NL17SH04 Single Inverter The NL17SH04 is an advanced high speed CMOS inverter fabricated with silicon gate CMOS technology. The internal circuit is composed of multiple stages, including a buffer output which provides high noise immunity and stable output. The NL17SH04 input structure provides protection when voltages up to 7 V are applied, regardless of the supply voltage. This allows the NL17SH04 to be used to interface 5 V circuits to 3 V circuits. http://onsemi.com MARKING DIAGRAM Features • • • • • • High Speed: tPD = 3.5 ns (Typ) at VCC = 5 V Low Power Dissipation: ICC = 1 mA (Max) at TA = 25°C SOT−953 CASE 527AE Power Down Protection Provided on Inputs Balanced Propagation Delays D M Pin and Function Compatible with Other Standard Logic Families DM 1 = Specific Device Code = Month Code These are Pb−Free Devices PIN ASSIGNMENT IN A 1 GND 2 5 VCC 1 IN A 2 GND 3 NC 4 OUT Y 5 VCC FUNCTION TABLE NC 3 OUT Y 4 Figure 1. Pinout (Top View) IN A 1 A Input Y Output L H H L ORDERING INFORMATION OUT Y See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet. Figure 2. Logic Symbol © Semiconductor Components Industries, LLC, 2011 August, 2011 − Rev. 1 1 Publication Order Number: NL17SH04/D NL17SH04 MAXIMUM RATINGS Symbol Parameter Value Unit VCC DC Supply Voltage −0.5 to +7.0 V VIN DC Input Voltage −0.5 to +7.0 V VOUT −0.5 to VCC +0.5 V IIK DC Output Voltage DC Input Diode Current −20 mA IOK DC Output Diode Current ±20 mA IOUT DC Output Current ±25 mA ICC DC Supply Current per Supply Pin 50 mA TSTG −65 to +150 °C TL Storage Temperature Range Lead Temperature, 1 mm from Case for 10 Seconds 260 °C TJ Junction Temperature Under Bias +150 °C PD Power Dissipation in Still Air 50 mW MSL Moisture Sensitivity FR Flammability Rating ILatchup Latchup Performance Level 1 Oxygen Index: 28 to 34 UL 94 V−0 @ 0.125 in Above VCC and Below GND at 125°C (Note 1) mA ±100 Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Tested to EIA/JESD78. RECOMMENDED OPERATING CONDITIONS Symbol Min Max Unit VCC DC Supply Voltage 2.0 5.5 V VIN DC Input Voltage 0.0 5.5 V DC Output Voltage 0.0 VCC V −55 +125 °C 0 0 100 20 ns/V VOUT TA Characteristics Operating Temperature Range tr , tf Input Rise and Fall Time VCC = 3.3 V ± 0.3 V VCC = 5.0 V ± 0.5 V 47.9 100 178,700 20.4 110 79,600 9.4 120 37,000 4.2 130 17,800 2.0 140 8,900 1.0 TJ = 80°C 117.8 419,300 TJ = 90°C 1,032,200 90 TJ = 100°C 80 FAILURE RATE OF PLASTIC = CERAMIC UNTIL INTERMETALLICS OCCUR TJ = 110°C Time, Years TJ = 120°C Time, Hours TJ = 130°C Junction Temperature °C NORMALIZED FAILURE RATE DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1% BOND FAILURES 1 1 10 100 1000 TIME, YEARS Figure 3. Failure Rate vs. Time Junction Temperature http://onsemi.com 2 NL17SH04 DC ELECTRICAL CHARACTERISTICS VCC Symbol Parameter Test Conditions (V) Min 1.5 2.1 3.15 3.85 VIH Minimum High−Level Input Voltage 2.0 3.0 4.5 5.5 VIL Maximum Low−Level Input Voltage 2.0 3.0 4.5 5.5 VOH Minimum High−Level Output Voltage VIN = VIH or VIL VOL Maximum Low−Level Output Voltage VIN = VIH or VIL TA = 255C Typ TA v 855C Max Min 1.5 2.1 3.15 3.85 0.5 0.9 1.35 1.65 VIN = VIH or VIL IOH = *50 mA 2.0 3.0 4.5 1.9 2.9 4.4 VIN = VIH or VIL IOH = *4 mA IOH = *8 mA 3.0 4.5 2.58 3.94 VIN = VIH or VIL IOL = 50 mA 2.0 3.0 4.5 VIN = VIH or VIL IOL = 4 mA IOL = 8 mA Max 2.0 3.0 4.5 0.0 0.0 0.0 *555C to 1255C Min Max 1.5 2.1 3.15 3.85 0.5 0.9 1.35 1.65 V 0.5 0.9 1.35 1.65 1.9 2.9 4.4 1.9 2.9 4.4 2.48 3.80 2.34 3.66 Unit V V 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 3.0 4.5 0.36 0.36 0.44 0.44 0.52 0.52 V IIN Maximum Input Leakage Current VIN = 5.5 V or GND 0 to 5.5 $0.1 $1.0 $1.0 mA ICC Maximum Quiescent Supply Current VIN = VCC or GND 5.5 1.0 10 40 mA ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ ÎÎÎÎ ÎÎÎÎÎÎÎ ÎÎÎÎÎÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎ ÎÎÎÎ ÎÎ ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ AC ELECTRICAL CHARACTERISTICS Input tr = tf = 3.0 ns TA = 25°C Symbol tPLH, tPHL CIN Parameter Maximum Propagation Delay, Input A to Y Min TA ≤ 85°C Typ Max VCC = 3.3 ± 0.3 V CL = 15 pF CL = 50 pF 4.5 6.4 7.1 10.6 VCC = 5.0 ± 0.5 V CL = 15 pF CL = 50 pF 3.5 4.5 4 Test Conditions Maximum Input Capacitance Min Max −55 ≤ TA ≤ 125°C Min Max Unit 8.5 12.0 10.0 14.5 ns 5.5 7.5 6.5 8.5 8.0 10.0 10 10 10 pF Typical @ 25°C, VCC = 5.0 V CPD Power Dissipation Capacitance (Note 2) 8.0 pF 2. CPD is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: ICC(OPR) = CPD VCC fin + ICC. CPD is used to determine the no−load dynamic power consumption; PD = CPD VCC2 fin + ICC VCC. http://onsemi.com 3 NL17SH04 A or B VCC 50% GND tPLH Y tPHL 50% VCC Figure 4. Switching Waveforms OUTPUT INPUT CL* *Includes all probe and jig capacitance. A 1−MHz square input wave is recommended for propagation delay tests. Figure 5. Test Circuit ORDERING INFORMATION Device NL17SH04P5T5G Package Shipping† SOT−953 (Pb−Free) 8000 / Tape & Reel †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. http://onsemi.com 4 NL17SH04 PACKAGE DIMENSIONS SOT−953 CASE 527AE ISSUE E X Y D PIN ONE INDICATOR 5 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. A 4 HE E 1 2 3 DIM A b C D E e HE L L2 L3 C TOP VIEW SIDE VIEW e L 5X 5X L3 MILLIMETERS MIN NOM MAX 0.34 0.37 0.40 0.10 0.15 0.20 0.07 0.12 0.17 0.95 1.00 1.05 0.75 0.80 0.85 0.35 BSC 0.95 1.00 1.05 0.175 REF 0.05 0.10 0.15 −−− −−− 0.15 SOLDERING FOOTPRINT* 5X 0.35 5X 0.20 5X L2 5X BOTTOM VIEW b PACKAGE OUTLINE 0.08 X Y 1.20 1 0.35 PITCH DIMENSIONS: MILLIMETERS *For additional information on our Pb−Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303−675−2175 or 800−344−3860 Toll Free USA/Canada Fax: 303−675−2176 or 800−344−3867 Toll Free USA/Canada Email: [email protected] N. American Technical Support: 800−282−9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81−3−5773−3850 http://onsemi.com 5 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative NL17SH04/D