4. The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements. 34 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS272F − JULY 2000 − REVISED JUNE 2004 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit ADC, built-in reference PARAMETER Positive built-in reference voltage output VREF+ AVCC(min) AVCC minimum voltage, Positive built-in reference active IVREF+ Load current out of VREF+ terminal Load-current regulation VREF+ terminal IL(VREF)+ † TEST CONDITIONS REF2_5V = 1 for 2.5 V IVREF+ ≤ IVREF+max 3V REF2_5V = 0 for 1.5 V IVREF+ ≤ IVREF+max 2.2 V/3 V MIN NOM MAX 2.4 2.5 2.6 1.44 1.5 1.56 UNIT V REF2_5V = 0, IVREF+ ≤ 1mA 2.2 REF2_5V = 1, IVREF+ ≤ 0.5mA V VREF+ + 0.15 REF2_5V = 1, IVREF+ ≤ 1mA VREF+ + 0.15 2.2 V 0.01 −0.5 mA 3V −1 2.2 V ±2 3V ±2 IVREF+ = 500 µA ± 100 µA Analog input voltage ~1.25 V; REF2_5V = 1 3V ±2 LSB 20 ns IVREF+ = 500 µA +/− 100 µA Analog input voltage ~0.75 V; REF2_5V = 0 IDL(VREF) +‡ Load current regulation VREF+ terminal IVREF+ =100 µA → 900 µA, CVREF+=5 µF, ax ~0.5 x VREF+ Error of conversion result ≤ 1 LSB 3V CVREF+ Capacitance at pin VREF+ (see Note 1) REFON =1, 0 mA ≤ IVREF+ ≤ IVREF+max 2.2 V/3 V TREF+† Temperature coefficient of built-in reference IVREF+ is a constant in the range of 0 mA ≤ IVREF+ ≤ 1 mA 2.2 V/3 V tREFON† Settle time of internal reference voltage (see Figure 13 and Note 2) IVREF+ = 0.5 mA, CVREF+ = 10 µF, VREF+ = 1.5 V, VAVCC = 2.2 V 5 LSB µF 10 ±100 ppm/°C 17 ms † Not production tested, limits characterized ‡ Not production tested, limits verified by design NOTES: 1. The internal buffer operational amplifier and the accuracy specifications require an external capacitor. All INL and DNL tests uses two capacitors between pins VREF+ and AVSS and VREF−/VeREF− and AVSS: 10 µF tantalum and 100 nF ceramic. NOTES: 2. The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB. The settling time depends on the external capacitive load. CVREF+ 100 µF tREFON ≈ .66 x CVREF+ [ms] with CVREF+ in µF 10 µF 1 µF 0 1 ms 10 ms 100 ms tREFON Figure 13. Typical Settling Time of Internal Reference tREFON vs External Capacitor on VREF+ POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 35 SLAS272F − JULY 2000 − REVISED JUNE 2004 DVCC From Power Supply + − 10 µ F DVSS 100 nF AVCC + − 10 µ F Apply External Reference [VeREF+] or Use Internal Reference [VREF+] AVSS 10 µ F VREF+ or VeREF+ 100 nF VREF−/VeREF− + − 10 µ F MSP430F14x 100 nF + − Apply External Reference MSP430F13x 100 nF Figure 14. Supply Voltage and Reference Voltage Design VREF−/VeREF− External Supply From Power Supply DVCC + − 10 µ F DVSS 100 nF AVCC + − Apply External Reference [VeREF+] or Use Internal Reference [VREF+] 10 µ F AVSS MSP430F14x 100 nF VREF+ or VeREF+ + − 10 µ F MSP430F13x 100 nF Reference Is Internally Switched to AVSS VREF−/VeREF− Figure 15. Supply Voltage and Reference Voltage Design VREF−/VeREF− = AVSS, Internally Connected 36 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS272F − JULY 2000 − REVISED JUNE 2004 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit ADC, timing parameters PARAMETER TEST CONDITIONS fADC12CLK fADC12OSC Internal ADC12 oscillator MIN NOM 5 MAX UNIT 6.3 MHz For specified performance of ADC12 linearity parameters 2.2V/ 3V 0.45 ADC12DIV=0, fADC12CLK=fADC12OSC 2.2 V/ 3V 3.7 6.3 MHz CVREF+ ≥ 5 µF, Internal oscillator, fADC12OSC = 3.7 MHz to 6.3 MHz 2.2 V/ 3V 2.06 3.51 µs tCONVERT Conversion time tADC12ON‡ Turn on settling time of the ADC (see Note 1) tSample‡ Sampling time RS = 400 Ω, RI = 1000 Ω, CI = 30 pF τ = [RS + RI] x CI;(see Note 2) External fADC12CLK from ACLK, MCLK or SMCLK: ADC12SSEL ≠ 0 13×ADC12DIV× 1/fADC12CLK µs 100 3V 1220 2.2 V 1400 ns ns † Not production tested, limits characterized ‡ Not production tested, limits verified by design NOTES: 1. The condition is that the error in a conversion started after tADC12ON is less than ±0.5 LSB. The reference and input signal are already settled. 2. Approximately ten Tau (τ) are needed to get an error of less than ±0.5 LSB: tSample = ln(2n+1) x (RS + RI) x CI+ 800 ns where n = ADC resolution = 12, RS = external source resistance. 12-bit ADC, linearity parameters PARAMETER EI Integral linearity error ED Differential linearity error EO Offset error EG Gain error ET Total unadjusted error TEST CONDITIONS 1.4 V ≤ (VeREF+ − VREF−/VeREF−) min ≤ 1.6 V 1.6 V < (VeREF+ − VREF−/VeREF−) min ≤ [V(AVCC)] (VeREF+ − VREF−/VeREF−)min ≤ (VeREF+ − VREF−/VeREF−), CVREF+ = 10 µF (tantalum) and 100 nF (ceramic) (VeREF+ − VREF−/VeREF−)min ≤ (VeREF+ − VREF−/VeREF−), Internal impedance of source RS < 100 Ω, CVREF+ = 10 µF (tantalum) and 100 nF (ceramic) (VeREF+ − VREF−/VeREF−)min ≤ (VeREF+ − VREF−/VeREF−), CVREF+ = 10 µF (tantalum) and 100 nF (ceramic) (VeREF+ − VREF−/VeREF−)min ≤ (VeREF+ − VREF−/VeREF−), CVREF+ = 10 µF (tantalum) and 100 nF (ceramic) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MIN NOM MAX ±2 UNIT 2.2 V/3 V ±1.7 LSB 2.2 V/3 V ±1 LSB 2.2 V/3 V ±2 ±4 LSB 2.2 V/3 V ±1.1 ±2 LSB 2.2 V/3 V ±2 ±5 LSB 37 SLAS272F − JULY 2000 − REVISED JUNE 2004 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) 12-bit ADC, temperature sensor and built-in VMID PARAMETER TEST CONDITIONS MIN NOM MAX REFON = 0, INCH = 0Ah, ADC12ON=NA, TA = 25_C 2.2 V 40 120 3V 60 160 VSENSOR† ADC12ON = 1, INCH = 0Ah, TA = 0°C 2.2 V 986 986±5% 3V 986 986±5% TCSENSOR† 2.2 V 3.55 3.55±3% ADC12ON = 1, INCH = 0Ah 3V 3.55 3.55±3% ISENSOR Operating supply current into AVCC terminal (see Note 1) 2.2 V 30 3V 30 tSENSOR(sample)† Sample time required if channel 10 is selected (see Note 2) ADC12ON = 1, INCH = 0Ah, Error of conversion result ≤ 1 LSB IVMID Current into divider at channel 11 (see Note 3) ADC12ON = 1, INCH = 0Bh 1.1 1.1±0.04 AVCC divider at channel 11 ADC12ON = 1, INCH = 0Bh, VMID is ~0.5 x VAVCC 2.2 V VMID 3V 1.5 1.50±0.04 tVMID(sample) Sample time required if channel 11 is selected (see Note 4) ADC12ON = 1, INCH = 0Bh, Error of conversion result ≤ 1 LSB 2.2 V 1400 3V 1220 UNIT µA A mV mV/°C µss 2.2 V NA 3V NA A µA V ns † Not production tested, limits characterized NOTES: 1. The sensor current ISENSOR is consumed if (ADC12ON = 1 and REFON=1), or (ADC12ON=1 AND INCH=0Ah and sample signal is high). Therefore it includes the constant current through the sensor and the reference. 2. The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on). 3. No additional current is needed. The VMID is used during sampling. 4. The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed. 38 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS272F − JULY 2000 − REVISED JUNE 2004 electrical characteristics over recommended operating free-air temperature (unless otherwise noted) (continued) Flash Memory TEST CONDITIONS PARAMETER VCC(PGM/ ERASE) VCC MIN NOM MAX UNIT Program and Erase supply voltage 2.7 3.6 V fFTG IPGM Flash Timing Generator frequency 257 476 kHz Supply current from DVCC during program 2.7 V/ 3.6 V 3 5 mA IERASE tCPT Supply current from DVCC during erase 2.7 V/ 3.6 V 3 7 mA Cumulative program time see Note 1 2.7 V/ 3.6 V 4 ms tCMErase Cumulative mass erase time see Note 2 2.7 V/ 3.6 V Program/Erase endurance TJ = 25°C 200 104 ms 105 tRetention Data retention duration tWord tBlock, 0 Word or byte program time Block program time for 1st byte or word tBlock, 1-63 tBlock, End Block program time for each additional byte or word tMass Erase tSeg Erase Mass erase time 5297 Segment erase time 4819 Block program end-sequence wait time cycles 100 years 35 30 21 see Note 3 tFTG 6 NOTES: 1. The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming methods: individual word/byte write and block write modes. 2. The mass erase duration generated by the flash timing generator is at least 11.1ms ( = 5297x1/fFTG,max = 5297x1/476kHz). To achieve the required cumulative mass erase time the Flash Controller’s mass erase operation can be repeated until this time is met. (A worst case minimum of 19 cycles are required). 3. These values are hardwired into the Flash Controller’s state machine (tFTG = 1/fFTG). JTAG Interface TEST CONDITIONS PARAMETER fTCK TCK input frequency see Note 1 RInternal Internal pull-up resistance on TMS, TCK, TDI/TCLK see Note 2 VCC MIN 2.2 V 0 NOM MAX UNIT 5 MHz 3V 0 10 MHz 2.2 V/ 3 V 25 60 90 kΩ MIN NOM MAX NOTES: 1. fTCK may be restricted to meet the timing requirements of the module selected. 2. TMS, TDI/TCLK, and TCK pull-up resistors are implemented in all versions. JTAG Fuse (see Note 1) TEST CONDITIONS PARAMETER VCC(FB) VFB Supply voltage during fuse-blow condition IFB tFB Supply current into TDI/TCLK during fuse blow TA = 25°C Voltage level on TDI/TCLK for fuse-blow: F versions VCC 2.5 6 Time to blow fuse UNIT V 7 V 100 mA 1 ms NOTES: 1. Once the fuse is blown, no further access to the MSP430 JTAG/Test and emulation features is possible. The JTAG block is switched to bypass mode. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 39 SLAS272F − JULY 2000 − REVISED JUNE 2004 APPLICATION INFORMATION input/output schematic port P1, P1.0 to P1.7, input/output with Schmitt-trigger P1SEL.x 0 P1DIR.x Direction Control From Module 1 Pad Logic P1.0/TACLK .. 0 P1OUT.x Module X OUT 1 P1.7/TA2 P1IN.x EN Module X IN D P1IRQ.x P1IE.x Q P1IFG.x EN Set Interrupt Flag Interrupt Edge Select P1IES.x P1SEL.x PnSel.x PnDIR.x Dir. CONTROL FROM MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN PnIE.x PnIFG.x PnIES.x P1Sel.0 P1DIR.0 P1DIR.0 P1OUT.0 DVSS P1IN.0 P1IE.0 P1IFG.0 P1IES.0 P1IN.1 TACLK† CCI0A† P1IE.1 P1IFG.1 P1IES.1 P1IE.2 P1IFG.2 P1IES.2 P1Sel.1 P1DIR.1 P1DIR.1 P1OUT.1 P1Sel.2 P1DIR.2 P1DIR.2 P1OUT.2 Out0 signal† Out1 signal† P1Sel.3 P1DIR.3 P1DIR.3 P1OUT.3 Out2 signal† P1IN.3 CCI1A† CCI2A† P1IE.3 P1IFG.3 P1IES.3 P1Sel.4 P1DIR.4 P1DIR.4 P1OUT.4 SMCLK P1IN.4 unused P1IE.4 P1IFG.4 P1IES.4 P1Sel.5 P1DIR.5 P1DIR.5 P1OUT.5 P1IN.5 unused P1IE.5 P1IFG.5 P1IES.5 P1Sel.6 P1DIR.6 P1DIR.6 P1OUT.6 Out0 signal† Out1 signal† P1IN.6 unused P1IE.6 P1IFG.6 P1IES.6 P1Sel.7 P1DIR.7 P1DIR.7 P1OUT.7 Out2 signal† P1IN.7 unused P1IE.7 P1IFG.7 P1IES.7 P1IN.2 † Signal from or to Timer_A 40 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS272F − JULY 2000 − REVISED JUNE 2004 APPLICATION INFORMATION input/output schematic (continued) port P2, P2.0 to P2.2, P2.6, and P2.7 input/output with Schmitt-trigger P2SEL.x 0 P2DIR.x Direction Control From Module 0: Input 1: Output 1 0 P2OUT.x Module X OUT 1 P2.0/ACLK P2.1/TAINCLK P2.2/CAOUT/TA0 Pad Logic P2.6/ADC12CLK P2.7/TA0 P2IN.x EN Module X IN P2IRQ.x Bus Keeper D P2IE.x P2IFG.x Set Interrupt Flag CAPD.X Interrupt Edge Select EN Q P2IES.x P2SEL.x x: Bit Identifier 0 to 2, 6, and 7 for Port P2 PnSel.x PnDIR.x Dir. CONTROL FROM MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN PnIE.x PnIFG.x PnIES.x P2Sel.0 P2DIR.0 P2DIR.0 P2OUT.0 ACLK P2IN.0 P2IE.0 P2IFG.0 P2IES.0 P2Sel.1 P2DIR.1 P2DIR.1 P2OUT.1 P2IN.1 P2IE.1 P2IFG.1 P2IES.1 P2Sel.2 P2DIR.2 P2DIR.2 P2OUT.2 DVSS CAOUT† unused INCLK‡ P2IN.2 CCI0B‡ P2IE.2 P2IFG.2 P2IES.2 P2Sel.6 P2DIR.6 P2DIR.6 P2OUT.6 ADC12CLK¶ Out0 signal§ P2IN.6 unused P2IE.6 P2IFG.6 P2IES.6 P2IN.7 unused P2IE.7 P2IFG.7 P2IES.7 P2Sel.7 P2DIR.7 P2DIR.7 P2OUT.7 † Signal from Comparator_A ‡ Signal to Timer_A § Signal from Timer_A ¶ ADC12CLK signal is output of the 12-bit ADC module POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 41 SLAS272F − JULY 2000 − REVISED JUNE 2004 APPLICATION INFORMATION input/output schematic (continued) port P2, P2.3 to P2.4, input/output with Schmitt-trigger P2SEL.3 0: Input 1: Output 0 P2DIR.3 Direction Control From Module 1 Pad Logic P2.3/CA0/TA1 0 P2OUT.3 Module X OUT 1 P2IN.3 EN Module X IN Bus Keeper D P2IRQ.3 P2IE.3 P2IFG.3 EN Set Q Interrupt Flag Interrupt Edge Select CAPD.3 Comparator_A CAEX P2CA P2IES.3 P2SEL.3 CAREF CAF + CCI1B To Timer_A3 − P2SEL.4 P2IES.4 Interrupt Flag P2IFG.4 P2IRQ.4 Set EN Q P2IE.4 CAREF Reference Block Edge Select Interrupt CAPD.4 D Module X IN Bus Keeper EN P2IN.4 Module X OUT P2OUT.4 From Module Direction Control P2DIR.4 1 0 1 P2.4/CA1/TA2 Pad Logic 1: Output 0: Input 0 P2SEL.4 PnSel.x PnDIR.x DIRECTION CONTROL FROM MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN PnIE.x PnIFG.x PnIES.x P2Sel.3 P2DIR.3 P2DIR.3 P2OUT.3 P2IN.3 unused P2IE.3 P2IFG.3 P2IES.3 P2Sel.4 P2DIR.4 † Signal from Timer_A P2DIR.4 P2OUT.4 Out1 signal† Out2 signal† P2IN.4 unused P2IE.4 P2IFG.4 P2IES.4 42 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS272F − JULY 2000 − REVISED JUNE 2004 APPLICATION INFORMATION input/output schematic (continued) port P2, P2.5, input/output with Schmitt-trigger and Rosc function for the basic clock module 0: Input 1: Output P2SEL.5 0 P2DIR.5 Direction Control From Module Pad Logic 1 P2.5/Rosc 0 P2OUT.5 Module X OUT 1 Bus Keeper P2IN.5 EN Module X IN P2IRQ.5 D P2IE.5 Q P2IFG.5 EN Set Interrupt Flag VCC Edge Select Interrupt Internal to Basic Clock Module 0 1 to P2IES.5 P2SEL.5 DCOR DC Generator CAPD.5 DCOR: Control Bit From Basic Clock Module If it Is Set, P2.5 Is Disconnected From P2.5 Pad PnSel.x PnDIR.x DIRECTION CONTROL FROM MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN PnIE.x PnIFG.x PnIES.x P2Sel.5 P2DIR.5 P2DIR.5 P2OUT.5 DVSS P2IN.5 unused P2IE.5 P2IFG.5 P2IES.5 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 43 SLAS272F − JULY 2000 − REVISED JUNE 2004 APPLICATION INFORMATION input/output schematic (continued) port P3, P3.0 and P3.4 to P3.7, input/output with Schmitt-trigger P3SEL.x 0: Input 1: Output 0 P3DIR.x Direction Control From Module 1 Pad Logic P3OUT.x Module X OUT 0 P3.0/STE0 1 P3.4/UTXD0 P3.5/URXD0 P3.6/UTXD1‡ P3.7/URXD1¶ P3IN.x EN D Module X IN x: Bit Identifier, 0 and 4 to 7 for Port P3 PnSel.x PnDIR.x P3Sel.0 P3DIR.0 P3Sel.4 P3DIR.4 P3Sel.5 P3DIR.5 P3Sel.6 P3DIR.6 DIRECTION CONTROL FROM MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN DVSS DVCC P3OUT.0 DVSS UTXD0† P3IN.0 STE0 P3IN.4 DVSS DVCC P3OUT.5 DVSS UTXD1‡ P3IN.5 Unused URXD0§ DVSS P3IN.7 P3OUT.4 P3OUT.6 P3Sel.7 P3DIR.7 DVSS P3OUT.7 † Output from USART0 module ‡ Output from USART1 module in x14x(1) configuration, DVSS in x13x configuration § Input to USART0 module ¶ Input to USART1 module in x14x(1) configuration, unused in x13x configuration 44 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P3IN.6 Unused URXD1¶ SLAS272F − JULY 2000 − REVISED JUNE 2004 APPLICATION INFORMATION input/output schematic (continued) port P3, P3.1, input/output with Schmitt-trigger P3SEL.1 SYNC MM STC STE 0 P3DIR.1 0: Input 1: Output 1 DCM_SIMO Pad Logic P3.1/SIMO0 0 P3OUT1 (SI)MO0 From USART0 1 P3IN.1 EN SI(MO)0 To USART0 D port P3, P3.2, input/output with Schmitt-trigger P3SEL.2 SYNC MM STC STE 0 P3DIR.2 0: Input 1: Output 1 DCM_SOMI Pad Logic P3.2/SOMI0 0 P3OUT.2 SO(MI)0 From USART0 1 P3IN.2 EN (SO)MI0 To USART0 D POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 45 SLAS272F − JULY 2000 − REVISED JUNE 2004 APPLICATION INFORMATION input/output schematic (continued) port P3, P3.3, input/output with Schmitt-trigger P3SEL.3 SYNC MM STC STE 0 P3DIR.3 0: Input 1: Output 1 DCM_UCLK Pad Logic P3.3/UCLK0 0 P3OUT.3 UCLK.0 From USART0 1 P3IN.3 EN UCLK0 D To USART0 NOTE: UART mode: The UART clock can only be an input. If UART mode and UART function are selected, the P3.3/UCLK0 is always an input. SPI, slave mode: The clock applied to UCLK0 is used to shift data in and out. SPI, master mode: The clock to shift data in and out is supplied to connected devices on pin P3.3/UCLK0 (in slave mode). 46 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS272F − JULY 2000 − REVISED JUNE 2004 APPLICATION INFORMATION input/output schematic (continued) port P4, P4.0 to P4.6, input/output with Schmitt-trigger P4SEL.x 0 P4DIR.x Direction Control From Module Module X IN 0: Input 1: Output 1 w Pad Logic P5SEL.7 P4OUT.x Module X OUT 0 P4.0/TB0 .. 1 P4.6/TB6 TBOUTHiZ Bus Keeper P4IN.x EN Module X IN D x: bit identifier, 0 to 6 for Port P4 PnSel.x PnDIR.x DIRECTION CONTROL FROM MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN P4Sel.0 P4DIR.0 P4DIR.0 P4OUT.0 P4DIR.1 P4DIR.1 P4OUT.1 Out0 signal† Out1 signal† P4IN.0 P4Sel.1 P4IN.1 CCI0A / CCI0B‡ CCI1A / CCI1B‡ P4Sel.2 P4DIR.2 P4DIR.2 P4OUT.2 Out2 signal† P4IN.2 CCI2A / CCI2B‡ P4Sel.3 P4DIR.3 P4DIR.3 P4OUT.3 P4DIR.4 P4DIR.4 P4OUT.4 Out3 signal† Out4 signal† P4IN.3 P4Sel.4 CCI3A / CCI3B‡ CCI4A / CCI4B‡ P4Sel.5 P4DIR.5 P4DIR.5 P4OUT.5 P4IN.5 P4DIR.6 P4DIR.6 P4OUT.6 Out5 signal† Out6 signal† P4Sel.6 † Signal from Timer_B ‡ Signal to Timer_B § From P5.7 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 P4IN.4 P4IN.6 CCI5A / CCI5B‡ CCI6A‡ 47 SLAS272F − JULY 2000 − REVISED JUNE 2004 APPLICATION INFORMATION input/output schematic (continued) port P4, P4.7, input/output with Schmitt-trigger P4SEL.7 0: Input 1: Output 0 P4DIR.7 1 Pad Logic P4.7/TBCLK 0 P4OUT.7 DVSS 1 P4IN.7 EN Timer_B, D TBCLK port P5, P5.0 and P5.4 to P5.7, input/output with Schmitt-trigger P5SEL.x 0: Input 1: Output 0 P5DIR.x Direction Control From Module 1 Pad Logic P5OUT.x Module X OUT 0 P5.0/STE1 1 P5.4/MCLK P5.5/SMCLK P5.6/ACLK P5.7/TBOUTH P5IN.x EN Module X IN D x: Bit Identifier, 0 and 4 to 7 for Port P5 PnSel.x PnDIR.x Dir. CONTROL FROM MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN P5Sel.0 P5DIR.0 STE.1 P5OUT.4 DVSS MCLK P5IN.0 P5DIR.4 P5IN.4 unused P5Sel.5 P5DIR.5 DVSS DVCC DVCC P5OUT.0 P5Sel.4 P5OUT.5 SMCLK P5IN.5 unused P5Sel.6 P5DIR.6 P5OUT.6 ACLK P5IN.6 unused P5Sel.7 P5DIR.7 DVCC DVSS P5OUT.7 DVSS P5IN.7 TBOUTHiZ NOTE: TBOUTHiZ signal is used by port module P4, pins P4.0 to P4.6. The function of TBOUTHiZ is mainly useful when used with Timer_B7. 48 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS272F − JULY 2000 − REVISED JUNE 2004 APPLICATION INFORMATION input/output schematic (continued) port P5, P5.1, input/output with Schmitt-trigger P5SEL.1 SYNC MM 0 P5DIR.1 1 DCM_SIMO STC STE 0: Input 1: Output Pad Logic P5.1/SIMO1 0 P5OUT.1 (SI)MO1 From USART1 1 P5IN.1 EN SI(MO)1 To USART1 D port P5, P5.2, input/output with Schmitt-trigger P5SEL.2 SYNC MM STC STE 0 P5DIR.2 0: Input 1: Output 1 DCM_SOMI Pad Logic P5.2/SOMI1 0 P5OUT.2 SO(MI)1 From USART1 1 P5IN.2 EN (SO)MI1 To USART1 D POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 49 SLAS272F − JULY 2000 − REVISED JUNE 2004 APPLICATION INFORMATION input/output schematic (continued) port P5, P5.3, input/output with Schmitt-trigger P5SEL.3 SYNC MM STC STE 0 P5DIR.3 0: Input 1: Output 1 DCM_SIMO Pad Logic P5.3/UCLK1 0 P5OUT.3 UCLK1 From USART1 1 P5IN.3 EN D UCLK1 To USART1 NOTE: UART mode: The UART clock can only be an input. If UART mode and UART function are selected, the P5.3/UCLK1 direction is always input. SPI, slave mode: The clock applied to UCLK1 is used to shift data in and out. SPI, master mode: The clock to shift data in and out is supplied to connected devices on pin P5.3/UCLK1 (in slave mode). 50 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS272F − JULY 2000 − REVISED JUNE 2004 APPLICATION INFORMATION input/output schematic (continued) port P6, P6.0 to P6.7, input/output with Schmitt-trigger P6SEL.x 0 P6DIR.x Direction Control From Module 0: Input 1: Output 1 Pad Logic P6.0 .. P6.7 0 P6OUT.x Module X OUT 1 Bus Keeper P6IN.x EN Module X IN D Note: Not implemented in the MSP430x14x1 devices From ADC To ADC x: Bit Identifier, 0 to 7 for Port P6 NOTE: Analog signals applied to digital gates can cause current flow from the positive to the negative terminal. The throughput current flows if the analog signal is in the range of transitions 0→1 or 1→0. The value of the throughput current depends on the driving capability of the gate. For MSP430, it is approximately 100 µA. Use P6SEL.x=1 to prevent throughput current. P6SEL.x should be set, even if the signal at the pin is not being used by the ADC12. PnSel.x PnDIR.x DIR. CONTROL FROM MODULE PnOUT.x MODULE X OUT PnIN.x MODULE X IN P6Sel.0 P6DIR.0 P6DIR.0 P6OUT.0 DVSS P6IN.0 unused P6Sel.1 P6DIR.1 P6DIR.1 P6OUT.1 DVSS P6IN.1 unused P6Sel.2 P6DIR.2 P6DIR.2 P6OUT.2 DVSS P6IN.2 unused P6Sel.3 P6DIR.3 P6DIR.3 P6OUT.3 DVSS P6IN.3 unused P6Sel.4 P6DIR.4 P6DIR.4 P6OUT.4 DVSS P6IN.4 unused P6Sel.5 P6DIR.5 P6DIR.5 P6OUT.5 DVSS P6IN.5 unused P6Sel.6 P6DIR.6 P6DIR.6 P6OUT.6 DVSS P6IN.6 unused P6Sel.7 P6DIR.7 P6DIR.7 P6OUT.7 DVSS P6IN.7 unused NOTE: The signal at pins P6.x/Ax is used by the 12-bit ADC module. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 51 SLAS272F − JULY 2000 − REVISED JUNE 2004 APPLICATION INFORMATION JTAG pins TMS, TCK, TDI/TCLK, TDO/TDI, input/output with Schmitt-trigger TDO Controlled by JTAG Controlled by JTAG JTAG TDO/TDI Controlled by JTAG DVCC DVCC TDI Fuse Burn & Test Fuse Test TDI/TCLK & Emulation Module DVCC TMS TMS DVCC During Programming Activity and During Blowing of the Fuse, Pin TDO/TDI Is Used to Apply the Test Input Data for JTAG Circuitry TCK TCK 52 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 SLAS272F − JULY 2000 − REVISED JUNE 2004 APPLICATION INFORMATION JTAG fuse check mode MSP430 devices that have the fuse on the TDI/TCLK terminal have a fuse check mode that tests the continuity of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check current, ITF , of 1 mA at 3 V, 2.5 mA at 5 V can flow from the TDI/TCLK pin to ground if the fuse is not burned. Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption. Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if the TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse check mode has the potential to be activated. The fuse check current will only flow when the fuse check mode is active and the TMS pin is in a low state (see Figure 16). Therefore, the additional current flow can be prevented by holding the TMS pin high (default condition). Time TMS Goes Low After POR TMS ITDI/TCLK ITF Figure 16. Fuse Check Mode Current: MSP430F13x, MSP430F14x(1) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 53 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security Telephony www.ti.com/telephony Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright 2005, Texas Instruments Incorporated MECHANICAL DATA MTQF006A – JANUARY 1995 – REVISED DECEMBER 1996 PAG (S-PQFP-G64) PLASTIC QUAD FLATPACK 0,27 0,17 0,50 48 0,08 M 33 49 32 64 17 0,13 NOM 1 16 7,50 TYP Gage Plane 10,20 SQ 9,80 12,20 SQ 11,80 0,25 0,05 MIN 1,05 0,95 0°– 7° 0,75 0,45 Seating Plane 0,08 1,20 MAX 4040282 / C 11/96 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Falls within JEDEC MS-026 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 MECHANICAL DATA MTQF008A – JANUARY 1995 – REVISED DECEMBER 1996 PM (S-PQFP-G64) PLASTIC QUAD FLATPACK 0,27 0,17 0,50 0,08 M 33 48 49 32 64 17 0,13 NOM 1 16 7,50 TYP Gage Plane 10,20 SQ 9,80 12,20 SQ 11,80 0,25 0,05 MIN 0°– 7° 0,75 0,45 1,45 1,35 Seating Plane 0,08 1,60 MAX 4040152 / C 11/96 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Falls within JEDEC MS-026 May also be thermally enhanced plastic with leads connected to the die pads. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters dataconverter.ti.com Automotive www.ti.com/automotive DSP dsp.ti.com Broadband www.ti.com/broadband Interface interface.ti.com Digital Control www.ti.com/digitalcontrol Logic logic.ti.com Military www.ti.com/military Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork Microcontrollers microcontroller.ti.com Security www.ti.com/security Telephony www.ti.com/telephony Video & Imaging www.ti.com/video Wireless www.ti.com/wireless Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright 2005, Texas Instruments Incorporated