TE X AS I NS TRUM E NTS - ADVANCE I NFO RMAT ION Stellaris® LM3S9B92 Microcontroller D ATA SH E E T D S -LM 3S 9B 92 - 9 5 3 8 C opyri ght © 2007-2011 Texas Instruments Incor porated Copyright Copyright © 2007-2011 Texas Instruments Incorporated All rights reserved. Stellaris and StellarisWare are registered trademarks of Texas Instruments Incorporated. ARM and Thumb are registered trademarks and Cortex is a trademark of ARM Limited. Other names and brands may be claimed as the property of others. ADVANCE INFORMATION concerns new products in the sampling or preproduction phase of development. Characteristic data and other specifications are subject to change without notice. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Texas Instruments Incorporated 108 Wild Basin, Suite 350 Austin, TX 78746 http://www.ti.com/stellaris http://www-k.ext.ti.com/sc/technical-support/product-information-centers.htm 2 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Table of Contents Revision History ............................................................................................................................. 41 About This Document .................................................................................................................... 50 Audience .............................................................................................................................................. About This Manual ................................................................................................................................ Related Documents ............................................................................................................................... Documentation Conventions .................................................................................................................. 50 50 50 51 1 Architectural Overview .......................................................................................... 53 1.1 1.1.1 1.1.2 1.1.3 1.1.4 1.1.5 1.1.6 1.1.7 1.1.8 1.1.9 1.2 1.3 1.4 Functional Overview ...................................................................................................... 55 ARM Cortex-M3 ............................................................................................................ 55 On-Chip Memory ........................................................................................................... 57 External Peripheral Interface ......................................................................................... 58 Serial Communications Peripherals ................................................................................ 59 System Integration ........................................................................................................ 65 Advanced Motion Control ............................................................................................... 70 Analog .......................................................................................................................... 72 JTAG and ARM Serial Wire Debug ................................................................................ 74 Packaging and Temperature .......................................................................................... 74 Target Applications ........................................................................................................ 74 High-Level Block Diagram ............................................................................................. 75 Hardware Details .......................................................................................................... 77 2 The Cortex-M3 Processor ...................................................................................... 78 2.1 2.2 2.2.1 2.2.2 2.2.3 2.2.4 2.3 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.4 2.4.1 2.4.2 2.4.3 2.4.4 2.4.5 2.4.6 2.4.7 2.5 2.5.1 2.5.2 Block Diagram .............................................................................................................. 79 Overview ...................................................................................................................... 80 System-Level Interface .................................................................................................. 80 Integrated Configurable Debug ...................................................................................... 80 Trace Port Interface Unit (TPIU) ..................................................................................... 81 Cortex-M3 System Component Details ........................................................................... 81 Programming Model ...................................................................................................... 82 Processor Mode and Privilege Levels for Software Execution ........................................... 82 Stacks .......................................................................................................................... 82 Register Map ................................................................................................................ 83 Register Descriptions .................................................................................................... 84 Exceptions and Interrupts .............................................................................................. 97 Data Types ................................................................................................................... 97 Memory Model .............................................................................................................. 97 Memory Regions, Types and Attributes ........................................................................... 99 Memory System Ordering of Memory Accesses ............................................................ 100 Behavior of Memory Accesses ..................................................................................... 100 Software Ordering of Memory Accesses ....................................................................... 101 Bit-Banding ................................................................................................................. 102 Data Storage .............................................................................................................. 104 Synchronization Primitives ........................................................................................... 105 Exception Model ......................................................................................................... 106 Exception States ......................................................................................................... 106 Exception Types .......................................................................................................... 107 March 19, 2011 3 Texas Instruments-Advance Information Table of Contents 2.5.3 2.5.4 2.5.5 2.5.6 2.5.7 2.6 2.6.1 2.6.2 2.6.3 2.6.4 2.7 2.7.1 2.7.2 2.8 Exception Handlers ..................................................................................................... Vector Table ................................................................................................................ Exception Priorities ...................................................................................................... Interrupt Priority Grouping ............................................................................................ Exception Entry and Return ......................................................................................... Fault Handling ............................................................................................................. Fault Types ................................................................................................................. Fault Escalation and Hard Faults .................................................................................. Fault Status Registers and Fault Address Registers ...................................................... Lockup ....................................................................................................................... Power Management .................................................................................................... Entering Sleep Modes ................................................................................................. Wake Up from Sleep Mode .......................................................................................... Instruction Set Summary .............................................................................................. 110 110 111 112 112 114 114 115 116 116 116 116 117 117 3 Cortex-M3 Peripherals ......................................................................................... 121 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.2 3.3 3.4 3.5 3.6 Functional Description ................................................................................................. 121 System Timer (SysTick) ............................................................................................... 121 Nested Vectored Interrupt Controller (NVIC) .................................................................. 122 System Control Block (SCB) ........................................................................................ 124 Memory Protection Unit (MPU) ..................................................................................... 124 Register Map .............................................................................................................. 129 System Timer (SysTick) Register Descriptions .............................................................. 131 NVIC Register Descriptions .......................................................................................... 135 System Control Block (SCB) Register Descriptions ........................................................ 148 Memory Protection Unit (MPU) Register Descriptions .................................................... 177 4 JTAG Interface ...................................................................................................... 187 4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.4 4.5 4.5.1 4.5.2 Block Diagram ............................................................................................................ Signal Description ....................................................................................................... Functional Description ................................................................................................. JTAG Interface Pins ..................................................................................................... JTAG TAP Controller ................................................................................................... Shift Registers ............................................................................................................ Operational Considerations .......................................................................................... Initialization and Configuration ..................................................................................... Register Descriptions .................................................................................................. Instruction Register (IR) ............................................................................................... Data Registers ............................................................................................................ 188 188 189 189 191 191 192 194 195 195 197 5 System Control ..................................................................................................... 199 5.1 5.2 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 5.3 5.4 Signal Description ....................................................................................................... Functional Description ................................................................................................. Device Identification .................................................................................................... Reset Control .............................................................................................................. Non-Maskable Interrupt ............................................................................................... Power Control ............................................................................................................. Clock Control .............................................................................................................. System Control ........................................................................................................... Initialization and Configuration ..................................................................................... Register Map .............................................................................................................. 4 199 199 200 200 205 205 206 213 214 214 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller 5.5 Register Descriptions .................................................................................................. 216 6 Internal Memory ................................................................................................... 302 6.1 6.2 6.2.1 6.2.2 6.2.3 6.3 6.4 6.5 Block Diagram ............................................................................................................ 302 Functional Description ................................................................................................. 302 SRAM ........................................................................................................................ 303 ROM .......................................................................................................................... 303 Flash Memory ............................................................................................................. 305 Register Map .............................................................................................................. 310 Flash Memory Register Descriptions (Flash Control Offset) ............................................ 311 Memory Register Descriptions (System Control Offset) .................................................. 323 7 Micro Direct Memory Access (μDMA) ................................................................ 339 7.1 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 7.2.9 7.2.10 7.3 7.3.1 7.3.2 7.3.3 7.3.4 7.3.5 7.4 7.5 7.6 Block Diagram ............................................................................................................ 340 Functional Description ................................................................................................. 340 Channel Assignments .................................................................................................. 341 Priority ........................................................................................................................ 342 Arbitration Size ............................................................................................................ 342 Request Types ............................................................................................................ 342 Channel Configuration ................................................................................................. 343 Transfer Modes ........................................................................................................... 345 Transfer Size and Increment ........................................................................................ 353 Peripheral Interface ..................................................................................................... 353 Software Request ........................................................................................................ 353 Interrupts and Errors .................................................................................................... 354 Initialization and Configuration ..................................................................................... 354 Module Initialization ..................................................................................................... 354 Configuring a Memory-to-Memory Transfer ................................................................... 354 Configuring a Peripheral for Simple Transmit ................................................................ 356 Configuring a Peripheral for Ping-Pong Receive ............................................................ 357 Configuring Channel Assignments ................................................................................ 360 Register Map .............................................................................................................. 360 μDMA Channel Control Structure ................................................................................. 361 μDMA Register Descriptions ........................................................................................ 368 8 General-Purpose Input/Outputs (GPIOs) ........................................................... 397 8.1 8.2 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5 8.2.6 8.3 8.4 8.5 Signal Description ....................................................................................................... 397 Functional Description ................................................................................................. 402 Data Control ............................................................................................................... 403 Interrupt Control .......................................................................................................... 404 Mode Control .............................................................................................................. 405 Commit Control ........................................................................................................... 405 Pad Control ................................................................................................................. 406 Identification ............................................................................................................... 406 Initialization and Configuration ..................................................................................... 406 Register Map .............................................................................................................. 407 Register Descriptions .................................................................................................. 410 9 External Peripheral Interface (EPI) ..................................................................... 453 9.1 9.2 EPI Block Diagram ...................................................................................................... 454 Signal Description ....................................................................................................... 455 March 19, 2011 5 Texas Instruments-Advance Information Table of Contents 9.3 9.3.1 9.3.2 9.4 9.4.1 9.4.2 9.4.3 9.5 9.6 Functional Description ................................................................................................. Non-Blocking Reads .................................................................................................... DMA Operation ........................................................................................................... Initialization and Configuration ..................................................................................... SDRAM Mode ............................................................................................................. Host Bus Mode ........................................................................................................... General-Purpose Mode ............................................................................................... Register Map .............................................................................................................. Register Descriptions .................................................................................................. 457 458 459 459 460 464 475 483 484 10 General-Purpose Timers ...................................................................................... 526 10.1 10.2 10.3 10.3.1 10.3.2 10.3.3 10.3.4 10.4 10.4.1 10.4.2 10.4.3 10.4.4 10.4.5 10.5 10.6 Block Diagram ............................................................................................................ Signal Description ....................................................................................................... Functional Description ................................................................................................. GPTM Reset Conditions .............................................................................................. Timer Modes ............................................................................................................... DMA Operation ........................................................................................................... Accessing Concatenated Register Values ..................................................................... Initialization and Configuration ..................................................................................... One-Shot/Periodic Timer Mode .................................................................................... Real-Time Clock (RTC) Mode ...................................................................................... Input Edge-Count Mode ............................................................................................... Input Edge Timing Mode .............................................................................................. PWM Mode ................................................................................................................. Register Map .............................................................................................................. Register Descriptions .................................................................................................. 527 527 530 531 531 536 537 537 537 538 538 539 539 540 541 11 Watchdog Timers ................................................................................................. 572 11.1 11.2 11.2.1 11.3 11.4 11.5 Block Diagram ............................................................................................................ Functional Description ................................................................................................. Register Access Timing ............................................................................................... Initialization and Configuration ..................................................................................... Register Map .............................................................................................................. Register Descriptions .................................................................................................. 573 573 574 574 574 575 12 Analog-to-Digital Converter (ADC) ..................................................................... 597 12.1 12.2 12.3 12.3.1 12.3.2 12.3.3 12.3.4 12.3.5 12.3.6 12.3.7 12.4 12.4.1 12.4.2 12.5 12.6 Block Diagram ............................................................................................................ 598 Signal Description ....................................................................................................... 599 Functional Description ................................................................................................. 601 Sample Sequencers .................................................................................................... 601 Module Control ............................................................................................................ 602 Hardware Sample Averaging Circuit ............................................................................. 604 Analog-to-Digital Converter .......................................................................................... 605 Differential Sampling ................................................................................................... 607 Internal Temperature Sensor ........................................................................................ 610 Digital Comparator Unit ............................................................................................... 610 Initialization and Configuration ..................................................................................... 615 Module Initialization ..................................................................................................... 615 Sample Sequencer Configuration ................................................................................. 616 Register Map .............................................................................................................. 616 Register Descriptions .................................................................................................. 618 6 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller 13 Universal Asynchronous Receivers/Transmitters (UARTs) ............................. 676 13.1 Block Diagram ............................................................................................................ 13.2 Signal Description ....................................................................................................... 13.3 Functional Description ................................................................................................. 13.3.1 Transmit/Receive Logic ............................................................................................... 13.3.2 Baud-Rate Generation ................................................................................................. 13.3.3 Data Transmission ...................................................................................................... 13.3.4 Serial IR (SIR) ............................................................................................................. 13.3.5 ISO 7816 Support ....................................................................................................... 13.3.6 Modem Handshake Support ......................................................................................... 13.3.7 LIN Support ................................................................................................................ 13.3.8 FIFO Operation ........................................................................................................... 13.3.9 Interrupts .................................................................................................................... 13.3.10 Loopback Operation .................................................................................................... 13.3.11 DMA Operation ........................................................................................................... 13.4 Initialization and Configuration ..................................................................................... 13.5 Register Map .............................................................................................................. 13.6 Register Descriptions .................................................................................................. 677 677 679 680 680 681 681 682 682 684 685 685 686 686 687 688 689 14 Synchronous Serial Interface (SSI) .................................................................... 737 14.1 14.2 14.3 14.3.1 14.3.2 14.3.3 14.3.4 14.3.5 14.4 14.5 14.6 Block Diagram ............................................................................................................ Signal Description ....................................................................................................... Functional Description ................................................................................................. Bit Rate Generation ..................................................................................................... FIFO Operation ........................................................................................................... Interrupts .................................................................................................................... Frame Formats ........................................................................................................... DMA Operation ........................................................................................................... Initialization and Configuration ..................................................................................... Register Map .............................................................................................................. Register Descriptions .................................................................................................. 15 Inter-Integrated Circuit (I2C) Interface ................................................................ 780 15.1 15.2 15.3 15.3.1 15.3.2 15.3.3 15.3.4 15.3.5 15.4 15.5 15.6 15.7 Block Diagram ............................................................................................................ Signal Description ....................................................................................................... Functional Description ................................................................................................. I2C Bus Functional Overview ........................................................................................ Available Speed Modes ............................................................................................... Interrupts .................................................................................................................... Loopback Operation .................................................................................................... Command Sequence Flow Charts ................................................................................ Initialization and Configuration ..................................................................................... Register Map .............................................................................................................. Register Descriptions (I2C Master) ............................................................................... Register Descriptions (I2C Slave) ................................................................................. 16 Inter-Integrated Circuit Sound (I2S) Interface .................................................... 817 16.1 16.2 16.3 Block Diagram ............................................................................................................ 818 Signal Description ....................................................................................................... 818 Functional Description ................................................................................................. 819 March 19, 2011 738 738 739 740 740 740 741 749 749 751 752 781 781 782 782 784 785 786 787 794 795 796 808 7 Texas Instruments-Advance Information Table of Contents 16.3.1 16.3.2 16.4 16.5 16.6 Transmit ..................................................................................................................... Receive ...................................................................................................................... Initialization and Configuration ..................................................................................... Register Map .............................................................................................................. Register Descriptions .................................................................................................. 821 825 827 828 829 17 Controller Area Network (CAN) Module ............................................................. 853 17.1 Block Diagram ............................................................................................................ 854 17.2 Signal Description ....................................................................................................... 854 17.3 Functional Description ................................................................................................. 855 17.3.1 Initialization ................................................................................................................. 856 17.3.2 Operation ................................................................................................................... 857 17.3.3 Transmitting Message Objects ..................................................................................... 858 17.3.4 Configuring a Transmit Message Object ........................................................................ 858 17.3.5 Updating a Transmit Message Object ........................................................................... 859 17.3.6 Accepting Received Message Objects .......................................................................... 860 17.3.7 Receiving a Data Frame .............................................................................................. 860 17.3.8 Receiving a Remote Frame .......................................................................................... 860 17.3.9 Receive/Transmit Priority ............................................................................................. 861 17.3.10 Configuring a Receive Message Object ........................................................................ 861 17.3.11 Handling of Received Message Objects ........................................................................ 862 17.3.12 Handling of Interrupts .................................................................................................. 864 17.3.13 Test Mode ................................................................................................................... 865 17.3.14 Bit Timing Configuration Error Considerations ............................................................... 867 17.3.15 Bit Time and Bit Rate ................................................................................................... 867 17.3.16 Calculating the Bit Timing Parameters .......................................................................... 869 17.4 Register Map .............................................................................................................. 872 17.5 CAN Register Descriptions .......................................................................................... 873 18 Ethernet Controller .............................................................................................. 903 18.1 18.2 18.3 18.3.1 18.3.2 18.3.3 18.3.4 18.3.5 18.4 18.4.1 18.4.2 18.5 18.6 18.7 Block Diagram ............................................................................................................ 904 Signal Description ....................................................................................................... 905 Functional Description ................................................................................................. 906 MAC Operation ........................................................................................................... 906 Internal MII Operation .................................................................................................. 909 PHY Operation ............................................................................................................ 909 Interrupts .................................................................................................................... 912 DMA Operation ........................................................................................................... 912 Initialization and Configuration ..................................................................................... 913 Hardware Configuration ............................................................................................... 913 Software Configuration ................................................................................................ 914 Register Map .............................................................................................................. 914 Ethernet MAC Register Descriptions ............................................................................. 916 MII Management Register Descriptions ......................................................................... 941 19 Universal Serial Bus (USB) Controller ............................................................... 962 19.1 19.2 19.3 19.3.1 19.3.2 Block Diagram ............................................................................................................ Signal Description ....................................................................................................... Functional Description ................................................................................................. Operation as a Device ................................................................................................. Operation as a Host .................................................................................................... 8 963 963 965 965 970 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller 19.3.3 19.3.4 19.4 19.4.1 19.4.2 19.5 19.6 OTG Mode .................................................................................................................. 974 DMA Operation ........................................................................................................... 976 Initialization and Configuration ..................................................................................... 977 Pin Configuration ......................................................................................................... 977 Endpoint Configuration ................................................................................................ 977 Register Map .............................................................................................................. 978 Register Descriptions .................................................................................................. 989 20 Analog Comparators .......................................................................................... 1101 20.1 20.2 20.3 20.3.1 20.4 20.5 20.6 Block Diagram ........................................................................................................... Signal Description ..................................................................................................... Functional Description ............................................................................................... Internal Reference Programming ................................................................................ Initialization and Configuration .................................................................................... Register Map ............................................................................................................ Register Descriptions ................................................................................................. 1102 1102 1103 1104 1105 1106 1106 21 Pulse Width Modulator (PWM) .......................................................................... 1114 21.1 21.2 21.3 21.3.1 21.3.2 21.3.3 21.3.4 21.3.5 21.3.6 21.3.7 21.3.8 21.4 21.5 21.6 Block Diagram ........................................................................................................... 1115 Signal Description ..................................................................................................... 1116 Functional Description ............................................................................................... 1119 PWM Timer ............................................................................................................... 1119 PWM Comparators .................................................................................................... 1119 PWM Signal Generator .............................................................................................. 1121 Dead-Band Generator ............................................................................................... 1122 Interrupt/ADC-Trigger Selector ................................................................................... 1122 Synchronization Methods .......................................................................................... 1122 Fault Conditions ........................................................................................................ 1123 Output Control Block .................................................................................................. 1124 Initialization and Configuration .................................................................................... 1125 Register Map ............................................................................................................ 1125 Register Descriptions ................................................................................................. 1128 22 Quadrature Encoder Interface (QEI) ................................................................. 1191 22.1 22.2 22.3 22.4 22.5 22.6 Block Diagram ........................................................................................................... Signal Description ..................................................................................................... Functional Description ............................................................................................... Initialization and Configuration .................................................................................... Register Map ............................................................................................................ Register Descriptions ................................................................................................. 23 Pin Diagram ........................................................................................................ 1214 1191 1192 1193 1195 1196 1197 24 Signal Tables ...................................................................................................... 1216 24.1 24.2 24.3 100-Pin LQFP Package Pin Tables ............................................................................. 1217 108-Pin BGA Package Pin Tables ............................................................................... 1253 Connections for Unused Signals ................................................................................. 1291 25 Operating Characteristics ................................................................................. 1293 26 Electrical Characteristics .................................................................................. 1294 26.1 DC Characteristics .................................................................................................... 1294 26.1.1 Maximum Ratings ...................................................................................................... 1294 26.1.2 Recommended DC Operating Conditions .................................................................... 1294 March 19, 2011 9 Texas Instruments-Advance Information Table of Contents 26.1.3 On-Chip Low Drop-Out (LDO) Regulator Characteristics .............................................. 1295 26.1.4 Flash Memory Characteristics .................................................................................... 1295 26.1.5 GPIO Module Characteristics ..................................................................................... 1296 26.1.6 USB Module Characteristics ....................................................................................... 1296 26.1.7 Ethernet Controller Characteristics ............................................................................. 1296 26.1.8 Current Specifications ................................................................................................ 1296 26.2 AC Characteristics ..................................................................................................... 1300 26.2.1 Load Conditions ........................................................................................................ 1300 26.2.2 Clocks ...................................................................................................................... 1300 26.2.3 Power and Brown-out Characteristics ......................................................................... 1302 26.2.4 JTAG and Boundary Scan .......................................................................................... 1304 26.2.5 Reset ........................................................................................................................ 1306 26.2.6 Sleep Modes ............................................................................................................. 1307 26.2.7 General-Purpose I/O (GPIO) ...................................................................................... 1307 26.2.8 External Peripheral Interface (EPI) .............................................................................. 1308 26.2.9 Analog-to-Digital Converter (ADC) .............................................................................. 1313 26.2.10 Synchronous Serial Interface (SSI) ............................................................................. 1314 26.2.11 Inter-Integrated Circuit (I2C) Interface ......................................................................... 1316 26.2.12 Inter-Integrated Circuit Sound (I2S) Interface ............................................................... 1317 26.2.13 Ethernet Controller .................................................................................................... 1318 26.2.14 Universal Serial Bus (USB) Controller ......................................................................... 1321 26.2.15 Analog Comparator ................................................................................................... 1321 A Register Quick Reference ................................................................................. 1323 B Ordering and Contact Information ................................................................... 1376 B.1 B.2 B.3 B.4 Ordering Information .................................................................................................. Part Markings ............................................................................................................ Kits ........................................................................................................................... Support Information ................................................................................................... 1376 1376 1377 1377 C Package Information .......................................................................................... 1378 C.1 C.1.1 C.1.2 C.1.3 C.2 C.2.1 C.2.2 C.2.3 100-Pin LQFP Package ............................................................................................. Package Dimensions ................................................................................................. Tray Dimensions ....................................................................................................... Tape and Reel Dimensions ........................................................................................ 108-Ball BGA Package .............................................................................................. Package Dimensions ................................................................................................. Tray Dimensions ....................................................................................................... Tape and Reel Dimensions ........................................................................................ 10 1378 1378 1380 1380 1382 1382 1384 1385 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller List of Figures Figure 1-1. Figure 2-1. Figure 2-2. Figure 2-3. Figure 2-4. Figure 2-5. Figure 2-6. Figure 2-7. Figure 3-1. Figure 4-1. Figure 4-2. Figure 4-3. Figure 4-4. Figure 4-5. Figure 5-1. Figure 5-2. Figure 5-3. Figure 5-4. Figure 5-5. Figure 6-1. Figure 7-1. Figure 7-2. Figure 7-3. Figure 7-4. Figure 7-5. Figure 7-6. Figure 8-1. Figure 8-2. Figure 8-3. Figure 8-4. Figure 9-1. Figure 9-2. Figure 9-3. Figure 9-4. Figure 9-5. Figure 9-6. Figure 9-7. Figure 9-8. Figure 9-9. Figure 9-10. Figure 9-11. Figure 9-12. Figure 9-13. Stellaris LM3S9B92 Microcontroller High-Level Block Diagram .............................. 76 CPU Block Diagram ............................................................................................. 80 TPIU Block Diagram ............................................................................................ 81 Cortex-M3 Register Set ........................................................................................ 83 Bit-Band Mapping .............................................................................................. 104 Data Storage ..................................................................................................... 105 Vector table ....................................................................................................... 111 Exception Stack Frame ...................................................................................... 113 SRD Use Example ............................................................................................. 127 JTAG Module Block Diagram .............................................................................. 188 Test Access Port State Machine ......................................................................... 191 IDCODE Register Format ................................................................................... 197 BYPASS Register Format ................................................................................... 197 Boundary Scan Register Format ......................................................................... 198 Basic RST Configuration .................................................................................... 202 External Circuitry to Extend Power-On Reset ....................................................... 202 Reset Circuit Controlled by Switch ...................................................................... 203 Power Architecture ............................................................................................ 206 Main Clock Tree ................................................................................................ 208 Internal Memory Block Diagram .......................................................................... 302 μDMA Block Diagram ......................................................................................... 340 Example of Ping-Pong μDMA Transaction ........................................................... 346 Memory Scatter-Gather, Setup and Configuration ................................................ 348 Memory Scatter-Gather, μDMA Copy Sequence .................................................. 349 Peripheral Scatter-Gather, Setup and Configuration ............................................. 351 Peripheral Scatter-Gather, μDMA Copy Sequence ............................................... 352 Digital I/O Pads ................................................................................................. 402 Analog/Digital I/O Pads ...................................................................................... 403 GPIODATA Write Example ................................................................................. 404 GPIODATA Read Example ................................................................................. 404 EPI Block Diagram ............................................................................................. 455 SDRAM Non-Blocking Read Cycle ...................................................................... 462 SDRAM Normal Read Cycle ............................................................................... 463 SDRAM Write Cycle ........................................................................................... 464 Example Schematic for Muxed Host-Bus 16 Mode ............................................... 470 Host-Bus Read Cycle, MODE = 0x1, WRHIGH = 0, RDHIGH = 0 .......................... 472 Host-Bus Write Cycle, MODE = 0x1, WRHIGH = 0, RDHIGH = 0 .......................... 473 Host-Bus Write Cycle with Multiplexed Address and Data, MODE = 0x0, WRHIGH = 0, RDHIGH = 0 ............................................................................................... 473 Host-Bus Write Cycle with Multiplexed Address and Data and ALE with Dual CSn .................................................................................................................. 474 Continuous Read Mode Accesses ...................................................................... 474 Write Followed by Read to External FIFO ............................................................ 475 Two-Entry FIFO ................................................................................................. 475 Single-Cycle Write Access, FRM50=0, FRMCNT=0, WRCYC=0 ........................... 479 March 19, 2011 11 Texas Instruments-Advance Information Table of Contents Figure 9-14. Figure 9-15. Figure 9-16. Figure 9-17. Figure 9-18. Figure 9-19. Figure 9-20. Figure 9-21. Figure 9-22. Figure 9-23. Figure 9-24. Figure 10-1. Figure 10-2. Figure 10-3. Figure 10-4. Figure 10-5. Figure 11-1. Figure 12-1. Figure 12-2. Figure 12-3. Figure 12-4. Figure 12-5. Figure 12-6. Figure 12-7. Figure 12-8. Figure 12-9. Figure 12-10. Figure 12-11. Figure 12-12. Figure 12-13. Figure 12-14. Figure 12-15. Figure 13-1. Figure 13-2. Figure 13-3. Figure 13-4. Figure 13-5. Figure 14-1. Figure 14-2. Figure 14-3. Figure 14-4. Figure 14-5. Figure 14-6. Figure 14-7. Figure 14-8. Figure 14-9. Figure 14-10. Two-Cycle Read, Write Accesses, FRM50=0, FRMCNT=0, RDCYC=1, WRCYC=1 ........................................................................................................ 479 Read Accesses, FRM50=0, FRMCNT=0, RDCYC=1 ............................................ 480 FRAME Signal Operation, FRM50=0 and FRMCNT=0 ......................................... 480 FRAME Signal Operation, FRM50=0 and FRMCNT=1 ......................................... 480 FRAME Signal Operation, FRM50=0 and FRMCNT=2 ......................................... 481 FRAME Signal Operation, FRM50=1 and FRMCNT=0 ......................................... 481 FRAME Signal Operation, FRM50=1 and FRMCNT=1 ......................................... 481 FRAME Signal Operation, FRM50=1 and FRMCNT=2 ......................................... 481 iRDY Signal Operation, FRM50=0, FRMCNT=0, and RD2CYC=1 ......................... 482 EPI Clock Operation, CLKGATE=1, WR2CYC=0 ................................................. 482 EPI Clock Operation, CLKGATE=1, WR2CYC=1 ................................................. 483 GPTM Module Block Diagram ............................................................................ 527 Timer Daisy Chain ............................................................................................. 533 Input Edge-Count Mode Example ....................................................................... 534 16-Bit Input Edge-Time Mode Example ............................................................... 535 16-Bit PWM Mode Example ................................................................................ 536 WDT Module Block Diagram .............................................................................. 573 Implementation of Two ADC Blocks .................................................................... 598 ADC Module Block Diagram ............................................................................... 599 ADC Sample Phases ......................................................................................... 603 Doubling the ADC Sample Rate .......................................................................... 604 Skewed Sampling .............................................................................................. 604 Sample Averaging Example ............................................................................... 605 Internal Voltage Conversion Result ..................................................................... 606 External Voltage Conversion Result .................................................................... 607 Differential Sampling Range, VIN_ODD = 1.5 V ...................................................... 608 Differential Sampling Range, VIN_ODD = 0.75 V .................................................... 609 Differential Sampling Range, VIN_ODD = 2.25 V .................................................... 609 Internal Temperature Sensor Characteristic ......................................................... 610 Low-Band Operation (CIC=0x0 and/or CTC=0x0) ................................................ 613 Mid-Band Operation (CIC=0x1 and/or CTC=0x1) ................................................. 614 High-Band Operation (CIC=0x3 and/or CTC=0x3) ................................................ 615 UART Module Block Diagram ............................................................................. 677 UART Character Frame ..................................................................................... 680 IrDA Data Modulation ......................................................................................... 682 LIN Message ..................................................................................................... 684 LIN Synchronization Field ................................................................................... 685 SSI Module Block Diagram ................................................................................. 738 TI Synchronous Serial Frame Format (Single Transfer) ........................................ 742 TI Synchronous Serial Frame Format (Continuous Transfer) ................................ 743 Freescale SPI Format (Single Transfer) with SPO=0 and SPH=0 .......................... 743 Freescale SPI Format (Continuous Transfer) with SPO=0 and SPH=0 .................. 744 Freescale SPI Frame Format with SPO=0 and SPH=1 ......................................... 745 Freescale SPI Frame Format (Single Transfer) with SPO=1 and SPH=0 ............... 745 Freescale SPI Frame Format (Continuous Transfer) with SPO=1 and SPH=0 ........ 746 Freescale SPI Frame Format with SPO=1 and SPH=1 ......................................... 747 MICROWIRE Frame Format (Single Frame) ........................................................ 747 12 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Figure 14-11. Figure 14-12. Figure 15-1. Figure 15-2. Figure 15-3. Figure 15-4. Figure 15-5. Figure 15-6. Figure 15-7. Figure 15-8. Figure 15-9. Figure 15-10. Figure 15-11. MICROWIRE Frame Format (Continuous Transfer) ............................................. 748 MICROWIRE Frame Format, SSIFss Input Setup and Hold Requirements ............ 749 I2C Block Diagram ............................................................................................. 781 I2C Bus Configuration ........................................................................................ 782 START and STOP Conditions ............................................................................. 783 Complete Data Transfer with a 7-Bit Address ....................................................... 783 R/S Bit in First Byte ............................................................................................ 784 Data Validity During Bit Transfer on the I2C Bus ................................................... 784 Master Single TRANSMIT .................................................................................. 788 Master Single RECEIVE ..................................................................................... 789 Master TRANSMIT with Repeated START ........................................................... 790 Master RECEIVE with Repeated START ............................................................. 791 Master RECEIVE with Repeated START after TRANSMIT with Repeated START .............................................................................................................. 792 Figure 15-12. Master TRANSMIT with Repeated START after RECEIVE with Repeated START .............................................................................................................. 793 Figure 15-13. Slave Command Sequence ................................................................................ 794 Figure 16-1. I2S Block Diagram ............................................................................................. 818 Figure 16-2. I2S Data Transfer ............................................................................................... 821 Figure 16-3. Left-Justified Data Transfer ................................................................................ 821 Figure 16-4. Right-Justified Data Transfer .............................................................................. 821 Figure 17-1. CAN Controller Block Diagram ............................................................................ 854 Figure 17-2. CAN Data/Remote Frame .................................................................................. 856 Figure 17-3. Message Objects in a FIFO Buffer ...................................................................... 864 Figure 17-4. CAN Bit Time .................................................................................................... 868 Figure 18-1. Ethernet Controller ............................................................................................. 904 Figure 18-2. Ethernet Controller Block Diagram ...................................................................... 904 Figure 18-3. Ethernet Frame ................................................................................................. 906 Figure 18-4. Interface to an Ethernet Jack .............................................................................. 913 Figure 19-1. USB Module Block Diagram ............................................................................... 963 Figure 20-1. Analog Comparator Module Block Diagram ....................................................... 1102 Figure 20-2. Structure of Comparator Unit ............................................................................ 1104 Figure 20-3. Comparator Internal Reference Structure .......................................................... 1104 Figure 21-1. PWM Module Diagram ..................................................................................... 1116 Figure 21-2. PWM Generator Block Diagram ........................................................................ 1116 Figure 21-3. PWM Count-Down Mode .................................................................................. 1120 Figure 21-4. PWM Count-Up/Down Mode ............................................................................. 1121 Figure 21-5. PWM Generation Example In Count-Up/Down Mode .......................................... 1121 Figure 21-6. PWM Dead-Band Generator ............................................................................. 1122 Figure 22-1. QEI Block Diagram .......................................................................................... 1192 Figure 22-2. Quadrature Encoder and Velocity Predivider Operation ...................................... 1194 Figure 23-1. 100-Pin LQFP Package Pin Diagram ................................................................ 1214 Figure 23-2. 108-Ball BGA Package Pin Diagram (Top View) ................................................. 1215 Figure 26-1. Typical Current Across Frequency, PLL Bypassed ............................................. 1299 Figure 26-2. Typical Current Across Frequency, Using PLL ................................................... 1300 Figure 26-3. Load Conditions ............................................................................................... 1300 Figure 26-4. Power-On Reset Timing ................................................................................... 1303 Figure 26-5. Brown-Out Reset Timing .................................................................................. 1303 March 19, 2011 13 Texas Instruments-Advance Information Table of Contents Figure 26-6. Figure 26-7. Figure 26-8. Figure 26-9. Figure 26-10. Figure 26-11. Figure 26-12. Figure 26-13. Figure 26-14. Figure 26-15. Figure 26-16. Figure 26-17. Figure 26-18. Figure 26-19. Figure 26-20. Figure 26-21. Figure 26-22. Figure 26-23. Figure 26-24. Figure 26-25. Figure 26-26. Figure 26-27. Figure 26-28. Figure 26-29. Figure 26-30. Figure 26-31. Figure 26-32. Figure C-1. Figure C-2. Figure C-3. Figure C-4. Figure C-5. Figure C-6. Power-On Reset and Voltage Parameters ......................................................... 1304 Voltage Requirements When Using an External VDDC Source ............................. 1304 JTAG Test Clock Input Timing ........................................................................... 1305 JTAG Test Access Port (TAP) Timing ................................................................ 1306 External Reset Timing (RST) ............................................................................ 1306 Software Reset Timing ..................................................................................... 1306 Watchdog Reset Timing ................................................................................... 1307 MOSC Failure Reset Timing ............................................................................. 1307 SDRAM Initialization and Load Mode Register Timing ........................................ 1308 SDRAM Read Timing ....................................................................................... 1309 SDRAM Write Timing ....................................................................................... 1309 Host-Bus 8/16 Mode Read Timing ..................................................................... 1310 Host-Bus 8/16 Mode Write Timing ..................................................................... 1310 Host-Bus 8/16 Mode Muxed Read Timing .......................................................... 1311 Host-Bus 8/16 Mode Muxed Write Timing .......................................................... 1311 General-Purpose Mode Read and Write Timing ................................................. 1312 General-Purpose Mode iRDY Timing ................................................................. 1312 ADC Input Equivalency Diagram ....................................................................... 1314 SSI Timing for TI Frame Format (FRF=01), Single Transfer Timing Measurement .................................................................................................. 1315 SSI Timing for MICROWIRE Frame Format (FRF=10), Single Transfer ............... 1315 SSI Timing for SPI Frame Format (FRF=00), with SPH=1 ................................... 1316 I2C Timing ....................................................................................................... 1317 I2S Master Mode Transmit Timing ..................................................................... 1317 I2S Master Mode Receive Timing ...................................................................... 1318 I2S Slave Mode Transmit Timing ....................................................................... 1318 I2S Slave Mode Receive Timing ........................................................................ 1318 External XTLP Oscillator Characteristics ........................................................... 1321 100-Pin LQFP Package Dimensions ................................................................. 1378 100-Pin LQFP Tray Dimensions ........................................................................ 1380 100-Pin LQFP Tape and Reel Dimensions ......................................................... 1381 108-Ball BGA Package Dimensions .................................................................. 1382 108-Ball BGA Tray Dimensions ......................................................................... 1384 108-Ball BGA Tape and Reel Dimensions .......................................................... 1385 14 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller List of Tables Table 1. Table 2. Table 2-1. Table 2-2. Table 2-3. Table 2-4. Table 2-5. Table 2-6. Table 2-7. Table 2-8. Table 2-9. Table 2-10. Table 2-11. Table 2-12. Table 2-13. Table 3-1. Table 3-2. Table 3-3. Table 3-4. Table 3-5. Table 3-6. Table 3-7. Table 3-8. Table 3-9. Table 4-1. Table 4-2. Table 4-3. Table 4-4. Table 5-1. Table 5-2. Table 5-3. Table 5-4. Table 5-5. Table 5-6. Table 5-7. Table 5-8. Table 5-9. Table 6-1. Table 6-2. Table 6-3. Table 7-1. Table 7-2. Table 7-3. Table 7-4. Table 7-5. Table 7-6. Revision History .................................................................................................. 41 Documentation Conventions ................................................................................ 51 Summary of Processor Mode, Privilege Level, and Stack Use ................................ 83 Processor Register Map ....................................................................................... 84 PSR Register Combinations ................................................................................. 89 Memory Map ....................................................................................................... 97 Memory Access Behavior ................................................................................... 100 SRAM Memory Bit-Banding Regions ................................................................... 102 Peripheral Memory Bit-Banding Regions ............................................................. 102 Exception Types ................................................................................................ 108 Interrupts .......................................................................................................... 109 Exception Return Behavior ................................................................................. 114 Faults ............................................................................................................... 114 Fault Status and Fault Address Registers ............................................................ 116 Cortex-M3 Instruction Summary ......................................................................... 118 Core Peripheral Register Regions ....................................................................... 121 Memory Attributes Summary .............................................................................. 124 TEX, S, C, and B Bit Field Encoding ................................................................... 127 Cache Policy for Memory Attribute Encoding ....................................................... 128 AP Bit Field Encoding ........................................................................................ 128 Memory Region Attributes for Stellaris Microcontrollers ........................................ 128 Peripherals Register Map ................................................................................... 129 Interrupt Priority Levels ...................................................................................... 156 Example SIZE Field Values ................................................................................ 184 Signals for JTAG_SWD_SWO (100LQFP) ........................................................... 188 Signals for JTAG_SWD_SWO (108BGA) ............................................................ 189 JTAG Port Pins State after Power-On Reset or RST assertion .............................. 190 JTAG Instruction Register Commands ................................................................. 195 Signals for System Control & Clocks (100LQFP) .................................................. 199 Signals for System Control & Clocks (108BGA) ................................................... 199 Reset Sources ................................................................................................... 200 Clock Source Options ........................................................................................ 207 Possible System Clock Frequencies Using the SYSDIV Field ............................... 209 Examples of Possible System Clock Frequencies Using the SYSDIV2 Field .......... 209 Examples of Possible System Clock Frequencies with DIV400=1 ......................... 210 System Control Register Map ............................................................................. 215 RCC2 Fields that Override RCC Fields ............................................................... 236 Flash Memory Protection Policy Combinations .................................................... 306 User-Programmable Flash Memory Resident Registers ....................................... 309 Flash Register Map ............................................................................................ 310 μDMA Channel Assignments .............................................................................. 341 Request Type Support ....................................................................................... 343 Control Structure Memory Map ........................................................................... 344 Channel Control Structure .................................................................................. 344 μDMA Read Example: 8-Bit Peripheral ................................................................ 353 μDMA Interrupt Assignments .............................................................................. 354 March 19, 2011 15 Texas Instruments-Advance Information Table of Contents Table 7-7. Table 7-8. Table 7-9. Table 7-10. Table 7-11. Table 7-12. Table 7-13. Table 8-1. Table 8-2. Table 8-3. Table 8-4. Table 8-5. Table 8-6. Table 8-7. Table 8-8. Table 8-9. Table 8-10. Table 8-11. Table 8-12. Table 9-1. Table 9-2. Table 9-3. Table 9-4. Table 9-5. Table 9-6. Table 9-7. Table 9-8. Table 10-1. Table 10-2. Table 10-3. Table 10-4. Table 10-5. Table 10-6. Table 11-1. Table 12-1. Table 12-2. Table 12-3. Table 12-4. Table 12-5. Table 13-1. Table 13-2. Table 13-3. Table 13-4. Table 14-1. Table 14-2. Table 14-3. Table 15-1. Channel Control Structure Offsets for Channel 30 ................................................ 355 Channel Control Word Configuration for Memory Transfer Example ...................... 355 Channel Control Structure Offsets for Channel 7 .................................................. 356 Channel Control Word Configuration for Peripheral Transmit Example .................. 357 Primary and Alternate Channel Control Structure Offsets for Channel 8 ................. 358 Channel Control Word Configuration for Peripheral Ping-Pong Receive Example ............................................................................................................ 359 μDMA Register Map .......................................................................................... 360 GPIO Pins With Non-Zero Reset Values .............................................................. 398 GPIO Pins and Alternate Functions (100LQFP) ................................................... 398 GPIO Pins and Alternate Functions (108BGA) ..................................................... 400 GPIO Pad Configuration Examples ..................................................................... 406 GPIO Interrupt Configuration Example ................................................................ 407 GPIO Pins With Non-Zero Reset Values .............................................................. 408 GPIO Register Map ........................................................................................... 408 GPIO Pins With Non-Zero Reset Values .............................................................. 421 GPIO Pins With Non-Zero Reset Values .............................................................. 427 GPIO Pins With Non-Zero Reset Values .............................................................. 429 GPIO Pins With Non-Zero Reset Values .............................................................. 432 GPIO Pins With Non-Zero Reset Values .............................................................. 439 Signals for External Peripheral Interface (100LQFP) ............................................ 455 Signals for External Peripheral Interface (108BGA) .............................................. 456 EPI SDRAM Signal Connections ......................................................................... 461 Capabilities of Host Bus 8 and Host Bus 16 Modes .............................................. 465 EPI Host-Bus 8 Signal Connections .................................................................... 466 EPI Host-Bus 16 Signal Connections .................................................................. 467 EPI General Purpose Signal Connections ........................................................... 477 External Peripheral Interface (EPI) Register Map ................................................. 483 Available CCP Pins ............................................................................................ 527 Signals for General-Purpose Timers (100LQFP) .................................................. 528 Signals for General-Purpose Timers (108BGA) .................................................... 529 General-Purpose Timer Capabilities .................................................................... 530 16-Bit Timer With Prescaler Configurations ......................................................... 532 Timers Register Map .......................................................................................... 540 Watchdog Timers Register Map .......................................................................... 575 Signals for ADC (100LQFP) ............................................................................... 599 Signals for ADC (108BGA) ................................................................................. 600 Samples and FIFO Depth of Sequencers ............................................................ 601 Differential Sampling Pairs ................................................................................. 607 ADC Register Map ............................................................................................. 616 Signals for UART (100LQFP) ............................................................................. 678 Signals for UART (108BGA) ............................................................................... 678 Flow Control Mode ............................................................................................. 683 UART Register Map ........................................................................................... 688 Signals for SSI (100LQFP) ................................................................................. 739 Signals for SSI (108BGA) ................................................................................... 739 SSI Register Map .............................................................................................. 751 Signals for I2C (100LQFP) ................................................................................. 781 16 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Table 15-2. Table 15-3. Table 15-4. Table 15-5. Table 16-1. Table 16-2. Table 16-3. Table 16-4. Table 16-5. Table 16-6. Table 16-7. Table 16-8. Table 16-9. Table 16-10. Table 17-1. Table 17-2. Table 17-3. Table 17-4. Table 17-5. Table 17-6. Table 18-1. Table 18-2. Table 18-3. Table 18-4. Table 19-1. Table 19-2. Table 19-3. Table 19-4. Table 19-5. Table 19-6. Table 20-1. Table 20-2. Table 20-3. Table 20-4. Table 21-1. Table 21-2. Table 21-3. Table 22-1. Table 22-2. Table 22-3. Table 24-1. Table 24-2. Table 24-3. Table 24-4. Table 24-5. Table 24-6. Table 24-7. Table 24-8. Signals for I2C (108BGA) ................................................................................... 781 Examples of I2C Master Timer Period versus Speed Mode ................................... 785 Inter-Integrated Circuit (I2C) Interface Register Map ............................................. 795 Write Field Decoding for I2CMCS[3:0] Field ......................................................... 800 Signals for I2S (100LQFP) ................................................................................. 819 Signals for I2S (108BGA) ................................................................................... 819 I2S Transmit FIFO Interface ................................................................................ 822 Crystal Frequency (Values from 3.5795 MHz to 5 MHz) ........................................ 823 Crystal Frequency (Values from 5.12 MHz to 8.192 MHz) ..................................... 823 Crystal Frequency (Values from 10 MHz to 14.3181 MHz) .................................... 824 Crystal Frequency (Values from 16 MHz to 16.384 MHz) ...................................... 824 I2S Receive FIFO Interface ................................................................................. 826 Audio Formats Configuration .............................................................................. 828 Inter-Integrated Circuit Sound (I2S) Interface Register Map ................................... 829 Signals for Controller Area Network (100LQFP) ................................................... 855 Signals for Controller Area Network (108BGA) ..................................................... 855 Message Object Configurations .......................................................................... 861 CAN Protocol Ranges ........................................................................................ 868 CANBIT Register Values .................................................................................... 868 CAN Register Map ............................................................................................. 872 Signals for Ethernet (100LQFP) .......................................................................... 905 Signals for Ethernet (108BGA) ............................................................................ 905 TX & RX FIFO Organization ............................................................................... 908 Ethernet Register Map ....................................................................................... 915 Signals for USB (100LQFP) ................................................................................ 963 Signals for USB (108BGA) ................................................................................. 964 Remainder (MAXLOAD/4) .................................................................................. 976 Actual Bytes Read ............................................................................................. 976 Packet Sizes That Clear RXRDY ........................................................................ 976 Universal Serial Bus (USB) Controller Register Map ............................................ 978 Signals for Analog Comparators (100LQFP) ...................................................... 1102 Signals for Analog Comparators (108BGA) ........................................................ 1103 Internal Reference Voltage and ACREFCTL Field Values ................................... 1105 Analog Comparators Register Map ................................................................... 1106 Signals for PWM (100LQFP) ............................................................................ 1117 Signals for PWM (108BGA) .............................................................................. 1118 PWM Register Map .......................................................................................... 1126 Signals for QEI (100LQFP) ............................................................................... 1192 Signals for QEI (108BGA) ................................................................................. 1193 QEI Register Map ............................................................................................ 1196 GPIO Pins With Default Alternate Functions ...................................................... 1216 Signals by Pin Number ..................................................................................... 1217 Signals by Signal Name ................................................................................... 1228 Signals by Function, Except for GPIO ............................................................... 1238 GPIO Pins and Alternate Functions ................................................................... 1247 Possible Pin Assignments for Alternate Functions .............................................. 1250 Signals by Pin Number ..................................................................................... 1253 Signals by Signal Name ................................................................................... 1265 March 19, 2011 17 Texas Instruments-Advance Information Table of Contents Table 24-9. Table 24-10. Table 24-11. Table 24-12. Table 24-13. Table 25-1. Table 25-2. Table 25-3. Table 26-1. Table 26-2. Table 26-3. Table 26-4. Table 26-5. Table 26-6. Table 26-7. Table 26-8. Table 26-9. Table 26-10. Table 26-11. Table 26-12. Table 26-13. Table 26-14. Table 26-15. Table 26-16. Table 26-17. Table 26-18. Table 26-19. Table 26-20. Table 26-21. Table 26-22. Table 26-23. Table 26-24. Table 26-25. Table 26-26. Table 26-27. Table 26-28. Table 26-29. Table 26-30. Table 26-31. Table 26-32. Table 26-33. Table 26-34. Table 26-35. Table 26-36. Table 26-37. Table 26-38. Table 26-39. Table 26-40. Signals by Function, Except for GPIO ............................................................... 1276 GPIO Pins and Alternate Functions ................................................................... 1285 Possible Pin Assignments for Alternate Functions .............................................. 1288 Connections for Unused Signals (100-pin LQFP) ............................................... 1291 Connections for Unused Signals, 108-pin BGA .................................................. 1292 Temperature Characteristics ............................................................................. 1293 Thermal Characteristics ................................................................................... 1293 ESD Absolute Maximum Ratings ...................................................................... 1293 Maximum Ratings ............................................................................................ 1294 Recommended DC Operating Conditions .......................................................... 1294 LDO Regulator Characteristics ......................................................................... 1295 Flash Memory Characteristics ........................................................................... 1295 GPIO Module DC Characteristics ...................................................................... 1296 USB Controller DC Characteristics .................................................................... 1296 Ethernet Controller DC Characteristics .............................................................. 1296 Nominal Power Consumption ........................................................................... 1296 Detailed Current Specifications ......................................................................... 1297 External VDDC Source Current Specifications ..................................................... 1298 Current Consumption vs. Frequency, PLL Bypassed .......................................... 1298 Current Consumption vs. Frequency, Using PLL ................................................ 1299 Phase Locked Loop (PLL) Characteristics ......................................................... 1300 Actual PLL Frequency ...................................................................................... 1301 PIOSC Clock Characteristics ............................................................................ 1301 30-kHz Clock Characteristics ............................................................................ 1302 Main Oscillator Clock Characteristics ................................................................ 1302 MOSC Oscillator Input Characteristics ............................................................... 1302 System Clock Characteristics with ADC Operation ............................................. 1302 Power Characteristics ...................................................................................... 1302 JTAG Characteristics ....................................................................................... 1304 Reset Characteristics ....................................................................................... 1306 Sleep Modes AC Characteristics ....................................................................... 1307 GPIO Characteristics ....................................................................................... 1307 EPI SDRAM Characteristics ............................................................................. 1308 EPI SDRAM Interface Characteristics ............................................................... 1308 EPI Host-Bus 8 and Host-Bus 16 Interface Characteristics ................................. 1309 EPI General-Purpose Interface Characteristics .................................................. 1311 ADC Characteristics ......................................................................................... 1313 ADC Module External Reference Characteristics ............................................... 1314 ADC Module Internal Reference Characteristics ................................................ 1314 SSI Characteristics .......................................................................................... 1314 I2C Characteristics ........................................................................................... 1316 I2S Master Clock (Receive and Transmit) .......................................................... 1317 I2S Slave Clock (Receive and Transmit) ............................................................ 1317 I2S Master Mode .............................................................................................. 1317 I2S Slave Mode ................................................................................................ 1318 100BASE-TX Transmitter Characteristics .......................................................... 1318 100BASE-TX Transmitter Characteristics (informative) ....................................... 1319 100BASE-TX Receiver Characteristics .............................................................. 1319 18 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Table 26-41. Table 26-42. Table 26-43. Table 26-44. Table 26-45. Table 26-46. Table 26-47. Table 26-48. Table B-1. 10BASE-T Transmitter Characteristics .............................................................. 10BASE-T Transmitter Characteristics (informative) ........................................... 10BASE-T Receiver Characteristics .................................................................. Isolation Transformers ...................................................................................... Ethernet Reference Crystal .............................................................................. External XTLP Oscillator Characteristics ........................................................... Analog Comparator Characteristics ................................................................... Analog Comparator Voltage Reference Characteristics ...................................... Part Ordering Information ................................................................................. March 19, 2011 1319 1319 1320 1320 1320 1321 1321 1321 1376 19 Texas Instruments-Advance Information Table of Contents List of Registers The Cortex-M3 Processor ............................................................................................................. 78 Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15: Register 16: Register 17: Register 18: Register 19: Register 20: Register 21: Cortex General-Purpose Register 0 (R0) ........................................................................... 85 Cortex General-Purpose Register 1 (R1) ........................................................................... 85 Cortex General-Purpose Register 2 (R2) ........................................................................... 85 Cortex General-Purpose Register 3 (R3) ........................................................................... 85 Cortex General-Purpose Register 4 (R4) ........................................................................... 85 Cortex General-Purpose Register 5 (R5) ........................................................................... 85 Cortex General-Purpose Register 6 (R6) ........................................................................... 85 Cortex General-Purpose Register 7 (R7) ........................................................................... 85 Cortex General-Purpose Register 8 (R8) ........................................................................... 85 Cortex General-Purpose Register 9 (R9) ........................................................................... 85 Cortex General-Purpose Register 10 (R10) ....................................................................... 85 Cortex General-Purpose Register 11 (R11) ........................................................................ 85 Cortex General-Purpose Register 12 (R12) ....................................................................... 85 Stack Pointer (SP) ........................................................................................................... 86 Link Register (LR) ............................................................................................................ 87 Program Counter (PC) ..................................................................................................... 88 Program Status Register (PSR) ........................................................................................ 89 Priority Mask Register (PRIMASK) .................................................................................... 93 Fault Mask Register (FAULTMASK) .................................................................................. 94 Base Priority Mask Register (BASEPRI) ............................................................................ 95 Control Register (CONTROL) ........................................................................................... 96 Cortex-M3 Peripherals ................................................................................................................. 121 Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15: Register 16: Register 17: Register 18: Register 19: Register 20: Register 21: Register 22: SysTick Control and Status Register (STCTRL), offset 0x010 ........................................... 132 SysTick Reload Value Register (STRELOAD), offset 0x014 .............................................. 134 SysTick Current Value Register (STCURRENT), offset 0x018 ........................................... 135 Interrupt 0-31 Set Enable (EN0), offset 0x100 .................................................................. 136 Interrupt 32-54 Set Enable (EN1), offset 0x104 ................................................................ 137 Interrupt 0-31 Clear Enable (DIS0), offset 0x180 .............................................................. 138 Interrupt 32-54 Clear Enable (DIS1), offset 0x184 ............................................................ 139 Interrupt 0-31 Set Pending (PEND0), offset 0x200 ........................................................... 140 Interrupt 32-54 Set Pending (PEND1), offset 0x204 ......................................................... 141 Interrupt 0-31 Clear Pending (UNPEND0), offset 0x280 ................................................... 142 Interrupt 32-54 Clear Pending (UNPEND1), offset 0x284 .................................................. 143 Interrupt 0-31 Active Bit (ACTIVE0), offset 0x300 ............................................................. 144 Interrupt 32-54 Active Bit (ACTIVE1), offset 0x304 ........................................................... 145 Interrupt 0-3 Priority (PRI0), offset 0x400 ......................................................................... 146 Interrupt 4-7 Priority (PRI1), offset 0x404 ......................................................................... 146 Interrupt 8-11 Priority (PRI2), offset 0x408 ....................................................................... 146 Interrupt 12-15 Priority (PRI3), offset 0x40C .................................................................... 146 Interrupt 16-19 Priority (PRI4), offset 0x410 ..................................................................... 146 Interrupt 20-23 Priority (PRI5), offset 0x414 ..................................................................... 146 Interrupt 24-27 Priority (PRI6), offset 0x418 ..................................................................... 146 Interrupt 28-31 Priority (PRI7), offset 0x41C .................................................................... 146 Interrupt 32-35 Priority (PRI8), offset 0x420 ..................................................................... 146 20 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 23: Register 24: Register 25: Register 26: Register 27: Register 28: Register 29: Register 30: Register 31: Register 32: Register 33: Register 34: Register 35: Register 36: Register 37: Register 38: Register 39: Register 40: Register 41: Register 42: Register 43: Register 44: Register 45: Register 46: Register 47: Register 48: Register 49: Register 50: Register 51: Register 52: Register 53: Register 54: Interrupt 36-39 Priority (PRI9), offset 0x424 ..................................................................... 146 Interrupt 40-43 Priority (PRI10), offset 0x428 ................................................................... 146 Interrupt 44-47 Priority (PRI11), offset 0x42C ................................................................... 146 Interrupt 48-51 Priority (PRI12), offset 0x430 ................................................................... 146 Interrupt 52-54 Priority (PRI13), offset 0x434 ................................................................... 146 Software Trigger Interrupt (SWTRIG), offset 0xF00 .......................................................... 148 Auxiliary Control (ACTLR), offset 0x008 .......................................................................... 149 CPU ID Base (CPUID), offset 0xD00 ............................................................................... 151 Interrupt Control and State (INTCTRL), offset 0xD04 ........................................................ 152 Vector Table Offset (VTABLE), offset 0xD08 .................................................................... 155 Application Interrupt and Reset Control (APINT), offset 0xD0C ......................................... 156 System Control (SYSCTRL), offset 0xD10 ....................................................................... 158 Configuration and Control (CFGCTRL), offset 0xD14 ....................................................... 160 System Handler Priority 1 (SYSPRI1), offset 0xD18 ......................................................... 162 System Handler Priority 2 (SYSPRI2), offset 0xD1C ........................................................ 163 System Handler Priority 3 (SYSPRI3), offset 0xD20 ......................................................... 164 System Handler Control and State (SYSHNDCTRL), offset 0xD24 .................................... 165 Configurable Fault Status (FAULTSTAT), offset 0xD28 ..................................................... 169 Hard Fault Status (HFAULTSTAT), offset 0xD2C .............................................................. 175 Memory Management Fault Address (MMADDR), offset 0xD34 ........................................ 176 Bus Fault Address (FAULTADDR), offset 0xD38 .............................................................. 177 MPU Type (MPUTYPE), offset 0xD90 ............................................................................. 178 MPU Control (MPUCTRL), offset 0xD94 .......................................................................... 179 MPU Region Number (MPUNUMBER), offset 0xD98 ....................................................... 181 MPU Region Base Address (MPUBASE), offset 0xD9C ................................................... 182 MPU Region Base Address Alias 1 (MPUBASE1), offset 0xDA4 ....................................... 182 MPU Region Base Address Alias 2 (MPUBASE2), offset 0xDAC ...................................... 182 MPU Region Base Address Alias 3 (MPUBASE3), offset 0xDB4 ....................................... 182 MPU Region Attribute and Size (MPUATTR), offset 0xDA0 ............................................... 184 MPU Region Attribute and Size Alias 1 (MPUATTR1), offset 0xDA8 .................................. 184 MPU Region Attribute and Size Alias 2 (MPUATTR2), offset 0xDB0 .................................. 184 MPU Region Attribute and Size Alias 3 (MPUATTR3), offset 0xDB8 .................................. 184 System Control ............................................................................................................................ 199 Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15: Device Identification 0 (DID0), offset 0x000 ..................................................................... 217 Brown-Out Reset Control (PBORCTL), offset 0x030 ........................................................ 219 Raw Interrupt Status (RIS), offset 0x050 .......................................................................... 220 Interrupt Mask Control (IMC), offset 0x054 ...................................................................... 222 Masked Interrupt Status and Clear (MISC), offset 0x058 .................................................. 224 Reset Cause (RESC), offset 0x05C ................................................................................ 226 Run-Mode Clock Configuration (RCC), offset 0x060 ......................................................... 228 XTAL to PLL Translation (PLLCFG), offset 0x064 ............................................................. 233 GPIO High-Performance Bus Control (GPIOHBCTL), offset 0x06C ................................... 234 Run-Mode Clock Configuration 2 (RCC2), offset 0x070 .................................................... 236 Main Oscillator Control (MOSCCTL), offset 0x07C ........................................................... 239 Deep Sleep Clock Configuration (DSLPCLKCFG), offset 0x144 ........................................ 240 Precision Internal Oscillator Calibration (PIOSCCAL), offset 0x150 ................................... 242 I2S MCLK Configuration (I2SMCLKCFG), offset 0x170 ..................................................... 243 Device Identification 1 (DID1), offset 0x004 ..................................................................... 245 March 19, 2011 21 Texas Instruments-Advance Information Table of Contents Register 16: Register 17: Register 18: Register 19: Register 20: Register 21: Register 22: Register 23: Register 24: Register 25: Register 26: Register 27: Register 28: Register 29: Register 30: Register 31: Register 32: Register 33: Register 34: Register 35: Register 36: Register 37: Register 38: Device Capabilities 0 (DC0), offset 0x008 ........................................................................ 247 Device Capabilities 1 (DC1), offset 0x010 ........................................................................ 248 Device Capabilities 2 (DC2), offset 0x014 ........................................................................ 250 Device Capabilities 3 (DC3), offset 0x018 ........................................................................ 252 Device Capabilities 4 (DC4), offset 0x01C ....................................................................... 255 Device Capabilities 5 (DC5), offset 0x020 ........................................................................ 257 Device Capabilities 6 (DC6), offset 0x024 ........................................................................ 259 Device Capabilities 7 (DC7), offset 0x028 ........................................................................ 260 Device Capabilities 8 ADC Channels (DC8), offset 0x02C ................................................ 264 Device Capabilities 9 ADC Digital Comparators (DC9), offset 0x190 ................................. 266 Non-Volatile Memory Information (NVMSTAT), offset 0x1A0 ............................................. 268 Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100 ................................... 269 Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x110 ................................. 272 Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x120 ....................... 275 Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x104 ................................... 277 Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114 ................................. 280 Deep-Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124 ....................... 283 Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108 ................................... 286 Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118 ................................. 289 Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128 ....................... 292 Software Reset Control 0 (SRCR0), offset 0x040 ............................................................. 295 Software Reset Control 1 (SRCR1), offset 0x044 ............................................................. 297 Software Reset Control 2 (SRCR2), offset 0x048 ............................................................. 300 Internal Memory ........................................................................................................................... 302 Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15: Register 16: Register 17: Register 18: Register 19: Register 20: Register 21: Register 22: Register 23: Register 24: Flash Memory Address (FMA), offset 0x000 .................................................................... 312 Flash Memory Data (FMD), offset 0x004 ......................................................................... 313 Flash Memory Control (FMC), offset 0x008 ..................................................................... 314 Flash Controller Raw Interrupt Status (FCRIS), offset 0x00C ............................................ 317 Flash Controller Interrupt Mask (FCIM), offset 0x010 ........................................................ 318 Flash Controller Masked Interrupt Status and Clear (FCMISC), offset 0x014 ..................... 319 Flash Memory Control 2 (FMC2), offset 0x020 ................................................................. 320 Flash Write Buffer Valid (FWBVAL), offset 0x030 ............................................................. 321 Flash Control (FCTL), offset 0x0F8 ................................................................................. 322 Flash Write Buffer n (FWBn), offset 0x100 - 0x17C .......................................................... 323 ROM Control (RMCTL), offset 0x0F0 .............................................................................. 324 Flash Memory Protection Read Enable 0 (FMPRE0), offset 0x130 and 0x200 ................... 325 Flash Memory Protection Program Enable 0 (FMPPE0), offset 0x134 and 0x400 ............... 326 Boot Configuration (BOOTCFG), offset 0x1D0 ................................................................. 327 User Register 0 (USER_REG0), offset 0x1E0 .................................................................. 329 User Register 1 (USER_REG1), offset 0x1E4 .................................................................. 330 User Register 2 (USER_REG2), offset 0x1E8 .................................................................. 331 User Register 3 (USER_REG3), offset 0x1EC ................................................................. 332 Flash Memory Protection Read Enable 1 (FMPRE1), offset 0x204 .................................... 333 Flash Memory Protection Read Enable 2 (FMPRE2), offset 0x208 .................................... 334 Flash Memory Protection Read Enable 3 (FMPRE3), offset 0x20C ................................... 335 Flash Memory Protection Program Enable 1 (FMPPE1), offset 0x404 ............................... 336 Flash Memory Protection Program Enable 2 (FMPPE2), offset 0x408 ............................... 337 Flash Memory Protection Program Enable 3 (FMPPE3), offset 0x40C ............................... 338 22 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Micro Direct Memory Access (μDMA) ........................................................................................ 339 Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15: Register 16: Register 17: Register 18: Register 19: Register 20: Register 21: Register 22: Register 23: Register 24: Register 25: Register 26: Register 27: Register 28: Register 29: Register 30: DMA Channel Source Address End Pointer (DMASRCENDP), offset 0x000 ...................... 362 DMA Channel Destination Address End Pointer (DMADSTENDP), offset 0x004 ................ 363 DMA Channel Control Word (DMACHCTL), offset 0x008 .................................................. 364 DMA Status (DMASTAT), offset 0x000 ............................................................................ 369 DMA Configuration (DMACFG), offset 0x004 ................................................................... 371 DMA Channel Control Base Pointer (DMACTLBASE), offset 0x008 .................................. 372 DMA Alternate Channel Control Base Pointer (DMAALTBASE), offset 0x00C .................... 373 DMA Channel Wait-on-Request Status (DMAWAITSTAT), offset 0x010 ............................. 374 DMA Channel Software Request (DMASWREQ), offset 0x014 ......................................... 375 DMA Channel Useburst Set (DMAUSEBURSTSET), offset 0x018 .................................... 376 DMA Channel Useburst Clear (DMAUSEBURSTCLR), offset 0x01C ................................. 377 DMA Channel Request Mask Set (DMAREQMASKSET), offset 0x020 .............................. 378 DMA Channel Request Mask Clear (DMAREQMASKCLR), offset 0x024 ........................... 379 DMA Channel Enable Set (DMAENASET), offset 0x028 ................................................... 380 DMA Channel Enable Clear (DMAENACLR), offset 0x02C ............................................... 381 DMA Channel Primary Alternate Set (DMAALTSET), offset 0x030 .................................... 382 DMA Channel Primary Alternate Clear (DMAALTCLR), offset 0x034 ................................. 383 DMA Channel Priority Set (DMAPRIOSET), offset 0x038 ................................................. 384 DMA Channel Priority Clear (DMAPRIOCLR), offset 0x03C .............................................. 385 DMA Bus Error Clear (DMAERRCLR), offset 0x04C ........................................................ 386 DMA Channel Assignment (DMACHASGN), offset 0x500 ................................................. 387 DMA Peripheral Identification 0 (DMAPeriphID0), offset 0xFE0 ......................................... 388 DMA Peripheral Identification 1 (DMAPeriphID1), offset 0xFE4 ......................................... 389 DMA Peripheral Identification 2 (DMAPeriphID2), offset 0xFE8 ......................................... 390 DMA Peripheral Identification 3 (DMAPeriphID3), offset 0xFEC ........................................ 391 DMA Peripheral Identification 4 (DMAPeriphID4), offset 0xFD0 ......................................... 392 DMA PrimeCell Identification 0 (DMAPCellID0), offset 0xFF0 ........................................... 393 DMA PrimeCell Identification 1 (DMAPCellID1), offset 0xFF4 ........................................... 394 DMA PrimeCell Identification 2 (DMAPCellID2), offset 0xFF8 ........................................... 395 DMA PrimeCell Identification 3 (DMAPCellID3), offset 0xFFC ........................................... 396 General-Purpose Input/Outputs (GPIOs) ................................................................................... 397 Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15: Register 16: GPIO Data (GPIODATA), offset 0x000 ............................................................................ 411 GPIO Direction (GPIODIR), offset 0x400 ......................................................................... 412 GPIO Interrupt Sense (GPIOIS), offset 0x404 .................................................................. 413 GPIO Interrupt Both Edges (GPIOIBE), offset 0x408 ........................................................ 414 GPIO Interrupt Event (GPIOIEV), offset 0x40C ................................................................ 415 GPIO Interrupt Mask (GPIOIM), offset 0x410 ................................................................... 416 GPIO Raw Interrupt Status (GPIORIS), offset 0x414 ........................................................ 417 GPIO Masked Interrupt Status (GPIOMIS), offset 0x418 ................................................... 418 GPIO Interrupt Clear (GPIOICR), offset 0x41C ................................................................ 420 GPIO Alternate Function Select (GPIOAFSEL), offset 0x420 ............................................ 421 GPIO 2-mA Drive Select (GPIODR2R), offset 0x500 ........................................................ 423 GPIO 4-mA Drive Select (GPIODR4R), offset 0x504 ........................................................ 424 GPIO 8-mA Drive Select (GPIODR8R), offset 0x508 ........................................................ 425 GPIO Open Drain Select (GPIOODR), offset 0x50C ......................................................... 426 GPIO Pull-Up Select (GPIOPUR), offset 0x510 ................................................................ 427 GPIO Pull-Down Select (GPIOPDR), offset 0x514 ........................................................... 429 March 19, 2011 23 Texas Instruments-Advance Information Table of Contents Register 17: Register 18: Register 19: Register 20: Register 21: Register 22: Register 23: Register 24: Register 25: Register 26: Register 27: Register 28: Register 29: Register 30: Register 31: Register 32: Register 33: Register 34: GPIO Slew Rate Control Select (GPIOSLR), offset 0x518 ................................................ 431 GPIO Digital Enable (GPIODEN), offset 0x51C ................................................................ 432 GPIO Lock (GPIOLOCK), offset 0x520 ............................................................................ 434 GPIO Commit (GPIOCR), offset 0x524 ............................................................................ 435 GPIO Analog Mode Select (GPIOAMSEL), offset 0x528 ................................................... 437 GPIO Port Control (GPIOPCTL), offset 0x52C ................................................................. 439 GPIO Peripheral Identification 4 (GPIOPeriphID4), offset 0xFD0 ....................................... 441 GPIO Peripheral Identification 5 (GPIOPeriphID5), offset 0xFD4 ....................................... 442 GPIO Peripheral Identification 6 (GPIOPeriphID6), offset 0xFD8 ....................................... 443 GPIO Peripheral Identification 7 (GPIOPeriphID7), offset 0xFDC ...................................... 444 GPIO Peripheral Identification 0 (GPIOPeriphID0), offset 0xFE0 ....................................... 445 GPIO Peripheral Identification 1 (GPIOPeriphID1), offset 0xFE4 ....................................... 446 GPIO Peripheral Identification 2 (GPIOPeriphID2), offset 0xFE8 ....................................... 447 GPIO Peripheral Identification 3 (GPIOPeriphID3), offset 0xFEC ...................................... 448 GPIO PrimeCell Identification 0 (GPIOPCellID0), offset 0xFF0 .......................................... 449 GPIO PrimeCell Identification 1 (GPIOPCellID1), offset 0xFF4 .......................................... 450 GPIO PrimeCell Identification 2 (GPIOPCellID2), offset 0xFF8 .......................................... 451 GPIO PrimeCell Identification 3 (GPIOPCellID3), offset 0xFFC ......................................... 452 External Peripheral Interface (EPI) ............................................................................................. 453 Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15: Register 16: Register 17: Register 18: Register 19: Register 20: Register 21: Register 22: Register 23: Register 24: Register 25: Register 26: Register 27: Register 28: Register 29: EPI Configuration (EPICFG), offset 0x000 ....................................................................... 485 EPI Main Baud Rate (EPIBAUD), offset 0x004 ................................................................. 486 EPI SDRAM Configuration (EPISDRAMCFG), offset 0x010 .............................................. 488 EPI Host-Bus 8 Configuration (EPIHB8CFG), offset 0x010 ............................................... 490 EPI Host-Bus 16 Configuration (EPIHB16CFG), offset 0x010 ........................................... 494 EPI General-Purpose Configuration (EPIGPCFG), offset 0x010 ........................................ 498 EPI Host-Bus 8 Configuration 2 (EPIHB8CFG2), offset 0x014 .......................................... 502 EPI Host-Bus 16 Configuration 2 (EPIHB16CFG2), offset 0x014 ....................................... 504 EPI General-Purpose Configuration 2 (EPIGPCFG2), offset 0x014 ................................... 506 EPI Address Map (EPIADDRMAP), offset 0x01C ............................................................. 507 EPI Read Size 0 (EPIRSIZE0), offset 0x020 .................................................................... 509 EPI Read Size 1 (EPIRSIZE1), offset 0x030 .................................................................... 509 EPI Read Address 0 (EPIRADDR0), offset 0x024 ............................................................ 510 EPI Read Address 1 (EPIRADDR1), offset 0x034 ............................................................ 510 EPI Non-Blocking Read Data 0 (EPIRPSTD0), offset 0x028 ............................................. 511 EPI Non-Blocking Read Data 1 (EPIRPSTD1), offset 0x038 ............................................. 511 EPI Status (EPISTAT), offset 0x060 ................................................................................ 513 EPI Read FIFO Count (EPIRFIFOCNT), offset 0x06C ...................................................... 515 EPI Read FIFO (EPIREADFIFO), offset 0x070 ................................................................ 516 EPI Read FIFO Alias 1 (EPIREADFIFO1), offset 0x074 .................................................... 516 EPI Read FIFO Alias 2 (EPIREADFIFO2), offset 0x078 .................................................... 516 EPI Read FIFO Alias 3 (EPIREADFIFO3), offset 0x07C ................................................... 516 EPI Read FIFO Alias 4 (EPIREADFIFO4), offset 0x080 .................................................... 516 EPI Read FIFO Alias 5 (EPIREADFIFO5), offset 0x084 .................................................... 516 EPI Read FIFO Alias 6 (EPIREADFIFO6), offset 0x088 .................................................... 516 EPI Read FIFO Alias 7 (EPIREADFIFO7), offset 0x08C ................................................... 516 EPI FIFO Level Selects (EPIFIFOLVL), offset 0x200 ........................................................ 517 EPI Write FIFO Count (EPIWFIFOCNT), offset 0x204 ...................................................... 519 EPI Interrupt Mask (EPIIM), offset 0x210 ......................................................................... 520 24 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 30: Register 31: Register 32: EPI Raw Interrupt Status (EPIRIS), offset 0x214 .............................................................. 521 EPI Masked Interrupt Status (EPIMIS), offset 0x218 ........................................................ 523 EPI Error Interrupt Status and Clear (EPIEISC), offset 0x21C ........................................... 524 General-Purpose Timers ............................................................................................................. 526 Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15: Register 16: Register 17: Register 18: Register 19: Register 20: GPTM Configuration (GPTMCFG), offset 0x000 .............................................................. 542 GPTM Timer A Mode (GPTMTAMR), offset 0x004 ........................................................... 543 GPTM Timer B Mode (GPTMTBMR), offset 0x008 ........................................................... 545 GPTM Control (GPTMCTL), offset 0x00C ........................................................................ 547 GPTM Interrupt Mask (GPTMIMR), offset 0x018 .............................................................. 550 GPTM Raw Interrupt Status (GPTMRIS), offset 0x01C ..................................................... 552 GPTM Masked Interrupt Status (GPTMMIS), offset 0x020 ................................................ 555 GPTM Interrupt Clear (GPTMICR), offset 0x024 .............................................................. 558 GPTM Timer A Interval Load (GPTMTAILR), offset 0x028 ................................................ 560 GPTM Timer B Interval Load (GPTMTBILR), offset 0x02C ................................................ 561 GPTM Timer A Match (GPTMTAMATCHR), offset 0x030 .................................................. 562 GPTM Timer B Match (GPTMTBMATCHR), offset 0x034 ................................................. 563 GPTM Timer A Prescale (GPTMTAPR), offset 0x038 ....................................................... 564 GPTM Timer B Prescale (GPTMTBPR), offset 0x03C ...................................................... 565 GPTM TimerA Prescale Match (GPTMTAPMR), offset 0x040 ........................................... 566 GPTM TimerB Prescale Match (GPTMTBPMR), offset 0x044 ........................................... 567 GPTM Timer A (GPTMTAR), offset 0x048 ....................................................................... 568 GPTM Timer B (GPTMTBR), offset 0x04C ....................................................................... 569 GPTM Timer A Value (GPTMTAV), offset 0x050 ............................................................... 570 GPTM Timer B Value (GPTMTBV), offset 0x054 .............................................................. 571 Watchdog Timers ......................................................................................................................... 572 Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15: Register 16: Register 17: Register 18: Register 19: Register 20: Watchdog Load (WDTLOAD), offset 0x000 ...................................................................... 576 Watchdog Value (WDTVALUE), offset 0x004 ................................................................... 577 Watchdog Control (WDTCTL), offset 0x008 ..................................................................... 578 Watchdog Interrupt Clear (WDTICR), offset 0x00C .......................................................... 580 Watchdog Raw Interrupt Status (WDTRIS), offset 0x010 .................................................. 581 Watchdog Masked Interrupt Status (WDTMIS), offset 0x014 ............................................. 582 Watchdog Test (WDTTEST), offset 0x418 ....................................................................... 583 Watchdog Lock (WDTLOCK), offset 0xC00 ..................................................................... 584 Watchdog Peripheral Identification 4 (WDTPeriphID4), offset 0xFD0 ................................. 585 Watchdog Peripheral Identification 5 (WDTPeriphID5), offset 0xFD4 ................................. 586 Watchdog Peripheral Identification 6 (WDTPeriphID6), offset 0xFD8 ................................. 587 Watchdog Peripheral Identification 7 (WDTPeriphID7), offset 0xFDC ................................ 588 Watchdog Peripheral Identification 0 (WDTPeriphID0), offset 0xFE0 ................................. 589 Watchdog Peripheral Identification 1 (WDTPeriphID1), offset 0xFE4 ................................. 590 Watchdog Peripheral Identification 2 (WDTPeriphID2), offset 0xFE8 ................................. 591 Watchdog Peripheral Identification 3 (WDTPeriphID3), offset 0xFEC ................................. 592 Watchdog PrimeCell Identification 0 (WDTPCellID0), offset 0xFF0 .................................... 593 Watchdog PrimeCell Identification 1 (WDTPCellID1), offset 0xFF4 .................................... 594 Watchdog PrimeCell Identification 2 (WDTPCellID2), offset 0xFF8 .................................... 595 Watchdog PrimeCell Identification 3 (WDTPCellID3 ), offset 0xFFC .................................. 596 Analog-to-Digital Converter (ADC) ............................................................................................. 597 Register 1: Register 2: ADC Active Sample Sequencer (ADCACTSS), offset 0x000 ............................................. 619 ADC Raw Interrupt Status (ADCRIS), offset 0x004 ........................................................... 620 March 19, 2011 25 Texas Instruments-Advance Information Table of Contents Register 3: Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15: Register 16: Register 17: Register 18: Register 19: Register 20: Register 21: Register 22: Register 23: Register 24: Register 25: Register 26: Register 27: Register 28: Register 29: Register 30: Register 31: Register 32: Register 33: Register 34: Register 35: Register 36: Register 37: Register 38: Register 39: Register 40: Register 41: Register 42: Register 43: Register 44: Register 45: Register 46: Register 47: Register 48: Register 49: Register 50: ADC Interrupt Mask (ADCIM), offset 0x008 ..................................................................... 622 ADC Interrupt Status and Clear (ADCISC), offset 0x00C .................................................. 624 ADC Overflow Status (ADCOSTAT), offset 0x010 ............................................................ 627 ADC Event Multiplexer Select (ADCEMUX), offset 0x014 ................................................. 629 ADC Underflow Status (ADCUSTAT), offset 0x018 ........................................................... 634 ADC Sample Sequencer Priority (ADCSSPRI), offset 0x020 ............................................. 635 ADC Sample Phase Control (ADCSPC), offset 0x024 ...................................................... 637 ADC Processor Sample Sequence Initiate (ADCPSSI), offset 0x028 ................................. 639 ADC Sample Averaging Control (ADCSAC), offset 0x030 ................................................. 641 ADC Digital Comparator Interrupt Status and Clear (ADCDCISC), offset 0x034 ................. 642 ADC Control (ADCCTL), offset 0x038 ............................................................................. 644 ADC Sample Sequence Input Multiplexer Select 0 (ADCSSMUX0), offset 0x040 ............... 645 ADC Sample Sequence Control 0 (ADCSSCTL0), offset 0x044 ........................................ 647 ADC Sample Sequence Result FIFO 0 (ADCSSFIFO0), offset 0x048 ................................ 650 ADC Sample Sequence Result FIFO 1 (ADCSSFIFO1), offset 0x068 ................................ 650 ADC Sample Sequence Result FIFO 2 (ADCSSFIFO2), offset 0x088 ................................ 650 ADC Sample Sequence Result FIFO 3 (ADCSSFIFO3), offset 0x0A8 ............................... 650 ADC Sample Sequence FIFO 0 Status (ADCSSFSTAT0), offset 0x04C ............................. 651 ADC Sample Sequence FIFO 1 Status (ADCSSFSTAT1), offset 0x06C ............................. 651 ADC Sample Sequence FIFO 2 Status (ADCSSFSTAT2), offset 0x08C ............................ 651 ADC Sample Sequence FIFO 3 Status (ADCSSFSTAT3), offset 0x0AC ............................ 651 ADC Sample Sequence 0 Operation (ADCSSOP0), offset 0x050 ...................................... 653 ADC Sample Sequence 0 Digital Comparator Select (ADCSSDC0), offset 0x054 .............. 655 ADC Sample Sequence Input Multiplexer Select 1 (ADCSSMUX1), offset 0x060 ............... 657 ADC Sample Sequence Input Multiplexer Select 2 (ADCSSMUX2), offset 0x080 ............... 657 ADC Sample Sequence Control 1 (ADCSSCTL1), offset 0x064 ........................................ 658 ADC Sample Sequence Control 2 (ADCSSCTL2), offset 0x084 ........................................ 658 ADC Sample Sequence 1 Operation (ADCSSOP1), offset 0x070 ...................................... 660 ADC Sample Sequence 2 Operation (ADCSSOP2), offset 0x090 ..................................... 660 ADC Sample Sequence 1 Digital Comparator Select (ADCSSDC1), offset 0x074 .............. 661 ADC Sample Sequence 2 Digital Comparator Select (ADCSSDC2), offset 0x094 .............. 661 ADC Sample Sequence Input Multiplexer Select 3 (ADCSSMUX3), offset 0x0A0 ............... 663 ADC Sample Sequence Control 3 (ADCSSCTL3), offset 0x0A4 ........................................ 664 ADC Sample Sequence 3 Operation (ADCSSOP3), offset 0x0B0 ..................................... 665 ADC Sample Sequence 3 Digital Comparator Select (ADCSSDC3), offset 0x0B4 .............. 666 ADC Digital Comparator Reset Initial Conditions (ADCDCRIC), offset 0xD00 ..................... 667 ADC Digital Comparator Control 0 (ADCDCCTL0), offset 0xE00 ....................................... 672 ADC Digital Comparator Control 1 (ADCDCCTL1), offset 0xE04 ....................................... 672 ADC Digital Comparator Control 2 (ADCDCCTL2), offset 0xE08 ....................................... 672 ADC Digital Comparator Control 3 (ADCDCCTL3), offset 0xE0C ...................................... 672 ADC Digital Comparator Control 4 (ADCDCCTL4), offset 0xE10 ....................................... 672 ADC Digital Comparator Control 5 (ADCDCCTL5), offset 0xE14 ....................................... 672 ADC Digital Comparator Control 6 (ADCDCCTL6), offset 0xE18 ....................................... 672 ADC Digital Comparator Control 7 (ADCDCCTL7), offset 0xE1C ...................................... 672 ADC Digital Comparator Range 0 (ADCDCCMP0), offset 0xE40 ....................................... 675 ADC Digital Comparator Range 1 (ADCDCCMP1), offset 0xE44 ....................................... 675 ADC Digital Comparator Range 2 (ADCDCCMP2), offset 0xE48 ....................................... 675 ADC Digital Comparator Range 3 (ADCDCCMP3), offset 0xE4C ...................................... 675 26 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 51: Register 52: Register 53: Register 54: ADC Digital Comparator Range 4 (ADCDCCMP4), offset 0xE50 ....................................... ADC Digital Comparator Range 5 (ADCDCCMP5), offset 0xE54 ....................................... ADC Digital Comparator Range 6 (ADCDCCMP6), offset 0xE58 ....................................... ADC Digital Comparator Range 7 (ADCDCCMP7), offset 0xE5C ...................................... 675 675 675 675 Universal Asynchronous Receivers/Transmitters (UARTs) ..................................................... 676 Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15: Register 16: Register 17: Register 18: Register 19: Register 20: Register 21: Register 22: Register 23: Register 24: Register 25: Register 26: Register 27: Register 28: Register 29: UART Data (UARTDR), offset 0x000 ............................................................................... 690 UART Receive Status/Error Clear (UARTRSR/UARTECR), offset 0x004 ........................... 692 UART Flag (UARTFR), offset 0x018 ................................................................................ 695 UART IrDA Low-Power Register (UARTILPR), offset 0x020 ............................................. 698 UART Integer Baud-Rate Divisor (UARTIBRD), offset 0x024 ............................................ 699 UART Fractional Baud-Rate Divisor (UARTFBRD), offset 0x028 ....................................... 700 UART Line Control (UARTLCRH), offset 0x02C ............................................................... 701 UART Control (UARTCTL), offset 0x030 ......................................................................... 703 UART Interrupt FIFO Level Select (UARTIFLS), offset 0x034 ........................................... 707 UART Interrupt Mask (UARTIM), offset 0x038 ................................................................. 709 UART Raw Interrupt Status (UARTRIS), offset 0x03C ...................................................... 713 UART Masked Interrupt Status (UARTMIS), offset 0x040 ................................................. 716 UART Interrupt Clear (UARTICR), offset 0x044 ............................................................... 719 UART DMA Control (UARTDMACTL), offset 0x048 .......................................................... 721 UART LIN Control (UARTLCTL), offset 0x090 ................................................................. 722 UART LIN Snap Shot (UARTLSS), offset 0x094 ............................................................... 723 UART LIN Timer (UARTLTIM), offset 0x098 ..................................................................... 724 UART Peripheral Identification 4 (UARTPeriphID4), offset 0xFD0 ..................................... 725 UART Peripheral Identification 5 (UARTPeriphID5), offset 0xFD4 ..................................... 726 UART Peripheral Identification 6 (UARTPeriphID6), offset 0xFD8 ..................................... 727 UART Peripheral Identification 7 (UARTPeriphID7), offset 0xFDC ..................................... 728 UART Peripheral Identification 0 (UARTPeriphID0), offset 0xFE0 ...................................... 729 UART Peripheral Identification 1 (UARTPeriphID1), offset 0xFE4 ...................................... 730 UART Peripheral Identification 2 (UARTPeriphID2), offset 0xFE8 ...................................... 731 UART Peripheral Identification 3 (UARTPeriphID3), offset 0xFEC ..................................... 732 UART PrimeCell Identification 0 (UARTPCellID0), offset 0xFF0 ........................................ 733 UART PrimeCell Identification 1 (UARTPCellID1), offset 0xFF4 ........................................ 734 UART PrimeCell Identification 2 (UARTPCellID2), offset 0xFF8 ........................................ 735 UART PrimeCell Identification 3 (UARTPCellID3), offset 0xFFC ........................................ 736 Synchronous Serial Interface (SSI) ............................................................................................ 737 Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: SSI Control 0 (SSICR0), offset 0x000 .............................................................................. 753 SSI Control 1 (SSICR1), offset 0x004 .............................................................................. 755 SSI Data (SSIDR), offset 0x008 ...................................................................................... 757 SSI Status (SSISR), offset 0x00C ................................................................................... 758 SSI Clock Prescale (SSICPSR), offset 0x010 .................................................................. 760 SSI Interrupt Mask (SSIIM), offset 0x014 ......................................................................... 761 SSI Raw Interrupt Status (SSIRIS), offset 0x018 .............................................................. 762 SSI Masked Interrupt Status (SSIMIS), offset 0x01C ........................................................ 764 SSI Interrupt Clear (SSIICR), offset 0x020 ....................................................................... 766 SSI DMA Control (SSIDMACTL), offset 0x024 ................................................................. 767 SSI Peripheral Identification 4 (SSIPeriphID4), offset 0xFD0 ............................................. 768 SSI Peripheral Identification 5 (SSIPeriphID5), offset 0xFD4 ............................................. 769 SSI Peripheral Identification 6 (SSIPeriphID6), offset 0xFD8 ............................................. 770 March 19, 2011 27 Texas Instruments-Advance Information Table of Contents Register 14: Register 15: Register 16: Register 17: Register 18: Register 19: Register 20: Register 21: Register 22: SSI Peripheral Identification 7 (SSIPeriphID7), offset 0xFDC ............................................ SSI Peripheral Identification 0 (SSIPeriphID0), offset 0xFE0 ............................................. SSI Peripheral Identification 1 (SSIPeriphID1), offset 0xFE4 ............................................. SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE8 ............................................. SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFEC ............................................ SSI PrimeCell Identification 0 (SSIPCellID0), offset 0xFF0 ............................................... SSI PrimeCell Identification 1 (SSIPCellID1), offset 0xFF4 ............................................... SSI PrimeCell Identification 2 (SSIPCellID2), offset 0xFF8 ............................................... SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFFC ............................................... 771 772 773 774 775 776 777 778 779 Inter-Integrated Circuit (I2C) Interface ........................................................................................ 780 Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15: Register 16: I2C Master Slave Address (I2CMSA), offset 0x000 ........................................................... 797 I2C Master Control/Status (I2CMCS), offset 0x004 ........................................................... 798 I2C Master Data (I2CMDR), offset 0x008 ......................................................................... 802 I2C Master Timer Period (I2CMTPR), offset 0x00C ........................................................... 803 I2C Master Interrupt Mask (I2CMIMR), offset 0x010 ......................................................... 804 I2C Master Raw Interrupt Status (I2CMRIS), offset 0x014 ................................................. 805 I2C Master Masked Interrupt Status (I2CMMIS), offset 0x018 ........................................... 806 I2C Master Interrupt Clear (I2CMICR), offset 0x01C ......................................................... 807 I2C Master Configuration (I2CMCR), offset 0x020 ............................................................ 808 I2C Slave Own Address (I2CSOAR), offset 0x800 ............................................................ 809 I2C Slave Control/Status (I2CSCSR), offset 0x804 ........................................................... 810 I2C Slave Data (I2CSDR), offset 0x808 ........................................................................... 812 I2C Slave Interrupt Mask (I2CSIMR), offset 0x80C ........................................................... 813 I2C Slave Raw Interrupt Status (I2CSRIS), offset 0x810 ................................................... 814 I2C Slave Masked Interrupt Status (I2CSMIS), offset 0x814 .............................................. 815 I2C Slave Interrupt Clear (I2CSICR), offset 0x818 ............................................................ 816 Inter-Integrated Circuit Sound (I2S) Interface ............................................................................ 817 Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15: Register 16: Register 17: I2S Transmit FIFO Data (I2STXFIFO), offset 0x000 .......................................................... 830 I2S Transmit FIFO Configuration (I2STXFIFOCFG), offset 0x004 ...................................... 831 I2S Transmit Module Configuration (I2STXCFG), offset 0x008 .......................................... 832 I2S Transmit FIFO Limit (I2STXLIMIT), offset 0x00C ........................................................ 834 I2S Transmit Interrupt Status and Mask (I2STXISM), offset 0x010 ..................................... 835 I2S Transmit FIFO Level (I2STXLEV), offset 0x018 .......................................................... 836 I2S Receive FIFO Data (I2SRXFIFO), offset 0x800 .......................................................... 837 I2S Receive FIFO Configuration (I2SRXFIFOCFG), offset 0x804 ...................................... 838 I2S Receive Module Configuration (I2SRXCFG), offset 0x808 ........................................... 839 I2S Receive FIFO Limit (I2SRXLIMIT), offset 0x80C ......................................................... 841 I2S Receive Interrupt Status and Mask (I2SRXISM), offset 0x810 ..................................... 842 I2S Receive FIFO Level (I2SRXLEV), offset 0x818 ........................................................... 843 I2S Module Configuration (I2SCFG), offset 0xC00 ............................................................ 844 I2S Interrupt Mask (I2SIM), offset 0xC10 ......................................................................... 846 I2S Raw Interrupt Status (I2SRIS), offset 0xC14 ............................................................... 848 I2S Masked Interrupt Status (I2SMIS), offset 0xC18 ......................................................... 850 I2S Interrupt Clear (I2SIC), offset 0xC1C ......................................................................... 852 Controller Area Network (CAN) Module ..................................................................................... 853 Register 1: CAN Control (CANCTL), offset 0x000 ............................................................................. 874 28 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15: Register 16: Register 17: Register 18: Register 19: Register 20: Register 21: Register 22: Register 23: Register 24: Register 25: Register 26: Register 27: Register 28: Register 29: Register 30: Register 31: Register 32: Register 33: Register 34: Register 35: Register 36: Register 37: CAN Status (CANSTS), offset 0x004 ............................................................................... 876 CAN Error Counter (CANERR), offset 0x008 ................................................................... 879 CAN Bit Timing (CANBIT), offset 0x00C .......................................................................... 880 CAN Interrupt (CANINT), offset 0x010 ............................................................................. 881 CAN Test (CANTST), offset 0x014 .................................................................................. 882 CAN Baud Rate Prescaler Extension (CANBRPE), offset 0x018 ....................................... 884 CAN IF1 Command Request (CANIF1CRQ), offset 0x020 ................................................ 885 CAN IF2 Command Request (CANIF2CRQ), offset 0x080 ................................................ 885 CAN IF1 Command Mask (CANIF1CMSK), offset 0x024 .................................................. 886 CAN IF2 Command Mask (CANIF2CMSK), offset 0x084 .................................................. 886 CAN IF1 Mask 1 (CANIF1MSK1), offset 0x028 ................................................................ 889 CAN IF2 Mask 1 (CANIF2MSK1), offset 0x088 ................................................................ 889 CAN IF1 Mask 2 (CANIF1MSK2), offset 0x02C ................................................................ 890 CAN IF2 Mask 2 (CANIF2MSK2), offset 0x08C ................................................................ 890 CAN IF1 Arbitration 1 (CANIF1ARB1), offset 0x030 ......................................................... 892 CAN IF2 Arbitration 1 (CANIF2ARB1), offset 0x090 ......................................................... 892 CAN IF1 Arbitration 2 (CANIF1ARB2), offset 0x034 ......................................................... 893 CAN IF2 Arbitration 2 (CANIF2ARB2), offset 0x094 ......................................................... 893 CAN IF1 Message Control (CANIF1MCTL), offset 0x038 .................................................. 895 CAN IF2 Message Control (CANIF2MCTL), offset 0x098 .................................................. 895 CAN IF1 Data A1 (CANIF1DA1), offset 0x03C ................................................................. 898 CAN IF1 Data A2 (CANIF1DA2), offset 0x040 ................................................................. 898 CAN IF1 Data B1 (CANIF1DB1), offset 0x044 ................................................................. 898 CAN IF1 Data B2 (CANIF1DB2), offset 0x048 ................................................................. 898 CAN IF2 Data A1 (CANIF2DA1), offset 0x09C ................................................................. 898 CAN IF2 Data A2 (CANIF2DA2), offset 0x0A0 ................................................................. 898 CAN IF2 Data B1 (CANIF2DB1), offset 0x0A4 ................................................................. 898 CAN IF2 Data B2 (CANIF2DB2), offset 0x0A8 ................................................................. 898 CAN Transmission Request 1 (CANTXRQ1), offset 0x100 ................................................ 899 CAN Transmission Request 2 (CANTXRQ2), offset 0x104 ................................................ 899 CAN New Data 1 (CANNWDA1), offset 0x120 ................................................................. 900 CAN New Data 2 (CANNWDA2), offset 0x124 ................................................................. 900 CAN Message 1 Interrupt Pending (CANMSG1INT), offset 0x140 ..................................... 901 CAN Message 2 Interrupt Pending (CANMSG2INT), offset 0x144 ..................................... 901 CAN Message 1 Valid (CANMSG1VAL), offset 0x160 ....................................................... 902 CAN Message 2 Valid (CANMSG2VAL), offset 0x164 ....................................................... 902 Ethernet Controller ...................................................................................................................... 903 Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 11: Ethernet MAC Raw Interrupt Status/Acknowledge (MACRIS/MACIACK), offset 0x000 ....... Ethernet MAC Interrupt Mask (MACIM), offset 0x004 ....................................................... Ethernet MAC Receive Control (MACRCTL), offset 0x008 ................................................ Ethernet MAC Transmit Control (MACTCTL), offset 0x00C ............................................... Ethernet MAC Data (MACDATA), offset 0x010 ................................................................. Ethernet MAC Individual Address 0 (MACIA0), offset 0x014 ............................................. Ethernet MAC Individual Address 1 (MACIA1), offset 0x018 ............................................. Ethernet MAC Threshold (MACTHR), offset 0x01C .......................................................... Ethernet MAC Management Control (MACMCTL), offset 0x020 ........................................ Ethernet MAC Management Divider (MACMDV), offset 0x024 .......................................... Ethernet MAC Management Transmit Data (MACMTXD), offset 0x02C ............................. March 19, 2011 917 920 922 924 926 928 929 930 932 934 935 29 Texas Instruments-Advance Information Table of Contents Register 12: Register 13: Register 14: Register 15: Register 16: Register 17: Register 18: Register 19: Register 20: Register 21: Register 22: Register 23: Register 24: Register 25: Register 26: Register 27: Register 28: Register 29: Ethernet MAC Management Receive Data (MACMRXD), offset 0x030 .............................. 936 Ethernet MAC Number of Packets (MACNP), offset 0x034 ............................................... 937 Ethernet MAC Transmission Request (MACTR), offset 0x038 ........................................... 938 Ethernet MAC LED Encoding (MACLED), offset 0x040 .................................................... 939 Ethernet PHY MDIX (MDIX), offset 0x044 ....................................................................... 941 Ethernet PHY Management Register 0 – Control (MR0), address 0x00 ............................. 942 Ethernet PHY Management Register 1 – Status (MR1), address 0x01 .............................. 944 Ethernet PHY Management Register 2 – PHY Identifier 1 (MR2), address 0x02 ................. 946 Ethernet PHY Management Register 3 – PHY Identifier 2 (MR3), address 0x03 ................. 947 Ethernet PHY Management Register 4 – Auto-Negotiation Advertisement (MR4), address 0x04 ............................................................................................................................. 948 Ethernet PHY Management Register 5 – Auto-Negotiation Link Partner Base Page Ability (MR5), address 0x05 ..................................................................................................... 950 Ethernet PHY Management Register 6 – Auto-Negotiation Expansion (MR6), address 0x06 ............................................................................................................................. 952 Ethernet PHY Management Register 16 – Vendor-Specific (MR16), address 0x10 ............. 953 Ethernet PHY Management Register 17 – Mode Control/Status (MR17), address 0x11 ...... 954 Ethernet PHY Management Register 27 – Special Control/Status (MR27), address 0x1B ............................................................................................................................. 956 Ethernet PHY Management Register 29 – Interrupt Status (MR29), address 0x1D ............. 957 Ethernet PHY Management Register 30 – Interrupt Mask (MR30), address 0x1E ............... 959 Ethernet PHY Management Register 31 – PHY Special Control/Status (MR31), address 0x1F ............................................................................................................................. 961 Universal Serial Bus (USB) Controller ....................................................................................... 962 Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15: Register 16: Register 17: Register 18: Register 19: Register 20: Register 21: Register 22: Register 23: Register 24: USB Device Functional Address (USBFADDR), offset 0x000 ............................................ 990 USB Power (USBPOWER), offset 0x001 ......................................................................... 991 USB Transmit Interrupt Status (USBTXIS), offset 0x002 ................................................... 994 USB Receive Interrupt Status (USBRXIS), offset 0x004 ................................................... 996 USB Transmit Interrupt Enable (USBTXIE), offset 0x006 .................................................. 998 USB Receive Interrupt Enable (USBRXIE), offset 0x008 ................................................. 1000 USB General Interrupt Status (USBIS), offset 0x00A ...................................................... 1002 USB Interrupt Enable (USBIE), offset 0x00B .................................................................. 1005 USB Frame Value (USBFRAME), offset 0x00C .............................................................. 1008 USB Endpoint Index (USBEPIDX), offset 0x00E ............................................................ 1009 USB Test Mode (USBTEST), offset 0x00F ..................................................................... 1010 USB FIFO Endpoint 0 (USBFIFO0), offset 0x020 ........................................................... 1012 USB FIFO Endpoint 1 (USBFIFO1), offset 0x024 ........................................................... 1012 USB FIFO Endpoint 2 (USBFIFO2), offset 0x028 ........................................................... 1012 USB FIFO Endpoint 3 (USBFIFO3), offset 0x02C ........................................................... 1012 USB FIFO Endpoint 4 (USBFIFO4), offset 0x030 ........................................................... 1012 USB FIFO Endpoint 5 (USBFIFO5), offset 0x034 ........................................................... 1012 USB FIFO Endpoint 6 (USBFIFO6), offset 0x038 ........................................................... 1012 USB FIFO Endpoint 7 (USBFIFO7), offset 0x03C ........................................................... 1012 USB FIFO Endpoint 8 (USBFIFO8), offset 0x040 ........................................................... 1012 USB FIFO Endpoint 9 (USBFIFO9), offset 0x044 ........................................................... 1012 USB FIFO Endpoint 10 (USBFIFO10), offset 0x048 ....................................................... 1012 USB FIFO Endpoint 11 (USBFIFO11), offset 0x04C ....................................................... 1012 USB FIFO Endpoint 12 (USBFIFO12), offset 0x050 ....................................................... 1012 30 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 25: Register 26: Register 27: Register 28: Register 29: Register 30: Register 31: Register 32: Register 33: Register 34: Register 35: Register 36: Register 37: Register 38: Register 39: Register 40: Register 41: Register 42: Register 43: Register 44: Register 45: Register 46: Register 47: Register 48: Register 49: Register 50: Register 51: Register 52: Register 53: Register 54: Register 55: Register 56: Register 57: Register 58: Register 59: Register 60: Register 61: Register 62: Register 63: Register 64: Register 65: Register 66: Register 67: Register 68: Register 69: Register 70: Register 71: Register 72: USB FIFO Endpoint 13 (USBFIFO13), offset 0x054 ....................................................... 1012 USB FIFO Endpoint 14 (USBFIFO14), offset 0x058 ....................................................... 1012 USB FIFO Endpoint 15 (USBFIFO15), offset 0x05C ....................................................... 1012 USB Device Control (USBDEVCTL), offset 0x060 .......................................................... 1014 USB Transmit Dynamic FIFO Sizing (USBTXFIFOSZ), offset 0x062 ................................ 1016 USB Receive Dynamic FIFO Sizing (USBRXFIFOSZ), offset 0x063 ................................ 1016 USB Transmit FIFO Start Address (USBTXFIFOADD), offset 0x064 ................................ 1017 USB Receive FIFO Start Address (USBRXFIFOADD), offset 0x066 ................................ 1017 USB Connect Timing (USBCONTIM), offset 0x07A ........................................................ 1018 USB OTG VBUS Pulse Timing (USBVPLEN), offset 0x07B ............................................ 1019 USB Full-Speed Last Transaction to End of Frame Timing (USBFSEOF), offset 0x07D .... 1020 USB Low-Speed Last Transaction to End of Frame Timing (USBLSEOF), offset 0x07E .... 1021 USB Transmit Functional Address Endpoint 0 (USBTXFUNCADDR0), offset 0x080 ......... 1022 USB Transmit Functional Address Endpoint 1 (USBTXFUNCADDR1), offset 0x088 ......... 1022 USB Transmit Functional Address Endpoint 2 (USBTXFUNCADDR2), offset 0x090 ......... 1022 USB Transmit Functional Address Endpoint 3 (USBTXFUNCADDR3), offset 0x098 ......... 1022 USB Transmit Functional Address Endpoint 4 (USBTXFUNCADDR4), offset 0x0A0 ......... 1022 USB Transmit Functional Address Endpoint 5 (USBTXFUNCADDR5), offset 0x0A8 ......... 1022 USB Transmit Functional Address Endpoint 6 (USBTXFUNCADDR6), offset 0x0B0 ......... 1022 USB Transmit Functional Address Endpoint 7 (USBTXFUNCADDR7), offset 0x0B8 ......... 1022 USB Transmit Functional Address Endpoint 8 (USBTXFUNCADDR8), offset 0x0C0 ........ 1022 USB Transmit Functional Address Endpoint 9 (USBTXFUNCADDR9), offset 0x0C8 ........ 1022 USB Transmit Functional Address Endpoint 10 (USBTXFUNCADDR10), offset 0x0D0 ..... 1022 USB Transmit Functional Address Endpoint 11 (USBTXFUNCADDR11), offset 0x0D8 ..... 1022 USB Transmit Functional Address Endpoint 12 (USBTXFUNCADDR12), offset 0x0E0 ..... 1022 USB Transmit Functional Address Endpoint 13 (USBTXFUNCADDR13), offset 0x0E8 ..... 1022 USB Transmit Functional Address Endpoint 14 (USBTXFUNCADDR14), offset 0x0F0 ..... 1022 USB Transmit Functional Address Endpoint 15 (USBTXFUNCADDR15), offset 0x0F8 ..... 1022 USB Transmit Hub Address Endpoint 0 (USBTXHUBADDR0), offset 0x082 ..................... 1024 USB Transmit Hub Address Endpoint 1 (USBTXHUBADDR1), offset 0x08A .................... 1024 USB Transmit Hub Address Endpoint 2 (USBTXHUBADDR2), offset 0x092 ..................... 1024 USB Transmit Hub Address Endpoint 3 (USBTXHUBADDR3), offset 0x09A .................... 1024 USB Transmit Hub Address Endpoint 4 (USBTXHUBADDR4), offset 0x0A2 .................... 1024 USB Transmit Hub Address Endpoint 5 (USBTXHUBADDR5), offset 0x0AA .................... 1024 USB Transmit Hub Address Endpoint 6 (USBTXHUBADDR6), offset 0x0B2 .................... 1024 USB Transmit Hub Address Endpoint 7 (USBTXHUBADDR7), offset 0x0BA .................... 1024 USB Transmit Hub Address Endpoint 8 (USBTXHUBADDR8), offset 0x0C2 .................... 1024 USB Transmit Hub Address Endpoint 9 (USBTXHUBADDR9), offset 0x0CA .................... 1024 USB Transmit Hub Address Endpoint 10 (USBTXHUBADDR10), offset 0x0D2 ................ 1024 USB Transmit Hub Address Endpoint 11 (USBTXHUBADDR11), offset 0x0DA ................ 1024 USB Transmit Hub Address Endpoint 12 (USBTXHUBADDR12), offset 0x0E2 ................ 1024 USB Transmit Hub Address Endpoint 13 (USBTXHUBADDR13), offset 0x0EA ................ 1024 USB Transmit Hub Address Endpoint 14 (USBTXHUBADDR14), offset 0x0F2 ................. 1024 USB Transmit Hub Address Endpoint 15 (USBTXHUBADDR15), offset 0x0FA ................ 1024 USB Transmit Hub Port Endpoint 0 (USBTXHUBPORT0), offset 0x083 ........................... 1026 USB Transmit Hub Port Endpoint 1 (USBTXHUBPORT1), offset 0x08B ........................... 1026 USB Transmit Hub Port Endpoint 2 (USBTXHUBPORT2), offset 0x093 ........................... 1026 USB Transmit Hub Port Endpoint 3 (USBTXHUBPORT3), offset 0x09B ........................... 1026 March 19, 2011 31 Texas Instruments-Advance Information Table of Contents Register 73: Register 74: Register 75: Register 76: Register 77: Register 78: Register 79: Register 80: Register 81: Register 82: Register 83: Register 84: Register 85: Register 86: Register 87: Register 88: Register 89: Register 90: Register 91: Register 92: Register 93: Register 94: Register 95: Register 96: Register 97: Register 98: Register 99: Register 100: Register 101: Register 102: Register 103: Register 104: Register 105: Register 106: Register 107: Register 108: Register 109: Register 110: Register 111: Register 112: Register 113: Register 114: Register 115: Register 116: Register 117: Register 118: Register 119: Register 120: USB Transmit Hub Port Endpoint 4 (USBTXHUBPORT4), offset 0x0A3 ........................... 1026 USB Transmit Hub Port Endpoint 5 (USBTXHUBPORT5), offset 0x0AB .......................... 1026 USB Transmit Hub Port Endpoint 6 (USBTXHUBPORT6), offset 0x0B3 ........................... 1026 USB Transmit Hub Port Endpoint 7 (USBTXHUBPORT7), offset 0x0BB .......................... 1026 USB Transmit Hub Port Endpoint 8 (USBTXHUBPORT8), offset 0x0C3 .......................... 1026 USB Transmit Hub Port Endpoint 9 (USBTXHUBPORT9), offset 0x0CB .......................... 1026 USB Transmit Hub Port Endpoint 10 (USBTXHUBPORT10), offset 0x0D3 ....................... 1026 USB Transmit Hub Port Endpoint 11 (USBTXHUBPORT11), offset 0x0DB ....................... 1026 USB Transmit Hub Port Endpoint 12 (USBTXHUBPORT12), offset 0x0E3 ....................... 1026 USB Transmit Hub Port Endpoint 13 (USBTXHUBPORT13), offset 0x0EB ...................... 1026 USB Transmit Hub Port Endpoint 14 (USBTXHUBPORT14), offset 0x0F3 ....................... 1026 USB Transmit Hub Port Endpoint 15 (USBTXHUBPORT15), offset 0x0FB ....................... 1026 USB Receive Functional Address Endpoint 1 (USBRXFUNCADDR1), offset 0x08C ......... 1028 USB Receive Functional Address Endpoint 2 (USBRXFUNCADDR2), offset 0x094 ......... 1028 USB Receive Functional Address Endpoint 3 (USBRXFUNCADDR3), offset 0x09C ......... 1028 USB Receive Functional Address Endpoint 4 (USBRXFUNCADDR4), offset 0x0A4 ......... 1028 USB Receive Functional Address Endpoint 5 (USBRXFUNCADDR5), offset 0x0AC ......... 1028 USB Receive Functional Address Endpoint 6 (USBRXFUNCADDR6), offset 0x0B4 ......... 1028 USB Receive Functional Address Endpoint 7 (USBRXFUNCADDR7), offset 0x0BC ......... 1028 USB Receive Functional Address Endpoint 8 (USBRXFUNCADDR8), offset 0x0C4 ......... 1028 USB Receive Functional Address Endpoint 9 (USBRXFUNCADDR9), offset 0x0CC ........ 1028 USB Receive Functional Address Endpoint 10 (USBRXFUNCADDR10), offset 0x0D4 ..... 1028 USB Receive Functional Address Endpoint 11 (USBRXFUNCADDR11), offset 0x0DC ..... 1028 USB Receive Functional Address Endpoint 12 (USBRXFUNCADDR12), offset 0x0E4 ..... 1028 USB Receive Functional Address Endpoint 13 (USBRXFUNCADDR13), offset 0x0EC ..... 1028 USB Receive Functional Address Endpoint 14 (USBRXFUNCADDR14), offset 0x0F4 ...... 1028 USB Receive Functional Address Endpoint 15 (USBRXFUNCADDR15), offset 0x0FC ..... 1028 USB Receive Hub Address Endpoint 1 (USBRXHUBADDR1), offset 0x08E ..................... 1030 USB Receive Hub Address Endpoint 2 (USBRXHUBADDR2), offset 0x096 ..................... 1030 USB Receive Hub Address Endpoint 3 (USBRXHUBADDR3), offset 0x09E ..................... 1030 USB Receive Hub Address Endpoint 4 (USBRXHUBADDR4), offset 0x0A6 ..................... 1030 USB Receive Hub Address Endpoint 5 (USBRXHUBADDR5), offset 0x0AE .................... 1030 USB Receive Hub Address Endpoint 6 (USBRXHUBADDR6), offset 0x0B6 ..................... 1030 USB Receive Hub Address Endpoint 7 (USBRXHUBADDR7), offset 0x0BE .................... 1030 USB Receive Hub Address Endpoint 8 (USBRXHUBADDR8), offset 0x0C6 .................... 1030 USB Receive Hub Address Endpoint 9 (USBRXHUBADDR9), offset 0x0CE .................... 1030 USB Receive Hub Address Endpoint 10 (USBRXHUBADDR10), offset 0x0D6 ................. 1030 USB Receive Hub Address Endpoint 11 (USBRXHUBADDR11), offset 0x0DE ................. 1030 USB Receive Hub Address Endpoint 12 (USBRXHUBADDR12), offset 0x0E6 ................. 1030 USB Receive Hub Address Endpoint 13 (USBRXHUBADDR13), offset 0x0EE ................ 1030 USB Receive Hub Address Endpoint 14 (USBRXHUBADDR14), offset 0x0F6 ................. 1030 USB Receive Hub Address Endpoint 15 (USBRXHUBADDR15), offset 0x0FE ................. 1030 USB Receive Hub Port Endpoint 1 (USBRXHUBPORT1), offset 0x08F ........................... 1032 USB Receive Hub Port Endpoint 2 (USBRXHUBPORT2), offset 0x097 ........................... 1032 USB Receive Hub Port Endpoint 3 (USBRXHUBPORT3), offset 0x09F ........................... 1032 USB Receive Hub Port Endpoint 4 (USBRXHUBPORT4), offset 0x0A7 ........................... 1032 USB Receive Hub Port Endpoint 5 (USBRXHUBPORT5), offset 0x0AF ........................... 1032 USB Receive Hub Port Endpoint 6 (USBRXHUBPORT6), offset 0x0B7 ........................... 1032 32 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 121: Register 122: Register 123: Register 124: Register 125: Register 126: Register 127: Register 128: Register 129: Register 130: Register 131: Register 132: Register 133: Register 134: Register 135: Register 136: Register 137: Register 138: Register 139: Register 140: Register 141: Register 142: Register 143: Register 144: Register 145: Register 146: Register 147: Register 148: Register 149: Register 150: Register 151: Register 152: Register 153: Register 154: Register 155: Register 156: Register 157: Register 158: Register 159: Register 160: Register 161: Register 162: Register 163: Register 164: Register 165: Register 166: Register 167: Register 168: USB Receive Hub Port Endpoint 7 (USBRXHUBPORT7), offset 0x0BF ........................... 1032 USB Receive Hub Port Endpoint 8 (USBRXHUBPORT8), offset 0x0C7 ........................... 1032 USB Receive Hub Port Endpoint 9 (USBRXHUBPORT9), offset 0x0CF ........................... 1032 USB Receive Hub Port Endpoint 10 (USBRXHUBPORT10), offset 0x0D7 ....................... 1032 USB Receive Hub Port Endpoint 11 (USBRXHUBPORT11), offset 0x0DF ....................... 1032 USB Receive Hub Port Endpoint 12 (USBRXHUBPORT12), offset 0x0E7 ....................... 1032 USB Receive Hub Port Endpoint 13 (USBRXHUBPORT13), offset 0x0EF ....................... 1032 USB Receive Hub Port Endpoint 14 (USBRXHUBPORT14), offset 0x0F7 ....................... 1032 USB Receive Hub Port Endpoint 15 (USBRXHUBPORT15), offset 0x0FF ....................... 1032 USB Maximum Transmit Data Endpoint 1 (USBTXMAXP1), offset 0x110 ......................... 1034 USB Maximum Transmit Data Endpoint 2 (USBTXMAXP2), offset 0x120 ........................ 1034 USB Maximum Transmit Data Endpoint 3 (USBTXMAXP3), offset 0x130 ........................ 1034 USB Maximum Transmit Data Endpoint 4 (USBTXMAXP4), offset 0x140 ........................ 1034 USB Maximum Transmit Data Endpoint 5 (USBTXMAXP5), offset 0x150 ........................ 1034 USB Maximum Transmit Data Endpoint 6 (USBTXMAXP6), offset 0x160 ........................ 1034 USB Maximum Transmit Data Endpoint 7 (USBTXMAXP7), offset 0x170 ........................ 1034 USB Maximum Transmit Data Endpoint 8 (USBTXMAXP8), offset 0x180 ........................ 1034 USB Maximum Transmit Data Endpoint 9 (USBTXMAXP9), offset 0x190 ........................ 1034 USB Maximum Transmit Data Endpoint 10 (USBTXMAXP10), offset 0x1A0 .................... 1034 USB Maximum Transmit Data Endpoint 11 (USBTXMAXP11), offset 0x1B0 ..................... 1034 USB Maximum Transmit Data Endpoint 12 (USBTXMAXP12), offset 0x1C0 .................... 1034 USB Maximum Transmit Data Endpoint 13 (USBTXMAXP13), offset 0x1D0 .................... 1034 USB Maximum Transmit Data Endpoint 14 (USBTXMAXP14), offset 0x1E0 .................... 1034 USB Maximum Transmit Data Endpoint 15 (USBTXMAXP15), offset 0x1F0 ..................... 1034 USB Control and Status Endpoint 0 Low (USBCSRL0), offset 0x102 ............................... 1036 USB Control and Status Endpoint 0 High (USBCSRH0), offset 0x103 ............................. 1040 USB Receive Byte Count Endpoint 0 (USBCOUNT0), offset 0x108 ................................. 1042 USB Type Endpoint 0 (USBTYPE0), offset 0x10A .......................................................... 1043 USB NAK Limit (USBNAKLMT), offset 0x10B ................................................................ 1044 USB Transmit Control and Status Endpoint 1 Low (USBTXCSRL1), offset 0x112 ............. 1045 USB Transmit Control and Status Endpoint 2 Low (USBTXCSRL2), offset 0x122 ............. 1045 USB Transmit Control and Status Endpoint 3 Low (USBTXCSRL3), offset 0x132 ............. 1045 USB Transmit Control and Status Endpoint 4 Low (USBTXCSRL4), offset 0x142 ............. 1045 USB Transmit Control and Status Endpoint 5 Low (USBTXCSRL5), offset 0x152 ............. 1045 USB Transmit Control and Status Endpoint 6 Low (USBTXCSRL6), offset 0x162 ............. 1045 USB Transmit Control and Status Endpoint 7 Low (USBTXCSRL7), offset 0x172 ............. 1045 USB Transmit Control and Status Endpoint 8 Low (USBTXCSRL8), offset 0x182 ............. 1045 USB Transmit Control and Status Endpoint 9 Low (USBTXCSRL9), offset 0x192 ............. 1045 USB Transmit Control and Status Endpoint 10 Low (USBTXCSRL10), offset 0x1A2 ......... 1045 USB Transmit Control and Status Endpoint 11 Low (USBTXCSRL11), offset 0x1B2 ......... 1045 USB Transmit Control and Status Endpoint 12 Low (USBTXCSRL12), offset 0x1C2 ........ 1045 USB Transmit Control and Status Endpoint 13 Low (USBTXCSRL13), offset 0x1D2 ........ 1045 USB Transmit Control and Status Endpoint 14 Low (USBTXCSRL14), offset 0x1E2 ......... 1045 USB Transmit Control and Status Endpoint 15 Low (USBTXCSRL15), offset 0x1F2 ......... 1045 USB Transmit Control and Status Endpoint 1 High (USBTXCSRH1), offset 0x113 ............ 1050 USB Transmit Control and Status Endpoint 2 High (USBTXCSRH2), offset 0x123 ........... 1050 USB Transmit Control and Status Endpoint 3 High (USBTXCSRH3), offset 0x133 ........... 1050 USB Transmit Control and Status Endpoint 4 High (USBTXCSRH4), offset 0x143 ........... 1050 March 19, 2011 33 Texas Instruments-Advance Information Table of Contents Register 169: Register 170: Register 171: Register 172: Register 173: Register 174: Register 175: Register 176: Register 177: Register 178: Register 179: Register 180: Register 181: Register 182: Register 183: Register 184: Register 185: Register 186: Register 187: Register 188: Register 189: Register 190: Register 191: Register 192: Register 193: Register 194: Register 195: Register 196: Register 197: Register 198: Register 199: Register 200: Register 201: Register 202: Register 203: Register 204: Register 205: Register 206: Register 207: Register 208: Register 209: Register 210: Register 211: Register 212: Register 213: Register 214: Register 215: Register 216: USB Transmit Control and Status Endpoint 5 High (USBTXCSRH5), offset 0x153 ........... 1050 USB Transmit Control and Status Endpoint 6 High (USBTXCSRH6), offset 0x163 ........... 1050 USB Transmit Control and Status Endpoint 7 High (USBTXCSRH7), offset 0x173 ........... 1050 USB Transmit Control and Status Endpoint 8 High (USBTXCSRH8), offset 0x183 ........... 1050 USB Transmit Control and Status Endpoint 9 High (USBTXCSRH9), offset 0x193 ........... 1050 USB Transmit Control and Status Endpoint 10 High (USBTXCSRH10), offset 0x1A3 ....... 1050 USB Transmit Control and Status Endpoint 11 High (USBTXCSRH11), offset 0x1B3 ........ 1050 USB Transmit Control and Status Endpoint 12 High (USBTXCSRH12), offset 0x1C3 ....... 1050 USB Transmit Control and Status Endpoint 13 High (USBTXCSRH13), offset 0x1D3 ....... 1050 USB Transmit Control and Status Endpoint 14 High (USBTXCSRH14), offset 0x1E3 ....... 1050 USB Transmit Control and Status Endpoint 15 High (USBTXCSRH15), offset 0x1F3 ........ 1050 USB Maximum Receive Data Endpoint 1 (USBRXMAXP1), offset 0x114 ......................... 1054 USB Maximum Receive Data Endpoint 2 (USBRXMAXP2), offset 0x124 ......................... 1054 USB Maximum Receive Data Endpoint 3 (USBRXMAXP3), offset 0x134 ......................... 1054 USB Maximum Receive Data Endpoint 4 (USBRXMAXP4), offset 0x144 ......................... 1054 USB Maximum Receive Data Endpoint 5 (USBRXMAXP5), offset 0x154 ......................... 1054 USB Maximum Receive Data Endpoint 6 (USBRXMAXP6), offset 0x164 ......................... 1054 USB Maximum Receive Data Endpoint 7 (USBRXMAXP7), offset 0x174 ......................... 1054 USB Maximum Receive Data Endpoint 8 (USBRXMAXP8), offset 0x184 ......................... 1054 USB Maximum Receive Data Endpoint 9 (USBRXMAXP9), offset 0x194 ......................... 1054 USB Maximum Receive Data Endpoint 10 (USBRXMAXP10), offset 0x1A4 ..................... 1054 USB Maximum Receive Data Endpoint 11 (USBRXMAXP11), offset 0x1B4 ..................... 1054 USB Maximum Receive Data Endpoint 12 (USBRXMAXP12), offset 0x1C4 ..................... 1054 USB Maximum Receive Data Endpoint 13 (USBRXMAXP13), offset 0x1D4 ..................... 1054 USB Maximum Receive Data Endpoint 14 (USBRXMAXP14), offset 0x1E4 ..................... 1054 USB Maximum Receive Data Endpoint 15 (USBRXMAXP15), offset 0x1F4 ..................... 1054 USB Receive Control and Status Endpoint 1 Low (USBRXCSRL1), offset 0x116 ............. 1056 USB Receive Control and Status Endpoint 2 Low (USBRXCSRL2), offset 0x126 ............. 1056 USB Receive Control and Status Endpoint 3 Low (USBRXCSRL3), offset 0x136 ............. 1056 USB Receive Control and Status Endpoint 4 Low (USBRXCSRL4), offset 0x146 ............. 1056 USB Receive Control and Status Endpoint 5 Low (USBRXCSRL5), offset 0x156 ............. 1056 USB Receive Control and Status Endpoint 6 Low (USBRXCSRL6), offset 0x166 ............. 1056 USB Receive Control and Status Endpoint 7 Low (USBRXCSRL7), offset 0x176 ............. 1056 USB Receive Control and Status Endpoint 8 Low (USBRXCSRL8), offset 0x186 ............. 1056 USB Receive Control and Status Endpoint 9 Low (USBRXCSRL9), offset 0x196 ............. 1056 USB Receive Control and Status Endpoint 10 Low (USBRXCSRL10), offset 0x1A6 ......... 1056 USB Receive Control and Status Endpoint 11 Low (USBRXCSRL11), offset 0x1B6 .......... 1056 USB Receive Control and Status Endpoint 12 Low (USBRXCSRL12), offset 0x1C6 ......... 1056 USB Receive Control and Status Endpoint 13 Low (USBRXCSRL13), offset 0x1D6 ......... 1056 USB Receive Control and Status Endpoint 14 Low (USBRXCSRL14), offset 0x1E6 ......... 1056 USB Receive Control and Status Endpoint 15 Low (USBRXCSRL15), offset 0x1F6 ......... 1056 USB Receive Control and Status Endpoint 1 High (USBRXCSRH1), offset 0x117 ............ 1061 USB Receive Control and Status Endpoint 2 High (USBRXCSRH2), offset 0x127 ............ 1061 USB Receive Control and Status Endpoint 3 High (USBRXCSRH3), offset 0x137 ............ 1061 USB Receive Control and Status Endpoint 4 High (USBRXCSRH4), offset 0x147 ............ 1061 USB Receive Control and Status Endpoint 5 High (USBRXCSRH5), offset 0x157 ............ 1061 USB Receive Control and Status Endpoint 6 High (USBRXCSRH6), offset 0x167 ............ 1061 USB Receive Control and Status Endpoint 7 High (USBRXCSRH7), offset 0x177 ............ 1061 34 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 217: Register 218: Register 219: Register 220: Register 221: Register 222: Register 223: Register 224: Register 225: Register 226: Register 227: Register 228: Register 229: Register 230: Register 231: Register 232: Register 233: Register 234: Register 235: Register 236: Register 237: Register 238: Register 239: Register 240: Register 241: Register 242: Register 243: Register 244: Register 245: Register 246: Register 247: Register 248: Register 249: Register 250: Register 251: Register 252: Register 253: Register 254: Register 255: Register 256: Register 257: Register 258: Register 259: Register 260: Register 261: Register 262: Register 263: Register 264: USB Receive Control and Status Endpoint 8 High (USBRXCSRH8), offset 0x187 ............ 1061 USB Receive Control and Status Endpoint 9 High (USBRXCSRH9), offset 0x197 ............ 1061 USB Receive Control and Status Endpoint 10 High (USBRXCSRH10), offset 0x1A7 ........ 1061 USB Receive Control and Status Endpoint 11 High (USBRXCSRH11), offset 0x1B7 ........ 1061 USB Receive Control and Status Endpoint 12 High (USBRXCSRH12), offset 0x1C7 ........ 1061 USB Receive Control and Status Endpoint 13 High (USBRXCSRH13), offset 0x1D7 ........ 1061 USB Receive Control and Status Endpoint 14 High (USBRXCSRH14), offset 0x1E7 ........ 1061 USB Receive Control and Status Endpoint 15 High (USBRXCSRH15), offset 0x1F7 ........ 1061 USB Receive Byte Count Endpoint 1 (USBRXCOUNT1), offset 0x118 ............................. 1066 USB Receive Byte Count Endpoint 2 (USBRXCOUNT2), offset 0x128 ............................ 1066 USB Receive Byte Count Endpoint 3 (USBRXCOUNT3), offset 0x138 ............................ 1066 USB Receive Byte Count Endpoint 4 (USBRXCOUNT4), offset 0x148 ............................ 1066 USB Receive Byte Count Endpoint 5 (USBRXCOUNT5), offset 0x158 ............................ 1066 USB Receive Byte Count Endpoint 6 (USBRXCOUNT6), offset 0x168 ............................ 1066 USB Receive Byte Count Endpoint 7 (USBRXCOUNT7), offset 0x178 ............................ 1066 USB Receive Byte Count Endpoint 8 (USBRXCOUNT8), offset 0x188 ............................ 1066 USB Receive Byte Count Endpoint 9 (USBRXCOUNT9), offset 0x198 ............................ 1066 USB Receive Byte Count Endpoint 10 (USBRXCOUNT10), offset 0x1A8 ........................ 1066 USB Receive Byte Count Endpoint 11 (USBRXCOUNT11), offset 0x1B8 ......................... 1066 USB Receive Byte Count Endpoint 12 (USBRXCOUNT12), offset 0x1C8 ........................ 1066 USB Receive Byte Count Endpoint 13 (USBRXCOUNT13), offset 0x1D8 ........................ 1066 USB Receive Byte Count Endpoint 14 (USBRXCOUNT14), offset 0x1E8 ........................ 1066 USB Receive Byte Count Endpoint 15 (USBRXCOUNT15), offset 0x1F8 ........................ 1066 USB Host Transmit Configure Type Endpoint 1 (USBTXTYPE1), offset 0x11A ................. 1068 USB Host Transmit Configure Type Endpoint 2 (USBTXTYPE2), offset 0x12A ................. 1068 USB Host Transmit Configure Type Endpoint 3 (USBTXTYPE3), offset 0x13A ................. 1068 USB Host Transmit Configure Type Endpoint 4 (USBTXTYPE4), offset 0x14A ................. 1068 USB Host Transmit Configure Type Endpoint 5 (USBTXTYPE5), offset 0x15A ................. 1068 USB Host Transmit Configure Type Endpoint 6 (USBTXTYPE6), offset 0x16A ................. 1068 USB Host Transmit Configure Type Endpoint 7 (USBTXTYPE7), offset 0x17A ................. 1068 USB Host Transmit Configure Type Endpoint 8 (USBTXTYPE8), offset 0x18A ................. 1068 USB Host Transmit Configure Type Endpoint 9 (USBTXTYPE9), offset 0x19A ................. 1068 USB Host Transmit Configure Type Endpoint 10 (USBTXTYPE10), offset 0x1AA ............. 1068 USB Host Transmit Configure Type Endpoint 11 (USBTXTYPE11), offset 0x1BA ............. 1068 USB Host Transmit Configure Type Endpoint 12 (USBTXTYPE12), offset 0x1CA ............. 1068 USB Host Transmit Configure Type Endpoint 13 (USBTXTYPE13), offset 0x1DA ............. 1068 USB Host Transmit Configure Type Endpoint 14 (USBTXTYPE14), offset 0x1EA ............. 1068 USB Host Transmit Configure Type Endpoint 15 (USBTXTYPE15), offset 0x1FA ............. 1068 USB Host Transmit Interval Endpoint 1 (USBTXINTERVAL1), offset 0x11B ..................... 1070 USB Host Transmit Interval Endpoint 2 (USBTXINTERVAL2), offset 0x12B ..................... 1070 USB Host Transmit Interval Endpoint 3 (USBTXINTERVAL3), offset 0x13B ..................... 1070 USB Host Transmit Interval Endpoint 4 (USBTXINTERVAL4), offset 0x14B ..................... 1070 USB Host Transmit Interval Endpoint 5 (USBTXINTERVAL5), offset 0x15B ..................... 1070 USB Host Transmit Interval Endpoint 6 (USBTXINTERVAL6), offset 0x16B ..................... 1070 USB Host Transmit Interval Endpoint 7 (USBTXINTERVAL7), offset 0x17B ..................... 1070 USB Host Transmit Interval Endpoint 8 (USBTXINTERVAL8), offset 0x18B ..................... 1070 USB Host Transmit Interval Endpoint 9 (USBTXINTERVAL9), offset 0x19B ..................... 1070 USB Host Transmit Interval Endpoint 10 (USBTXINTERVAL10), offset 0x1AB ................. 1070 March 19, 2011 35 Texas Instruments-Advance Information Table of Contents Register 265: Register 266: Register 267: Register 268: Register 269: Register 270: Register 271: Register 272: Register 273: Register 274: Register 275: Register 276: Register 277: Register 278: Register 279: Register 280: Register 281: Register 282: Register 283: Register 284: Register 285: Register 286: Register 287: Register 288: Register 289: Register 290: Register 291: Register 292: Register 293: Register 294: Register 295: Register 296: Register 297: Register 298: Register 299: Register 300: Register 301: Register 302: Register 303: Register 304: Register 305: Register 306: USB Host Transmit Interval Endpoint 11 (USBTXINTERVAL11), offset 0x1BB .................. 1070 USB Host Transmit Interval Endpoint 12 (USBTXINTERVAL12), offset 0x1CB ................. 1070 USB Host Transmit Interval Endpoint 13 (USBTXINTERVAL13), offset 0x1DB ................. 1070 USB Host Transmit Interval Endpoint 14 (USBTXINTERVAL14), offset 0x1EB ................. 1070 USB Host Transmit Interval Endpoint 15 (USBTXINTERVAL15), offset 0x1FB ................. 1070 USB Host Configure Receive Type Endpoint 1 (USBRXTYPE1), offset 0x11C ................. 1072 USB Host Configure Receive Type Endpoint 2 (USBRXTYPE2), offset 0x12C ................. 1072 USB Host Configure Receive Type Endpoint 3 (USBRXTYPE3), offset 0x13C ................. 1072 USB Host Configure Receive Type Endpoint 4 (USBRXTYPE4), offset 0x14C ................. 1072 USB Host Configure Receive Type Endpoint 5 (USBRXTYPE5), offset 0x15C ................. 1072 USB Host Configure Receive Type Endpoint 6 (USBRXTYPE6), offset 0x16C ................. 1072 USB Host Configure Receive Type Endpoint 7 (USBRXTYPE7), offset 0x17C ................. 1072 USB Host Configure Receive Type Endpoint 8 (USBRXTYPE8), offset 0x18C ................. 1072 USB Host Configure Receive Type Endpoint 9 (USBRXTYPE9), offset 0x19C ................. 1072 USB Host Configure Receive Type Endpoint 10 (USBRXTYPE10), offset 0x1AC ............. 1072 USB Host Configure Receive Type Endpoint 11 (USBRXTYPE11), offset 0x1BC ............. 1072 USB Host Configure Receive Type Endpoint 12 (USBRXTYPE12), offset 0x1CC ............. 1072 USB Host Configure Receive Type Endpoint 13 (USBRXTYPE13), offset 0x1DC ............. 1072 USB Host Configure Receive Type Endpoint 14 (USBRXTYPE14), offset 0x1EC ............. 1072 USB Host Configure Receive Type Endpoint 15 (USBRXTYPE15), offset 0x1FC ............. 1072 USB Host Receive Polling Interval Endpoint 1 (USBRXINTERVAL1), offset 0x11D ........... 1074 USB Host Receive Polling Interval Endpoint 2 (USBRXINTERVAL2), offset 0x12D ........... 1074 USB Host Receive Polling Interval Endpoint 3 (USBRXINTERVAL3), offset 0x13D ........... 1074 USB Host Receive Polling Interval Endpoint 4 (USBRXINTERVAL4), offset 0x14D ........... 1074 USB Host Receive Polling Interval Endpoint 5 (USBRXINTERVAL5), offset 0x15D ........... 1074 USB Host Receive Polling Interval Endpoint 6 (USBRXINTERVAL6), offset 0x16D ........... 1074 USB Host Receive Polling Interval Endpoint 7 (USBRXINTERVAL7), offset 0x17D ........... 1074 USB Host Receive Polling Interval Endpoint 8 (USBRXINTERVAL8), offset 0x18D ........... 1074 USB Host Receive Polling Interval Endpoint 9 (USBRXINTERVAL9), offset 0x19D ........... 1074 USB Host Receive Polling Interval Endpoint 10 (USBRXINTERVAL10), offset 0x1AD ...... 1074 USB Host Receive Polling Interval Endpoint 11 (USBRXINTERVAL11), offset 0x1BD ....... 1074 USB Host Receive Polling Interval Endpoint 12 (USBRXINTERVAL12), offset 0x1CD ...... 1074 USB Host Receive Polling Interval Endpoint 13 (USBRXINTERVAL13), offset 0x1DD ...... 1074 USB Host Receive Polling Interval Endpoint 14 (USBRXINTERVAL14), offset 0x1ED ...... 1074 USB Host Receive Polling Interval Endpoint 15 (USBRXINTERVAL15), offset 0x1FD ....... 1074 USB Request Packet Count in Block Transfer Endpoint 1 (USBRQPKTCOUNT1), offset 0x304 .......................................................................................................................... 1076 USB Request Packet Count in Block Transfer Endpoint 2 (USBRQPKTCOUNT2), offset 0x308 .......................................................................................................................... 1076 USB Request Packet Count in Block Transfer Endpoint 3 (USBRQPKTCOUNT3), offset 0x30C ......................................................................................................................... 1076 USB Request Packet Count in Block Transfer Endpoint 4 (USBRQPKTCOUNT4), offset 0x310 .......................................................................................................................... 1076 USB Request Packet Count in Block Transfer Endpoint 5 (USBRQPKTCOUNT5), offset 0x314 .......................................................................................................................... 1076 USB Request Packet Count in Block Transfer Endpoint 6 (USBRQPKTCOUNT6), offset 0x318 .......................................................................................................................... 1076 USB Request Packet Count in Block Transfer Endpoint 7 (USBRQPKTCOUNT7), offset 0x31C ......................................................................................................................... 1076 36 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 307: USB Request Packet Count in Block Transfer Endpoint 8 (USBRQPKTCOUNT8), offset 0x320 .......................................................................................................................... 1076 Register 308: USB Request Packet Count in Block Transfer Endpoint 9 (USBRQPKTCOUNT9), offset 0x324 .......................................................................................................................... 1076 Register 309: USB Request Packet Count in Block Transfer Endpoint 10 (USBRQPKTCOUNT10), offset 0x328 .......................................................................................................................... 1076 Register 310: USB Request Packet Count in Block Transfer Endpoint 11 (USBRQPKTCOUNT11), offset 0x32C ......................................................................................................................... 1076 Register 311: USB Request Packet Count in Block Transfer Endpoint 12 (USBRQPKTCOUNT12), offset 0x330 .......................................................................................................................... 1076 Register 312: USB Request Packet Count in Block Transfer Endpoint 13 (USBRQPKTCOUNT13), offset 0x334 .......................................................................................................................... 1076 Register 313: USB Request Packet Count in Block Transfer Endpoint 14 (USBRQPKTCOUNT14), offset 0x338 .......................................................................................................................... 1076 Register 314: USB Request Packet Count in Block Transfer Endpoint 15 (USBRQPKTCOUNT15), offset 0x33C ......................................................................................................................... 1076 Register 315: USB Receive Double Packet Buffer Disable (USBRXDPKTBUFDIS), offset 0x340 ........... 1078 Register 316: USB Transmit Double Packet Buffer Disable (USBTXDPKTBUFDIS), offset 0x342 .......... 1080 Register 317: USB External Power Control (USBEPC), offset 0x400 .................................................... 1082 Register 318: USB External Power Control Raw Interrupt Status (USBEPCRIS), offset 0x404 ............... 1085 Register 319: USB External Power Control Interrupt Mask (USBEPCIM), offset 0x408 .......................... 1086 Register 320: USB External Power Control Interrupt Status and Clear (USBEPCISC), offset 0x40C ....... 1087 Register 321: USB Device RESUME Raw Interrupt Status (USBDRRIS), offset 0x410 .......................... 1088 Register 322: USB Device RESUME Interrupt Mask (USBDRIM), offset 0x414 ..................................... 1089 Register 323: USB Device RESUME Interrupt Status and Clear (USBDRISC), offset 0x418 .................. 1090 Register 324: USB General-Purpose Control and Status (USBGPCS), offset 0x41C ............................. 1091 Register 325: USB VBUS Droop Control (USBVDC), offset 0x430 ....................................................... 1092 Register 326: USB VBUS Droop Control Raw Interrupt Status (USBVDCRIS), offset 0x434 .................. 1093 Register 327: USB VBUS Droop Control Interrupt Mask (USBVDCIM), offset 0x438 ............................. 1094 Register 328: USB VBUS Droop Control Interrupt Status and Clear (USBVDCISC), offset 0x43C .......... 1095 Register 329: USB ID Valid Detect Raw Interrupt Status (USBIDVRIS), offset 0x444 ............................. 1096 Register 330: USB ID Valid Detect Interrupt Mask (USBIDVIM), offset 0x448 ........................................ 1097 Register 331: USB ID Valid Detect Interrupt Status and Clear (USBIDVISC), offset 0x44C .................... 1098 Register 332: USB DMA Select (USBDMASEL), offset 0x450 .............................................................. 1099 Analog Comparators ................................................................................................................. 1101 Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Analog Comparator Masked Interrupt Status (ACMIS), offset 0x000 ................................ 1107 Analog Comparator Raw Interrupt Status (ACRIS), offset 0x004 ..................................... 1108 Analog Comparator Interrupt Enable (ACINTEN), offset 0x008 ....................................... 1109 Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x010 ..................... 1110 Analog Comparator Status 0 (ACSTAT0), offset 0x020 ................................................... 1111 Analog Comparator Status 1 (ACSTAT1), offset 0x040 ................................................... 1111 Analog Comparator Status 2 (ACSTAT2), offset 0x060 ................................................... 1111 Analog Comparator Control 0 (ACCTL0), offset 0x024 ................................................... 1112 Analog Comparator Control 1 (ACCTL1), offset 0x044 ................................................... 1112 Analog Comparator Control 2 (ACCTL2), offset 0x064 ................................................... 1112 Pulse Width Modulator (PWM) .................................................................................................. 1114 Register 1: Register 2: PWM Master Control (PWMCTL), offset 0x000 .............................................................. 1129 PWM Time Base Sync (PWMSYNC), offset 0x004 ......................................................... 1131 March 19, 2011 37 Texas Instruments-Advance Information Table of Contents Register 3: Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: Register 11: Register 12: Register 13: Register 14: Register 15: Register 16: Register 17: Register 18: Register 19: Register 20: Register 21: Register 22: Register 23: Register 24: Register 25: Register 26: Register 27: Register 28: Register 29: Register 30: Register 31: Register 32: Register 33: Register 34: Register 35: Register 36: Register 37: Register 38: Register 39: Register 40: Register 41: Register 42: Register 43: Register 44: Register 45: Register 46: Register 47: Register 48: Register 49: Register 50: PWM Output Enable (PWMENABLE), offset 0x008 ........................................................ 1132 PWM Output Inversion (PWMINVERT), offset 0x00C ..................................................... 1134 PWM Output Fault (PWMFAULT), offset 0x010 .............................................................. 1136 PWM Interrupt Enable (PWMINTEN), offset 0x014 ......................................................... 1138 PWM Raw Interrupt Status (PWMRIS), offset 0x018 ...................................................... 1140 PWM Interrupt Status and Clear (PWMISC), offset 0x01C .............................................. 1143 PWM Status (PWMSTATUS), offset 0x020 .................................................................... 1146 PWM Fault Condition Value (PWMFAULTVAL), offset 0x024 ........................................... 1148 PWM Enable Update (PWMENUPD), offset 0x028 ......................................................... 1150 PWM0 Control (PWM0CTL), offset 0x040 ...................................................................... 1154 PWM1 Control (PWM1CTL), offset 0x080 ...................................................................... 1154 PWM2 Control (PWM2CTL), offset 0x0C0 ..................................................................... 1154 PWM3 Control (PWM3CTL), offset 0x100 ...................................................................... 1154 PWM0 Interrupt and Trigger Enable (PWM0INTEN), offset 0x044 ................................... 1159 PWM1 Interrupt and Trigger Enable (PWM1INTEN), offset 0x084 ................................... 1159 PWM2 Interrupt and Trigger Enable (PWM2INTEN), offset 0x0C4 ................................... 1159 PWM3 Interrupt and Trigger Enable (PWM3INTEN), offset 0x104 ................................... 1159 PWM0 Raw Interrupt Status (PWM0RIS), offset 0x048 ................................................... 1162 PWM1 Raw Interrupt Status (PWM1RIS), offset 0x088 ................................................... 1162 PWM2 Raw Interrupt Status (PWM2RIS), offset 0x0C8 .................................................. 1162 PWM3 Raw Interrupt Status (PWM3RIS), offset 0x108 ................................................... 1162 PWM0 Interrupt Status and Clear (PWM0ISC), offset 0x04C .......................................... 1164 PWM1 Interrupt Status and Clear (PWM1ISC), offset 0x08C .......................................... 1164 PWM2 Interrupt Status and Clear (PWM2ISC), offset 0x0CC .......................................... 1164 PWM3 Interrupt Status and Clear (PWM3ISC), offset 0x10C .......................................... 1164 PWM0 Load (PWM0LOAD), offset 0x050 ...................................................................... 1166 PWM1 Load (PWM1LOAD), offset 0x090 ...................................................................... 1166 PWM2 Load (PWM2LOAD), offset 0x0D0 ...................................................................... 1166 PWM3 Load (PWM3LOAD), offset 0x110 ...................................................................... 1166 PWM0 Counter (PWM0COUNT), offset 0x054 ............................................................... 1167 PWM1 Counter (PWM1COUNT), offset 0x094 ............................................................... 1167 PWM2 Counter (PWM2COUNT), offset 0x0D4 .............................................................. 1167 PWM3 Counter (PWM3COUNT), offset 0x114 ............................................................... 1167 PWM0 Compare A (PWM0CMPA), offset 0x058 ............................................................ 1168 PWM1 Compare A (PWM1CMPA), offset 0x098 ............................................................ 1168 PWM2 Compare A (PWM2CMPA), offset 0x0D8 ............................................................ 1168 PWM3 Compare A (PWM3CMPA), offset 0x118 ............................................................. 1168 PWM0 Compare B (PWM0CMPB), offset 0x05C ............................................................ 1169 PWM1 Compare B (PWM1CMPB), offset 0x09C ............................................................ 1169 PWM2 Compare B (PWM2CMPB), offset 0x0DC ........................................................... 1169 PWM3 Compare B (PWM3CMPB), offset 0x11C ............................................................ 1169 PWM0 Generator A Control (PWM0GENA), offset 0x060 ............................................... 1170 PWM1 Generator A Control (PWM1GENA), offset 0x0A0 ............................................... 1170 PWM2 Generator A Control (PWM2GENA), offset 0x0E0 ............................................... 1170 PWM3 Generator A Control (PWM3GENA), offset 0x120 ............................................... 1170 PWM0 Generator B Control (PWM0GENB), offset 0x064 ............................................... 1173 PWM1 Generator B Control (PWM1GENB), offset 0x0A4 ............................................... 1173 PWM2 Generator B Control (PWM2GENB), offset 0x0E4 ............................................... 1173 38 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 51: Register 52: Register 53: Register 54: Register 55: Register 56: Register 57: Register 58: Register 59: Register 60: Register 61: Register 62: Register 63: Register 64: Register 65: Register 66: Register 67: Register 68: Register 69: Register 70: Register 71: Register 72: Register 73: Register 74: Register 75: Register 76: Register 77: Register 78: Register 79: Register 80: Register 81: Register 82: Register 83: Register 84: Register 85: Register 86: Register 87: PWM3 Generator B Control (PWM3GENB), offset 0x124 ............................................... 1173 PWM0 Dead-Band Control (PWM0DBCTL), offset 0x068 ............................................... 1176 PWM1 Dead-Band Control (PWM1DBCTL), offset 0x0A8 ............................................... 1176 PWM2 Dead-Band Control (PWM2DBCTL), offset 0x0E8 ............................................... 1176 PWM3 Dead-Band Control (PWM3DBCTL), offset 0x128 ............................................... 1176 PWM0 Dead-Band Rising-Edge Delay (PWM0DBRISE), offset 0x06C ............................ 1177 PWM1 Dead-Band Rising-Edge Delay (PWM1DBRISE), offset 0x0AC ............................ 1177 PWM2 Dead-Band Rising-Edge Delay (PWM2DBRISE), offset 0x0EC ............................ 1177 PWM3 Dead-Band Rising-Edge Delay (PWM3DBRISE), offset 0x12C ............................ 1177 PWM0 Dead-Band Falling-Edge-Delay (PWM0DBFALL), offset 0x070 ............................ 1178 PWM1 Dead-Band Falling-Edge-Delay (PWM1DBFALL), offset 0x0B0 ............................ 1178 PWM2 Dead-Band Falling-Edge-Delay (PWM2DBFALL), offset 0x0F0 ............................ 1178 PWM3 Dead-Band Falling-Edge-Delay (PWM3DBFALL), offset 0x130 ............................ 1178 PWM0 Fault Source 0 (PWM0FLTSRC0), offset 0x074 .................................................. 1179 PWM1 Fault Source 0 (PWM1FLTSRC0), offset 0x0B4 .................................................. 1179 PWM2 Fault Source 0 (PWM2FLTSRC0), offset 0x0F4 .................................................. 1179 PWM3 Fault Source 0 (PWM3FLTSRC0), offset 0x134 .................................................. 1179 PWM0 Fault Source 1 (PWM0FLTSRC1), offset 0x078 .................................................. 1181 PWM1 Fault Source 1 (PWM1FLTSRC1), offset 0x0B8 .................................................. 1181 PWM2 Fault Source 1 (PWM2FLTSRC1), offset 0x0F8 .................................................. 1181 PWM3 Fault Source 1 (PWM3FLTSRC1), offset 0x138 .................................................. 1181 PWM0 Minimum Fault Period (PWM0MINFLTPER), offset 0x07C ................................... 1184 PWM1 Minimum Fault Period (PWM1MINFLTPER), offset 0x0BC ................................... 1184 PWM2 Minimum Fault Period (PWM2MINFLTPER), offset 0x0FC ................................... 1184 PWM3 Minimum Fault Period (PWM3MINFLTPER), offset 0x13C ................................... 1184 PWM0 Fault Pin Logic Sense (PWM0FLTSEN), offset 0x800 .......................................... 1185 PWM1 Fault Pin Logic Sense (PWM1FLTSEN), offset 0x880 .......................................... 1185 PWM2 Fault Pin Logic Sense (PWM2FLTSEN), offset 0x900 .......................................... 1185 PWM3 Fault Pin Logic Sense (PWM3FLTSEN), offset 0x980 .......................................... 1185 PWM0 Fault Status 0 (PWM0FLTSTAT0), offset 0x804 ................................................... 1186 PWM1 Fault Status 0 (PWM1FLTSTAT0), offset 0x884 ................................................... 1186 PWM2 Fault Status 0 (PWM2FLTSTAT0), offset 0x904 ................................................... 1186 PWM3 Fault Status 0 (PWM3FLTSTAT0), offset 0x984 ................................................... 1186 PWM0 Fault Status 1 (PWM0FLTSTAT1), offset 0x808 ................................................... 1188 PWM1 Fault Status 1 (PWM1FLTSTAT1), offset 0x888 ................................................... 1188 PWM2 Fault Status 1 (PWM2FLTSTAT1), offset 0x908 ................................................... 1188 PWM3 Fault Status 1 (PWM3FLTSTAT1), offset 0x988 ................................................... 1188 Quadrature Encoder Interface (QEI) ........................................................................................ 1191 Register 1: Register 2: Register 3: Register 4: Register 5: Register 6: Register 7: Register 8: Register 9: Register 10: QEI Control (QEICTL), offset 0x000 .............................................................................. QEI Status (QEISTAT), offset 0x004 .............................................................................. QEI Position (QEIPOS), offset 0x008 ............................................................................ QEI Maximum Position (QEIMAXPOS), offset 0x00C ..................................................... QEI Timer Load (QEILOAD), offset 0x010 ..................................................................... QEI Timer (QEITIME), offset 0x014 ............................................................................... QEI Velocity Counter (QEICOUNT), offset 0x018 ........................................................... QEI Velocity (QEISPEED), offset 0x01C ........................................................................ QEI Interrupt Enable (QEIINTEN), offset 0x020 ............................................................. QEI Raw Interrupt Status (QEIRIS), offset 0x024 ........................................................... March 19, 2011 1198 1201 1202 1203 1204 1205 1206 1207 1208 1210 39 Texas Instruments-Advance Information Table of Contents Register 11: QEI Interrupt Status and Clear (QEIISC), offset 0x028 ................................................... 1212 40 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Revision History The revision history table notes changes made between the indicated revisions of the LM3S9B92 data sheet. Table 1. Revision History Date Revision March 2011 9538 Description ■ Clarified "Reset Control" section in the "System Control" chapter. ■ Corrected USB PLL speed in "Main Clock Tree" diagram. ■ Corrected reset value for DMA Channel Wait-on-Request Status (DMAWAITSTAT) register. ■ Corrected "GPIO Pins With Non-Zero Reset Values" table. ■ Added diagram "Host-Bus Write Cycle with Multiplexed Address and Data and ALE with Dual CSn" to EPI chapter. ■ Clarified that that the timer reload only happens in periodic mode. ■ Clarified that only bit 0 in the Watchdog Control (WDTCTL) register is protected from writes once set. ■ Added "Sample Averaging Example" diagram to ADC chapter. ■ Corrected "SSI Timing for SPI Frame Format" figure. ■ In "Electrical Characteristics" chapter: ■ – Deleted TPORMIN parameter from "Power Characteristics" table, and deleted corresponding diagram. – Corrected tRDYSU parameter in "EPI General-Purpose Interface Characteristics" table and "General-Purpose Mode iRDY Timing" diagram. – Added tADCSAMP sample time parameter to "ADC Characteristics" table. Additional minor data sheet clarifications and corrections. March 19, 2011 41 Texas Instruments-Advance Information Revision History Table 1. Revision History (continued) Date Revision January 2011 9161 Description ■ Clarified Main Oscillator verification circuit sequence. ■ Added note that there must be a delay of 3 system clocks after the module clock is enabled before any of that module's registers are accessed. Also added note to add delay between powering-on the Ethernet PHY and accessing it. ■ Added "Example Schematic for Muxed Host-Bus 16 Mode" figure to External Peripheral Interface (EPI) chapter. ■ Corrected reset of Device Mode (DEVMOD) bitfield in USB General-Purpose Control and Status (USBGPCS) register. ■ Clarified initialization and configuration procedure in "Analog Comparators" chapter. ■ In Electrical Characteristics chapter: ■ – Added specification for maximum input voltage on a non-power pin when the microcontroller is unpowered (VNON parameter in Maximum Ratings table). – Replaced Preliminary Current Consumption Specifications with Nominal Power Consumption, Maximum Current Specifications, and Typical Current Consumption vs. Frequency sections. – Clarified Reset, and Power and Brown-out Characteristics and added a new specification for powering down before powering back up. – Added characteristics required when using an external regulator to provide power for VDDC. Additional minor data sheet clarifications and corrections. 42 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Table 1. Revision History (continued) Date Revision December 2010 8832 Description ■ Information on Advanced Encryption Standard (AES) cryptography tables and Cyclic Redundancy Check (CRC) error detection functionality was inadvertently omitted from some datasheets. This has been added. ■ In APINT register, changed bit name from SYSRESETREQ to SYSRESREQ. ■ Added DEBUG (Debug Priority) bit field to SYSPRI3 register. ■ Clarified Flash memory caution. ■ Restructured the General-Purpose Timer chapter to combine duplicated text. ■ Combined High and Low bit fields in GPTMTAILR, GPTMTAMATCHR, GPTMTAR, GPTMTAV, GPTMTBILR, GPTMTAMATCHR, GPTMTBR and GPTMTBV registers for compatibility with future releases. ■ Removed mention of false-start bit detection in the UART chapter. This feature is not supported. ■ Added SSI master clock restriction that SSIClk cannot be faster than 25 MHz. ■ Changed I2C master and slave register base addresses and offsets to be relative to I2C module base, so register base and offsets were changed for all I2C slave registers. ■ In Electrical Characteristics chapter: – Added single-ended clock source input voltage values to "Recommended DC Operating Conditions" table. – Deleted Oscillation mode value from "MOSC Oscillator Input Characteristics" table. – Added TVDD2_3 supply voltage parameter to "Reset Characteristics" table. – Added "Power-On Reset and Voltage Parameters" timing diagram. – Added tALEADD parameter to "EPI Host-Bus 8 and Host-Bus 16 Interface Characteristics" table. – Added "Host-Bus 8/16 Mode Muxed Read Timing" and "Host-Bus 8/16 Mode Muxed Write Timing" timing diagrams. March 19, 2011 43 Texas Instruments-Advance Information Revision History Table 1. Revision History (continued) Date Revision September 2010 7794 June 2010 7413 Description ■ Reorganized ARM Cortex-M3 Processor Core, Memory Map and Interrupts chapters, creating two new chapters, The Cortex-M3 Processor and Cortex-M3 Peripherals. Much additional content was added, including all the Cortex-M3 registers. ■ Changed register names to be consistent with StellarisWare names: the Cortex-M3 Interrupt Control and Status (ICSR) register to the Interrupt Control and State (INTCTRL) register, and the Cortex-M3 Interrupt Set Enable (SETNA) register to the Interrupt 0-31 Set Enable (EN0) register. ■ In the System Control chapter: – Corrected Reset Sources table (see Table 5-3 on page 200). – Added section "Special Considerations for Reset." ■ In the Internal Memory chapter: – Added clarification of instruction execution during Flash operations. – Deleted ROM Version (RMVER) register as it is not used. ■ Modified Figure 8-1 on page 402 and Figure 8-2 on page 403 to clarify operation of the GPIO inputs when used as an alternate function. ■ Corrected GPIOAMSEL bit field in GPIO Analog Mode Select (GPIOAMSEL) register to be eight-bits wide, bits[7:0]. ■ In General-Purpose Timers chapter, clarified operation of the 32-bit RTC mode. ■ In CAN chapter, clarified CAN bit timing examples. ■ In Operating Characteristics chapter, corrected Thermal resistance (junction to ambient) value to 32. ■ In Electrical Characteristics chapter: – Added "Input voltage for a GPIO configured as an analog input" value to Table 26-1 on page 1294. – Added ILKG parameter (GPIO input leakage current) to Table 26-5 on page 1296. – Corrected reset timing in Table 26-22 on page 1306. – Specified Max value for VREFA in Table 26-30 on page 1314. – Corrected values for tCLKRF (SSIClk rise/fall time) in Table 26-32 on page 1314. – Added I2C Characteristics table (see Table 26-33 on page 1316). ■ Added dimensions for Tray and Tape and Reel shipping mediums. ■ In "Thermal Characteristics" table, corrected thermal resistance value from 34 to 32. ® 44 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Table 1. Revision History (continued) Date Revision June 2010 7299 May 2010 May 2010 March 2010 March 2010 7164 7101 6983 6912 Description ■ Changed memory map ending address for EPI0 mapped peripheral and RAM from 0xCFFF.FFFF to 0xDFFF.FFFF. ■ Removed 4.194304-MHz crystal as a source for the system clock and PLL. ■ Summarized ROM contents descriptions in the "Internal Memory" chapter and removed various ROM appendices. ■ Clarified DMA channel terminology: changed name of DMA Channel Alternate Select (DMACHALT) register to DMA Channel Assignment (DMACHASGN) register, changed CHALT bit field to CHASGN, and changed terminology from primary and alternate channels to primary and secondary channels. ■ Clarified EPI Main Baud Rate (EPIBAUD) equation. ■ In Signal Tables chapter, added table "Connections for Unused Signals." ■ In "Electrical Characteristics" chapter: – In "Reset Characteristics" table, corrected Supply voltage (VDD) rise time. – Clarified figure "SDRAM Initialization and Load Mode Register Timing". – Added BSEL0n/BSEL1n to EPI timing diagrams. ■ Added data sheets for five new Stellaris® Tempest-class parts: LM3S1R26, LM3S1621, LM3S1B21, LM3S9781, and LM3S9B81. ■ Additional minor data sheet clarifications and corrections. ■ Added pin table "Possible Pin Assignments for Alternate Functions", which lists the signals based on number of possible pin assignments. This table can be used to plan how to configure the pins for a particular functionality. ■ Additional minor data sheet clarifications and corrections. ■ Corrected reset for EPIHB8CFG, EPI_HB16CFG and EPIGPCFG registers. ■ Extended TBRL bit field in GPTMTBR register. ■ Additional minor data sheet clarifications and corrections. ■ Renamed the USER_DBG register to the BOOTCFG register in the Internal Memory chapter. Added information on how to use a GPIO pin to force the ROM Boot Loader to execute on reset. ■ Added three figures to the ADC chapter on sample phase control. ■ Clarified configuration of USB0VBUS and USB0ID in OTG mode. March 19, 2011 45 Texas Instruments-Advance Information Revision History Table 1. Revision History (continued) Date Revision February 2010 6790 Description ■ Added 108-ball BGA package. ■ In "System Control" chapter: – Clarified functional description for external reset and brown-out reset. – Clarified Debug Access Port operation after Sleep modes. – Corrected the reset value of the Run-Mode Clock Configuration 2 (RCC2) register. ■ In "Internal Memory" chapter, clarified wording on Flash memory access errors and added a section on interrupts to the Flash memory description. ■ In "External Peripheral Interface" chapter: – Added clarification about byte selects and dual chip selects. – Added timing diagrams for continuous-read mode (formerly SRAM mode). – Corrected reset values of EPI Write FIFO Count (EPIWFIFOCNT) and EPI Raw Interrupt Status (EPIRIS) registers. ■ Added clarification about timer operating modes and added register descriptions for the GPTM Timer n Prescale Match (GPTMTnPMR) registers. ■ Clarified register descriptions for GPTM Timer A Value (GPTMTAV) and GPTM Timer B Value (GPTMTBV) registers. ■ Corrected the reset value of the ADC Sample Sequence Result FIFO n (ADCSSFIFOn) registers. ■ Added ADC Sample Phase Control (ADCSPC) register at offset 0x24. ■ Added caution note to the I2C Master Timer Period (I2CMTPR) register description and changed field width to 7 bits. ■ In the "Controller Area Network" chapter, added clarification about reading from the CAN FIFO buffer and clarified packet timestamps functional description. ■ In the "Ethernet Controller" chapter: – Corrected the reset value and the LED1 bit positions of the Ethernet MAC LED Encoding (MACLED) register. – Added clarification about the use of the NPR field in the Ethernet MAC Number of Packets (MACNP) register. – Corrected reset values for Ethernet PHY Management Register 0 – Control (MR0) and Ethernet PHY Management Register 5 – Auto-Negotiation Link Partner Base Page Ability (MR5) registers. ■ Added Session Disconnect (DISCON) bit to the USB General Interrupt Status (USBIS) and USB Interrupt Enable (USBIE) registers. ■ Made these changes to the Operating Characteristics chapter: – Added storage temperature ratings to "Temperature Characteristics" table – Added "ESD Absolute Maximum Ratings" table ■ Made these changes to the Electrical Characteristics chapter: – In "Flash Memory Characteristics" table, corrected Mass erase time – Added sleep and deep-sleep wake-up times ("Sleep Modes AC Characteristics" table) – In "Reset Characteristics" table, corrected units for supply voltage (VDD) rise time – Modified the preliminary current consumption specification for Run mode 1 and Deep-Sleep mode. – Added table entry for VDD3ON power consumption to Table 26-8 on page 1296. ■ Added additional DriverLib functions to appendix. 46 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Table 1. Revision History (continued) Date Revision October 2009 6458 Description ® ■ Released new 1000, 3000, 5000 and 9000 series Stellaris devices. ■ The IDCODE value was corrected to be 0x4BA0.0477. ■ Clarified that the NMISET bit in the ICSR register in the NVIC is also a source for NMI. ■ Clarified the use of the LDO. ■ To clarify clock operation, reorganized clocking section, changed the USEFRACT bit to the DIV400 bit and the FRACT bit to the SYSDIV2LSB bit in the RCC2 register, added tables, and rewrote descriptions. ■ Corrected bit description of the DSDIVORIDE field in the DSLPCLKCFG register. ■ Removed the DSFLASHCFG register at System Control offset 0x14C as it does not function correctly. ■ Removed the MAXADC1SPD and MAXADC0SPD fields from the DCGC0 as they have no function in deep-sleep mode. ■ Corrected address offsets for the Flash Write Buffer (FWBn) registers. ■ Added Flash Control (FCTL) register at Internal memory offset 0x0F8 to help control frequent power cycling when hibernation is not used. ■ Changed the name of the EPI channels for clarification: EPI0_TX became EPI0_WFIFO and EPI0_RX became EPI0_NBRFIFO. This change was also made in the DC7 bit descriptions. ■ Removed the DMACHIS register at DMA module offset 0x504 as it does not function correctly. ■ Corrected alternate channel assignments for the µDMA controller. ■ Major improvements to the EPI chapter. ■ EPISDRAMCFG2 register was deleted as its function is not needed. ■ Clarified CAN bit timing and corrected examples. ■ Added pseudo-code for MDI/MDIX operation. ■ Corrected reset value of the MR1 register to 0x7809. ■ Clarified PWM source for ADC triggering ■ Corrected ADDR field in the USBTXFIFOADD register to be 9 bits instead of 13 bits. ■ Changed SSI set up and hold times to be expressed in system clocks, not ns. ■ Updated Electrical Characteristics chapter with latest data. Changes were made to ADC and EPI content. ■ Additional minor data sheet clarifications and corrections. March 19, 2011 47 Texas Instruments-Advance Information Revision History Table 1. Revision History (continued) Date Revision July 2009 5930 Description ■ Added "Non-Blocking Read Cycle", "Normal Read Cycle", and "Write Cycle" sections to EPI chapter. ■ Corrected values for MAXADC0SPD and MAXADC1SPD bits in DC1, RCGC0, SCGC0, and DCGC0 registers. ■ Corrected figure "TI Synchronous Serial Frame Format (Single Transfer)". ■ Added description for Ethernet PHY power-saving modes. ■ Made a number of corrections to the Electrical Characteristics chapter: – Deleted VBAT and VREFA parameters from and added footnotes to Recommended DC Operating Conditions table. – Deleted Nominal and Maximum Current Specifications section. – Modified EPI SDRAM Characteristics table: • Changed tEPIR to tSDRAMR and deleted values for 2-mA and 4-mA drive. • Changed tEPIF to tSDRAMF and deleted values for 2-mA and 4-mA drive. – Changed values for tCOV, tCOI, and tCOT parameters in EPI SDRAM Interface Characteristics table. – Deleted SDRAM Read Command Timing, SDRAM Write Command Timing, SDRAM Write Burst Timing, SDRAM Precharge Command Timing and SDRAM CAS Latency Timing figures and replaced with SDRAM Read Timing and SDRAM Write Timing figures. – Modified Host-Bus 8/16 Mode Write Timing figure. – Modified General-Purpose Mode Read and Write Timing figure. – Modified values for tDV and tDI parameters, and deleted tOD parameter from EPI General-Purpose Interface Characteristics figure. – Major changes to ADC Characteristics tables, including adding additonal tables and diagram. ■ Added missing ROM_I2SIntStatus function to ROM DriverLib Functions appendix. ■ Corrected ordering part numbers. ■ Additional minor data sheet clarifications and corrections. 48 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Table 1. Revision History (continued) Date Revision June 2009 5779 May 2009 5285 Description ■ In System Control chapter, clarified power-on reset and external reset pin descriptions in "Reset Sources" section. ■ Added missing comparator output pin bits to DC3 register; reset value changed as well. ■ Clarified explanation of nonvolatile register programming in Internal Memory chapter. ■ Added explanation of reset value to FMPRE0/1/2/3, FMPPE0/1/2/3, USER_DBG, and USER_REG0 registers. ■ In Request Type Support table in DMA chapter, corrected general-purpose timer row. ■ In General-Purpose Timers chapter, clarified DMA operation. ■ Added table "Preliminary Current Consumption" to Characteristics chapter. ■ Corrected Nom and Max values in EPI Characteristics table. ■ Added "CSn to output invalid" parameter to EPI table "EPI Host-Bus 8 and Host-Bus 16 Interface Characteristics" and figure "Host-Bus 8/16 Mode Read Timing". ■ Corrected INL, DNL, OFF and GAIN values in ADC Characteristics table. ■ Updated ROM DriverLib appendix with RevC0 functions. ■ Updated part ordering numbers. ■ Additional minor data sheet clarifications and corrections. Started tracking revision history. March 19, 2011 49 Texas Instruments-Advance Information About This Document About This Document This data sheet provides reference information for the LM3S9B92 microcontroller, describing the functional blocks of the system-on-chip (SoC) device designed around the ARM® Cortex™-M3 core. Audience This manual is intended for system software developers, hardware designers, and application developers. About This Manual This document is organized into sections that correspond to each major feature. Related Documents ® The following related documents are available on the Stellaris web site at www.ti.com/stellaris: ■ Stellaris® Errata ■ ARM® Cortex™-M3 Errata ■ Cortex™-M3 Instruction Set Technical User's Manual ■ Stellaris® Boot Loader User's Guide ■ Stellaris® Graphics Library User's Guide ■ Stellaris® Peripheral Driver Library User's Guide ■ Stellaris® ROM User’s Guide ■ Stellaris® USB Library User's Guide The following related documents are also referenced: ■ ARM® Debug Interface V5 Architecture Specification ■ IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture This documentation list was current as of publication date. Please check the web site for additional documentation, including application notes and white papers. 50 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Documentation Conventions This document uses the conventions shown in Table 2 on page 51. Table 2. Documentation Conventions Notation Meaning General Register Notation REGISTER APB registers are indicated in uppercase bold. For example, PBORCTL is the Power-On and Brown-Out Reset Control register. If a register name contains a lowercase n, it represents more than one register. For example, SRCRn represents any (or all) of the three Software Reset Control registers: SRCR0, SRCR1 , and SRCR2. bit A single bit in a register. bit field Two or more consecutive and related bits. offset 0xnnn A hexadecimal increment to a register's address, relative to that module's base address as specified in Table 2-4 on page 97. Register N Registers are numbered consecutively throughout the document to aid in referencing them. The register number has no meaning to software. reserved Register bits marked reserved are reserved for future use. In most cases, reserved bits are set to 0; however, user software should not rely on the value of a reserved bit. To provide software compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. yy:xx The range of register bits inclusive from xx to yy. For example, 31:15 means bits 15 through 31 in that register. Register Bit/Field Types This value in the register bit diagram indicates whether software running on the controller can change the value of the bit field. RC Software can read this field. The bit or field is cleared by hardware after reading the bit/field. RO Software can read this field. Always write the chip reset value. R/W Software can read or write this field. R/WC Software can read or write this field. Writing to it with any value clears the register. R/W1C Software can read or write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. A write of a 1 clears the value of the bit in the register; the remaining bits remain unchanged. This register type is primarily used for clearing interrupt status bits where the read operation provides the interrupt status and the write of the read value clears only the interrupts being reported at the time the register was read. R/W1S Software can read or write a 1 to this field. A write of a 0 to a R/W1S bit does not affect the bit value in the register. W1C Software can write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. A write of a 1 clears the value of the bit in the register; the remaining bits remain unchanged. A read of the register returns no meaningful data. This register is typically used to clear the corresponding bit in an interrupt register. WO Only a write by software is valid; a read of the register returns no meaningful data. Register Bit/Field Reset Value This value in the register bit diagram shows the bit/field value after any reset, unless noted. 0 Bit cleared to 0 on chip reset. 1 Bit set to 1 on chip reset. - Nondeterministic. Pin/Signal Notation [] Pin alternate function; a pin defaults to the signal without the brackets. pin Refers to the physical connection on the package. signal Refers to the electrical signal encoding of a pin. March 19, 2011 51 Texas Instruments-Advance Information About This Document Table 2. Documentation Conventions (continued) Notation Meaning assert a signal Change the value of the signal from the logically False state to the logically True state. For active High signals, the asserted signal value is 1 (High); for active Low signals, the asserted signal value is 0 (Low). The active polarity (High or Low) is defined by the signal name (see SIGNAL and SIGNAL below). deassert a signal Change the value of the signal from the logically True state to the logically False state. SIGNAL Signal names are in uppercase and in the Courier font. An overbar on a signal name indicates that it is active Low. To assert SIGNAL is to drive it Low; to deassert SIGNAL is to drive it High. SIGNAL Signal names are in uppercase and in the Courier font. An active High signal has no overbar. To assert SIGNAL is to drive it High; to deassert SIGNAL is to drive it Low. Numbers X An uppercase X indicates any of several values is allowed, where X can be any legal pattern. For example, a binary value of 0X00 can be either 0100 or 0000, a hex value of 0xX is 0x0 or 0x1, and so on. 0x Hexadecimal numbers have a prefix of 0x. For example, 0x00FF is the hexadecimal number FF. All other numbers within register tables are assumed to be binary. Within conceptual information, binary numbers are indicated with a b suffix, for example, 1011b, and decimal numbers are written without a prefix or suffix. 52 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller 1 Architectural Overview ® Texas Instruments is the industry leader in bringing 32-bit capabilities and the full benefits of ARM Cortex™-M3-based microcontrollers to the broadest reach of the microcontroller market. For current ® users of 8- and 16-bit MCUs, Stellaris with Cortex-M3 offers a direct path to the strongest ecosystem of development tools, software and knowledge in the industry. Designers who migrate to Stellaris benefit from great tools, small code footprint and outstanding performance. Even more important, designers can enter the ARM ecosystem with full confidence in a compatible roadmap from $1 to 1 GHz. For users of current 32-bit MCUs, the Stellaris family offers the industry’s first implementation of Cortex-M3 and the Thumb-2 instruction set. With blazingly-fast responsiveness, Thumb-2 technology combines both 16-bit and 32-bit instructions to deliver the best balance of code density and performance. Thumb-2 uses 26 percent less memory than pure 32-bit code to reduce system cost while delivering 25 percent better performance. The Texas Instruments Stellaris family of microcontrollers—the first ARM Cortex-M3 based controllers—brings high-performance 32-bit computing to cost-sensitive embedded microcontroller applications. These pioneering parts deliver customers 32-bit performance at a cost equivalent to legacy 8- and 16-bit devices, all in a package with a small footprint. The LM3S9B92 microcontroller has the following features: ■ ARM Cortex-M3 Processor Core – 80-MHz operation; 100 DMIPS performance – ARM Cortex SysTick Timer – Nested Vectored Interrupt Controller (NVIC) ■ On-Chip Memory – 256 KB single-cycle Flash memory up to 50 MHz; a prefetch buffer improves performance above 50 MHz – 96 KB single-cycle SRAM ® – Internal ROM loaded with StellarisWare software: • Stellaris Peripheral Driver Library • Stellaris Boot Loader • Advanced Encryption Standard (AES) cryptography tables • Cyclic Redundancy Check (CRC) error detection functionality ■ External Peripheral Interface (EPI) – 8/16/32-bit dedicated parallel bus for external peripherals – Supports SDRAM, SRAM/Flash memory, FPGAs, CPLDs ■ Advanced Serial Integration – 10/100 Ethernet MAC and PHY – Two CAN 2.0 A/B controllers – USB 2.0 OTG/Host/Device March 19, 2011 53 Texas Instruments-Advance Information Architectural Overview – Three UARTs with IrDA and ISO 7816 support (one UART with full modem controls) – Two I2C modules – Two Synchronous Serial Interface modules (SSI) – Integrated Interchip Sound (I2S) module ■ System Integration – Direct Memory Access Controller (DMA) – System control and clocks including on-chip precision 16-MHz oscillator – Four 32-bit timers (up to eight 16-bit), with real-time clock capability – Eight Capture Compare PWM pins (CCP) – Two Watchdog Timers • One timer runs off the main oscillator • One timer runs off the precision internal oscillator – Up to 65 GPIOs, depending on configuration • Highly flexible pin muxing allows use as GPIO or one of several peripheral functions • Independently configurable to 2, 4 or 8 mA drive capability • Up to 4 GPIOs can have 18 mA drive capability ■ Advanced Motion Control – Eight advanced PWM outputs for motion and energy applications – Four fault inputs to promote low-latency shutdown – Two Quadrature Encoder Inputs (QEI) ■ Analog – Two 10-bit Analog-to-Digital Converters (ADC) with 16 analog input channels and a sample rate of one million samples/second – Three analog comparators – 16 digital comparators – On-chip voltage regulator ■ JTAG and ARM Serial Wire Debug (SWD) ■ 100-pin LQFP and 108-ball BGA package ■ Industrial (-40°C to 85°C) Temperature Range The LM3S9B92 microcontroller is targeted for industrial applications, including remote monitoring, electronic point-of-sale machines, test and measurement equipment, network appliances and switches, factory automation, HVAC and building control, gaming equipment, motion control, medical instrumentation, and fire and security. 54 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller In addition, the LM3S9B92 microcontroller offers the advantages of ARM's widely available development tools, System-on-Chip (SoC) infrastructure IP applications, and a large user community. Additionally, the microcontroller uses ARM's Thumb®-compatible Thumb-2 instruction set to reduce memory requirements and, thereby, cost. Finally, the LM3S9B92 microcontroller is code-compatible to all members of the extensive Stellaris family; providing flexibility to fit our customers' precise needs. Texas Instruments offers a complete solution to get to market quickly, with evaluation and development boards, white papers and application notes, an easy-to-use peripheral driver library, and a strong support, sales, and distributor network. See “Ordering and Contact Information” on page 1376 for ordering information for Stellaris family devices. 1.1 Functional Overview The following sections provide an overview of the features of the LM3S9B92 microcontroller. The page number in parentheses indicates where that feature is discussed in detail. Ordering and support information can be found in “Ordering and Contact Information” on page 1376. 1.1.1 ARM Cortex-M3 The following sections provide an overview of the ARM Cortex-M3 processor core and instruction set, the integrated System Timer (SysTick) and the Nested Vectored Interrupt Controller. 1.1.1.1 Processor Core (see page 78) All members of the Stellaris product family, including the LM3S9B92 microcontroller, are designed around an ARM Cortex-M3 processor core. The ARM Cortex-M3 processor provides the core for a high-performance, low-cost platform that meets the needs of minimal memory implementation, reduced pin count, and low power consumption, while delivering outstanding computational performance and exceptional system response to interrupts. ■ 32-bit ARM Cortex-M3 architecture optimized for small-footprint embedded applications ■ Outstanding processing performance combined with fast interrupt handling ■ Thumb-2 mixed 16-/32-bit instruction set delivers the high performance expected of a 32-bit ARM core in a compact memory size usually associated with 8- and 16-bit devices, typically in the range of a few kilobytes of memory for microcontroller-class applications – Single-cycle multiply instruction and hardware divide – Atomic bit manipulation (bit-banding), delivering maximum memory utilization and streamlined peripheral control – Unaligned data access, enabling data to be efficiently packed into memory ■ Fast code execution permits slower processor clock or increases sleep mode time ■ Harvard architecture characterized by separate buses for instruction and data ■ Efficient processor core, system and memories ■ Hardware division and fast multiplier ■ Deterministic, high-performance interrupt handling for time-critical applications March 19, 2011 55 Texas Instruments-Advance Information Architectural Overview ■ Memory protection unit (MPU) to provide a privileged mode for protected operating system functionality ■ Enhanced system debug with extensive breakpoint and trace capabilities ■ Serial Wire Debug and Serial Wire Trace reduce the number of pins required for debugging and tracing ■ Migration from the ARM7 processor family for better performance and power efficiency ■ Optimized for single-cycle Flash memory usage ■ Ultra-low power consumption with integrated sleep modes ■ 80-MHz operation ■ 1.25 DMIPS/MHz 1.1.1.2 Memory Map (see page 97) A memory map lists the location of instructions and data in memory. The memory map for the LM3S9B92 controller can be found in “Memory Model” on page 97. Register addresses are given as a hexadecimal increment, relative to the module's base address as shown in the memory map. 1.1.1.3 System Timer (SysTick) (see page 121) ARM Cortex-M3 includes an integrated system timer, SysTick. SysTick provides a simple, 24-bit, clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be used in several different ways, for example: ■ An RTOS tick timer that fires at a programmable rate (for example, 100 Hz) and invokes a SysTick routine ■ A high-speed alarm timer using the system clock ■ A variable rate alarm or signal timer—the duration is range-dependent on the reference clock used and the dynamic range of the counter ■ A simple counter used to measure time to completion and time used ■ An internal clock-source control based on missing/meeting durations. 1.1.1.4 Nested Vectored Interrupt Controller (NVIC) (see page 122) The LM3S9B92 controller includes the ARM Nested Vectored Interrupt Controller (NVIC). The NVIC and Cortex-M3 prioritize and handle all exceptions in Handler Mode. The processor state is automatically stored to the stack on an exception and automatically restored from the stack at the end of the Interrupt Service Routine (ISR). The interrupt vector is fetched in parallel to the state saving, enabling efficient interrupt entry. The processor supports tail-chaining, meaning that back-to-back interrupts can be performed without the overhead of state saving and restoration. Software can set eight priority levels on 7 exceptions (system handlers) and 53 interrupts. ■ Deterministic, fast interrupt processing: always 12 cycles, or just 6 cycles with tail-chaining ■ External non-maskable interrupt signal (NMI) available for immediate execution of NMI handler for safety critical applications 56 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller ■ Dynamically reprioritizable interrupts ■ Exceptional interrupt handling via hardware implementation of required register manipulations 1.1.1.5 System Control Block (SCB) (see page 124) The SCB provides system implementation information and system control, including configuration, control, and reporting of system exceptions. 1.1.1.6 Memory Protection Unit (MPU) (see page 124) The MPU supports the standard ARM7 Protected Memory System Architecture (PMSA) model. The MPU provides full support for protection regions, overlapping protection regions, access permissions, and exporting memory attributes to the system. 1.1.2 On-Chip Memory The following sections describe the on-chip memory modules. 1.1.2.1 SRAM (see page 303) The LM3S9B92 microcontroller provides 96 KB of single-cycle on-chip SRAM. The internal SRAM of the Stellaris devices is located at offset 0x2000.0000 of the device memory map. Because read-modify-write (RMW) operations are very time consuming, ARM has introduced bit-banding technology in the Cortex-M3 processor. With a bit-band-enabled processor, certain regions in the memory map (SRAM and peripheral space) can use address aliases to access individual bits in a single, atomic operation. Data can be transferred to and from the SRAM using the Micro Direct Memory Access Controller (µDMA). 1.1.2.2 Flash Memory (see page 305) The LM3S9B92 microcontroller provides 256 KB of single-cycle on-chip Flash memory (above 50 MHz, the Flash memory can be accessed in a single cycle as long as the code is linear; branches incur a one-cycle stall). The Flash memory is organized as a set of 1-KB blocks that can be individually erased. Erasing a block causes the entire contents of the block to be reset to all 1s. These blocks are paired into a set of 2-KB blocks that can be individually protected. The blocks can be marked as read-only or execute-only, providing different levels of code protection. Read-only blocks cannot be erased or programmed, protecting the contents of those blocks from being modified. Execute-only blocks cannot be erased or programmed, and can only be read by the controller instruction fetch mechanism, protecting the contents of those blocks from being read by either the controller or by a debugger. 1.1.2.3 ROM (see page 303) The LM3S9B92 ROM is preprogrammed with the following software and programs: ■ Stellaris Peripheral Driver Library ■ Stellaris Boot Loader ■ Advanced Encryption Standard (AES) cryptography tables ■ Cyclic Redundancy Check (CRC) error-detection functionality March 19, 2011 57 Texas Instruments-Advance Information Architectural Overview The Stellaris Peripheral Driver Library is a royalty-free software library for controlling on-chip peripherals with a boot-loader capability. The library performs both peripheral initialization and control functions, with a choice of polled or interrupt-driven peripheral support. In addition, the library is designed to take full advantage of the stellar interrupt performance of the ARM Cortex-M3 core. No special pragmas or custom assembly code prologue/epilogue functions are required. For applications that require in-field programmability, the royalty-free Stellaris Boot Loader can act as an application loader and support in-field firmware updates. The Advanced Encryption Standard (AES) is a publicly defined encryption standard used by the U.S. Government. AES is a strong encryption method with reasonable performance and size. In addition, it is fast in both hardware and software, is fairly easy to implement, and requires little memory. The Texas Instruments encryption package is available with full source code, and is based on lesser general public license (LGPL) source. An LGPL means that the code can be used within an application without any copyleft implications for the application (the code does not automatically become open source). Modifications to the package source, however, must be open source. CRC (Cyclic Redundancy Check) is a technique to validate a span of data has the same contents as when previously checked. This technique can be used to validate correct receipt of messages (nothing lost or modified in transit), to validate data after decompression, to validate that Flash memory contents have not been changed, and for other cases where the data needs to be validated. A CRC is preferred over a simple checksum (e.g. XOR all bits) because it catches changes more readily. 1.1.3 External Peripheral Interface (see page 453) The External Peripheral Interface (EPI) provides access to external devices using a parallel path. Unlike communications peripherals such as SSI, UART, and I2C, the EPI is designed to act like a bus to external peripherals and memory. The EPI has the following features: ■ 8/16/32-bit dedicated parallel bus for external peripherals and memory ■ Memory interface supports contiguous memory access independent of data bus width, thus enabling code execution directly from SDRAM, SRAM and Flash memory ■ Blocking and non-blocking reads ■ Separates processor from timing details through use of an internal write FIFO ■ Efficient transfers using Micro Direct Memory Access Controller (µDMA) – Separate channels for read and write – Read channel request asserted by programmable levels on the internal non-blocking read FIFO (NBRFIFO) – Write channel request asserted by empty on the internal write FIFO (WFIFO) The EPI supports three primary functional modes: Synchronous Dynamic Random Access Memory (SDRAM) mode, Traditional Host-Bus mode, and General-Purpose mode. The EPI module also provides custom GPIOs; however, unlike regular GPIOs, the EPI module uses a FIFO in the same way as a communication mechanism and is speed-controlled using clocking. ■ Synchronous Dynamic Random Access Memory (SDRAM) mode 58 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller – Supports x16 (single data rate) SDRAM at up to 50 MHz – Supports low-cost SDRAMs up to 64 MB (512 megabits) – Includes automatic refresh and access to all banks/rows – Includes a Sleep/Standby mode to keep contents active with minimal power draw – Multiplexed address/data interface for reduced pin count ■ Host-Bus mode – Traditional x8 and x16 MCU bus interface capabilities – Similar device compatibility options as PIC, ATmega, 8051, and others – Access to SRAM, NOR Flash memory, and other devices, with up to 1 MB of addressing in unmultiplexed mode and 256 MB in multiplexed mode (512 MB in Host-Bus 16 mode with no byte selects) – Support of both muxed and de-muxed address and data – Access to a range of devices supporting the non-address FIFO x8 and x16 interface variant, with support for external FIFO (XFIFO) EMPTY and FULL signals – Speed controlled, with read and write data wait-state counters – Chip select modes include ALE, CSn, Dual CSn and ALE with dual CSn – Manual chip-enable (or use extra address pins) ■ General-Purpose mode – Wide parallel interfaces for fast communications with CPLDs and FPGAs – Data widths up to 32 bits – Data rates up to 150 MB/second – Optional "address" sizes from 4 bits to 20 bits – Optional clock output, read/write strobes, framing (with counter-based size), and clock-enable input ■ General parallel GPIO – 1 to 32 bits, FIFOed with speed control – Useful for custom peripherals or for digital data acquisition and actuator controls 1.1.4 Serial Communications Peripherals The LM3S9B92 controller supports both asynchronous and synchronous serial communications with: ■ 10/100 Ethernet MAC and PHY March 19, 2011 59 Texas Instruments-Advance Information Architectural Overview ■ Two CAN 2.0 A/B controllers ■ USB 2.0 OTG/Host/Device ■ Three UARTs with IrDA and ISO 7816 support (one UART with full modem controls) ■ Two I2C modules ■ Two Synchronous Serial Interface modules (SSI) ■ Integrated Interchip Sound (I2S) module The following sections provide more detail on each of these communications functions. 1.1.4.1 Ethernet Controller (see page 903) Ethernet is a frame-based computer networking technology for local area networks (LANs). Ethernet has been standardized as IEEE 802.3. This specification defines a number of wiring and signaling standards for the physical layer, two means of network access at the Media Access Control (MAC)/Data Link Layer, and a common addressing format. The Stellaris Ethernet Controller consists of a fully integrated media access controller (MAC) and network physical (PHY) interface and has the following features: ■ Conforms to the IEEE 802.3-2002 specification – 10BASE-T/100BASE-TX IEEE-802.3 compliant. Requires only a dual 1:1 isolation transformer interface to the line – 10BASE-T/100BASE-TX ENDEC, 100BASE-TX scrambler/descrambler – Full-featured auto-negotiation ■ Multiple operational modes – Full- and half-duplex 100 Mbps – Full- and half-duplex 10 Mbps – Power-saving and power-down modes ■ Highly configurable – Programmable MAC address – LED activity selection – Promiscuous mode support – CRC error-rejection control – User-configurable interrupts ■ Physical media manipulation – MDI/MDI-X cross-over support through software assist 60 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller – Register-programmable transmit amplitude – Automatic polarity correction and 10BASE-T signal reception ■ Efficient transfers using Micro Direct Memory Access Controller (µDMA) – Separate channels for transmit and receive – Receive channel request asserted on packet receipt – Transmit channel request asserted on empty transmit FIFO 1.1.4.2 Controller Area Network (see page 853) Controller Area Network (CAN) is a multicast shared serial-bus standard for connecting electronic control units (ECUs). CAN was specifically designed to be robust in electromagnetically noisy environments and can utilize a differential balanced line like RS-485 or twisted-pair wire. Originally created for automotive purposes, it is now used in many embedded control applications (for example, industrial or medical). Bit rates up to 1 Mbps are possible at network lengths below 40 meters. Decreased bit rates allow longer network distances (for example, 125 Kbps at 500m). A transmitter sends a message to all CAN nodes (broadcasting). Each node decides on the basis of the identifier received whether it should process the message. The identifier also determines the priority that the message enjoys in competition for bus access. Each CAN message can transmit from 0 to 8 bytes of user information. The LM3S9B92 microcontroller includes two CAN units with the following features: ■ CAN protocol version 2.0 part A/B ■ Bit rates up to 1 Mbps ■ 32 message objects with individual identifier masks ■ Maskable interrupt ■ Disable Automatic Retransmission mode for Time-Triggered CAN (TTCAN) applications ■ Programmable Loopback mode for self-test operation ■ Programmable FIFO mode enables storage of multiple message objects ■ Gluelessly attaches to an external CAN transceiver through the CANnTX and CANnRX signals 1.1.4.3 USB (see page 962) Universal Serial Bus (USB) is a serial bus standard designed to allow peripherals to be connected and disconnected using a standardized interface without rebooting the system. The LM3S9B92 microcontroller supports three configurations in USB 2.0 full and low speed: USB Device, USB Host, and USB On-The-Go (negotiated on-the-go as host or device when connected to other USB-enabled systems). The USB module has the following features: ■ Complies with USB-IF certification standards ■ USB 2.0 full-speed (12 Mbps) and low-speed (1.5 Mbps) operation with integrated PHY March 19, 2011 61 Texas Instruments-Advance Information Architectural Overview ■ 4 transfer types: Control, Interrupt, Bulk, and Isochronous ■ 32 endpoints – 1 dedicated control IN endpoint and 1 dedicated control OUT endpoint – 15 configurable IN endpoints and 15 configurable OUT endpoints ■ 4 KB dedicated endpoint memory: one endpoint may be defined for double-buffered 1023-byte isochronous packet size ■ VBUS droop and valid ID detection and interrupt ■ Efficient transfers using Micro Direct Memory Access Controller (µDMA) – Separate channels for transmit and receive for up to three IN endpoints and three OUT endpoints – Channel requests asserted when FIFO contains required amount of data 1.1.4.4 UART (see page 676) A Universal Asynchronous Receiver/Transmitter (UART) is an integrated circuit used for RS-232C serial communications, containing a transmitter (parallel-to-serial converter) and a receiver (serial-to-parallel converter), each clocked separately. The LM3S9B92 microcontroller includes three fully programmable 16C550-type UARTs. Although the functionality is similar to a 16C550 UART, this UART design is not register compatible. The UART can generate individually masked interrupts from the Rx, Tx, modem status, and error conditions. The module generates a single combined interrupt when any of the interrupts are asserted and are unmasked. The three UARTs have the following features: ■ Programmable baud-rate generator allowing speeds up to 5 Mbps for regular speed (divide by 16) and 10 Mbps for high speed (divide by 8) ■ Separate 16x8 transmit (TX) and receive (RX) FIFOs to reduce CPU interrupt service loading ■ Programmable FIFO length, including 1-byte deep operation providing conventional double-buffered interface ■ FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8 ■ Standard asynchronous communication bits for start, stop, and parity ■ Line-break generation and detection ■ Fully programmable serial interface characteristics – 5, 6, 7, or 8 data bits – Even, odd, stick, or no-parity bit generation/detection – 1 or 2 stop bit generation ■ IrDA serial-IR (SIR) encoder/decoder providing 62 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller – Programmable use of IrDA Serial Infrared (SIR) or UART input/output – Support of IrDA SIR encoder/decoder functions for data rates up to 115.2 Kbps half-duplex – Support of normal 3/16 and low-power (1.41-2.23 μs) bit durations – Programmable internal clock generator enabling division of reference clock by 1 to 256 for low-power mode bit duration ■ Support for communication with ISO 7816 smart cards ■ Full modem handshake support (on UART1) ■ LIN protocol support ■ Standard FIFO-level and End-of-Transmission interrupts ■ Efficient transfers using Micro Direct Memory Access Controller (µDMA) – Separate channels for transmit and receive – Receive single request asserted when data is in the FIFO; burst request asserted at programmed FIFO level – Transmit single request asserted when there is space in the FIFO; burst request asserted at programmed FIFO level 1.1.4.5 I2C (see page 780) The Inter-Integrated Circuit (I2C) bus provides bi-directional data transfer through a two-wire design (a serial data line SDA and a serial clock line SCL). The I2C bus interfaces to external I2C devices such as serial memory (RAMs and ROMs), networking devices, LCDs, tone generators, and so on. The I2C bus may also be used for system testing and diagnostic purposes in product development and manufacture. Each device on the I2C bus can be designated as either a master or a slave. Each I2C module supports both sending and receiving data as either a master or a slave and can operate simultaneously as both a master and a slave. Both the I2C master and slave can generate interrupts. The LM3S9B92 microcontroller includes two I2C modules with the following features: ■ Devices on the I2C bus can be designated as either a master or a slave – Supports both transmitting and receiving data as either a master or a slave – Supports simultaneous master and slave operation ■ Four I2C modes – Master transmit – Master receive – Slave transmit – Slave receive March 19, 2011 63 Texas Instruments-Advance Information Architectural Overview ■ Two transmission speeds: Standard (100 Kbps) and Fast (400 Kbps) ■ Master and slave interrupt generation – Master generates interrupts when a transmit or receive operation completes (or aborts due to an error) – Slave generates interrupts when data has been transferred or requested by a master or when a START or STOP condition is detected ■ Master with arbitration and clock synchronization, multimaster support, and 7-bit addressing mode 1.1.4.6 SSI (see page 737) Synchronous Serial Interface (SSI) is a four-wire bi-directional communications interface that converts data between parallel and serial. The SSI module performs serial-to-parallel conversion on data received from a peripheral device, and parallel-to-serial conversion on data transmitted to a peripheral device. The SSI module can be configured as either a master or slave device. As a slave device, the SSI module can also be configured to disable its output, which allows a master device to be coupled with multiple slave devices. The TX and RX paths are buffered with separate internal FIFOs. The SSI module also includes a programmable bit rate clock divider and prescaler to generate the output serial clock derived from the SSI module's input clock. Bit rates are generated based on the input clock and the maximum bit rate is determined by the connected peripheral. The LM3S9B92 microcontroller includes two SSI modules with the following features: ■ Programmable interface operation for Freescale SPI, MICROWIRE, or Texas Instruments synchronous serial interfaces ■ Master or slave operation ■ Programmable clock bit rate and prescaler ■ Separate transmit and receive FIFOs, each 16 bits wide and 8 locations deep ■ Programmable data frame size from 4 to 16 bits ■ Internal loopback test mode for diagnostic/debug testing ■ Standard FIFO-based interrupts and End-of-Transmission interrupt ■ Efficient transfers using Micro Direct Memory Access Controller (µDMA) – Separate channels for transmit and receive – Receive single request asserted when data is in the FIFO; burst request asserted when FIFO contains 4 entries – Transmit single request asserted when there is space in the FIFO; burst request asserted when FIFO contains 4 entries 1.1.4.7 Inter-Integrated Circuit Sound (I2S) Interface (see page 817) The I2S interface is a configurable serial audio core that contains a transmit module and a receive module. The module is configurable for the I2S as well as Left-Justified and Right-Justified serial 64 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller audio formats. Data can be in one of four modes: Stereo, Mono, Compact 16-bit Stereo and Compact 8-Bit Stereo. The transmit and receive modules each have an 8-entry audio-sample FIFO. An audio sample can consist of a Left and Right Stereo sample, a Mono sample, or a Left and Right Compact Stereo sample. In Compact 16-Bit Stereo, each FIFO entry contains both the 16-bit left and 16-bit right samples, allowing efficient data transfers and requiring less memory space. In Compact 8-bit Stereo, each FIFO entry contains an 8-bit left and an 8-bit right sample, reducing memory requirements further. Both the transmitter and receiver are capable of being a master or a slave. The Stellaris I2S interface has the following features: ■ Configurable audio format supporting I2S, Left-justification, and Right-justification ■ Configurable sample size from 8 to 32 bits ■ Mono and Stereo support ■ 8-, 16-, and 32-bit FIFO interface for packing memory ■ Independent transmit and receive 8-entry FIFOs ■ Configurable FIFO-level interrupt and µDMA requests ■ Independent transmit and receive MCLK direction control ■ Transmit and receive internal MCLK sources ■ Independent transmit and receive control for serial clock and word select ■ MCLK and SCLK can be independently set to master or slave ■ Configurable transmit zero or last sample when FIFO empty ■ Efficient transfers using Micro Direct Memory Access Controller (µDMA) – Separate channels for transmit and receive – Burst requests – Channel requests asserted when FIFO contains required amount of data 1.1.5 System Integration The LM3S9B92 microcontroller provides a variety of standard system functions integrated into the device, including: ■ Direct Memory Access Controller (DMA) ■ System control and clocks including on-chip precision 16-MHz oscillator ■ Four 32-bit timers (up to eight 16-bit), with real-time clock capability ■ Eight Capture Compare PWM pins (CCP) ■ Two Watchdog Timers March 19, 2011 65 Texas Instruments-Advance Information Architectural Overview – One timer runs off the main oscillator – One timer runs off the precision internal oscillator ■ Up to 65 GPIOs, depending on configuration – Highly flexible pin muxing allows use as GPIO or one of several peripheral functions – Independently configurable to 2, 4 or 8 mA drive capability – Up to 4 GPIOs can have 18 mA drive capability The following sections provide more detail on each of these functions. 1.1.5.1 Direct Memory Access (see page 339) The LM3S9B92 microcontroller includes a Direct Memory Access (DMA) controller, known as micro-DMA (μDMA). The μDMA controller provides a way to offload data transfer tasks from the Cortex-M3 processor, allowing for more efficient use of the processor and the available bus bandwidth. The μDMA controller can perform transfers between memory and peripherals. It has dedicated channels for each supported on-chip module and can be programmed to automatically perform transfers between peripherals and memory as the peripheral is ready to transfer more data. The μDMA controller provides the following features: ® ■ ARM PrimeCell 32-channel configurable µDMA controller ■ Support for memory-to-memory, memory-to-peripheral, and peripheral-to-memory in multiple transfer modes – Basic for simple transfer scenarios – Ping-pong for continuous data flow – Scatter-gather for a programmable list of arbitrary transfers initiated from a single request ■ Highly flexible and configurable channel operation – Independently configured and operated channels – Dedicated channels for supported on-chip modules – Primary and secondary channel assignments – One channel each for receive and transmit path for bidirectional modules – Dedicated channel for software-initiated transfers – Per-channel configurable priority scheme – Optional software-initiated requests for any channel ■ Two levels of priority ■ Design optimizations for improved bus access performance between µDMA controller and the processor core – µDMA controller access is subordinate to core access – RAM striping 66 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller – Peripheral bus segmentation ■ Data sizes of 8, 16, and 32 bits ■ Transfer size is programmable in binary steps from 1 to 1024 ■ Source and destination address increment size of byte, half-word, word, or no increment ■ Maskable peripheral requests 1.1.5.2 System Control and Clocks (see page 199) System control determines the overall operation of the device. It provides information about the device, controls power-saving features, controls the clocking of the device and individual peripherals, and handles reset detection and reporting. ■ Device identification information: version, part number, SRAM size, Flash memory size, and so on ■ Power control – On-chip fixed Low Drop-Out (LDO) voltage regulator – Low-power options for microcontroller: Sleep and Deep-sleep modes with clock gating – Low-power options for on-chip modules: software controls shutdown of individual peripherals and memory – 3.3-V supply brown-out detection and reporting via interrupt or reset ■ Multiple clock sources for microcontroller system clock – Precision Oscillator (PIOSC): On-chip resource providing a 16 MHz ±1% frequency at room temperature • 16 MHz ±3% across temperature • Software power down control for low power modes – Main Oscillator (MOSC): A frequency-accurate clock source by one of two means: an external single-ended clock source is connected to the OSC0 input pin, or an external crystal is connected across the OSC0 input and OSC1 output pins. • External oscillator used with or without on-chip PLL: select supported frequencies from 1 MHz to 16.384 MHz. • External crystal: from DC to maximum device speed – Internal 30-kHz Oscillator: on chip resource providing a 30 kHz ± 50% frequency, used during power-saving modes ■ Flexible reset sources – Power-on reset (POR) – Reset pin assertion – Brown-out reset (BOR) detector alerts to system power drops – Software reset March 19, 2011 67 Texas Instruments-Advance Information Architectural Overview – Watchdog timer reset – MOSC failure 1.1.5.3 Programmable Timers (see page 526) Programmable timers can be used to count or time external events that drive the Timer input pins. Each GPTM block provides two 16-bit timers/counters that can be configured to operate independently as timers or event counters, or configured to operate as one 32-bit timer or one 32-bit Real-Time Clock (RTC). Timers can also be used to trigger analog-to-digital (ADC) conversions. The General-Purpose Timer Module (GPTM) contains four GPTM blocks with the following functional options: ■ Operating modes: – 16- or 32-bit programmable one-shot timer – 16- or 32-bit programmable periodic timer – 16-bit general-purpose timer with an 8-bit prescaler – 32-bit Real-Time Clock (RTC) when using an external 32.768-KHz clock as the input – 16-bit input-edge count- or time-capture modes – 16-bit PWM mode with software-programmable output inversion of the PWM signal ■ Count up or down ■ Eight Capture Compare PWM pins (CCP) ■ Daisy chaining of timer modules to allow a single timer to initiate multiple timing events ■ ADC event trigger ■ User-enabled stalling when the microcontroller asserts CPU Halt flag during debug (excluding RTC mode) ■ Ability to determine the elapsed time between the assertion of the timer interrupt and entry into the interrupt service routine. ■ Efficient transfers using Micro Direct Memory Access Controller (µDMA) – Dedicated channel for each timer – Burst request generated on timer interrupt 1.1.5.4 CCP Pins (see page 533) Capture Compare PWM pins (CCP) can be used by the General-Purpose Timer Module to time/count external events using the CCP pin as an input. Alternatively, the GPTM can generate a simple PWM output on the CCP pin. The LM3S9B92 microcontroller includes eight Capture Compare PWM pins (CCP) that can be programmed to operate in the following modes: 68 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller ■ Capture: The GP Timer is incremented/decremented by programmed events on the CCP input. The GP Timer captures and stores the current timer value when a programmed event occurs. ■ Compare: The GP Timer is incremented/decremented by programmed events on the CCP input. The GP Timer compares the current value with a stored value and generates an interrupt when a match occurs. ■ PWM: The GP Timer is incremented/decremented by the system clock. A PWM signal is generated based on a match between the counter value and a value stored in a match register and is output on the CCP pin. 1.1.5.5 Watchdog Timers (see page 572) A watchdog timer is used to regain control when a system has failed due to a software error or to the failure of an external device to respond in the expected way. The Stellaris Watchdog Timer can generate an interrupt or a reset when a time-out value is reached. In addition, the Watchdog Timer is ARM FiRM-compliant and can be configured to generate an interrupt to the microcontroller on its first time-out, and to generate a reset signal on its second time-out. Once the Watchdog Timer has been configured, the lock register can be written to prevent the timer configuration from being inadvertently altered. The LM3S9B92 microcontroller has two Watchdog Timer modules: Watchdog Timer 0 uses the system clock for its timer clock; Watchdog Timer 1 uses the PIOSC as its timer clock. The Stellaris Watchdog Timer module has the following features: ■ 32-bit down counter with a programmable load register ■ Separate watchdog clock with an enable ■ Programmable interrupt generation logic with interrupt masking ■ Lock register protection from runaway software ■ Reset generation logic with an enable/disable ■ User-enabled stalling when the microcontroller asserts the CPU Halt flag during debug 1.1.5.6 Programmable GPIOs (see page 397) General-purpose input/output (GPIO) pins offer flexibility for a variety of connections. The Stellaris GPIO module is comprised of nine physical GPIO blocks, each corresponding to an individual GPIO port. The GPIO module is FiRM-compliant (compliant to the ARM Foundation IP for Real-Time Microcontrollers specification) and supports 0-65 programmable input/output pins. The number of GPIOs available depends on the peripherals being used (see “Signal Tables” on page 1216 for the signals available to each GPIO pin). ■ Up to 65 GPIOs, depending on configuration ■ Highly flexible pin muxing allows use as GPIO or one of several peripheral functions ■ 5-V-tolerant in input configuration ■ Fast toggle capable of a change every two clock cycles March 19, 2011 69 Texas Instruments-Advance Information Architectural Overview ■ Two means of port access: either Advanced High-Performance Bus (AHB) with better back-to-back access performance, or the legacy Advanced Peripheral Bus (APB) for backwards-compatibility with existing code ■ Programmable control for GPIO interrupts – Interrupt generation masking – Edge-triggered on rising, falling, or both – Level-sensitive on High or Low values ■ Bit masking in both read and write operations through address lines ■ Can be used to initiate an ADC sample sequence ■ Pins configured as digital inputs are Schmitt-triggered ■ Programmable control for GPIO pad configuration – Weak pull-up or pull-down resistors – 2-mA, 4-mA, and 8-mA pad drive for digital communication; up to four pads can be configured with an 18-mA pad drive for high-current applications – Slew rate control for the 8-mA drive – Open drain enables – Digital input enables 1.1.6 Advanced Motion Control The LM3S9B92 microcontroller provides motion control functions integrated into the device, including: ■ Eight advanced PWM outputs for motion and energy applications ■ Four fault inputs to promote low-latency shutdown ■ Two Quadrature Encoder Inputs (QEI) The following provides more detail on these motion control functions. 1.1.6.1 PWM (see page 1114) Pulse width modulation (PWM) is a powerful technique for digitally encoding analog signal levels. High-resolution counters are used to generate a square wave, and the duty cycle of the square wave is modulated to encode an analog signal. Typical applications include switching power supplies and motor control. The LM3S9B92 PWM module consists of four PWM generator blocks and a control block. Each PWM generator block contains one timer (16-bit down or up/down counter), two comparators, a PWM signal generator, a dead-band generator, and an interrupt/ADC-trigger selector. Each PWM generator block produces two PWM signals that can either be independent signals or a single pair of complementary signals with dead-band delays inserted. Each PWM generator has the following features: 70 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller ■ Four fault-condition handling inputs to quickly provide low-latency shutdown and prevent damage to the motor being controlled ■ One 16-bit counter – Runs in Down or Up/Down mode – Output frequency controlled by a 16-bit load value – Load value updates can be synchronized – Produces output signals at zero and load value ■ Two PWM comparators – Comparator value updates can be synchronized – Produces output signals on match ■ PWM signal generator – Output PWM signal is constructed based on actions taken as a result of the counter and PWM comparator output signals – Produces two independent PWM signals ■ Dead-band generator – Produces two PWM signals with programmable dead-band delays suitable for driving a half-H bridge – Can be bypassed, leaving input PWM signals unmodified ■ Can initiate an ADC sample sequence The control block determines the polarity of the PWM signals and which signals are passed through to the pins. The output of the PWM generation blocks are managed by the output control block before being passed to the device pins. The PWM control block has the following options: ■ PWM output enable of each PWM signal ■ Optional output inversion of each PWM signal (polarity control) ■ Optional fault handling for each PWM signal ■ Synchronization of timers in the PWM generator blocks ■ Synchronization of timer/comparator updates across the PWM generator blocks ■ Synchronization of PWM output enables across the PWM generator blocks ■ Interrupt status summary of the PWM generator blocks ■ Extended fault capabilities with multiple fault signals, programmable polarities, and filtering ■ PWM generators can be operated independently or synchronized with other generators March 19, 2011 71 Texas Instruments-Advance Information Architectural Overview 1.1.6.2 QEI (see page 1191) A quadrature encoder, also known as a 2-channel incremental encoder, converts linear displacement into a pulse signal. By monitoring both the number of pulses and the relative phase of the two signals, the position, direction of rotation, and speed can be tracked. In addition, a third channel, or index signal, can be used to reset the position counter. The Stellaris quadrature encoder with index (QEI) module interprets the code produced by a quadrature encoder wheel to integrate position over time and determine direction of rotation. In addition, it can capture a running estimate of the velocity of the encoder wheel. The input frequency of the QEI inputs may be as high as 1/4 of the processor frequency (for example, 20 MHz for a 80-MHz system). The LM3S9B92 microcontroller includes two QEI modules providing control of two motors at the same time with the following features: ■ Position integrator that tracks the encoder position ■ Programmable noise filter on the inputs ■ Velocity capture using built-in timer ■ The input frequency of the QEI inputs may be as high as 1/4 of the processor frequency (for example, 12.5 MHz for a 50-MHz system) ■ Interrupt generation on: – Index pulse – Velocity-timer expiration – Direction change – Quadrature error detection 1.1.7 Analog The LM3S9B92 microcontroller provides analog functions integrated into the device, including: ■ Two 10-bit Analog-to-Digital Converters (ADC) with 16 analog input channels and a sample rate of one million samples/second ■ Three analog comparators ■ 16 digital comparators ■ On-chip voltage regulator The following provides more detail on these analog functions. 1.1.7.1 ADC (see page 597) An analog-to-digital converter (ADC) is a peripheral that converts a continuous analog voltage to a discrete digital number. The Stellaris ADC module features 10-bit conversion resolution and supports 16 input channels plus an internal temperature sensor. Four buffered sample sequencers allow rapid sampling of up to 16 analog input sources without controller intervention. Each sample sequencer provides flexible programming with fully configurable input source, trigger events, interrupt generation, and sequencer priority. Each ADC module has a digital comparator function that allows the conversion value to be diverted to a comparison unit that provides eight digital comparators. 72 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller The LM3S9B92 microcontroller provides two ADC modules with the following features: ■ 16 shared analog input channels ■ Single-ended and differential-input configurations ■ On-chip internal temperature sensor ■ Maximum sample rate of one million samples/second ■ Optional phase shift in sample time programmable from 22.5º to 337.5º ■ Four programmable sample conversion sequencers from one to eight entries long, with corresponding conversion result FIFOs ■ Flexible trigger control – Controller (software) – Timers – Analog Comparators – PWM – GPIO ■ Hardware averaging of up to 64 samples for improved accuracy ■ Digital comparison unit providing eight digital comparators ■ Converter uses an internal 3-V reference or an external reference ■ Power and ground for the analog circuitry is separate from the digital power and ground ■ Efficient transfers using Micro Direct Memory Access Controller (µDMA) – Dedicated channel for each sample sequencer – ADC module uses burst requests for DMA 1.1.7.2 Analog Comparators (see page 1101) An analog comparator is a peripheral that compares two analog voltages and provides a logical output that signals the comparison result. The LM3S9B92 microcontroller provides three independent integrated analog comparators that can be configured to drive an output or generate an interrupt or ADC event. The comparator can provide its output to a device pin, acting as a replacement for an analog comparator on the board, or it can be used to signal the application via interrupts or triggers to the ADC to cause it to start capturing a sample sequence. The interrupt generation and ADC triggering logic is separate. This means, for example, that an interrupt can be generated on a rising edge and the ADC triggered on a falling edge. The LM3S9B92 microcontroller provides three independent integrated analog comparators with the following functions: March 19, 2011 73 Texas Instruments-Advance Information Architectural Overview ■ Compare external pin input to external pin input or to internal programmable voltage reference ■ Compare a test voltage against any one of the following voltages: – An individual external reference voltage – A shared single external reference voltage – A shared internal reference voltage 1.1.8 JTAG and ARM Serial Wire Debug (see page 187) The Joint Test Action Group (JTAG) port is an IEEE standard that defines a Test Access Port and Boundary Scan Architecture for digital integrated circuits and provides a standardized serial interface for controlling the associated test logic. The TAP, Instruction Register (IR), and Data Registers (DR) can be used to test the interconnections of assembled printed circuit boards and obtain manufacturing information on the components. The JTAG Port also provides a means of accessing and controlling design-for-test features such as I/O pin observation and control, scan testing, and debugging. Texas Instruments replaces the ARM SW-DP and JTAG-DP with the ARM Serial Wire JTAG Debug Port (SWJ-DP) interface. The SWJ-DP interface combines the SWD and JTAG debug ports into one module providing all the normal JTAG debug and test functionality plus real-time access to system memory without halting the core or requiring any target resident code. The SWJ-DP interface has the following features: ■ IEEE 1149.1-1990 compatible Test Access Port (TAP) controller ■ Four-bit Instruction Register (IR) chain for storing JTAG instructions ■ IEEE standard instructions: BYPASS, IDCODE, SAMPLE/PRELOAD, EXTEST and INTEST ■ ARM additional instructions: APACC, DPACC and ABORT ■ Integrated ARM Serial Wire Debug (SWD) – Serial Wire JTAG Debug Port (SWJ-DP) – Flash Patch and Breakpoint (FPB) unit for implementing breakpoints – Data Watchpoint and Trace (DWT) unit for implementing watchpoints, trigger resources, and system profiling – Instrumentation Trace Macrocell (ITM) for support of printf style debugging – Trace Port Interface Unit (TPIU) for bridging to a Trace Port Analyzer 1.1.9 Packaging and Temperature ■ Industrial-range 100-pin RoHS-compliant LQFP package ■ Industrial-range 108-ball RoHS-compliant BGA package 1.2 Target Applications The Stellaris family is positioned for cost-conscious applications requiring significant control processing and connectivity capabilities such as: 74 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller ■ Remote monitoring ■ Electronic point-of-sale (POS) machines ■ Test and measurement equipment ■ Network appliances ■ Factory automation ■ HVAC and building control ■ Gaming equipment ■ Motion control ■ Medical instrumentation ■ Fire and security ■ Power and energy ■ Transportation 1.3 High-Level Block Diagram Figure 1-1 on page 76 depicts the features on the Stellaris LM3S9B92 microcontroller. Note that there are two on-chip buses that connect the core to the peripherals. The Advanced Peripheral Bus (APB) bus is the legacy bus. The Advanced High-Performance Bus (AHB) bus provides better back-to-back access performance than the APB bus. March 19, 2011 75 Texas Instruments-Advance Information Architectural Overview Figure 1-1. Stellaris LM3S9B92 Microcontroller High-Level Block Diagram JTAG/SWD ARM® Cortex™-M3 ROM (80 MHz) System Control and Clocks (w/ Precis. Osc.) DCode bus NVIC Boot Loader DriverLib AES & CRC Flash (256 KB) MPU ICode bus System Bus LM3S9B92 Bus Matrix SRAM (96 KB) SYSTEM PERIPHERALS DMA Watchdog Timers (2) GPIOs (65) GeneralPurpose Timers (4) External Peripheral Interface SSI (2) CAN Controllers (2) Advanced Peripheral Bus (APB) USB OTG (FS PHY) Advanced High-Performance Bus (AHB) SERIAL PERIPHERALS UARTs (3) I2C (2) Ethernet MAC/PHY I2S ANALOG PERIPHERALS Analog Comparators (3) ADC Channels (16) MOTION CONTROL PERIPHERALS PWM (8) QEI (2) 76 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller 1.4 Hardware Details Details on the pins and package can be found in the following sections: ■ “Pin Diagram” on page 1214 ■ “Signal Tables” on page 1216 ■ “Operating Characteristics” on page 1293 ■ “Electrical Characteristics” on page 1294 ■ “Package Information” on page 1378 March 19, 2011 77 Texas Instruments-Advance Information The Cortex-M3 Processor 2 The Cortex-M3 Processor The ARM® Cortex™-M3 processor provides a high-performance, low-cost platform that meets the system requirements of minimal memory implementation, reduced pin count, and low power consumption, while delivering outstanding computational performance and exceptional system response to interrupts. Features include: ® ■ 32-bit ARM Cortex™-M3 architecture optimized for small-footprint embedded applications ■ Outstanding processing performance combined with fast interrupt handling ■ Thumb-2 mixed 16-/32-bit instruction set delivers the high performance expected of a 32-bit ARM core in a compact memory size usually associated with 8- and 16-bit devices, typically in the range of a few kilobytes of memory for microcontroller-class applications – Single-cycle multiply instruction and hardware divide – Atomic bit manipulation (bit-banding), delivering maximum memory utilization and streamlined peripheral control – Unaligned data access, enabling data to be efficiently packed into memory ■ Fast code execution permits slower processor clock or increases sleep mode time ■ Harvard architecture characterized by separate buses for instruction and data ■ Efficient processor core, system and memories ■ Hardware division and fast multiplier ■ Deterministic, high-performance interrupt handling for time-critical applications ■ Memory protection unit (MPU) to provide a privileged mode for protected operating system functionality ■ Enhanced system debug with extensive breakpoint and trace capabilities ■ Serial Wire Debug and Serial Wire Trace reduce the number of pins required for debugging and tracing ■ Migration from the ARM7 processor family for better performance and power efficiency ■ Optimized for single-cycle Flash memory usage ■ Ultra-low power consumption with integrated sleep modes ■ 80-MHz operation ■ 1.25 DMIPS/MHz ® The Stellaris family of microcontrollers builds on this core to bring high-performance 32-bit computing to cost-sensitive embedded microcontroller applications, such as factory automation and control, industrial control power devices, building and home automation, and stepper motor control. 78 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller This chapter provides information on the Stellaris implementation of the Cortex-M3 processor, including the programming model, the memory model, the exception model, fault handling, and power management. For technical details on the instruction set, see the Cortex™-M3 Instruction Set Technical User's Manual. 2.1 Block Diagram The Cortex-M3 processor is built on a high-performance processor core, with a 3-stage pipeline Harvard architecture, making it ideal for demanding embedded applications. The processor delivers exceptional power efficiency through an efficient instruction set and extensively optimized design, providing high-end processing hardware including single-cycle 32x32 multiplication and dedicated hardware division. To facilitate the design of cost-sensitive devices, the Cortex-M3 processor implements tightly coupled system components that reduce processor area while significantly improving interrupt handling and system debug capabilities. The Cortex-M3 processor implements a version of the Thumb® instruction set, ensuring high code density and reduced program memory requirements. The Cortex-M3 instruction set provides the exceptional performance expected of a modern 32-bit architecture, with the high code density of 8-bit and 16-bit microcontrollers. The Cortex-M3 processor closely integrates a nested interrupt controller (NVIC), to deliver industry-leading interrupt performance. The Stellaris NVIC includes a non-maskable interrupt (NMI) and provides eight interrupt priority levels. The tight integration of the processor core and NVIC provides fast execution of interrupt service routines (ISRs), dramatically reducing interrupt latency. The hardware stacking of registers and the ability to suspend load-multiple and store-multiple operations further reduce interrupt latency. Interrupt handlers do not require any assembler stubs which removes code overhead from the ISRs. Tail-chaining optimization also significantly reduces the overhead when switching from one ISR to another. To optimize low-power designs, the NVIC integrates with the sleep modes, including Deep-sleep mode, which enables the entire device to be rapidly powered down. March 19, 2011 79 Texas Instruments-Advance Information The Cortex-M3 Processor Figure 2-1. CPU Block Diagram Nested Vectored Interrupt Controller Interrupts Sleep ARM Cortex-M3 CM3 Core Debug Instructions Data Trace Port Interface Unit Memory Protection Unit Flash Patch and Breakpoint Instrumentation Data Watchpoint Trace Macrocell and Trace ROM Table Private Peripheral Bus (internal) Adv. Peripheral Bus Bus Matrix Serial Wire JTAG Debug Port Debug Access Port 2.2 Overview 2.2.1 System-Level Interface Serial Wire Output Trace Port (SWO) I-code bus D-code bus System bus The Cortex-M3 processor provides multiple interfaces using AMBA® technology to provide high-speed, low-latency memory accesses. The core supports unaligned data accesses and implements atomic bit manipulation that enables faster peripheral controls, system spinlocks, and thread-safe Boolean data handling. The Cortex-M3 processor has a memory protection unit (MPU) that provides fine-grain memory control, enabling applications to implement security privilege levels and separate code, data and stack on a task-by-task basis. 2.2.2 Integrated Configurable Debug The Cortex-M3 processor implements a complete hardware debug solution, providing high system visibility of the processor and memory through either a traditional JTAG port or a 2-pin Serial Wire Debug (SWD) port that is ideal for microcontrollers and other small package devices. The Stellaris implementation replaces the ARM SW-DP and JTAG-DP with the ARM CoreSight™-compliant Serial Wire JTAG Debug Port (SWJ-DP) interface. The SWJ-DP interface combines the SWD and JTAG debug ports into one module. See the ARM® Debug Interface V5 Architecture Specification for details on SWJ-DP. For system trace, the processor integrates an Instrumentation Trace Macrocell (ITM) alongside data watchpoints and a profiling unit. To enable simple and cost-effective profiling of the system trace events, a Serial Wire Viewer (SWV) can export a stream of software-generated messages, data trace, and profiling information through a single pin. 80 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller The Flash Patch and Breakpoint Unit (FPB) provides up to eight hardware breakpoint comparators that debuggers can use. The comparators in the FPB also provide remap functions of up to eight words in the program code in the CODE memory region. This enables applications stored in a read-only area of Flash memory to be patched in another area of on-chip SRAM or Flash memory. If a patch is required, the application programs the FPB to remap a number of addresses. When those addresses are accessed, the accesses are redirected to a remap table specified in the FPB configuration. For more information on the Cortex-M3 debug capabilities, see theARM® Debug Interface V5 Architecture Specification. 2.2.3 Trace Port Interface Unit (TPIU) The TPIU acts as a bridge between the Cortex-M3 trace data from the ITM, and an off-chip Trace Port Analyzer, as shown in Figure 2-2 on page 81. Figure 2-2. TPIU Block Diagram 2.2.4 Debug ATB Slave Port ATB Interface APB Slave Port APB Interface Asynchronous FIFO Trace Out (serializer) Serial Wire Trace Port (SWO) Cortex-M3 System Component Details The Cortex-M3 includes the following system components: ■ SysTick A 24-bit count-down timer that can be used as a Real-Time Operating System (RTOS) tick timer or as a simple counter (see “System Timer (SysTick)” on page 121). ■ Nested Vectored Interrupt Controller (NVIC) An embedded interrupt controller that supports low latency interrupt processing (see “Nested Vectored Interrupt Controller (NVIC)” on page 122). ■ System Control Block (SCB) March 19, 2011 81 Texas Instruments-Advance Information The Cortex-M3 Processor The programming model interface to the processor. The SCB provides system implementation information and system control, including configuration, control, and reporting of system exceptions( see “System Control Block (SCB)” on page 124). ■ Memory Protection Unit (MPU) Improves system reliability by defining the memory attributes for different memory regions. The MPU provides up to eight different regions and an optional predefined background region (see “Memory Protection Unit (MPU)” on page 124). 2.3 Programming Model This section describes the Cortex-M3 programming model. In addition to the individual core register descriptions, information about the processor modes and privilege levels for software execution and stacks is included. 2.3.1 Processor Mode and Privilege Levels for Software Execution The Cortex-M3 has two modes of operation: ■ Thread mode Used to execute application software. The processor enters Thread mode when it comes out of reset. ■ Handler mode Used to handle exceptions. When the processor has finished exception processing, it returns to Thread mode. In addition, the Cortex-M3 has two privilege levels: ■ Unprivileged In this mode, software has the following restrictions: – Limited access to the MSR and MRS instructions and no use of the CPS instruction – No access to the system timer, NVIC, or system control block – Possibly restricted access to memory or peripherals ■ Privileged In this mode, software can use all the instructions and has access to all resources. In Thread mode, the CONTROL register (see page 96) controls whether software execution is privileged or unprivileged. In Handler mode, software execution is always privileged. Only privileged software can write to the CONTROL register to change the privilege level for software execution in Thread mode. Unprivileged software can use the SVC instruction to make a supervisor call to transfer control to privileged software. 2.3.2 Stacks The processor uses a full descending stack, meaning that the stack pointer indicates the last stacked item on the stack memory. When the processor pushes a new item onto the stack, it decrements the stack pointer and then writes the item to the new memory location. The processor implements 82 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller two stacks: the main stack and the process stack, with independent copies of the stack pointer (see the SP register on page 86). In Thread mode, the CONTROL register (see page 96) controls whether the processor uses the main stack or the process stack. In Handler mode, the processor always uses the main stack. The options for processor operations are shown in Table 2-1 on page 83. Table 2-1. Summary of Processor Mode, Privilege Level, and Stack Use Processor Mode Use Privilege Level Thread Applications Privileged or unprivileged Stack Used Handler Exception handlers Always privileged a Main stack or process stack a Main stack a. See CONTROL (page 96). 2.3.3 Register Map Figure 2-3 on page 83 shows the Cortex-M3 register set. Table 2-2 on page 84 lists the Core registers. The core registers are not memory mapped and are accessed by register name, so the base address is n/a (not applicable) and there is no offset. Figure 2-3. Cortex-M3 Register Set R0 R1 R2 Low registers R3 R4 R5 R6 General-purpose registers R7 R8 R9 High registers R10 R11 R12 Stack Pointer SP (R13) Link Register LR (R14) Program Counter PC (R15) PSR PSP‡ MSP‡ ‡ Banked version of SP Program status register PRIMASK FAULTMASK Exception mask registers Special registers BASEPRI CONTROL CONTROL register March 19, 2011 83 Texas Instruments-Advance Information The Cortex-M3 Processor Table 2-2. Processor Register Map Offset Type Reset - R0 R/W - Cortex General-Purpose Register 0 85 - R1 R/W - Cortex General-Purpose Register 1 85 - R2 R/W - Cortex General-Purpose Register 2 85 - R3 R/W - Cortex General-Purpose Register 3 85 - R4 R/W - Cortex General-Purpose Register 4 85 - R5 R/W - Cortex General-Purpose Register 5 85 - R6 R/W - Cortex General-Purpose Register 6 85 - R7 R/W - Cortex General-Purpose Register 7 85 - R8 R/W - Cortex General-Purpose Register 8 85 - R9 R/W - Cortex General-Purpose Register 9 85 - R10 R/W - Cortex General-Purpose Register 10 85 - R11 R/W - Cortex General-Purpose Register 11 85 - R12 R/W - Cortex General-Purpose Register 12 85 - SP R/W - Stack Pointer 86 - LR R/W 0xFFFF.FFFF Link Register 87 - PC R/W - Program Counter 88 - PSR R/W 0x0100.0000 Program Status Register 89 - PRIMASK R/W 0x0000.0000 Priority Mask Register 93 - FAULTMASK R/W 0x0000.0000 Fault Mask Register 94 - BASEPRI R/W 0x0000.0000 Base Priority Mask Register 95 - CONTROL R/W 0x0000.0000 Control Register 96 2.3.4 Description See page Name Register Descriptions This section lists and describes the Cortex-M3 registers, in the order shown in Figure 2-3 on page 83. The core registers are not memory mapped and are accessed by register name rather than offset. Note: The register type shown in the register descriptions refers to type during program execution in Thread mode and Handler mode. Debug access can differ. 84 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 1: Cortex General-Purpose Register 0 (R0) Register 2: Cortex General-Purpose Register 1 (R1) Register 3: Cortex General-Purpose Register 2 (R2) Register 4: Cortex General-Purpose Register 3 (R3) Register 5: Cortex General-Purpose Register 4 (R4) Register 6: Cortex General-Purpose Register 5 (R5) Register 7: Cortex General-Purpose Register 6 (R6) Register 8: Cortex General-Purpose Register 7 (R7) Register 9: Cortex General-Purpose Register 8 (R8) Register 10: Cortex General-Purpose Register 9 (R9) Register 11: Cortex General-Purpose Register 10 (R10) Register 12: Cortex General-Purpose Register 11 (R11) Register 13: Cortex General-Purpose Register 12 (R12) The Rn registers are 32-bit general-purpose registers for data operations and can be accessed from either privileged or unprivileged mode. Cortex General-Purpose Register 0 (R0) Type R/W, reset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - DATA Type Reset DATA Type Reset Bit/Field Name Type Reset 31:0 DATA R/W - Description Register data. March 19, 2011 85 Texas Instruments-Advance Information The Cortex-M3 Processor Register 14: Stack Pointer (SP) The Stack Pointer (SP) is register R13. In Thread mode, the function of this register changes depending on the ASP bit in the Control Register (CONTROL) register. When the ASP bit is clear, this register is the Main Stack Pointer (MSP). When the ASP bit is set, this register is the Process Stack Pointer (PSP). On reset, the ASP bit is clear, and the processor loads the MSP with the value from address 0x0000.0000. The MSP can only be accessed in privileged mode; the PSP can be accessed in either privileged or unprivileged mode. Stack Pointer (SP) Type R/W, reset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - SP Type Reset SP Type Reset Bit/Field Name Type Reset 31:0 SP R/W - Description This field is the address of the stack pointer. 86 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 15: Link Register (LR) The Link Register (LR) is register R14, and it stores the return information for subroutines, function calls, and exceptions. LR can be accessed from either privileged or unprivileged mode. EXC_RETURN is loaded into LR on exception entry. See Table 2-10 on page 114 for the values and description. Link Register (LR) Type R/W, reset 0xFFFF.FFFF 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 7 6 5 4 3 2 1 0 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 LINK Type Reset R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 15 14 13 12 11 10 9 8 LINK Type Reset R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 Bit/Field Name Type 31:0 LINK R/W R/W 1 Reset R/W 1 Description 0xFFFF.FFFF This field is the return address. March 19, 2011 87 Texas Instruments-Advance Information The Cortex-M3 Processor Register 16: Program Counter (PC) The Program Counter (PC) is register R15, and it contains the current program address. On reset, the processor loads the PC with the value of the reset vector, which is at address 0x0000.0004. Bit 0 of the reset vector is loaded into the THUMB bit of the EPSR at reset and must be 1. The PC register can be accessed in either privileged or unprivileged mode. Program Counter (PC) Type R/W, reset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - PC Type Reset PC Type Reset Bit/Field Name Type Reset 31:0 PC R/W - Description This field is the current program address. 88 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 17: Program Status Register (PSR) Note: This register is also referred to as xPSR. The Program Status Register (PSR) has three functions, and the register bits are assigned to the different functions: ■ Application Program Status Register (APSR), bits 31:27, ■ Execution Program Status Register (EPSR), bits 26:24, 15:10 ■ Interrupt Program Status Register (IPSR), bits 6:0 The PSR, IPSR, and EPSR registers can only be accessed in privileged mode; the APSR register can be accessed in either privileged or unprivileged mode. APSR contains the current state of the condition flags from previous instruction executions. EPSR contains the Thumb state bit and the execution state bits for the If-Then (IT) instruction or the Interruptible-Continuable Instruction (ICI) field for an interrupted load multiple or store multiple instruction. Attempts to read the EPSR directly through application software using the MSR instruction always return zero. Attempts to write the EPSR using the MSR instruction in application software are always ignored. Fault handlers can examine the EPSR value in the stacked PSR to determine the operation that faulted (see “Exception Entry and Return” on page 112). IPSR contains the exception type number of the current Interrupt Service Routine (ISR). These registers can be accessed individually or as a combination of any two or all three registers, using the register name as an argument to the MSR or MRS instructions. For example, all of the registers can be read using PSR with the MRS instruction, or APSR only can be written to using APSR with the MSR instruction. page 89 shows the possible register combinations for the PSR. See the MRS and MSR instruction descriptions in the Cortex™-M3 Instruction Set Technical User's Manual for more information about how to access the program status registers. Table 2-3. PSR Register Combinations Register Type PSR R/W Combination APSR, EPSR, and IPSR IEPSR RO EPSR and IPSR a, b a APSR and IPSR b APSR and EPSR IAPSR R/W EAPSR R/W a. The processor ignores writes to the IPSR bits. b. Reads of the EPSR bits return zero, and the processor ignores writes to these bits. Program Status Register (PSR) Type R/W, reset 0x0100.0000 Type Reset 31 30 29 28 27 N Z C V Q 26 25 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 RO 0 RO 0 15 14 13 12 11 10 9 ICI / IT ICI / IT Type Reset RO 0 RO 0 RO 0 24 23 22 21 20 THUMB RO 1 RO 0 RO 0 RO 0 RO 0 8 7 6 5 4 reserved RO 0 RO 0 RO 0 RO 0 RO 0 19 18 17 16 RO 0 RO 0 RO 0 RO 0 3 2 1 0 RO 0 RO 0 RO 0 reserved ISRNUM RO 0 RO 0 RO 0 March 19, 2011 RO 0 RO 0 89 Texas Instruments-Advance Information The Cortex-M3 Processor Bit/Field Name Type Reset 31 N R/W 0 Description APSR Negative or Less Flag Value Description 1 The previous operation result was negative or less than. 0 The previous operation result was positive, zero, greater than, or equal. The value of this bit is only meaningful when accessing PSR or APSR. 30 Z R/W 0 APSR Zero Flag Value Description 1 The previous operation result was zero. 0 The previous operation result was non-zero. The value of this bit is only meaningful when accessing PSR or APSR. 29 C R/W 0 APSR Carry or Borrow Flag Value Description 1 The previous add operation resulted in a carry bit or the previous subtract operation did not result in a borrow bit. 0 The previous add operation did not result in a carry bit or the previous subtract operation resulted in a borrow bit. The value of this bit is only meaningful when accessing PSR or APSR. 28 V R/W 0 APSR Overflow Flag Value Description 1 The previous operation resulted in an overflow. 0 The previous operation did not result in an overflow. The value of this bit is only meaningful when accessing PSR or APSR. 27 Q R/W 0 APSR DSP Overflow and Saturation Flag Value Description 1 DSP Overflow or saturation has occurred. 0 DSP overflow or saturation has not occurred since reset or since the bit was last cleared. The value of this bit is only meaningful when accessing PSR or APSR. This bit is cleared by software using an MRS instruction. 90 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset 26:25 ICI / IT RO 0x0 24 THUMB RO 1 Description EPSR ICI / IT status These bits, along with bits 15:10, contain the Interruptible-Continuable Instruction (ICI) field for an interrupted load multiple or store multiple instruction or the execution state bits of the IT instruction. When EPSR holds the ICI execution state, bits 26:25 are zero. The If-Then block contains up to four instructions following a 16-bit IT instruction. Each instruction in the block is conditional. The conditions for the instructions are either all the same, or some can be the inverse of others. See the Cortex™-M3 Instruction Set Technical User's Manual for more information. The value of this field is only meaningful when accessing PSR or EPSR. EPSR Thumb State This bit indicates the Thumb state and should always be set. The following can clear the THUMB bit: ■ The BLX, BX and POP{PC} instructions ■ Restoration from the stacked xPSR value on an exception return ■ Bit 0 of the vector value on an exception entry Attempting to execute instructions when this bit is clear results in a fault or lockup. See “Lockup” on page 116 for more information. The value of this bit is only meaningful when accessing PSR or EPSR. 23:16 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 15:10 ICI / IT RO 0x0 EPSR ICI / IT status These bits, along with bits 26:25, contain the Interruptible-Continuable Instruction (ICI) field for an interrupted load multiple or store multiple instruction or the execution state bits of the IT instruction. When an interrupt occurs during the execution of an LDM, STM, PUSH or POP instruction, the processor stops the load multiple or store multiple instruction operation temporarily and stores the next register operand in the multiple operation to bits 15:12. After servicing the interrupt, the processor returns to the register pointed to by bits 15:12 and resumes execution of the multiple load or store instruction. When EPSR holds the ICI execution state, bits 11:10 are zero. The If-Then block contains up to four instructions following a 16-bit IT instruction. Each instruction in the block is conditional. The conditions for the instructions are either all the same, or some can be the inverse of others. See the Cortex™-M3 Instruction Set Technical User's Manual for more information. The value of this field is only meaningful when accessing PSR or EPSR. 9:7 reserved RO 0x0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. March 19, 2011 91 Texas Instruments-Advance Information The Cortex-M3 Processor Bit/Field Name Type Reset Description 6:0 ISRNUM RO 0x00 IPSR ISR Number This field contains the exception type number of the current Interrupt Service Routine (ISR). Value Description 0x00 Thread mode 0x01 Reserved 0x02 NMI 0x03 Hard fault 0x04 Memory management fault 0x05 Bus fault 0x06 Usage fault 0x07-0x0A Reserved 0x0B SVCall 0x0C Reserved for Debug 0x0D Reserved 0x0E PendSV 0x0F SysTick 0x10 Interrupt Vector 0 0x11 Interrupt Vector 1 ... ... 0x46 Interrupt Vector 54 0x47-0x7F Reserved See “Exception Types” on page 107 for more information. The value of this field is only meaningful when accessing PSR or IPSR. 92 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 18: Priority Mask Register (PRIMASK) The PRIMASK register prevents activation of all exceptions with programmable priority. Reset, non-maskable interrupt (NMI), and hard fault are the only exceptions with fixed priority. Exceptions should be disabled when they might impact the timing of critical tasks. This register is only accessible in privileged mode. The MSR and MRS instructions are used to access the PRIMASK register, and the CPS instruction may be used to change the value of the PRIMASK register. See the Cortex™-M3 Instruction Set Technical User's Manual for more information on these instructions. For more information on exception priority levels, see “Exception Types” on page 107. Priority Mask Register (PRIMASK) Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 7 6 5 4 3 2 1 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 reserved Type Reset reserved Type Reset Bit/Field Name Type Reset 31:1 reserved RO 0x0000.000 0 PRIMASK R/W 0 RO 0 PRIMASK R/W 0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. Priority Mask Value Description 1 Prevents the activation of all exceptions with configurable priority. 0 No effect. March 19, 2011 93 Texas Instruments-Advance Information The Cortex-M3 Processor Register 19: Fault Mask Register (FAULTMASK) The FAULTMASK register prevents activation of all exceptions except for the Non-Maskable Interrupt (NMI). Exceptions should be disabled when they might impact the timing of critical tasks. This register is only accessible in privileged mode. The MSR and MRS instructions are used to access the FAULTMASK register, and the CPS instruction may be used to change the value of the FAULTMASK register. See the Cortex™-M3 Instruction Set Technical User's Manual for more information on these instructions. For more information on exception priority levels, see “Exception Types” on page 107. Fault Mask Register (FAULTMASK) Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 7 6 5 4 3 2 1 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 reserved Type Reset reserved Type Reset Bit/Field Name Type Reset 31:1 reserved RO 0x0000.000 0 FAULTMASK R/W 0 RO 0 FAULTMASK R/W 0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. Fault Mask Value Description 1 Prevents the activation of all exceptions except for NMI. 0 No effect. The processor clears the FAULTMASK bit on exit from any exception handler except the NMI handler. 94 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 20: Base Priority Mask Register (BASEPRI) The BASEPRI register defines the minimum priority for exception processing. When BASEPRI is set to a nonzero value, it prevents the activation of all exceptions with the same or lower priority level as the BASEPRI value. Exceptions should be disabled when they might impact the timing of critical tasks. This register is only accessible in privileged mode. For more information on exception priority levels, see “Exception Types” on page 107. Base Priority Mask Register (BASEPRI) Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 8 7 6 5 4 3 2 1 0 RO 0 R/W 0 R/W 0 RO 0 RO 0 RO 0 RO 0 reserved Type Reset reserved Type Reset BASEPRI RO 0 R/W 0 reserved RO 0 Bit/Field Name Type Reset Description 31:8 reserved RO 0x0000.00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 7:5 BASEPRI R/W 0x0 Base Priority Any exception that has a programmable priority level with the same or lower priority as the value of this field is masked. The PRIMASK register can be used to mask all exceptions with programmable priority levels. Higher priority exceptions have lower priority levels. Value Description 4:0 reserved RO 0x0 0x0 All exceptions are unmasked. 0x1 All exceptions with priority level 1-7 are masked. 0x2 All exceptions with priority level 2-7 are masked. 0x3 All exceptions with priority level 3-7 are masked. 0x4 All exceptions with priority level 4-7 are masked. 0x5 All exceptions with priority level 5-7 are masked. 0x6 All exceptions with priority level 6-7 are masked. 0x7 All exceptions with priority level 7 are masked. Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. March 19, 2011 95 Texas Instruments-Advance Information The Cortex-M3 Processor Register 21: Control Register (CONTROL) The CONTROL register controls the stack used and the privilege level for software execution when the processor is in Thread mode. This register is only accessible in privileged mode. Handler mode always uses MSP, so the processor ignores explicit writes to the ASP bit of the CONTROL register when in Handler mode. The exception entry and return mechanisms automatically update the CONTROL register based on the EXC_RETURN value (see Table 2-10 on page 114). In an OS environment, threads running in Thread mode should use the process stack and the kernel and exception handlers should use the main stack. By default, Thread mode uses MSP. To switch the stack pointer used in Thread mode to PSP, either use the MSR instruction to set the ASP bit, as detailed in the Cortex™-M3 Instruction Set Technical User's Manual, or perform an exception return to Thread mode with the appropriate EXC_RETURN value, as shown in Table 2-10 on page 114. Note: When changing the stack pointer, software must use an ISB instruction immediately after the MSR instruction, ensuring that instructions after the ISB execute use the new stack pointer. See the Cortex™-M3 Instruction Set Technical User's Manual. Control Register (CONTROL) Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 8 7 6 5 4 3 2 1 0 ASP TMPL RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 R/W 0 R/W 0 reserved Type Reset reserved Type Reset Bit/Field Name Type Reset 31:2 reserved RO 0x0000.000 1 ASP R/W 0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. Active Stack Pointer Value Description 1 PSP is the current stack pointer. 0 MSP is the current stack pointer In Handler mode, this bit reads as zero and ignores writes. The Cortex-M3 updates this bit automatically on exception return. 0 TMPL R/W 0 Thread Mode Privilege Level Value Description 1 Unprivileged software can be executed in Thread mode. 0 Only privileged software can be executed in Thread mode. 96 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller 2.3.5 Exceptions and Interrupts The Cortex-M3 processor supports interrupts and system exceptions. The processor and the Nested Vectored Interrupt Controller (NVIC) prioritize and handle all exceptions. An exception changes the normal flow of software control. The processor uses Handler mode to handle all exceptions except for reset. See “Exception Entry and Return” on page 112 for more information. The NVIC registers control interrupt handling. See “Nested Vectored Interrupt Controller (NVIC)” on page 122 for more information. 2.3.6 Data Types The Cortex-M3 supports 32-bit words, 16-bit halfwords, and 8-bit bytes. The processor also supports 64-bit data transfer instructions. All instruction and data memory accesses are little endian. See “Memory Regions, Types and Attributes” on page 99 for more information. 2.4 Memory Model This section describes the processor memory map, the behavior of memory accesses, and the bit-banding features. The processor has a fixed memory map that provides up to 4 GB of addressable memory. The memory map for the LM3S9B92 controller is provided in Table 2-4 on page 97. In this manual, register addresses are given as a hexadecimal increment, relative to the module’s base address as shown in the memory map. The regions for SRAM and peripherals include bit-band regions. Bit-banding provides atomic operations to bit data (see “Bit-Banding” on page 102). The processor reserves regions of the Private peripheral bus (PPB) address range for core peripheral registers (see “Cortex-M3 Peripherals” on page 121). Note: Within the memory map, all reserved space returns a bus fault when read or written. Table 2-4. Memory Map Start End Description For details, see page ... 0x0000.0000 0x0003.FFFF On-chip Flash 305 0x0004.0000 0x00FF.FFFF Reserved - 0x0100.0000 0x1FFF.FFFF Reserved for ROM 303 0x2000.0000 0x2001.7FFF Bit-banded on-chip SRAM 303 0x2001.8000 0x21FF.FFFF Reserved - 0x2200.0000 0x222F.FFFF Bit-band alias of 0x2000.0000 through 0x200F.FFFF 303 0x2230.0000 0x3FFF.FFFF Reserved - 0x4000.0000 0x4000.0FFF Watchdog timer 0 575 0x4000.1000 0x4000.1FFF Watchdog timer 1 575 0x4000.2000 0x4000.3FFF Reserved - 0x4000.4000 0x4000.4FFF GPIO Port A 410 0x4000.5000 0x4000.5FFF GPIO Port B 410 0x4000.6000 0x4000.6FFF GPIO Port C 410 Memory FiRM Peripherals March 19, 2011 97 Texas Instruments-Advance Information The Cortex-M3 Processor Table 2-4. Memory Map (continued) Start End Description For details, see page ... 0x4000.7000 0x4000.7FFF GPIO Port D 410 0x4000.8000 0x4000.8FFF SSI0 752 0x4000.9000 0x4000.9FFF SSI1 752 0x4000.A000 0x4000.BFFF Reserved - 0x4000.C000 0x4000.CFFF UART0 689 0x4000.D000 0x4000.DFFF UART1 689 0x4000.E000 0x4000.EFFF UART2 689 0x4000.F000 0x4001.FFFF Reserved - 0x4002.0FFF I2C 0 796 0x4002.1000 0x4002.1FFF I2C 796 0x4002.2000 0x4002.3FFF Reserved - 0x4002.4000 0x4002.4FFF GPIO Port E 410 0x4002.5000 0x4002.5FFF GPIO Port F 410 0x4002.6000 0x4002.6FFF GPIO Port G 410 0x4002.7000 0x4002.7FFF GPIO Port H 410 0x4002.8000 0x4002.8FFF PWM 1128 0x4002.9000 0x4002.BFFF Reserved - 0x4002.C000 0x4002.CFFF QEI0 1197 0x4002.D000 0x4002.DFFF QEI1 1197 0x4002.E000 0x4002.FFFF Reserved - 0x4003.0000 0x4003.0FFF Timer 0 541 0x4003.1000 0x4003.1FFF Timer 1 541 0x4003.2000 0x4003.2FFF Timer 2 541 0x4003.3000 0x4003.3FFF Timer 3 541 0x4003.4000 0x4003.7FFF Reserved - 0x4003.8000 0x4003.8FFF ADC0 618 0x4003.9000 0x4003.9FFF ADC1 618 0x4003.A000 0x4003.BFFF Reserved - 0x4003.C000 0x4003.CFFF Analog Comparators 1101 0x4003.D000 0x4003.DFFF GPIO Port J 410 0x4003.E000 0x4003.FFFF Reserved - 0x4004.0000 0x4004.0FFF CAN0 Controller 873 0x4004.1000 0x4004.1FFF CAN1 Controller 873 0x4004.2000 0x4004.7FFF Reserved - 0x4004.8000 0x4004.8FFF Ethernet Controller 916 0x4004.9000 0x4004.FFFF Reserved - 0x4005.0000 0x4005.0FFF USB 989 0x4005.1000 0x4005.3FFF Reserved - 0x4005.4000 0x4005.4FFF I2S0 829 0x4005.5000 0x4005.7FFF Reserved - Peripherals 0x4002.0000 1 98 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Table 2-4. Memory Map (continued) Start End Description For details, see page ... 0x4005.8000 0x4005.8FFF GPIO Port A (AHB aperture) 410 0x4005.9000 0x4005.9FFF GPIO Port B (AHB aperture) 410 0x4005.A000 0x4005.AFFF GPIO Port C (AHB aperture) 410 0x4005.B000 0x4005.BFFF GPIO Port D (AHB aperture) 410 0x4005.C000 0x4005.CFFF GPIO Port E (AHB aperture) 410 0x4005.D000 0x4005.DFFF GPIO Port F (AHB aperture) 410 0x4005.E000 0x4005.EFFF GPIO Port G (AHB aperture) 410 0x4005.F000 0x4005.FFFF GPIO Port H (AHB aperture) 410 0x4006.0000 0x4006.0FFF GPIO Port J (AHB aperture) 410 0x4006.1000 0x400C.FFFF Reserved - 0x400D.0000 0x400D.0FFF EPI 0 484 0x400D.1000 0x400F.CFFF Reserved - 0x400F.D000 0x400F.DFFF Flash memory control 311 0x400F.E000 0x400F.EFFF System control 216 0x400F.F000 0x400F.FFFF µDMA 360 0x4010.0000 0x41FF.FFFF Reserved - 0x4200.0000 0x43FF.FFFF Bit-banded alias of 0x4000.0000 through 0x400F.FFFF - 0x4400.0000 0x5FFF.FFFF Reserved - 0x6000.0000 0xDFFF.FFFF EPI0 mapped peripheral and RAM - 0xE000.0000 0xE000.0FFF Instrumentation Trace Macrocell (ITM) 80 0xE000.1000 0xE000.1FFF Data Watchpoint and Trace (DWT) 80 0xE000.2000 0xE000.2FFF Flash Patch and Breakpoint (FPB) 80 0xE000.3000 0xE000.DFFF Reserved - 0xE000.E000 0xE000.EFFF Cortex-M3 Peripherals (SysTick, NVIC, SCB, and MPU) 106 0xE000.F000 0xE003.FFFF Reserved - 0xE004.0000 0xE004.0FFF Trace Port Interface Unit (TPIU) 81 0xE004.1000 0xFFFF.FFFF Reserved - Private Peripheral Bus 2.4.1 Memory Regions, Types and Attributes The memory map and the programming of the MPU split the memory map into regions. Each region has a defined memory type, and some regions have additional memory attributes. The memory type and attributes determine the behavior of accesses to the region. The memory types are: ■ Normal: The processor can re-order transactions for efficiency and perform speculative reads. ■ Device: The processor preserves transaction order relative to other transactions to Device or Strongly Ordered memory. ■ Strongly Ordered: The processor preserves transaction order relative to all other transactions. March 19, 2011 99 Texas Instruments-Advance Information The Cortex-M3 Processor The different ordering requirements for Device and Strongly Ordered memory mean that the memory system can buffer a write to Device memory but must not buffer a write to Strongly Ordered memory. An additional memory attribute is Execute Never (XN), which means the processor prevents instruction accesses. A fault exception is generated only on execution of an instruction executed from an XN region. 2.4.2 Memory System Ordering of Memory Accesses For most memory accesses caused by explicit memory access instructions, the memory system does not guarantee that the order in which the accesses complete matches the program order of the instructions, providing the order does not affect the behavior of the instruction sequence. Normally, if correct program execution depends on two memory accesses completing in program order, software must insert a memory barrier instruction between the memory access instructions (see “Software Ordering of Memory Accesses” on page 101). However, the memory system does guarantee ordering of accesses to Device and Strongly Ordered memory. For two memory access instructions A1 and A2, if both A1 and A2 are accesses to either Device or Strongly Ordered memory, and if A1 occurs before A2 in program order, A1 is always observed before A2. 2.4.3 Behavior of Memory Accesses Table 2-5 on page 100 shows the behavior of accesses to each region in the memory map. See “Memory Regions, Types and Attributes” on page 99 for more information on memory types and the XN attribute. Stellaris devices may have reserved memory areas within the address ranges shown below (refer to Table 2-4 on page 97 for more information). Table 2-5. Memory Access Behavior Address Range Memory Region Memory Type Execute Never (XN) Description 0x0000.0000 - 0x1FFF.FFFF Code Normal - This executable region is for program code. Data can also be stored here. 0x2000.0000 - 0x3FFF.FFFF SRAM Normal - This executable region is for data. Code can also be stored here. This region includes bit band and bit band alias areas (see Table 2-6 on page 102). 0x4000.0000 - 0x5FFF.FFFF Peripheral Device XN This region includes bit band and bit band alias areas (see Table 2-7 on page 102). 0x6000.0000 - 0x9FFF.FFFF External RAM Normal - This executable region is for data. 0xA000.0000 - 0xDFFF.FFFF External device Device XN This region is for external device memory. 0xE000.0000- 0xE00F.FFFF Private peripheral bus Strongly Ordered XN This region includes the NVIC, system timer, and system control block. 0xE010.0000- 0xFFFF.FFFF Reserved - - - The Code, SRAM, and external RAM regions can hold programs. However, it is recommended that programs always use the Code region because the Cortex-M3 has separate buses that can perform instruction fetches and data accesses simultaneously. The MPU can override the default memory access behavior described in this section. For more information, see “Memory Protection Unit (MPU)” on page 124. The Cortex-M3 prefetches instructions ahead of execution and speculatively prefetches from branch target addresses. 100 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller 2.4.4 Software Ordering of Memory Accesses The order of instructions in the program flow does not always guarantee the order of the corresponding memory transactions for the following reasons: ■ The processor can reorder some memory accesses to improve efficiency, providing this does not affect the behavior of the instruction sequence. ■ The processor has multiple bus interfaces. ■ Memory or devices in the memory map have different wait states. ■ Some memory accesses are buffered or speculative. “Memory System Ordering of Memory Accesses” on page 100 describes the cases where the memory system guarantees the order of memory accesses. Otherwise, if the order of memory accesses is critical, software must include memory barrier instructions to force that ordering. The Cortex-M3 has the following memory barrier instructions: ■ The Data Memory Barrier (DMB) instruction ensures that outstanding memory transactions complete before subsequent memory transactions. ■ The Data Synchronization Barrier (DSB) instruction ensures that outstanding memory transactions complete before subsequent instructions execute. ■ The Instruction Synchronization Barrier (ISB) instruction ensures that the effect of all completed memory transactions is recognizable by subsequent instructions. Memory barrier instructions can be used in the following situations: ■ MPU programming – If the MPU settings are changed and the change must be effective on the very next instruction, use a DSB instruction to ensure the effect of the MPU takes place immediately at the end of context switching. – Use an ISB instruction to ensure the new MPU setting takes effect immediately after programming the MPU region or regions, if the MPU configuration code was accessed using a branch or call. If the MPU configuration code is entered using exception mechanisms, then an ISB instruction is not required. ■ Vector table If the program changes an entry in the vector table and then enables the corresponding exception, use a DMB instruction between the operations. The DMB instruction ensures that if the exception is taken immediately after being enabled, the processor uses the new exception vector. ■ Self-modifying code If a program contains self-modifying code, use an ISB instruction immediately after the code modification in the program. The ISB instruction ensures subsequent instruction execution uses the updated program. ■ Memory map switching March 19, 2011 101 Texas Instruments-Advance Information The Cortex-M3 Processor If the system contains a memory map switching mechanism, use a DSB instruction after switching the memory map in the program. The DSB instruction ensures subsequent instruction execution uses the updated memory map. ■ Dynamic exception priority change When an exception priority has to change when the exception is pending or active, use DSB instructions after the change. The change then takes effect on completion of the DSB instruction. Memory accesses to Strongly Ordered memory, such as the System Control Block, do not require the use of DMB instructions. For more information on the memory barrier instructions, see the Cortex™-M3 Instruction Set Technical User's Manual. 2.4.5 Bit-Banding A bit-band region maps each word in a bit-band alias region to a single bit in the bit-band region. The bit-band regions occupy the lowest 1 MB of the SRAM and peripheral memory regions. Accesses to the 32-MB SRAM alias region map to the 1-MB SRAM bit-band region, as shown in Table 2-6 on page 102. Accesses to the 32-MB peripheral alias region map to the 1-MB peripheral bit-band region, as shown in Table 2-7 on page 102. For the specific address range of the bit-band regions, see Table 2-4 on page 97. Note: A word access to the SRAM or the peripheral bit-band alias region maps to a single bit in the SRAM or peripheral bit-band region. A word access to a bit band address results in a word access to the underlying memory, and similarly for halfword and byte accesses. This allows bit band accesses to match the access requirements of the underlying peripheral. Table 2-6. SRAM Memory Bit-Banding Regions Address Range Memory Region Instruction and Data Accesses 0x2000.0000 - 0x200F.FFFF SRAM bit-band region Direct accesses to this memory range behave as SRAM memory accesses, but this region is also bit addressable through bit-band alias. 0x2200.0000 - 0x23FF.FFFF SRAM bit-band alias Data accesses to this region are remapped to bit band region. A write operation is performed as read-modify-write. Instruction accesses are not remapped. Table 2-7. Peripheral Memory Bit-Banding Regions Address Range Memory Region Instruction and Data Accesses 0x4000.0000 - 0x400F.FFFF Peripheral bit-band region Direct accesses to this memory range behave as peripheral memory accesses, but this region is also bit addressable through bit-band alias. 0x4200.0000 - 0x43FF.FFFF Peripheral bit-band alias Data accesses to this region are remapped to bit band region. A write operation is performed as read-modify-write. Instruction accesses are not permitted. The following formula shows how the alias region maps onto the bit-band region: bit_word_offset = (byte_offset x 32) + (bit_number x 4) bit_word_addr = bit_band_base + bit_word_offset 102 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller where: bit_word_offset The position of the target bit in the bit-band memory region. bit_word_addr The address of the word in the alias memory region that maps to the targeted bit. bit_band_base The starting address of the alias region. byte_offset The number of the byte in the bit-band region that contains the targeted bit. bit_number The bit position, 0-7, of the targeted bit. Figure 2-4 on page 104 shows examples of bit-band mapping between the SRAM bit-band alias region and the SRAM bit-band region: ■ The alias word at 0x23FF.FFE0 maps to bit 0 of the bit-band byte at 0x200F.FFFF: 0x23FF.FFE0 = 0x2200.0000 + (0x000F.FFFF*32) + (0*4) ■ The alias word at 0x23FF.FFFC maps to bit 7 of the bit-band byte at 0x200F.FFFF: 0x23FF.FFFC = 0x2200.0000 + (0x000F.FFFF*32) + (7*4) ■ The alias word at 0x2200.0000 maps to bit 0 of the bit-band byte at 0x2000.0000: 0x2200.0000 = 0x2200.0000 + (0*32) + (0*4) ■ The alias word at 0x2200.001C maps to bit 7 of the bit-band byte at 0x2000.0000: 0x2200.001C = 0x2200.0000+ (0*32) + (7*4) March 19, 2011 103 Texas Instruments-Advance Information The Cortex-M3 Processor Figure 2-4. Bit-Band Mapping 32-MB Alias Region 0x23FF.FFFC 0x23FF.FFF8 0x23FF.FFF4 0x23FF.FFF0 0x23FF.FFEC 0x23FF.FFE8 0x23FF.FFE4 0x23FF.FFE0 0x2200.001C 0x2200.0018 0x2200.0014 0x2200.0010 0x2200.000C 0x2200.0008 0x2200.0004 0x2200.0000 7 3 1-MB SRAM Bit-Band Region 7 6 5 4 3 2 1 0 7 6 0x200F.FFFF 7 6 5 4 3 2 0x2000.0003 2.4.5.1 5 4 3 2 1 0 7 6 0x200F.FFFE 1 0 7 6 5 4 3 2 5 4 3 2 1 0 6 0x200F.FFFD 1 0 0x2000.0002 7 6 5 4 3 2 5 4 2 1 0 1 0 0x200F.FFFC 1 0x2000.0001 0 7 6 5 4 3 2 0x2000.0000 Directly Accessing an Alias Region Writing to a word in the alias region updates a single bit in the bit-band region. Bit 0 of the value written to a word in the alias region determines the value written to the targeted bit in the bit-band region. Writing a value with bit 0 set writes a 1 to the bit-band bit, and writing a value with bit 0 clear writes a 0 to the bit-band bit. Bits 31:1 of the alias word have no effect on the bit-band bit. Writing 0x01 has the same effect as writing 0xFF. Writing 0x00 has the same effect as writing 0x0E. When reading a word in the alias region, 0x0000.0000 indicates that the targeted bit in the bit-band region is clear and 0x0000.0001 indicates that the targeted bit in the bit-band region is set. 2.4.5.2 Directly Accessing a Bit-Band Region “Behavior of Memory Accesses” on page 100 describes the behavior of direct byte, halfword, or word accesses to the bit-band regions. 2.4.6 Data Storage The processor views memory as a linear collection of bytes numbered in ascending order from zero. For example, bytes 0-3 hold the first stored word, and bytes 4-7 hold the second stored word. Data is stored in little-endian format, with the least-significant byte (lsbyte) of a word stored at the lowest-numbered byte, and the most-significant byte (msbyte) stored at the highest-numbered byte. Figure 2-5 on page 105 illustrates how data is stored. 104 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Figure 2-5. Data Storage Memory 7 Register 0 31 2.4.7 Address A B0 A+1 B1 A+2 B2 A+3 B3 lsbyte 24 23 B3 16 15 B2 8 7 B1 0 B0 msbyte Synchronization Primitives The Cortex-M3 instruction set includes pairs of synchronization primitives which provide a non-blocking mechanism that a thread or process can use to obtain exclusive access to a memory location. Software can use these primitives to perform a guaranteed read-modify-write memory update sequence or for a semaphore mechanism. A pair of synchronization primitives consists of: ■ A Load-Exclusive instruction, which is used to read the value of a memory location and requests exclusive access to that location. ■ A Store-Exclusive instruction, which is used to attempt to write to the same memory location and returns a status bit to a register. If this status bit is clear, it indicates that the thread or process gained exclusive access to the memory and the write succeeds; if this status bit is set, it indicates that the thread or process did not gain exclusive access to the memory and no write is performed. The pairs of Load-Exclusive and Store-Exclusive instructions are: ■ The word instructions LDREX and STREX ■ The halfword instructions LDREXH and STREXH ■ The byte instructions LDREXB and STREXB Software must use a Load-Exclusive instruction with the corresponding Store-Exclusive instruction. To perform a guaranteed read-modify-write of a memory location, software must: 1. Use a Load-Exclusive instruction to read the value of the location. 2. Update the value, as required. 3. Use a Store-Exclusive instruction to attempt to write the new value back to the memory location, and test the returned status bit. If the status bit is clear, the read-modify-write completed successfully; if the status bit is set, no write was performed, which indicates that the value returned at step 1 might be out of date. The software must retry the read-modify-write sequence. Software can use the synchronization primitives to implement a semaphore as follows: 1. Use a Load-Exclusive instruction to read from the semaphore address to check whether the semaphore is free. March 19, 2011 105 Texas Instruments-Advance Information The Cortex-M3 Processor 2. If the semaphore is free, use a Store-Exclusive to write the claim value to the semaphore address. 3. If the returned status bit from step 2 indicates that the Store-Exclusive succeeded, then the software has claimed the semaphore. However, if the Store-Exclusive failed, another process might have claimed the semaphore after the software performed step 1. The Cortex-M3 includes an exclusive access monitor that tags the fact that the processor has executed a Load-Exclusive instruction. The processor removes its exclusive access tag if: ■ It executes a CLREX instruction. ■ It executes a Store-Exclusive instruction, regardless of whether the write succeeds. ■ An exception occurs, which means the processor can resolve semaphore conflicts between different threads. For more information about the synchronization primitive instructions, see the Cortex™-M3 Instruction Set Technical User's Manual. 2.5 Exception Model The ARM Cortex-M3 processor and the Nested Vectored Interrupt Controller (NVIC) prioritize and handle all exceptions in Handler Mode. The processor state is automatically stored to the stack on an exception and automatically restored from the stack at the end of the Interrupt Service Routine (ISR). The vector is fetched in parallel to the state saving, enabling efficient interrupt entry. The processor supports tail-chaining, which enables back-to-back interrupts to be performed without the overhead of state saving and restoration. Table 2-8 on page 108 lists all exception types. Software can set eight priority levels on seven of these exceptions (system handlers) as well as on 53 interrupts (listed in Table 2-9 on page 109). Priorities on the system handlers are set with the NVIC System Handler Priority n (SYSPRIn) registers. Interrupts are enabled through the NVIC Interrupt Set Enable n (ENn) register and prioritized with the NVIC Interrupt Priority n (PRIn) registers. Priorities can be grouped by splitting priority levels into preemption priorities and subpriorities. All the interrupt registers are described in “Nested Vectored Interrupt Controller (NVIC)” on page 122. Internally, the highest user-programmable priority (0) is treated as fourth priority, after a Reset, Non-Maskable Interrupt (NMI), and a Hard Fault, in that order. Note that 0 is the default priority for all the programmable priorities. Important: After a write to clear an interrupt source, it may take several processor cycles for the NVIC to see the interrupt source de-assert. Thus if the interrupt clear is done as the last action in an interrupt handler, it is possible for the interrupt handler to complete while the NVIC sees the interrupt as still asserted, causing the interrupt handler to be re-entered errantly. This situation can be avoided by either clearing the interrupt source at the beginning of the interrupt handler or by performing a read or write after the write to clear the interrupt source (and flush the write buffer). See “Nested Vectored Interrupt Controller (NVIC)” on page 122 for more information on exceptions and interrupts. 2.5.1 Exception States Each exception is in one of the following states: 106 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller ■ Inactive. The exception is not active and not pending. ■ Pending. The exception is waiting to be serviced by the processor. An interrupt request from a peripheral or from software can change the state of the corresponding interrupt to pending. ■ Active. An exception that is being serviced by the processor but has not completed. Note: An exception handler can interrupt the execution of another exception handler. In this case, both exceptions are in the active state. ■ Active and Pending. The exception is being serviced by the processor, and there is a pending exception from the same source. 2.5.2 Exception Types The exception types are: ■ Reset. Reset is invoked on power up or a warm reset. The exception model treats reset as a special form of exception. When reset is asserted, the operation of the processor stops, potentially at any point in an instruction. When reset is deasserted, execution restarts from the address provided by the reset entry in the vector table. Execution restarts as privileged execution in Thread mode. ■ NMI. A non-maskable Interrupt (NMI) can be signaled using the NMI signal or triggered by software using the Interrupt Control and State (INTCTRL) register. This exception has the highest priority other than reset. NMI is permanently enabled and has a fixed priority of -2. NMIs cannot be masked or prevented from activation by any other exception or preempted by any exception other than reset. ■ Hard Fault. A hard fault is an exception that occurs because of an error during exception processing, or because an exception cannot be managed by any other exception mechanism. Hard faults have a fixed priority of -1, meaning they have higher priority than any exception with configurable priority. ■ Memory Management Fault. A memory management fault is an exception that occurs because of a memory protection related fault, including access violation and no match. The MPU or the fixed memory protection constraints determine this fault, for both instruction and data memory transactions. This fault is used to abort instruction accesses to Execute Never (XN) memory regions, even if the MPU is disabled. ■ Bus Fault. A bus fault is an exception that occurs because of a memory-related fault for an instruction or data memory transaction such as a prefetch fault or a memory access fault. This fault can be enabled or disabled. ■ Usage Fault. A usage fault is an exception that occurs because of a fault related to instruction execution, such as: – An undefined instruction – An illegal unaligned access – Invalid state on instruction execution – An error on exception return March 19, 2011 107 Texas Instruments-Advance Information The Cortex-M3 Processor An unaligned address on a word or halfword memory access or division by zero can cause a usage fault when the core is properly configured. ■ SVCall. A supervisor call (SVC) is an exception that is triggered by the SVC instruction. In an OS environment, applications can use SVC instructions to access OS kernel functions and device drivers. ■ Debug Monitor. This exception is caused by the debug monitor (when not halting). This exception is only active when enabled. This exception does not activate if it is a lower priority than the current activation. ■ PendSV. PendSV is a pendable, interrupt-driven request for system-level service. In an OS environment, use PendSV for context switching when no other exception is active. PendSV is triggered using the Interrupt Control and State (INTCTRL) register. ■ SysTick. A SysTick exception is an exception that the system timer generates when it reaches zero when it is enabled to generate an interrupt. Software can also generate a SysTick exception using the Interrupt Control and State (INTCTRL) register. In an OS environment, the processor can use this exception as system tick. ■ Interrupt (IRQ). An interrupt, or IRQ, is an exception signaled by a peripheral or generated by a software request and fed through the NVIC (prioritized). All interrupts are asynchronous to instruction execution. In the system, peripherals use interrupts to communicate with the processor. Table 2-9 on page 109 lists the interrupts on the LM3S9B92 controller. For an asynchronous exception, other than reset, the processor can execute another instruction between when the exception is triggered and when the processor enters the exception handler. Privileged software can disable the exceptions that Table 2-8 on page 108 shows as having configurable priority (see the SYSHNDCTRL register on page 165 and the DIS0 register on page 138). For more information about hard faults, memory management faults, bus faults, and usage faults, see “Fault Handling” on page 114. Table 2-8. Exception Types Exception Type a Vector Number Priority Vector Address or b Offset - 0 - 0x0000.0000 Stack top is loaded from the first entry of the vector table on reset. Reset 1 -3 (highest) 0x0000.0004 Asynchronous Non-Maskable Interrupt (NMI) 2 -2 0x0000.0008 Asynchronous Hard Fault 3 -1 0x0000.000C - c 0x0000.0010 Synchronous c 0x0000.0014 Synchronous when precise and asynchronous when imprecise c Synchronous Memory Management 4 programmable Bus Fault 5 programmable Usage Fault 6 programmable 0x0000.0018 7-10 - - - Activation Reserved c 0x0000.002C Synchronous c 0x0000.0030 Synchronous c 0x0000.0038 SVCall 11 programmable Debug Monitor 12 programmable - 13 - PendSV 14 programmable - 108 Reserved Asynchronous March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Table 2-8. Exception Types (continued) Exception Type SysTick Interrupts a Vector Number Priority Vector Address or b Offset 15 programmable c 16 and above d programmable 0x0000.003C Activation Asynchronous 0x0000.0040 and above Asynchronous a. 0 is the default priority for all the programmable priorities. b. See “Vector Table” on page 110. c. See SYSPRI1 on page 162. d. See PRIn registers on page 146. Table 2-9. Interrupts Vector Number Interrupt Number (Bit in Interrupt Registers) Vector Address or Offset Description 0-15 - 0x0000.0000 0x0000.003C 16 0 0x0000.0040 GPIO Port A 17 1 0x0000.0044 GPIO Port B 18 2 0x0000.0048 GPIO Port C 19 3 0x0000.004C GPIO Port D 20 4 0x0000.0050 GPIO Port E 21 5 0x0000.0054 UART0 22 6 0x0000.0058 UART1 23 7 0x0000.005C SSI0 24 8 0x0000.0060 I2C0 25 9 0x0000.0064 PWM Fault 26 10 0x0000.0068 PWM Generator 0 27 11 0x0000.006C PWM Generator 1 28 12 0x0000.0070 PWM Generator 2 29 13 0x0000.0074 QEI0 30 14 0x0000.0078 ADC0 Sequence 0 31 15 0x0000.007C ADC0 Sequence 1 32 16 0x0000.0080 ADC0 Sequence 2 33 17 0x0000.0084 ADC0 Sequence 3 34 18 0x0000.0088 Watchdog Timers 0 and 1 35 19 0x0000.008C Timer 0A 36 20 0x0000.0090 Timer 0B 37 21 0x0000.0094 Timer 1A 38 22 0x0000.0098 Timer 1B 39 23 0x0000.009C Timer 2A 40 24 0x0000.00A0 Timer 2B 41 25 0x0000.00A4 Analog Comparator 0 42 26 0x0000.00A8 Analog Comparator 1 43 27 0x0000.00AC Analog Comparator 2 44 28 0x0000.00B0 System Control 45 29 0x0000.00B4 Flash Memory Control Processor exceptions March 19, 2011 109 Texas Instruments-Advance Information The Cortex-M3 Processor Table 2-9. Interrupts (continued) 2.5.3 Vector Number Interrupt Number (Bit in Interrupt Registers) Vector Address or Offset Description 46 30 0x0000.00B8 GPIO Port F 47 31 0x0000.00BC GPIO Port G 48 32 0x0000.00C0 GPIO Port H 49 33 0x0000.00C4 UART2 50 34 0x0000.00C8 SSI1 51 35 0x0000.00CC Timer 3A 52 36 0x0000.00D0 Timer 3B 53 37 0x0000.00D4 I2C1 54 38 0x0000.00D8 QEI1 55 39 0x0000.00DC CAN0 56 40 0x0000.00E0 CAN1 57 41 - 58 42 0x0000.00E8 59 43 - 60 44 0x0000.00F0 USB 61 45 0x0000.00F4 PWM Generator 3 62 46 0x0000.00F8 µDMA Software 63 47 0x0000.00FC µDMA Error 64 48 0x0000.0100 ADC1 Sequence 0 65 49 0x0000.0104 ADC1 Sequence 1 66 50 0x0000.0108 ADC1 Sequence 2 67 51 0x0000.010C ADC1 Sequence 3 68 52 0x0000.0110 I2S0 69 53 0x0000.0114 EPI 70 54 0x0000.0118 GPIO Port J Reserved Ethernet Controller Reserved Exception Handlers The processor handles exceptions using: ■ Interrupt Service Routines (ISRs). Interrupts (IRQx) are the exceptions handled by ISRs. ■ Fault Handlers. Hard fault, memory management fault, usage fault, and bus fault are fault exceptions handled by the fault handlers. ■ System Handlers. NMI, PendSV, SVCall, SysTick, and the fault exceptions are all system exceptions that are handled by system handlers. 2.5.4 Vector Table The vector table contains the reset value of the stack pointer and the start addresses, also called exception vectors, for all exception handlers. The vector table is constructed using the vector address or offset shown in Table 2-8 on page 108. Figure 2-6 on page 111 shows the order of the exception vectors in the vector table. The least-significant bit of each vector must be 1, indicating that the exception handler is Thumb code 110 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Figure 2-6. Vector table Exception number IRQ number 70 54 0x0118 . . . 0x004C . . . 18 2 17 1 16 0 15 -1 14 -2 Offset 0x0048 0x0044 0x0040 0x003C 0x0038 13 12 11 Vector IRQ54 . . . IRQ2 IRQ1 IRQ0 Systick PendSV Reserved Reserved for Debug -5 0x002C 10 9 SVCall Reserved 8 7 6 -10 5 -11 4 -12 3 -13 2 -14 0x0018 0x0014 0x0010 0x000C 0x0008 1 0x0004 0x0000 Usage fault Bus fault Memory management fault Hard fault NMI Reset Initial SP value On system reset, the vector table is fixed at address 0x0000.0000. Privileged software can write to the Vector Table Offset (VTABLE) register to relocate the vector table start address to a different memory location, in the range 0x0000.0200 to 0x3FFF.FE00 (see “Vector Table” on page 110). Note that when configuring the VTABLE register, the offset must be aligned on a 512-byte boundary. 2.5.5 Exception Priorities As Table 2-8 on page 108 shows, all exceptions have an associated priority, with a lower priority value indicating a higher priority and configurable priorities for all exceptions except Reset, Hard fault, and NMI. If software does not configure any priorities, then all exceptions with a configurable priority have a priority of 0. For information about configuring exception priorities, see page 162 and page 146. Note: Configurable priority values for the Stellaris implementation are in the range 0-7. This means that the Reset, Hard fault, and NMI exceptions, with fixed negative priority values, always have higher priority than any other exception. For example, assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1] means that IRQ[1] has higher priority than IRQ[0]. If both IRQ[1] and IRQ[0] are asserted, IRQ[1] is processed before IRQ[0]. March 19, 2011 111 Texas Instruments-Advance Information The Cortex-M3 Processor If multiple pending exceptions have the same priority, the pending exception with the lowest exception number takes precedence. For example, if both IRQ[0] and IRQ[1] are pending and have the same priority, then IRQ[0] is processed before IRQ[1]. When the processor is executing an exception handler, the exception handler is preempted if a higher priority exception occurs. If an exception occurs with the same priority as the exception being handled, the handler is not preempted, irrespective of the exception number. However, the status of the new interrupt changes to pending. 2.5.6 Interrupt Priority Grouping To increase priority control in systems with interrupts, the NVIC supports priority grouping. This grouping divides each interrupt priority register entry into two fields: ■ An upper field that defines the group priority ■ A lower field that defines a subpriority within the group Only the group priority determines preemption of interrupt exceptions. When the processor is executing an interrupt exception handler, another interrupt with the same group priority as the interrupt being handled does not preempt the handler. If multiple pending interrupts have the same group priority, the subpriority field determines the order in which they are processed. If multiple pending interrupts have the same group priority and subpriority, the interrupt with the lowest IRQ number is processed first. For information about splitting the interrupt priority fields into group priority and subpriority, see page 156. 2.5.7 Exception Entry and Return Descriptions of exception handling use the following terms: ■ Preemption. When the processor is executing an exception handler, an exception can preempt the exception handler if its priority is higher than the priority of the exception being handled. See “Interrupt Priority Grouping” on page 112 for more information about preemption by an interrupt. When one exception preempts another, the exceptions are called nested exceptions. See “Exception Entry” on page 113 more information. ■ Return. Return occurs when the exception handler is completed, and there is no pending exception with sufficient priority to be serviced and the completed exception handler was not handling a late-arriving exception. The processor pops the stack and restores the processor state to the state it had before the interrupt occurred. See “Exception Return” on page 113 for more information. ■ Tail-Chaining. This mechanism speeds up exception servicing. On completion of an exception handler, if there is a pending exception that meets the requirements for exception entry, the stack pop is skipped and control transfers to the new exception handler. ■ Late-Arriving. This mechanism speeds up preemption. If a higher priority exception occurs during state saving for a previous exception, the processor switches to handle the higher priority exception and initiates the vector fetch for that exception. State saving is not affected by late arrival because the state saved is the same for both exceptions. Therefore, the state saving continues uninterrupted. The processor can accept a late arriving exception until the first instruction of the exception handler of the original exception enters the execute stage of the processor. On 112 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller return from the exception handler of the late-arriving exception, the normal tail-chaining rules apply. 2.5.7.1 Exception Entry Exception entry occurs when there is a pending exception with sufficient priority and either the processor is in Thread mode or the new exception is of higher priority than the exception being handled, in which case the new exception preempts the original exception. When one exception preempts another, the exceptions are nested. Sufficient priority means the exception has more priority than any limits set by the mask registers (see PRIMASK on page 93, FAULTMASK on page 94, and BASEPRI on page 95). An exception with less priority than this is pending but is not handled by the processor. When the processor takes an exception, unless the exception is a tail-chained or a late-arriving exception, the processor pushes information onto the current stack. This operation is referred to as stacking and the structure of eight data words is referred to as stack frame. Figure 2-7. Exception Stack Frame ... {aligner} xPSR PC LR R12 R3 R2 R1 R0 Pre-IRQ top of stack IRQ top of stack Immediately after stacking, the stack pointer indicates the lowest address in the stack frame. The stack frame includes the return address, which is the address of the next instruction in the interrupted program. This value is restored to the PC at exception return so that the interrupted program resumes. In parallel to the stacking operation, the processor performs a vector fetch that reads the exception handler start address from the vector table. When stacking is complete, the processor starts executing the exception handler. At the same time, the processor writes an EXC_RETURN value to the LR, indicating which stack pointer corresponds to the stack frame and what operation mode the processor was in before the entry occurred. If no higher-priority exception occurs during exception entry, the processor starts executing the exception handler and automatically changes the status of the corresponding pending interrupt to active. If another higher-priority exception occurs during exception entry, known as late arrival, the processor starts executing the exception handler for this exception and does not change the pending status of the earlier exception. 2.5.7.2 Exception Return Exception return occurs when the processor is in Handler mode and executes one of the following instructions to load the EXC_RETURN value into the PC: ■ An LDM or POP instruction that loads the PC March 19, 2011 113 Texas Instruments-Advance Information The Cortex-M3 Processor ■ A BX instruction using any register ■ An LDR instruction with the PC as the destination EXC_RETURN is the value loaded into the LR on exception entry. The exception mechanism relies on this value to detect when the processor has completed an exception handler. The lowest four bits of this value provide information on the return stack and processor mode. Table 2-10 on page 114 shows the EXC_RETURN values with a description of the exception return behavior. EXC_RETURN bits 31:4 are all set. When this value is loaded into the PC, it indicates to the processor that the exception is complete, and the processor initiates the appropriate exception return sequence. Table 2-10. Exception Return Behavior 2.6 EXC_RETURN[31:0] Description 0xFFFF.FFF0 Reserved 0xFFFF.FFF1 Return to Handler mode. Exception return uses state from MSP. Execution uses MSP after return. 0xFFFF.FFF2 - 0xFFFF.FFF8 Reserved 0xFFFF.FFF9 Return to Thread mode. Exception return uses state from MSP. Execution uses MSP after return. 0xFFFF.FFFA - 0xFFFF.FFFC Reserved 0xFFFF.FFFD Return to Thread mode. Exception return uses state from PSP. Execution uses PSP after return. 0xFFFF.FFFE - 0xFFFF.FFFF Reserved Fault Handling Faults are a subset of the exceptions (see “Exception Model” on page 106). The following conditions generate a fault: ■ A bus error on an instruction fetch or vector table load or a data access. ■ An internally detected error such as an undefined instruction or an attempt to change state with a BX instruction. ■ Attempting to execute an instruction from a memory region marked as Non-Executable (XN). ■ An MPU fault because of a privilege violation or an attempt to access an unmanaged region. 2.6.1 Fault Types Table 2-11 on page 114 shows the types of fault, the handler used for the fault, the corresponding fault status register, and the register bit that indicates the fault has occurred. See page 169 for more information about the fault status registers. Table 2-11. Faults Fault Handler Fault Status Register Bit Name Bus error on a vector read Hard fault Hard Fault Status (HFAULTSTAT) VECT Fault escalated to a hard fault Hard fault Hard Fault Status (HFAULTSTAT) FORCED 114 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Table 2-11. Faults (continued) Fault Handler Fault Status Register Bit Name MPU or default memory mismatch on Memory management instruction access fault Memory Management Fault Status (MFAULTSTAT) IERR MPU or default memory mismatch on Memory management data access fault Memory Management Fault Status (MFAULTSTAT) DERR MPU or default memory mismatch on Memory management exception stacking fault Memory Management Fault Status (MFAULTSTAT) MSTKE MPU or default memory mismatch on Memory management exception unstacking fault Memory Management Fault Status (MFAULTSTAT) MUSTKE Bus error during exception stacking Bus fault Bus Fault Status (BFAULTSTAT) BSTKE Bus error during exception unstacking Bus fault Bus Fault Status (BFAULTSTAT) BUSTKE Bus error during instruction prefetch Bus fault Bus Fault Status (BFAULTSTAT) IBUS Precise data bus error Bus fault Bus Fault Status (BFAULTSTAT) PRECISE Imprecise data bus error Bus fault Bus Fault Status (BFAULTSTAT) IMPRE Attempt to access a coprocessor Usage fault Usage Fault Status (UFAULTSTAT) NOCP Undefined instruction a Usage fault Usage Fault Status (UFAULTSTAT) UNDEF Attempt to enter an invalid instruction Usage fault b set state Usage Fault Status (UFAULTSTAT) INVSTAT Invalid EXC_RETURN value Usage fault Usage Fault Status (UFAULTSTAT) INVPC Illegal unaligned load or store Usage fault Usage Fault Status (UFAULTSTAT) UNALIGN Divide by 0 Usage fault Usage Fault Status (UFAULTSTAT) DIV0 a. Occurs on an access to an XN region even if the MPU is disabled. b. Attempting to use an instruction set other than the Thumb instruction set, or returning to a non load-store-multiple instruction with ICI continuation. 2.6.2 Fault Escalation and Hard Faults All fault exceptions except for hard fault have configurable exception priority (see SYSPRI1 on page 162). Software can disable execution of the handlers for these faults (see SYSHNDCTRL on page 165). Usually, the exception priority, together with the values of the exception mask registers, determines whether the processor enters the fault handler, and whether a fault handler can preempt another fault handler as described in “Exception Model” on page 106. In some situations, a fault with configurable priority is treated as a hard fault. This process is called priority escalation, and the fault is described as escalated to hard fault. Escalation to hard fault occurs when: ■ A fault handler causes the same kind of fault as the one it is servicing. This escalation to hard fault occurs because a fault handler cannot preempt itself because it must have the same priority as the current priority level. ■ A fault handler causes a fault with the same or lower priority as the fault it is servicing. This situation happens because the handler for the new fault cannot preempt the currently executing fault handler. ■ An exception handler causes a fault for which the priority is the same as or lower than the currently executing exception. ■ A fault occurs and the handler for that fault is not enabled. March 19, 2011 115 Texas Instruments-Advance Information The Cortex-M3 Processor If a bus fault occurs during a stack push when entering a bus fault handler, the bus fault does not escalate to a hard fault. Thus if a corrupted stack causes a fault, the fault handler executes even though the stack push for the handler failed. The fault handler operates but the stack contents are corrupted. Note: 2.6.3 Only Reset and NMI can preempt the fixed priority hard fault. A hard fault can preempt any exception other than Reset, NMI, or another hard fault. Fault Status Registers and Fault Address Registers The fault status registers indicate the cause of a fault. For bus faults and memory management faults, the fault address register indicates the address accessed by the operation that caused the fault, as shown in Table 2-12 on page 116. Table 2-12. Fault Status and Fault Address Registers 2.6.4 Handler Status Register Name Address Register Name Register Description Hard fault Hard Fault Status (HFAULTSTAT) - page 175 Memory management Memory Management Fault Status fault (MFAULTSTAT) Memory Management Fault Address (MMADDR) page 169 page 176 Bus fault Bus Fault Status (BFAULTSTAT) Bus Fault Address (FAULTADDR) page 169 page 177 Usage fault Usage Fault Status (UFAULTSTAT) - page 169 Lockup The processor enters a lockup state if a hard fault occurs when executing the NMI or hard fault handlers. When the processor is in the lockup state, it does not execute any instructions. The processor remains in lockup state until it is reset or an NMI occurs. Note: 2.7 If the lockup state occurs from the NMI handler, a subsequent NMI does not cause the processor to leave the lockup state. Power Management The Cortex-M3 processor sleep modes reduce power consumption: ■ Sleep mode stops the processor clock. ■ Deep-sleep mode stops the system clock and switches off the PLL and Flash memory. The SLEEPDEEP bit of the System Control (SYSCTRL) register selects which sleep mode is used (see page 158). For more information about the behavior of the sleep modes, see “System Control” on page 213. This section describes the mechanisms for entering sleep mode and the conditions for waking up from sleep mode, both of which apply to Sleep mode and Deep-sleep mode. 2.7.1 Entering Sleep Modes This section describes the mechanisms software can use to put the processor into one of the sleep modes. The system can generate spurious wake-up events, for example a debug operation wakes up the processor. Therefore, software must be able to put the processor back into sleep mode after such an event. A program might have an idle loop to put the processor back to sleep mode. 116 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller 2.7.1.1 Wait for Interrupt The wait for interrupt instruction, WFI, causes immediate entry to sleep mode unless the wake-up condition is true (see “Wake Up from WFI or Sleep-on-Exit” on page 117). When the processor executes a WFI instruction, it stops executing instructions and enters sleep mode. See the Cortex™-M3 Instruction Set Technical User's Manual for more information. 2.7.1.2 Wait for Event The wait for event instruction, WFE, causes entry to sleep mode conditional on the value of a one-bit event register. When the processor executes a WFE instruction, it checks the event register. If the register is 0, the processor stops executing instructions and enters sleep mode. If the register is 1, the processor clears the register and continues executing instructions without entering sleep mode. If the event register is 1, the processor must not enter sleep mode on execution of a WFE instruction. Typically, this situation occurs if an SEV instruction has been executed. Software cannot access this register directly. See the Cortex™-M3 Instruction Set Technical User's Manual for more information. 2.7.1.3 Sleep-on-Exit If the SLEEPEXIT bit of the SYSCTRL register is set, when the processor completes the execution of an exception handler, it returns to Thread mode and immediately enters sleep mode. This mechanism can be used in applications that only require the processor to run when an exception occurs. 2.7.2 Wake Up from Sleep Mode The conditions for the processor to wake up depend on the mechanism that cause it to enter sleep mode. 2.7.2.1 Wake Up from WFI or Sleep-on-Exit Normally, the processor wakes up only when it detects an exception with sufficient priority to cause exception entry. Some embedded systems might have to execute system restore tasks after the processor wakes up and before executing an interrupt handler. Entry to the interrupt handler can be delayed by setting the PRIMASK bit and clearing the FAULTMASK bit. If an interrupt arrives that is enabled and has a higher priority than current exception priority, the processor wakes up but does not execute the interrupt handler until the processor clears PRIMASK. For more information about PRIMASK and FAULTMASK, see page 93 and page 94. 2.7.2.2 Wake Up from WFE The processor wakes up if it detects an exception with sufficient priority to cause exception entry. In addition, if the SEVONPEND bit in the SYSCTRL register is set, any new pending interrupt triggers an event and wakes up the processor, even if the interrupt is disabled or has insufficient priority to cause exception entry. For more information about SYSCTRL, see page 158. 2.8 Instruction Set Summary The processor implements a version of the Thumb instruction set. Table 2-13 on page 118 lists the supported instructions. Note: In Table 2-13 on page 118: ■ Angle brackets, <>, enclose alternative forms of the operand March 19, 2011 117 Texas Instruments-Advance Information The Cortex-M3 Processor ■ ■ ■ ■ Braces, {}, enclose optional operands The Operands column is not exhaustive Op2 is a flexible second operand that can be either a register or a constant Most instructions can use an optional condition code suffix For more information on the instructions and operands, see the instruction descriptions in the Cortex™-M3 Instruction Set Technical User's Manual. Table 2-13. Cortex-M3 Instruction Summary Mnemonic Operands Brief Description Flags ADC, ADCS {Rd,} Rn, Op2 Add with carry N,Z,C,V ADD, ADDS {Rd,} Rn, Op2 Add N,Z,C,V ADD, ADDW {Rd,} Rn , #imm12 Add N,Z,C,V ADR Rd, label Load PC-relative address - AND, ANDS {Rd,} Rn, Op2 Logical AND N,Z,C ASR, ASRS Rd, Rm, <Rs|#n> Arithmetic shift right N,Z,C B label Branch - BFC Rd, #lsb, #width Bit field clear - BFI Rd, Rn, #lsb, #width Bit field insert - BIC, BICS {Rd,} Rn, Op2 Bit clear N,Z,C BKPT #imm Breakpoint - BL label Branch with link - BLX Rm Branch indirect with link - BX Rm Branch indirect - CBNZ Rn, label Compare and branch if non-zero - CBZ Rn, label Compare and branch if zero - CLREX - Clear exclusive - CLZ Rd, Rm Count leading zeros - CMN Rn, Op2 Compare negative N,Z,C,V CMP Rn, Op2 Compare N,Z,C,V CPSID i Change processor state, disable interrupts - CPSIE i Change processor state, enable interrupts - DMB - Data memory barrier - DSB - Data synchronization barrier - EOR, EORS {Rd,} Rn, Op2 Exclusive OR N,Z,C ISB - Instruction synchronization barrier - IT - If-Then condition block - LDM Rn{!}, reglist Load multiple registers, increment after - LDMDB, LDMEA Rn{!}, reglist Load multiple registers, decrement before LDMFD, LDMIA Rn{!}, reglist Load multiple registers, increment after - LDR Rt, [Rn, #offset] Load register with word - LDRB, LDRBT Rt, [Rn, #offset] Load register with byte - LDRD Rt, Rt2, [Rn, #offset] Load register with two bytes - 118 - March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Table 2-13. Cortex-M3 Instruction Summary (continued) Mnemonic Operands Brief Description Flags LDREX Rt, [Rn, #offset] Load register exclusive - LDREXB Rt, [Rn] Load register exclusive with byte - LDREXH Rt, [Rn] Load register exclusive with halfword - LDRH, LDRHT Rt, [Rn, #offset] Load register with halfword - LDRSB, LDRSBT Rt, [Rn, #offset] Load register with signed byte - LDRSH, LDRSHT Rt, [Rn, #offset] Load register with signed halfword - LDRT Rt, [Rn, #offset] Load register with word - LSL, LSLS Rd, Rm, <Rs|#n> Logical shift left N,Z,C LSR, LSRS Rd, Rm, <Rs|#n> Logical shift right N,Z,C MLA Rd, Rn, Rm, Ra Multiply with accumulate, 32-bit result - MLS Rd, Rn, Rm, Ra Multiply and subtract, 32-bit result - MOV, MOVS Rd, Op2 Move N,Z,C MOV, MOVW Rd, #imm16 Move 16-bit constant N,Z,C MOVT Rd, #imm16 Move top - MRS Rd, spec_reg Move from special register to general register - Move from general register to special register N,Z,C,V MSR MUL, MULS {Rd,} Rn, Rm Multiply, 32-bit result N,Z MVN, MVNS Rd, Op2 Move NOT N,Z,C NOP - No operation - ORN, ORNS {Rd,} Rn, Op2 Logical OR NOT N,Z,C ORR, ORRS {Rd,} Rn, Op2 Logical OR N,Z,C POP reglist Pop registers from stack - PUSH reglist Push registers onto stack - RBIT Rd, Rn Reverse bits - REV Rd, Rn Reverse byte order in a word - REV16 Rd, Rn Reverse byte order in each halfword - REVSH Rd, Rn Reverse byte order in bottom halfword and sign extend - ROR, RORS Rd, Rm, <Rs|#n> Rotate right N,Z,C RRX, RRXS Rd, Rm Rotate right with extend N,Z,C RSB, RSBS {Rd,} Rn, Op2 Reverse subtract N,Z,C,V SBC, SBCS {Rd,} Rn, Op2 Subtract with carry N,Z,C,V SBFX Rd, Rn, #lsb, #width Signed bit field extract - SDIV {Rd,} Rn, Rm Signed divide - SEV - Send event - SMLAL RdLo, RdHi, Rn, Rm Signed multiply with accumulate (32x32+64), 64-bit result - SMULL RdLo, RdHi, Rn, Rm Signed multiply (32x32), 64-bit result - SSAT Rd, #n, Rm {,shift #s} Signed saturate Q STM Rn{!}, reglist Store multiple registers, increment after - March 19, 2011 119 Texas Instruments-Advance Information The Cortex-M3 Processor Table 2-13. Cortex-M3 Instruction Summary (continued) Mnemonic Operands Brief Description Flags STMDB, STMEA Rn{!}, reglist Store multiple registers, decrement before - STMFD, STMIA Rn{!}, reglist Store multiple registers, increment after - STR Rt, [Rn {, #offset}] Store register word - STRB, STRBT Rt, [Rn {, #offset}] Store register byte - STRD Rt, Rt2, [Rn {, #offset}] Store register two words - STREX Rt, Rt, [Rn {, #offset}] Store register exclusive - STREXB Rd, Rt, [Rn] Store register exclusive byte - STREXH Rd, Rt, [Rn] Store register exclusive halfword - STRH, STRHT Rt, [Rn {, #offset}] Store register halfword - STRSB, STRSBT Rt, [Rn {, #offset}] Store register signed byte - STRSH, STRSHT Rt, [Rn {, #offset}] Store register signed halfword - STRT Rt, [Rn {, #offset}] Store register word - SUB, SUBS {Rd,} Rn, Op2 Subtract N,Z,C,V SUB, SUBW {Rd,} Rn, #imm12 Subtract 12-bit constant N,Z,C,V SVC #imm Supervisor call - SXTB {Rd,} Rm {,ROR #n} Sign extend a byte - SXTH {Rd,} Rm {,ROR #n} Sign extend a halfword - TBB [Rn, Rm] Table branch byte - TBH [Rn, Rm, LSL #1] Table branch halfword - TEQ Rn, Op2 Test equivalence N,Z,C TST Rn, Op2 Test N,Z,C UBFX Rd, Rn, #lsb, #width Unsigned bit field extract - UDIV {Rd,} Rn, Rm Unsigned divide - UMLAL RdLo, RdHi, Rn, Rm Unsigned multiply with accumulate (32x32+32+32), 64-bit result - UMULL RdLo, RdHi, Rn, Rm Unsigned multiply (32x 2), 64-bit result - USAT Rd, #n, Rm {,shift #s} Unsigned Saturate Q UXTB {Rd,} Rm, {,ROR #n} Zero extend a Byte - UXTH {Rd,} Rm, {,ROR #n} Zero extend a Halfword - USAT Rd, #n, Rm {,shift #s} Unsigned saturate Q UXTB {Rd,} Rm {,ROR #n} Zero extend a byte - UXTH {Rd,} Rm {,ROR #n} Zero extend a halfword - WFE - Wait for event - WFI - Wait for interrupt - 120 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller 3 Cortex-M3 Peripherals ® This chapter provides information on the Stellaris implementation of the Cortex-M3 processor peripherals, including: ■ SysTick (see page 121) Provides a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. ■ Nested Vectored Interrupt Controller (NVIC) (see page 122) – Facilitates low-latency exception and interrupt handling – Controls power management – Implements system control registers ■ System Control Block (SCB) (see page 124) Provides system implementation information and system control, including configuration, control, and reporting of system exceptions. ■ Memory Protection Unit (MPU) (see page 124) Supports the standard ARMv7 Protected Memory System Architecture (PMSA) model. The MPU provides full support for protection regions, overlapping protection regions, access permissions, and exporting memory attributes to the system. Table 3-1 on page 121 shows the address map of the Private Peripheral Bus (PPB). Some peripheral register regions are split into two address regions, as indicated by two addresses listed. Table 3-1. Core Peripheral Register Regions 3.1 Address Core Peripheral Description (see page ...) 0xE000.E010-0xE000.E01F System Timer 121 0xE000.E100-0xE000.E4EF 0xE000.EF00-0xE000.EF03 Nested Vectored Interrupt Controller 122 0xE000.E008-0xE000.E00F 0xE000.ED00-0xE000.ED3F System Control Block 124 0xE000.ED90-0xE000.EDB8 Memory Protection Unit 124 Functional Description This chapter provides information on the Stellaris implementation of the Cortex-M3 processor peripherals: SysTick, NVIC, SCB and MPU. 3.1.1 System Timer (SysTick) Cortex-M3 includes an integrated system timer, SysTick, which provides a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be used in several different ways, for example as: ■ An RTOS tick timer that fires at a programmable rate (for example, 100 Hz) and invokes a SysTick routine. ■ A high-speed alarm timer using the system clock. March 19, 2011 121 Texas Instruments-Advance Information Cortex-M3 Peripherals ■ A variable rate alarm or signal timer—the duration is range-dependent on the reference clock used and the dynamic range of the counter. ■ A simple counter used to measure time to completion and time used. ■ An internal clock source control based on missing/meeting durations. The COUNT bit in the STCTRL control and status register can be used to determine if an action completed within a set duration, as part of a dynamic clock management control loop. The timer consists of three registers: ■ SysTick Control and Status (STCTRL): A control and status counter to configure its clock, enable the counter, enable the SysTick interrupt, and determine counter status. ■ SysTick Reload Value (STRELOAD): The reload value for the counter, used to provide the counter's wrap value. ■ SysTick Current Value (STCURRENT): The current value of the counter. When enabled, the timer counts down on each clock from the reload value to zero, reloads (wraps) to the value in the STRELOAD register on the next clock edge, then decrements on subsequent clocks. Clearing the STRELOAD register disables the counter on the next wrap. When the counter reaches zero, the COUNT status bit is set. The COUNT bit clears on reads. Writing to the STCURRENT register clears the register and the COUNT status bit. The write does not trigger the SysTick exception logic. On a read, the current value is the value of the register at the time the register is accessed. The SysTick counter runs on the system clock. If this clock signal is stopped for low power mode, the SysTick counter stops. Ensure software uses aligned word accesses to access the SysTick registers. Note: 3.1.2 When the processor is halted for debugging, the counter does not decrement. Nested Vectored Interrupt Controller (NVIC) This section describes the Nested Vectored Interrupt Controller (NVIC) and the registers it uses. The NVIC supports: ■ 53 interrupts. ■ A programmable priority level of 0-7 for each interrupt. A higher level corresponds to a lower priority, so level 0 is the highest interrupt priority. ■ Low-latency exception and interrupt handling. ■ Level and pulse detection of interrupt signals. ■ Dynamic reprioritization of interrupts. ■ Grouping of priority values into group priority and subpriority fields. ■ Interrupt tail-chaining. ■ An external Non-maskable interrupt (NMI). 122 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller The processor automatically stacks its state on exception entry and unstacks this state on exception exit, with no instruction overhead, providing low latency exception handling. 3.1.2.1 Level-Sensitive and Pulse Interrupts The processor supports both level-sensitive and pulse interrupts. Pulse interrupts are also described as edge-triggered interrupts. A level-sensitive interrupt is held asserted until the peripheral deasserts the interrupt signal. Typically this happens because the ISR accesses the peripheral, causing it to clear the interrupt request. A pulse interrupt is an interrupt signal sampled synchronously on the rising edge of the processor clock. To ensure the NVIC detects the interrupt, the peripheral must assert the interrupt signal for at least one clock cycle, during which the NVIC detects the pulse and latches the interrupt. When the processor enters the ISR, it automatically removes the pending state from the interrupt (see “Hardware and Software Control of Interrupts” on page 123 for more information). For a level-sensitive interrupt, if the signal is not deasserted before the processor returns from the ISR, the interrupt becomes pending again, and the processor must execute its ISR again. As a result, the peripheral can hold the interrupt signal asserted until it no longer needs servicing. 3.1.2.2 Hardware and Software Control of Interrupts The Cortex-M3 latches all interrupts. A peripheral interrupt becomes pending for one of the following reasons: ■ The NVIC detects that the interrupt signal is High and the interrupt is not active. ■ The NVIC detects a rising edge on the interrupt signal. ■ Software writes to the corresponding interrupt set-pending register bit, or to the Software Trigger Interrupt (SWTRIG) register to make a Software-Generated Interrupt pending. See the INT bit in the PEND0 register on page 140 or SWTRIG on page 148. A pending interrupt remains pending until one of the following: ■ The processor enters the ISR for the interrupt, changing the state of the interrupt from pending to active. Then: – For a level-sensitive interrupt, when the processor returns from the ISR, the NVIC samples the interrupt signal. If the signal is asserted, the state of the interrupt changes to pending, which might cause the processor to immediately re-enter the ISR. Otherwise, the state of the interrupt changes to inactive. – For a pulse interrupt, the NVIC continues to monitor the interrupt signal, and if this is pulsed the state of the interrupt changes to pending and active. In this case, when the processor returns from the ISR the state of the interrupt changes to pending, which might cause the processor to immediately re-enter the ISR. If the interrupt signal is not pulsed while the processor is in the ISR, when the processor returns from the ISR the state of the interrupt changes to inactive. ■ Software writes to the corresponding interrupt clear-pending register bit – For a level-sensitive interrupt, if the interrupt signal is still asserted, the state of the interrupt does not change. Otherwise, the state of the interrupt changes to inactive. March 19, 2011 123 Texas Instruments-Advance Information Cortex-M3 Peripherals – For a pulse interrupt, the state of the interrupt changes to inactive, if the state was pending or to active, if the state was active and pending. 3.1.3 System Control Block (SCB) The System Control Block (SCB) provides system implementation information and system control, including configuration, control, and reporting of the system exceptions. 3.1.4 Memory Protection Unit (MPU) This section describes the Memory protection unit (MPU). The MPU divides the memory map into a number of regions and defines the location, size, access permissions, and memory attributes of each region. The MPU supports independent attribute settings for each region, overlapping regions, and export of memory attributes to the system. The memory attributes affect the behavior of memory accesses to the region. The Cortex-M3 MPU defines eight separate memory regions, 0-7, and a background region. When memory regions overlap, a memory access is affected by the attributes of the region with the highest number. For example, the attributes for region 7 take precedence over the attributes of any region that overlaps region 7. The background region has the same memory access attributes as the default memory map, but is accessible from privileged software only. The Cortex-M3 MPU memory map is unified, meaning that instruction accesses and data accesses have the same region settings. If a program accesses a memory location that is prohibited by the MPU, the processor generates a memory management fault, causing a fault exception and possibly causing termination of the process in an OS environment. In an OS environment, the kernel can update the MPU region setting dynamically based on the process to be executed. Typically, an embedded OS uses the MPU for memory protection. Configuration of MPU regions is based on memory types (see “Memory Regions, Types and Attributes” on page 99 for more information). Table 3-2 on page 124 shows the possible MPU region attributes. See the section called “MPU Configuration for a Stellaris Microcontroller” on page 128 for guidelines for programming a microcontroller implementation. Table 3-2. Memory Attributes Summary Memory Type Description Strongly Ordered All accesses to Strongly Ordered memory occur in program order. Device Memory-mapped peripherals Normal Normal memory To avoid unexpected behavior, disable the interrupts before updating the attributes of a region that the interrupt handlers might access. Ensure software uses aligned accesses of the correct size to access MPU registers: ■ Except for the MPU Region Attribute and Size (MPUATTR) register, all MPU registers must be accessed with aligned word accesses. ■ The MPUATTR register can be accessed with byte or aligned halfword or word accesses. 124 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller The processor does not support unaligned accesses to MPU registers. When setting up the MPU, and if the MPU has previously been programmed, disable unused regions to prevent any previous region settings from affecting the new MPU setup. 3.1.4.1 Updating an MPU Region To update the attributes for an MPU region, the MPU Region Number (MPUNUMBER), MPU Region Base Address (MPUBASE) and MPUATTR registers must be updated. Each register can be programmed separately or with a multiple-word write to program all of these registers. You can use the MPUBASEx and MPUATTRx aliases to program up to four regions simultaneously using an STM instruction. Updating an MPU Region Using Separate Words This example simple code configures one region: ; R1 = region number ; R2 = size/enable ; R3 = attributes ; R4 = address LDR R0,=MPUNUMBER STR R1, [R0, #0x0] STR R4, [R0, #0x4] STRH R2, [R0, #0x8] STRH R3, [R0, #0xA] ; ; ; ; ; 0xE000ED98, MPU region number register Region Number Region Base Address Region Size and Enable Region Attribute Disable a region before writing new region settings to the MPU if you have previously enabled the region being changed. For example: ; R1 = region number ; R2 = size/enable ; R3 = attributes ; R4 = address LDR R0,=MPUNUMBER STR R1, [R0, #0x0] BIC R2, R2, #1 STRH R2, [R0, #0x8] STR R4, [R0, #0x4] STRH R3, [R0, #0xA] ORR R2, #1 STRH R2, [R0, #0x8] ; ; ; ; ; ; ; ; 0xE000ED98, MPU region number register Region Number Disable Region Size and Enable Region Base Address Region Attribute Enable Region Size and Enable Software must use memory barrier instructions: ■ Before MPU setup, if there might be outstanding memory transfers, such as buffered writes, that might be affected by the change in MPU settings. ■ After MPU setup, if it includes memory transfers that must use the new MPU settings. However, memory barrier instructions are not required if the MPU setup process starts by entering an exception handler, or is followed by an exception return, because the exception entry and exception return mechanism cause memory barrier behavior. Software does not need any memory barrier instructions during MPU setup, because it accesses the MPU through the Private Peripheral Bus (PPB), which is a Strongly Ordered memory region. March 19, 2011 125 Texas Instruments-Advance Information Cortex-M3 Peripherals For example, if all of the memory access behavior is intended to take effect immediately after the programming sequence, then a DSB instruction and an ISB instruction should be used. A DSB is required after changing MPU settings, such as at the end of context switch. An ISB is required if the code that programs the MPU region or regions is entered using a branch or call. If the programming sequence is entered using a return from exception, or by taking an exception, then an ISB is not required. Updating an MPU Region Using Multi-Word Writes The MPU can be programmed directly using multi-word writes, depending how the information is divided. Consider the following reprogramming: ; R1 = region number ; R2 = address ; R3 = size, attributes in one LDR R0, =MPUNUMBER ; 0xE000ED98, MPU region number register STR R1, [R0, #0x0] ; Region Number STR R2, [R0, #0x4] ; Region Base Address STR R3, [R0, #0x8] ; Region Attribute, Size and Enable An STM instruction can be used to optimize this: ; R1 = region number ; R2 = address ; R3 = size, attributes in one LDR R0, =MPUNUMBER ; 0xE000ED98, MPU region number register STM R0, {R1-R3} ; Region number, address, attribute, size and enable This operation can be done in two words for pre-packed information, meaning that the MPU Region Base Address (MPUBASE) register (see page 182) contains the required region number and has the VALID bit set. This method can be used when the data is statically packed, for example in a boot loader: ; R1 = address and region number in one ; R2 = size and attributes in one LDR R0, =MPUBASE ; 0xE000ED9C, MPU Region Base register STR R1, [R0, #0x0] ; Region base address and region number combined ; with VALID (bit 4) set STR R2, [R0, #0x4] ; Region Attribute, Size and Enable An STM instruction can be used to optimize this: ; R1 = address and region number in one ; R2 = size and attributes in one LDR R0,=MPUBASE ; 0xE000ED9C, MPU Region Base register STM R0, {R1-R2} ; Region base address, region number and VALID bit, ; and Region Attribute, Size and Enable Subregions Regions of 256 bytes or more are divided into eight equal-sized subregions. Set the corresponding bit in the SRD field of the MPU Region Attribute and Size (MPUATTR) register (see page 184) to disable a subregion. The least-significant bit of the SRD field controls the first subregion, and the most-significant bit controls the last subregion. Disabling a subregion means another region 126 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller overlapping the disabled range matches instead. If no other enabled region overlaps the disabled subregion, the MPU issues a fault. Regions of 32, 64, and 128 bytes do not support subregions. With regions of these sizes, the SRD field must be configured to 0x00, otherwise the MPU behavior is unpredictable. Example of SRD Use Two regions with the same base address overlap. Region one is 128 KB, and region two is 512 KB. To ensure the attributes from region one apply to the first 128 KB region, configure the SRD field for region two to 0x03 to disable the first two subregions, as Figure 3-1 on page 127 shows. Figure 3-1. SRD Use Example Region 2, with subregions Region 1 Base address of both regions 3.1.4.2 Offset from base address 512KB 448KB 384KB 320KB 256KB 192KB 128KB Disabled subregion 64KB Disabled subregion 0 MPU Access Permission Attributes The access permission bits, TEX, S, C, B, AP, and XN of the MPUATTR register, control access to the corresponding memory region. If an access is made to an area of memory without the required permissions, then the MPU generates a permission fault. Table 3-3 on page 127 shows the encodings for the TEX, C, B, and S access permission bits. All encodings are shown for completeness, however the current implementation of the Cortex-M3 does not support the concept of cacheability or shareability. Refer to the section called “MPU Configuration for a Stellaris Microcontroller” on page 128 for information on programming the MPU for Stellaris implementations. Table 3-3. TEX, S, C, and B Bit Field Encoding TEX S 000b x C B Memory Type Shareability Other Attributes a 0 0 Strongly Ordered Shareable - a - 000 x 0 1 Device Shareable 000 0 1 0 Normal Not shareable 000 1 1 0 Normal Shareable 000 0 1 1 Normal Not shareable 000 1 1 1 Normal Shareable 001 0 0 0 Normal Not shareable 001 1 001 x Outer and inner write-through. No write allocate. 0 0 Normal Shareable Outer and inner noncacheable. a 0 1 Reserved encoding - - a 001 x 1 0 Reserved encoding - - 001 0 1 1 Normal Not shareable 001 1 1 1 Normal Shareable Outer and inner write-back. Write and read allocate. March 19, 2011 127 Texas Instruments-Advance Information Cortex-M3 Peripherals Table 3-3. TEX, S, C, and B Bit Field Encoding (continued) TEX S Other Attributes 0 0 Device Not shareable Nonshared Device. a 0 1 Reserved encoding - - x Shareability x Memory Type 010 B 010 C a a a 010 x 1 x Reserved encoding - - 1BB 0 A A Normal Not shareable 1BB 1 A A Normal Shareable Cached memory (BB = outer policy, AA = inner policy). See Table 3-4 for the encoding of the AA and BB bits. a. The MPU ignores the value of this bit. Table 3-4 on page 128 shows the cache policy for memory attribute encodings with a TEX value in the range of 0x4-0x7. Table 3-4. Cache Policy for Memory Attribute Encoding Encoding, AA or BB Corresponding Cache Policy 00 Non-cacheable 01 Write back, write and read allocate 10 Write through, no write allocate 11 Write back, no write allocate Table 3-5 on page 128 shows the AP encodings in the MPUATTR register that define the access permissions for privileged and unprivileged software. Table 3-5. AP Bit Field Encoding AP Bit Field Privileged Permissions Unprivileged Permissions Description 000 No access No access All accesses generate a permission fault. 001 R/W No access Access from privileged software only. 010 R/W RO Writes by unprivileged software generate a permission fault. 011 R/W R/W Full access. 100 Unpredictable Unpredictable Reserved. 101 RO No access Reads by privileged software only. 110 RO RO Read-only, by privileged or unprivileged software. 111 RO RO Read-only, by privileged or unprivileged software. MPU Configuration for a Stellaris Microcontroller Stellaris microcontrollers have only a single processor and no caches. As a result, the MPU should be programmed as shown in Table 3-6 on page 128. Table 3-6. Memory Region Attributes for Stellaris Microcontrollers Memory Region TEX S C B Memory Type and Attributes Flash memory 000b 0 1 0 Normal memory, non-shareable, write-through Internal SRAM 000b 1 1 0 Normal memory, shareable, write-through 128 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Table 3-6. Memory Region Attributes for Stellaris Microcontrollers (continued) Memory Region TEX S C B Memory Type and Attributes External SRAM 000b 1 1 1 Normal memory, shareable, write-back, write-allocate Peripherals 000b 1 0 1 Device memory, shareable In current Stellaris microcontroller implementations, the shareability and cache policy attributes do not affect the system behavior. However, using these settings for the MPU regions can make the application code more portable. The values given are for typical situations. 3.1.4.3 MPU Mismatch When an access violates the MPU permissions, the processor generates a memory management fault (see “Exceptions and Interrupts” on page 97 for more information). The MFAULTSTAT register indicates the cause of the fault. See page 169 for more information. 3.2 Register Map Table 3-7 on page 129 lists the Cortex-M3 Peripheral SysTick, NVIC, SCB, and MPU registers. The offset listed is a hexadecimal increment to the register's address, relative to the Core Peripherals base address of 0xE000.E000. Note: Register spaces that are not used are reserved for future or internal use. Software should not modify any reserved memory address. Table 3-7. Peripherals Register Map Offset Name Type Reset Description See page System Timer (SysTick) Registers 0x010 STCTRL R/W 0x0000.0004 SysTick Control and Status Register 132 0x014 STRELOAD R/W 0x0000.0000 SysTick Reload Value Register 134 0x018 STCURRENT R/WC 0x0000.0000 SysTick Current Value Register 135 Nested Vectored Interrupt Controller (NVIC) Registers 0x100 EN0 R/W 0x0000.0000 Interrupt 0-31 Set Enable 136 0x104 EN1 R/W 0x0000.0000 Interrupt 32-54 Set Enable 137 0x180 DIS0 R/W 0x0000.0000 Interrupt 0-31 Clear Enable 138 0x184 DIS1 R/W 0x0000.0000 Interrupt 32-54 Clear Enable 139 0x200 PEND0 R/W 0x0000.0000 Interrupt 0-31 Set Pending 140 0x204 PEND1 R/W 0x0000.0000 Interrupt 32-54 Set Pending 141 0x280 UNPEND0 R/W 0x0000.0000 Interrupt 0-31 Clear Pending 142 0x284 UNPEND1 R/W 0x0000.0000 Interrupt 32-54 Clear Pending 143 0x300 ACTIVE0 RO 0x0000.0000 Interrupt 0-31 Active Bit 144 0x304 ACTIVE1 RO 0x0000.0000 Interrupt 32-54 Active Bit 145 0x400 PRI0 R/W 0x0000.0000 Interrupt 0-3 Priority 146 March 19, 2011 129 Texas Instruments-Advance Information Cortex-M3 Peripherals Table 3-7. Peripherals Register Map (continued) Description See page Offset Name Type Reset 0x404 PRI1 R/W 0x0000.0000 Interrupt 4-7 Priority 146 0x408 PRI2 R/W 0x0000.0000 Interrupt 8-11 Priority 146 0x40C PRI3 R/W 0x0000.0000 Interrupt 12-15 Priority 146 0x410 PRI4 R/W 0x0000.0000 Interrupt 16-19 Priority 146 0x414 PRI5 R/W 0x0000.0000 Interrupt 20-23 Priority 146 0x418 PRI6 R/W 0x0000.0000 Interrupt 24-27 Priority 146 0x41C PRI7 R/W 0x0000.0000 Interrupt 28-31 Priority 146 0x420 PRI8 R/W 0x0000.0000 Interrupt 32-35 Priority 146 0x424 PRI9 R/W 0x0000.0000 Interrupt 36-39 Priority 146 0x428 PRI10 R/W 0x0000.0000 Interrupt 40-43 Priority 146 0x42C PRI11 R/W 0x0000.0000 Interrupt 44-47 Priority 146 0x430 PRI12 R/W 0x0000.0000 Interrupt 48-51 Priority 146 0x434 PRI13 R/W 0x0000.0000 Interrupt 52-54 Priority 146 0xF00 SWTRIG WO 0x0000.0000 Software Trigger Interrupt 148 System Control Block (SCB) Registers 0x008 ACTLR R/W 0x0000.0000 Auxiliary Control 149 0xD00 CPUID RO 0x412F.C230 CPU ID Base 151 0xD04 INTCTRL R/W 0x0000.0000 Interrupt Control and State 152 0xD08 VTABLE R/W 0x0000.0000 Vector Table Offset 155 0xD0C APINT R/W 0xFA05.0000 Application Interrupt and Reset Control 156 0xD10 SYSCTRL R/W 0x0000.0000 System Control 158 0xD14 CFGCTRL R/W 0x0000.0200 Configuration and Control 160 0xD18 SYSPRI1 R/W 0x0000.0000 System Handler Priority 1 162 0xD1C SYSPRI2 R/W 0x0000.0000 System Handler Priority 2 163 0xD20 SYSPRI3 R/W 0x0000.0000 System Handler Priority 3 164 0xD24 SYSHNDCTRL R/W 0x0000.0000 System Handler Control and State 165 0xD28 FAULTSTAT R/W1C 0x0000.0000 Configurable Fault Status 169 0xD2C HFAULTSTAT R/W1C 0x0000.0000 Hard Fault Status 175 0xD34 MMADDR R/W - Memory Management Fault Address 176 0xD38 FAULTADDR R/W - Bus Fault Address 177 MPU Type 178 Memory Protection Unit (MPU) Registers 0xD90 MPUTYPE RO 0x0000.0800 130 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Table 3-7. Peripherals Register Map (continued) Offset Name Type Reset Description See page 0xD94 MPUCTRL R/W 0x0000.0000 MPU Control 179 0xD98 MPUNUMBER R/W 0x0000.0000 MPU Region Number 181 0xD9C MPUBASE R/W 0x0000.0000 MPU Region Base Address 182 0xDA0 MPUATTR R/W 0x0000.0000 MPU Region Attribute and Size 184 0xDA4 MPUBASE1 R/W 0x0000.0000 MPU Region Base Address Alias 1 182 0xDA8 MPUATTR1 R/W 0x0000.0000 MPU Region Attribute and Size Alias 1 184 0xDAC MPUBASE2 R/W 0x0000.0000 MPU Region Base Address Alias 2 182 0xDB0 MPUATTR2 R/W 0x0000.0000 MPU Region Attribute and Size Alias 2 184 0xDB4 MPUBASE3 R/W 0x0000.0000 MPU Region Base Address Alias 3 182 0xDB8 MPUATTR3 R/W 0x0000.0000 MPU Region Attribute and Size Alias 3 184 3.3 System Timer (SysTick) Register Descriptions This section lists and describes the System Timer registers, in numerical order by address offset. March 19, 2011 131 Texas Instruments-Advance Information Cortex-M3 Peripherals Register 1: SysTick Control and Status Register (STCTRL), offset 0x010 Note: This register can only be accessed from privileged mode. The SysTick STCTRL register enables the SysTick features. SysTick Control and Status Register (STCTRL) Base 0xE000.E000 Offset 0x010 Type R/W, reset 0x0000.0004 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 9 8 7 6 5 4 3 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 16 COUNT RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 2 1 0 CLK_SRC INTEN ENABLE R/W 1 R/W 0 R/W 0 Bit/Field Name Type Reset Description 31:17 reserved RO 0x000 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 16 COUNT RO 0 Count Flag Value Description 0 The SysTick timer has not counted to 0 since the last time this bit was read. 1 The SysTick timer has counted to 0 since the last time this bit was read. This bit is cleared by a read of the register or if the STCURRENT register is written with any value. If read by the debugger using the DAP, this bit is cleared only if the MasterType bit in the AHB-AP Control Register is clear. Otherwise, the COUNT bit is not changed by the debugger read. See the ARM® Debug Interface V5 Architecture Specification for more information on MasterType. 15:3 reserved RO 0x000 2 CLK_SRC R/W 1 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. Clock Source Value Description 0 External reference clock. (Not implemented for Stellaris microcontrollers.) 1 System clock Because an external reference clock is not implemented, this bit must be set in order for SysTick to operate. 132 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset 1 INTEN R/W 0 0 ENABLE R/W 0 Description Interrupt Enable Value Description 0 Interrupt generation is disabled. Software can use the COUNT bit to determine if the counter has ever reached 0. 1 An interrupt is generated to the NVIC when SysTick counts to 0. Enable Value Description 0 The counter is disabled. 1 Enables SysTick to operate in a multi-shot way. That is, the counter loads the RELOAD value and begins counting down. On reaching 0, the COUNT bit is set and an interrupt is generated if enabled by INTEN. The counter then loads the RELOAD value again and begins counting. March 19, 2011 133 Texas Instruments-Advance Information Cortex-M3 Peripherals Register 2: SysTick Reload Value Register (STRELOAD), offset 0x014 Note: This register can only be accessed from privileged mode. The STRELOAD register specifies the start value to load into the SysTick Current Value (STCURRENT) register when the counter reaches 0. The start value can be between 0x1 and 0x00FF.FFFF. A start value of 0 is possible but has no effect because the SysTick interrupt and the COUNT bit are activated when counting from 1 to 0. SysTick can be configured as a multi-shot timer, repeated over and over, firing every N+1 clock pulses, where N is any value from 1 to 0x00FF.FFFF. For example, if a tick interrupt is required every 100 clock pulses, 99 must be written into the RELOAD field. SysTick Reload Value Register (STRELOAD) Base 0xE000.E000 Offset 0x014 Type R/W, reset 0x0000.0000 31 30 29 28 RO 0 RO 0 RO 0 RO 0 15 14 13 R/W 0 R/W 0 R/W 0 27 26 25 24 23 22 21 20 18 17 16 RO 0 RO 0 RO 0 RO 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 12 11 10 9 8 7 6 5 4 3 2 1 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 reserved Type Reset 19 RELOAD RELOAD Type Reset Bit/Field Name Type Reset Description 31:24 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 23:0 RELOAD R/W 0x00.0000 Reload Value Value to load into the SysTick Current Value (STCURRENT) register when the counter reaches 0. 134 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 3: SysTick Current Value Register (STCURRENT), offset 0x018 Note: This register can only be accessed from privileged mode. The STCURRENT register contains the current value of the SysTick counter. SysTick Current Value Register (STCURRENT) Base 0xE000.E000 Offset 0x018 Type R/WC, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 reserved Type Reset 20 19 18 17 16 CURRENT RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 R/WC 0 R/WC 0 R/WC 0 R/WC 0 R/WC 0 R/WC 0 R/WC 0 R/WC 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 R/WC 0 R/WC 0 R/WC 0 R/WC 0 R/WC 0 R/WC 0 R/WC 0 CURRENT Type Reset R/WC 0 R/WC 0 R/WC 0 R/WC 0 R/WC 0 R/WC 0 R/WC 0 R/WC 0 R/WC 0 Bit/Field Name Type Reset Description 31:24 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 23:0 CURRENT R/WC 0x00.0000 Current Value This field contains the current value at the time the register is accessed. No read-modify-write protection is provided, so change with care. This register is write-clear. Writing to it with any value clears the register. Clearing this register also clears the COUNT bit of the STCTRL register. 3.4 NVIC Register Descriptions This section lists and describes the NVIC registers, in numerical order by address offset. The NVIC registers can only be fully accessed from privileged mode, but interrupts can be pended while in unprivileged mode by enabling the Configuration and Control (CFGCTRL) register. Any other unprivileged mode access causes a bus fault. Ensure software uses correctly aligned register accesses. The processor does not support unaligned accesses to NVIC registers. An interrupt can enter the pending state even if it is disabled. Before programming the VTABLE register to relocate the vector table, ensure the vector table entries of the new vector table are set up for fault handlers, NMI, and all enabled exceptions such as interrupts. For more information, see page 155. March 19, 2011 135 Texas Instruments-Advance Information Cortex-M3 Peripherals Register 4: Interrupt 0-31 Set Enable (EN0), offset 0x100 Note: This register can only be accessed from privileged mode. The EN0 register enables interrupts and shows which interrupts are enabled. Bit 0 corresponds to Interrupt 0; bit 31 corresponds to Interrupt 31. See Table 2-9 on page 109 for interrupt assignments. If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority. If an interrupt is not enabled, asserting its interrupt signal changes the interrupt state to pending, but the NVIC never activates the interrupt, regardless of its priority. Interrupt 0-31 Set Enable (EN0) Base 0xE000.E000 Offset 0x100 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 7 6 5 4 3 2 1 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 INT Type Reset R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 15 14 13 12 11 10 9 8 INT Type Reset R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 Bit/Field Name Type 31:0 INT R/W R/W 0 Reset R/W 0 Description 0x0000.0000 Interrupt Enable Value Description 0 On a read, indicates the interrupt is disabled. On a write, no effect. 1 On a read, indicates the interrupt is enabled. On a write, enables the interrupt. A bit can only be cleared by setting the corresponding INT[n] bit in the DISn register. 136 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 5: Interrupt 32-54 Set Enable (EN1), offset 0x104 Note: This register can only be accessed from privileged mode. The EN1 register enables interrupts and shows which interrupts are enabled. Bit 0 corresponds to Interrupt 32; bit 22 corresponds to Interrupt 54. See Table 2-9 on page 109 for interrupt assignments. If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority. If an interrupt is not enabled, asserting its interrupt signal changes the interrupt state to pending, but the NVIC never activates the interrupt, regardless of its priority. Interrupt 32-54 Set Enable (EN1) Base 0xE000.E000 Offset 0x104 Type R/W, reset 0x0000.0000 31 30 29 28 RO 0 RO 0 RO 0 RO 0 15 14 13 R/W 0 R/W 0 R/W 0 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 12 11 10 9 8 7 6 5 4 3 2 1 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 reserved Type Reset INT INT Type Reset Bit/Field Name Type Reset Description 31:23 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 22:0 INT R/W 0x00.0000 Interrupt Enable Value Description 0 On a read, indicates the interrupt is disabled. On a write, no effect. 1 On a read, indicates the interrupt is enabled. On a write, enables the interrupt. A bit can only be cleared by setting the corresponding INT[n] bit in the DIS1 register. March 19, 2011 137 Texas Instruments-Advance Information Cortex-M3 Peripherals Register 6: Interrupt 0-31 Clear Enable (DIS0), offset 0x180 Note: This register can only be accessed from privileged mode. The DIS0 register disables interrupts. Bit 0 corresponds to Interrupt 0; bit 31 corresponds to Interrupt 31. See Table 2-9 on page 109 for interrupt assignments. Interrupt 0-31 Clear Enable (DIS0) Base 0xE000.E000 Offset 0x180 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 INT Type Reset INT Type Reset Bit/Field Name Type 31:0 INT R/W Reset Description 0x0000.0000 Interrupt Disable Value Description 0 On a read, indicates the interrupt is disabled. On a write, no effect. 1 On a read, indicates the interrupt is enabled. On a write, clears the corresponding INT[n] bit in the EN0 register, disabling interrupt [n]. 138 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 7: Interrupt 32-54 Clear Enable (DIS1), offset 0x184 Note: This register can only be accessed from privileged mode. The DIS1 register disables interrupts. Bit 0 corresponds to Interrupt 32; bit 22 corresponds to Interrupt 54. See Table 2-9 on page 109 for interrupt assignments. Interrupt 32-54 Clear Enable (DIS1) Base 0xE000.E000 Offset 0x184 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 reserved Type Reset 19 18 17 16 INT RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 RO 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 7 6 5 4 3 2 1 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 INT Type Reset R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 Bit/Field Name Type Reset Description 31:23 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 22:0 INT R/W 0x00.0000 Interrupt Disable Value Description 0 On a read, indicates the interrupt is disabled. On a write, no effect. 1 On a read, indicates the interrupt is enabled. On a write, clears the corresponding INT[n] bit in the EN1 register, disabling interrupt [n]. March 19, 2011 139 Texas Instruments-Advance Information Cortex-M3 Peripherals Register 8: Interrupt 0-31 Set Pending (PEND0), offset 0x200 Note: This register can only be accessed from privileged mode. The PEND0 register forces interrupts into the pending state and shows which interrupts are pending. Bit 0 corresponds to Interrupt 0; bit 31 corresponds to Interrupt 31. See Table 2-9 on page 109 for interrupt assignments. Interrupt 0-31 Set Pending (PEND0) Base 0xE000.E000 Offset 0x200 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 INT Type Reset INT Type Reset Bit/Field Name Type 31:0 INT R/W Reset Description 0x0000.0000 Interrupt Set Pending Value Description 0 On a read, indicates that the interrupt is not pending. On a write, no effect. 1 On a read, indicates that the interrupt is pending. On a write, the corresponding interrupt is set to pending even if it is disabled. If the corresponding interrupt is already pending, setting a bit has no effect. A bit can only be cleared by setting the corresponding INT[n] bit in the UNPEND0 register. 140 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 9: Interrupt 32-54 Set Pending (PEND1), offset 0x204 Note: This register can only be accessed from privileged mode. The PEND1 register forces interrupts into the pending state and shows which interrupts are pending. Bit 0 corresponds to Interrupt 32; bit 22 corresponds to Interrupt 54. See Table 2-9 on page 109 for interrupt assignments. Interrupt 32-54 Set Pending (PEND1) Base 0xE000.E000 Offset 0x204 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 reserved Type Reset 19 18 17 16 INT RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 RO 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 7 6 5 4 3 2 1 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 INT Type Reset R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 Bit/Field Name Type Reset Description 31:23 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 22:0 INT R/W 0x00.0000 Interrupt Set Pending Value Description 0 On a read, indicates that the interrupt is not pending. On a write, no effect. 1 On a read, indicates that the interrupt is pending. On a write, the corresponding interrupt is set to pending even if it is disabled. If the corresponding interrupt is already pending, setting a bit has no effect. A bit can only be cleared by setting the corresponding INT[n] bit in the UNPEND1 register. March 19, 2011 141 Texas Instruments-Advance Information Cortex-M3 Peripherals Register 10: Interrupt 0-31 Clear Pending (UNPEND0), offset 0x280 Note: This register can only be accessed from privileged mode. The UNPEND0 register shows which interrupts are pending and removes the pending state from interrupts. Bit 0 corresponds to Interrupt 0; bit 31 corresponds to Interrupt 31. See Table 2-9 on page 109 for interrupt assignments. Interrupt 0-31 Clear Pending (UNPEND0) Base 0xE000.E000 Offset 0x280 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 INT Type Reset INT Type Reset Bit/Field Name Type 31:0 INT R/W Reset Description 0x0000.0000 Interrupt Clear Pending Value Description 0 On a read, indicates that the interrupt is not pending. On a write, no effect. 1 On a read, indicates that the interrupt is pending. On a write, clears the corresponding INT[n] bit in the PEND0 register, so that interrupt [n] is no longer pending. Setting a bit does not affect the active state of the corresponding interrupt. 142 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 11: Interrupt 32-54 Clear Pending (UNPEND1), offset 0x284 Note: This register can only be accessed from privileged mode. The UNPEND1 register shows which interrupts are pending and removes the pending state from interrupts. Bit 0 corresponds to Interrupt 32; bit 22 corresponds to Interrupt 54. See Table 2-9 on page 109 for interrupt assignments. Interrupt 32-54 Clear Pending (UNPEND1) Base 0xE000.E000 Offset 0x284 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 reserved Type Reset 19 18 17 16 INT RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 RO 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 7 6 5 4 3 2 1 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 INT Type Reset R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 Bit/Field Name Type Reset Description 31:23 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 22:0 INT R/W 0x00.0000 Interrupt Clear Pending Value Description 0 On a read, indicates that the interrupt is not pending. On a write, no effect. 1 On a read, indicates that the interrupt is pending. On a write, clears the corresponding INT[n] bit in the PEND1 register, so that interrupt [n] is no longer pending. Setting a bit does not affect the active state of the corresponding interrupt. March 19, 2011 143 Texas Instruments-Advance Information Cortex-M3 Peripherals Register 12: Interrupt 0-31 Active Bit (ACTIVE0), offset 0x300 Note: This register can only be accessed from privileged mode. The ACTIVE0 register indicates which interrupts are active. Bit 0 corresponds to Interrupt 0; bit 31 corresponds to Interrupt 31. See Table 2-9 on page 109 for interrupt assignments. Caution – Do not manually set or clear the bits in this register. Interrupt 0-31 Active Bit (ACTIVE0) Base 0xE000.E000 Offset 0x300 Type RO, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 INT Type Reset INT Type Reset Bit/Field Name Type 31:0 INT RO Reset Description 0x0000.0000 Interrupt Active Value Description 0 The corresponding interrupt is not active. 1 The corresponding interrupt is active, or active and pending. 144 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 13: Interrupt 32-54 Active Bit (ACTIVE1), offset 0x304 Note: This register can only be accessed from privileged mode. The ACTIVE1 register indicates which interrupts are active. Bit 0 corresponds to Interrupt 32; bit 22 corresponds to Interrupt 54. See Table 2-9 on page 109 for interrupt assignments. Caution – Do not manually set or clear the bits in this register. Interrupt 32-54 Active Bit (ACTIVE1) Base 0xE000.E000 Offset 0x304 Type RO, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 reserved Type Reset 19 18 17 16 INT RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 7 6 5 4 3 2 1 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 INT Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 Bit/Field Name Type Reset Description 31:23 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 22:0 INT RO 0x00.0000 Interrupt Active Value Description 0 The corresponding interrupt is not active. 1 The corresponding interrupt is active, or active and pending. March 19, 2011 145 Texas Instruments-Advance Information Cortex-M3 Peripherals Register 14: Interrupt 0-3 Priority (PRI0), offset 0x400 Register 15: Interrupt 4-7 Priority (PRI1), offset 0x404 Register 16: Interrupt 8-11 Priority (PRI2), offset 0x408 Register 17: Interrupt 12-15 Priority (PRI3), offset 0x40C Register 18: Interrupt 16-19 Priority (PRI4), offset 0x410 Register 19: Interrupt 20-23 Priority (PRI5), offset 0x414 Register 20: Interrupt 24-27 Priority (PRI6), offset 0x418 Register 21: Interrupt 28-31 Priority (PRI7), offset 0x41C Register 22: Interrupt 32-35 Priority (PRI8), offset 0x420 Register 23: Interrupt 36-39 Priority (PRI9), offset 0x424 Register 24: Interrupt 40-43 Priority (PRI10), offset 0x428 Register 25: Interrupt 44-47 Priority (PRI11), offset 0x42C Register 26: Interrupt 48-51 Priority (PRI12), offset 0x430 Register 27: Interrupt 52-54 Priority (PRI13), offset 0x434 Note: This register can only be accessed from privileged mode. The PRIn registers provide 3-bit priority fields for each interrupt. These registers are byte accessible. Each register holds four priority fields that are assigned to interrupts as follows: PRIn Register Bit Field Interrupt Bits 31:29 Interrupt [4n+3] Bits 23:21 Interrupt [4n+2] Bits 15:13 Interrupt [4n+1] Bits 7:5 Interrupt [4n] See Table 2-9 on page 109 for interrupt assignments. Each priority level can be split into separate group priority and subpriority fields. The PRIGROUP field in the Application Interrupt and Reset Control (APINT) register (see page 156) indicates the position of the binary point that splits the priority and subpriority fields. These registers can only be accessed from privileged mode. 146 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Interrupt 0-3 Priority (PRI0) Base 0xE000.E000 Offset 0x400 Type R/W, reset 0x0000.0000 31 30 29 28 27 INTD Type Reset 25 24 23 reserved 22 21 20 19 INTC 18 17 16 reserved R/W 0 R/W 0 R/W 0 RO 0 RO 0 RO 0 RO 0 RO 0 R/W 0 R/W 0 R/W 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 R/W 0 RO 0 RO 0 RO 0 RO 0 R/W 0 R/W 0 RO 0 RO 0 RO 0 RO 0 INTB Type Reset 26 R/W 0 R/W 0 reserved RO 0 INTA R/W 0 reserved RO 0 Bit/Field Name Type Reset Description 31:29 INTD R/W 0x0 Interrupt Priority for Interrupt [4n+3] This field holds a priority value, 0-7, for the interrupt with the number [4n+3], where n is the number of the Interrupt Priority register (n=0 for PRI0, and so on). The lower the value, the greater the priority of the corresponding interrupt. 28:24 reserved RO 0x0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 23:21 INTC R/W 0x0 Interrupt Priority for Interrupt [4n+2] This field holds a priority value, 0-7, for the interrupt with the number [4n+2], where n is the number of the Interrupt Priority register (n=0 for PRI0, and so on). The lower the value, the greater the priority of the corresponding interrupt. 20:16 reserved RO 0x0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 15:13 INTB R/W 0x0 Interrupt Priority for Interrupt [4n+1] This field holds a priority value, 0-7, for the interrupt with the number [4n+1], where n is the number of the Interrupt Priority register (n=0 for PRI0, and so on). The lower the value, the greater the priority of the corresponding interrupt. 12:8 reserved RO 0x0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 7:5 INTA R/W 0x0 Interrupt Priority for Interrupt [4n] This field holds a priority value, 0-7, for the interrupt with the number [4n], where n is the number of the Interrupt Priority register (n=0 for PRI0, and so on). The lower the value, the greater the priority of the corresponding interrupt. 4:0 reserved RO 0x0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. March 19, 2011 147 Texas Instruments-Advance Information Cortex-M3 Peripherals Register 28: Software Trigger Interrupt (SWTRIG), offset 0xF00 Note: Only privileged software can enable unprivileged access to the SWTRIG register. Writing an interrupt number to the SWTRIG register generates a Software Generated Interrupt (SGI). See Table 2-9 on page 109 for interrupt assignments. When the MAINPEND bit in the Configuration and Control (CFGCTRL) register (see page 160) is set, unprivileged software can access the SWTRIG register. Software Trigger Interrupt (SWTRIG) Base 0xE000.E000 Offset 0xF00 Type WO, reset 0x0000.0000 31 30 29 28 27 26 25 24 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 8 7 6 5 4 3 2 1 0 RO 0 RO 0 RO 0 WO 0 WO 0 WO 0 WO 0 WO 0 WO 0 reserved Type Reset reserved Type Reset RO 0 INTID Bit/Field Name Type Reset 31:6 reserved RO 0x0000.00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 5:0 INTID WO 0x00 Interrupt ID This field holds the interrupt ID of the required SGI. For example, a value of 0x3 generates an interrupt on IRQ3. 3.5 Description System Control Block (SCB) Register Descriptions This section lists and describes the System Control Block (SCB) registers, in numerical order by address offset. The SCB registers can only be accessed from privileged mode. All registers must be accessed with aligned word accesses except for the FAULTSTAT and SYSPRI1-SYSPRI3 registers, which can be accessed with byte or aligned halfword or word accesses. The processor does not support unaligned accesses to system control block registers. 148 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 29: Auxiliary Control (ACTLR), offset 0x008 Note: This register can only be accessed from privileged mode. The ACTLR register provides disable bits for IT folding, write buffer use for accesses to the default memory map, and interruption of multi-cycle instructions. By default, this register is set to provide optimum performance from the Cortex-M3 processor and does not normally require modification. Auxiliary Control (ACTLR) Base 0xE000.E000 Offset 0x008 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 2 1 0 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 9 8 7 6 5 4 3 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 Bit/Field Name Type Reset 31:3 reserved RO 0x0000.000 2 DISFOLD R/W 0 DISFOLD DISWBUF DISMCYC RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 R/W 0 R/W 0 R/W 0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. Disable IT Folding Value Description 0 No effect. 1 Disables IT folding. In some situations, the processor can start executing the first instruction in an IT block while it is still executing the IT instruction. This behavior is called IT folding, and improves performance, However, IT folding can cause jitter in looping. If a task must avoid jitter, set the DISFOLD bit before executing the task, to disable IT folding. 1 DISWBUF R/W 0 Disable Write Buffer Value Description 0 No effect. 1 Disables write buffer use during default memory map accesses. In this situation, all bus faults are precise bus faults but performance is decreased because any store to memory must complete before the processor can execute the next instruction. Note: This bit only affects write buffers implemented in the Cortex-M3 processor. March 19, 2011 149 Texas Instruments-Advance Information Cortex-M3 Peripherals Bit/Field Name Type Reset 0 DISMCYC R/W 0 Description Disable Interrupts of Multiple Cycle Instructions Value Description 0 No effect. 1 Disables interruption of load multiple and store multiple instructions. In this situation, the interrupt latency of the processor is increased because any LDM or STM must complete before the processor can stack the current state and enter the interrupt handler. 150 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 30: CPU ID Base (CPUID), offset 0xD00 Note: This register can only be accessed from privileged mode. The CPUID register contains the ARM® Cortex™-M3 processor part number, version, and implementation information. CPU ID Base (CPUID) Base 0xE000.E000 Offset 0xD00 Type RO, reset 0x412F.C230 31 30 29 28 27 26 25 24 23 22 IMP Type Reset 21 20 19 18 VAR R0 0 R0 1 R0 0 R0 0 R0 0 R0 0 R0 0 R0 1 RO 0 RO 0 RO 1 RO 0 RO 1 RO 1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 PARTNO Type Reset RO 1 RO 1 RO 0 RO 0 RO 0 RO 0 RO 1 17 16 RO 1 RO 1 1 0 RO 0 RO 0 CON REV RO 0 RO 0 RO 0 Bit/Field Name Type Reset Description 31:24 IMP R0 0x41 Implementer Code RO 1 RO 1 RO 0 RO 0 Value Description 0x41 ARM 23:20 VAR RO 0x2 Variant Number Value Description 0x2 19:16 CON RO 0xF The rn value in the rnpn product revision identifier, for example, the 2 in r2p0. Constant Value Description 0xF 15:4 PARTNO RO 0xC23 Always reads as 0xF. Part Number Value Description 0xC23 Cortex-M3 processor. 3:0 REV RO 0x0 Revision Number Value Description 0x0 The pn value in the rnpn product revision identifier, for example, the 0 in r2p0. March 19, 2011 151 Texas Instruments-Advance Information Cortex-M3 Peripherals Register 31: Interrupt Control and State (INTCTRL), offset 0xD04 Note: This register can only be accessed from privileged mode. The INCTRL register provides a set-pending bit for the NMI exception, and set-pending and clear-pending bits for the PendSV and SysTick exceptions. In addition, bits in this register indicate the exception number of the exception being processed, whether there are preempted active exceptions, the exception number of the highest priority pending exception, and whether any interrupts are pending. When writing to INCTRL, the effect is unpredictable when writing a 1 to both the PENDSV and UNPENDSV bits, or writing a 1 to both the PENDSTSET and PENDSTCLR bits. Interrupt Control and State (INTCTRL) Base 0xE000.E000 Offset 0xD04 Type R/W, reset 0x0000.0000 31 NMISET Type Reset 30 29 reserved 28 26 25 24 PENDSV UNPENDSV PENDSTSET PENDSTCLR reserved 23 22 21 ISRPRE ISRPEND 20 19 18 reserved 17 16 VECPEND R/W 0 RO 0 RO 0 R/W 0 WO 0 R/W 0 WO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 VECPEND Type Reset 27 RO 0 RETBASE RO 0 RO 0 reserved Bit/Field Name Type Reset 31 NMISET R/W 0 VECACT RO 0 Description NMI Set Pending Value Description 0 On a read, indicates an NMI exception is not pending. On a write, no effect. 1 On a read, indicates an NMI exception is pending. On a write, changes the NMI exception state to pending. Because NMI is the highest-priority exception, normally the processor enters the NMI exception handler as soon as it registers the setting of this bit, and clears this bit on entering the interrupt handler. A read of this bit by the NMI exception handler returns 1 only if the NMI signal is reasserted while the processor is executing that handler. 30:29 reserved RO 0x0 28 PENDSV R/W 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. PendSV Set Pending Value Description 0 On a read, indicates a PendSV exception is not pending. On a write, no effect. 1 On a read, indicates a PendSV exception is pending. On a write, changes the PendSV exception state to pending. Setting this bit is the only way to set the PendSV exception state to pending. This bit is cleared by writing a 1 to the UNPENDSV bit. 152 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset 27 UNPENDSV WO 0 Description PendSV Clear Pending Value Description 0 On a write, no effect. 1 On a write, removes the pending state from the PendSV exception. This bit is write only; on a register read, its value is unknown. 26 PENDSTSET R/W 0 SysTick Set Pending Value Description 0 On a read, indicates a SysTick exception is not pending. On a write, no effect. 1 On a read, indicates a SysTick exception is pending. On a write, changes the SysTick exception state to pending. This bit is cleared by writing a 1 to the PENDSTCLR bit. 25 PENDSTCLR WO 0 SysTick Clear Pending Value Description 0 On a write, no effect. 1 On a write, removes the pending state from the SysTick exception. This bit is write only; on a register read, its value is unknown. 24 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 23 ISRPRE RO 0 Debug Interrupt Handling Value Description 0 The release from halt does not take an interrupt. 1 The release from halt takes an interrupt. This bit is only meaningful in Debug mode and reads as zero when the processor is not in Debug mode. 22 ISRPEND RO 0 Interrupt Pending Value Description 0 No interrupt is pending. 1 An interrupt is pending. This bit provides status for all interrupts excluding NMI and Faults. 21:19 reserved RO 0x0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. March 19, 2011 153 Texas Instruments-Advance Information Cortex-M3 Peripherals Bit/Field Name Type Reset Description 18:12 VECPEND RO 0x00 Interrupt Pending Vector Number This field contains the exception number of the highest priority pending enabled exception. The value indicated by this field includes the effect of the BASEPRI and FAULTMASK registers, but not any effect of the PRIMASK register. Value Description 0x00 No exceptions are pending 0x01 Reserved 0x02 NMI 0x03 Hard fault 0x04 Memory management fault 0x05 Bus fault 0x06 Usage fault 0x07-0x0A Reserved 0x0B SVCall 0x0C Reserved for Debug 0x0D Reserved 0x0E PendSV 0x0F SysTick 0x10 Interrupt Vector 0 0x11 Interrupt Vector 1 ... ... 0x46 Interrupt Vector 54 0x47-0x7F Reserved 11 RETBASE RO 0 Return to Base Value Description 0 There are preempted active exceptions to execute. 1 There are no active exceptions, or the currently executing exception is the only active exception. This bit provides status for all interrupts excluding NMI and Faults. This bit only has meaning if the processor is currently executing an ISR (the Interrupt Program Status (IPSR) register is non-zero). 10:7 reserved RO 0x0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 6:0 VECACT RO 0x00 Interrupt Pending Vector Number This field contains the active exception number. The exception numbers can be found in the description for the VECPEND field. If this field is clear, the processor is in Thread mode. This field contains the same value as the ISRNUM field in the IPSR register. Subtract 16 from this value to obtain the IRQ number required to index into the Interrupt Set Enable (ENn), Interrupt Clear Enable (DISn), Interrupt Set Pending (PENDn), Interrupt Clear Pending (UNPENDn), and Interrupt Priority (PRIn) registers (see page 89). 154 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 32: Vector Table Offset (VTABLE), offset 0xD08 Note: This register can only be accessed from privileged mode. The VTABLE register indicates the offset of the vector table base address from memory address 0x0000.0000. Vector Table Offset (VTABLE) Base 0xE000.E000 Offset 0xD08 Type R/W, reset 0x0000.0000 31 30 reserved Type Reset 29 28 27 26 25 24 23 BASE RO 0 RO 0 R/W 0 15 14 13 22 21 20 19 18 17 16 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 4 3 2 1 0 RO 0 RO 0 RO 0 RO 0 OFFSET R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 12 11 10 9 8 7 6 5 OFFSET Type Reset R/W 0 R/W 0 R/W 0 R/W 0 reserved R/W 0 R/W 0 R/W 0 Bit/Field Name Type Reset 31:30 reserved RO 0x0 29 BASE R/W 0 RO 0 RO 0 RO 0 RO 0 RO 0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. Vector Table Base Value Description 0 The vector table is in the code memory region. 1 The vector table is in the SRAM memory region. 28:9 OFFSET R/W 0x000.00 Vector Table Offset When configuring the OFFSET field, the offset must be aligned to the number of exception entries in the vector table. Because there are 54 interrupts, the minimum alignment is 128 words. 8:0 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. March 19, 2011 155 Texas Instruments-Advance Information Cortex-M3 Peripherals Register 33: Application Interrupt and Reset Control (APINT), offset 0xD0C Note: This register can only be accessed from privileged mode. The APINT register provides priority grouping control for the exception model, endian status for data accesses, and reset control of the system. To write to this register, 0x05FA must be written to the VECTKEY field, otherwise the write is ignored. The PRIGROUP field indicates the position of the binary point that splits the INTx fields in the Interrupt Priority (PRIx) registers into separate group priority and subpriority fields. Table 3-8 on page 156 shows how the PRIGROUP value controls this split. The bit numbers in the Group Priority Field and Subpriority Field columns in the table refer to the bits in the INTA field. For the INTB field, the corresponding bits are 15:13; for INTC, 23:21; and for INTD, 31:29. Note: Determining preemption of an exception uses only the group priority field. Table 3-8. Interrupt Priority Levels a PRIGROUP Bit Field Binary Point Group Priority Field Subpriority Field Group Priorities Subpriorities 0x0 - 0x4 bxxx. [7:5] None 8 1 0x5 bxx.y [7:6] [5] 4 2 0x6 bx.yy [7] [6:5] 2 4 0x7 b.yyy None [7:5] 1 8 a. INTx field showing the binary point. An x denotes a group priority field bit, and a y denotes a subpriority field bit. Application Interrupt and Reset Control (APINT) Base 0xE000.E000 Offset 0xD0C Type R/W, reset 0xFA05.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 R/W 0 R/W 0 R/W 0 R/W 1 R/W 0 R/W 1 5 4 3 2 1 0 VECTKEY Type Reset R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 0 15 14 13 12 11 10 reserved ENDIANESS Type Reset RO 0 RO 0 RO 0 RO 0 R/W 1 R/W 0 R/W 0 R/W 0 9 8 7 6 PRIGROUP RO 0 R/W 0 R/W 0 Bit/Field Name Type Reset 31:16 VECTKEY R/W 0xFA05 15 ENDIANESS RO 0 14:11 reserved RO 0x0 reserved R/W 0 RO 0 RO 0 RO 0 SYSRESREQ VECTCLRACT VECTRESET RO 0 RO 0 WO 0 WO 0 WO 0 Description Register Key This field is used to guard against accidental writes to this register. 0x05FA must be written to this field in order to change the bits in this register. On a read, 0xFA05 is returned. Data Endianess The Stellaris implementation uses only little-endian mode so this is cleared to 0. Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 156 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset Description 10:8 PRIGROUP R/W 0x0 Interrupt Priority Grouping This field determines the split of group priority from subpriority (see Table 3-8 on page 156 for more information). 7:3 reserved RO 0x0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 2 SYSRESREQ WO 0 System Reset Request Value Description 0 No effect. 1 Resets the core and all on-chip peripherals except the Debug interface. This bit is automatically cleared during the reset of the core and reads as 0. 1 VECTCLRACT WO 0 Clear Active NMI / Fault This bit is reserved for Debug use and reads as 0. This bit must be written as a 0, otherwise behavior is unpredictable. 0 VECTRESET WO 0 System Reset This bit is reserved for Debug use and reads as 0. This bit must be written as a 0, otherwise behavior is unpredictable. March 19, 2011 157 Texas Instruments-Advance Information Cortex-M3 Peripherals Register 34: System Control (SYSCTRL), offset 0xD10 Note: This register can only be accessed from privileged mode. The SYSCTRL register controls features of entry to and exit from low-power state. System Control (SYSCTRL) Base 0xE000.E000 Offset 0xD10 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 2 1 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 10 9 8 7 6 5 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 Bit/Field Name Type Reset 31:5 reserved RO 0x0000.00 4 SEVONPEND R/W 0 RO 0 RO 0 RO 0 RO 0 4 3 SEVONPEND reserved R/W 0 RO 0 SLEEPDEEP SLEEPEXIT R/W 0 R/W 0 0 reserved RO 0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. Wake Up on Pending Value Description 0 Only enabled interrupts or events can wake up the processor; disabled interrupts are excluded. 1 Enabled events and all interrupts, including disabled interrupts, can wake up the processor. When an event or interrupt enters the pending state, the event signal wakes up the processor from WFE. If the processor is not waiting for an event, the event is registered and affects the next WFE. The processor also wakes up on execution of a SEV instruction or an external event. 3 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 2 SLEEPDEEP R/W 0 Deep Sleep Enable Value Description 0 Use Sleep mode as the low power mode. 1 Use Deep-sleep mode as the low power mode. 158 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset 1 SLEEPEXIT R/W 0 Description Sleep on ISR Exit Value Description 0 When returning from Handler mode to Thread mode, do not sleep when returning to Thread mode. 1 When returning from Handler mode to Thread mode, enter sleep or deep sleep on return from an ISR. Setting this bit enables an interrupt-driven application to avoid returning to an empty main application. 0 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. March 19, 2011 159 Texas Instruments-Advance Information Cortex-M3 Peripherals Register 35: Configuration and Control (CFGCTRL), offset 0xD14 Note: This register can only be accessed from privileged mode. The CFGCTRL register controls entry to Thread mode and enables: the handlers for NMI, hard fault and faults escalated by the FAULTMASK register to ignore bus faults; trapping of divide by zero and unaligned accesses; and access to the SWTRIG register by unprivileged software (see page 148). Configuration and Control (CFGCTRL) Base 0xE000.E000 Offset 0xD14 Type R/W, reset 0x0000.0200 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 6 5 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 9 8 7 reserved STKALIGN BFHFNMIGN RO 0 RO 0 R/W 1 Bit/Field Name Type Reset 31:10 reserved RO 0x0000.00 9 STKALIGN R/W 1 R/W 0 RO 0 RO 0 RO 0 4 3 2 1 0 DIV0 UNALIGNED reserved MAINPEND BASETHR R/W 0 R/W 0 RO 0 R/W 0 R/W 0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. Stack Alignment on Exception Entry Value Description 0 The stack is 4-byte aligned. 1 The stack is 8-byte aligned. On exception entry, the processor uses bit 9 of the stacked PSR to indicate the stack alignment. On return from the exception, it uses this stacked bit to restore the correct stack alignment. 8 BFHFNMIGN R/W 0 Ignore Bus Fault in NMI and Fault This bit enables handlers with priority -1 or -2 to ignore data bus faults caused by load and store instructions. The setting of this bit applies to the hard fault, NMI, and FAULTMASK escalated handlers. Value Description 0 Data bus faults caused by load and store instructions cause a lock-up. 1 Handlers running at priority -1 and -2 ignore data bus faults caused by load and store instructions. Set this bit only when the handler and its data are in absolutely safe memory. The normal use of this bit is to probe system devices and bridges to detect control path problems and fix them. 7:5 reserved RO 0x0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 160 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset 4 DIV0 R/W 0 Description Trap on Divide by 0 This bit enables faulting or halting when the processor executes an SDIV or UDIV instruction with a divisor of 0. Value Description 3 UNALIGNED R/W 0 0 Do not trap on divide by 0. A divide by zero returns a quotient of 0. 1 Trap on divide by 0. Trap on Unaligned Access Value Description 0 Do not trap on unaligned halfword and word accesses. 1 Trap on unaligned halfword and word accesses. An unaligned access generates a usage fault. Unaligned LDM, STM, LDRD, and STRD instructions always fault regardless of whether UNALIGNED is set. 2 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 1 MAINPEND R/W 0 Allow Main Interrupt Trigger Value Description 0 BASETHR R/W 0 0 Disables unprivileged software access to the SWTRIG register. 1 Enables unprivileged software access to the SWTRIG register (see page 148). Thread State Control Value Description 0 The processor can enter Thread mode only when no exception is active. 1 The processor can enter Thread mode from any level under the control of an EXC_RETURN value (see “Exception Return” on page 113 for more information). March 19, 2011 161 Texas Instruments-Advance Information Cortex-M3 Peripherals Register 36: System Handler Priority 1 (SYSPRI1), offset 0xD18 Note: This register can only be accessed from privileged mode. The SYSPRI1 register configures the priority level, 0 to 7 of the usage fault, bus fault, and memory management fault exception handlers. This register is byte-accessible. System Handler Priority 1 (SYSPRI1) Base 0xE000.E000 Offset 0xD18 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 reserved Type Reset RO 0 15 RO 0 RO 0 RO 0 RO 0 14 13 12 11 BUS Type Reset R/W 0 R/W 0 RO 0 RO 0 RO 0 R/W 0 10 9 8 7 reserved R/W 0 RO 0 22 21 20 19 USAGE RO 0 RO 0 R/W 0 R/W 0 RO 0 RO 0 6 5 4 3 MEM RO 0 RO 0 R/W 0 R/W 0 18 17 16 RO 0 RO 0 RO 0 2 1 0 RO 0 RO 0 reserved reserved R/W 0 RO 0 RO 0 RO 0 Bit/Field Name Type Reset Description 31:24 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 23:21 USAGE R/W 0x0 Usage Fault Priority This field configures the priority level of the usage fault. Configurable priority values are in the range 0-7, with lower values having higher priority. 20:16 reserved RO 0x0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 15:13 BUS R/W 0x0 Bus Fault Priority This field configures the priority level of the bus fault. Configurable priority values are in the range 0-7, with lower values having higher priority. 12:8 reserved RO 0x0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 7:5 MEM R/W 0x0 Memory Management Fault Priority This field configures the priority level of the memory management fault. Configurable priority values are in the range 0-7, with lower values having higher priority. 4:0 reserved RO 0x0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 162 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 37: System Handler Priority 2 (SYSPRI2), offset 0xD1C Note: This register can only be accessed from privileged mode. The SYSPRI2 register configures the priority level, 0 to 7 of the SVCall handler. This register is byte-accessible. System Handler Priority 2 (SYSPRI2) Base 0xE000.E000 Offset 0xD1C Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 SVC Type Reset 22 21 20 19 18 17 16 reserved R/W 0 R/W 0 R/W 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 Bit/Field Name Type Reset 31:29 SVC R/W 0x0 28:0 reserved RO 0x000.0000 RO 0 Description SVCall Priority This field configures the priority level of SVCall. Configurable priority values are in the range 0-7, with lower values having higher priority. Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. March 19, 2011 163 Texas Instruments-Advance Information Cortex-M3 Peripherals Register 38: System Handler Priority 3 (SYSPRI3), offset 0xD20 Note: This register can only be accessed from privileged mode. The SYSPRI3 register configures the priority level, 0 to 7 of the SysTick exception and PendSV handlers. This register is byte-accessible. System Handler Priority 3 (SYSPRI3) Base 0xE000.E000 Offset 0xD20 Type R/W, reset 0x0000.0000 31 30 29 28 27 TICK Type Reset 26 25 24 23 reserved R/W 0 R/W 0 R/W 0 RO 0 RO 0 RO 0 RO 0 RO 0 R/W 0 15 14 13 12 11 10 9 8 7 reserved Type Reset RO 0 RO 0 RO 0 RO 0 22 21 20 19 PENDSV R/W 0 R/W 0 RO 0 RO 0 6 5 4 3 DEBUG RO 0 RO 0 RO 0 RO 0 R/W 0 R/W 0 18 17 16 RO 0 RO 0 RO 0 2 1 0 RO 0 RO 0 reserved reserved R/W 0 RO 0 RO 0 RO 0 Bit/Field Name Type Reset Description 31:29 TICK R/W 0x0 SysTick Exception Priority This field configures the priority level of the SysTick exception. Configurable priority values are in the range 0-7, with lower values having higher priority. 28:24 reserved RO 0x0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 23:21 PENDSV R/W 0x0 PendSV Priority This field configures the priority level of PendSV. Configurable priority values are in the range 0-7, with lower values having higher priority. 20:8 reserved RO 0x000 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 7:5 DEBUG R/W 0x0 4:0 reserved RO 0x0.0000 Debug Priority This field configures the priority level of Debug. Configurable priority values are in the range 0-7, with lower values having higher priority. Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 164 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 39: System Handler Control and State (SYSHNDCTRL), offset 0xD24 Note: This register can only be accessed from privileged mode. The SYSHNDCTRL register enables the system handlers, and indicates the pending status of the usage fault, bus fault, memory management fault, and SVC exceptions as well as the active status of the system handlers. If a system handler is disabled and the corresponding fault occurs, the processor treats the fault as a hard fault. This register can be modified to change the pending or active status of system exceptions. An OS kernel can write to the active bits to perform a context switch that changes the current exception type. Caution – Software that changes the value of an active bit in this register without correct adjustment to the stacked content can cause the processor to generate a fault exception. Ensure software that writes to this register retains and subsequently restores the current active status. If the value of a bit in this register must be modified after enabling the system handlers, a read-modify-write procedure must be used to ensure that only the required bit is modified. System Handler Control and State (SYSHNDCTRL) Base 0xE000.E000 Offset 0xD24 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 SVC BUSP MEMP USAGEP R/W 0 R/W 0 R/W 0 R/W 0 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 USAGE BUS MEM R/W 0 R/W 0 R/W 0 10 9 8 7 6 5 4 3 2 1 0 TICK PNDSV reserved MON SVCA R/W 0 R/W 0 RO 0 R/W 0 R/W 0 USGA reserved BUSA MEMA R/W 0 RO 0 R/W 0 R/W 0 reserved Type Reset Type Reset reserved RO 0 RO 0 RO 0 Bit/Field Name Type Reset Description 31:19 reserved RO 0x000 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 18 USAGE R/W 0 Usage Fault Enable Value Description 17 BUS R/W 0 0 Disables the usage fault exception. 1 Enables the usage fault exception. Bus Fault Enable Value Description 0 Disables the bus fault exception. 1 Enables the bus fault exception. March 19, 2011 165 Texas Instruments-Advance Information Cortex-M3 Peripherals Bit/Field Name Type Reset 16 MEM R/W 0 Description Memory Management Fault Enable Value Description 15 SVC R/W 0 0 Disables the memory management fault exception. 1 Enables the memory management fault exception. SVC Call Pending Value Description 0 An SVC call exception is not pending. 1 An SVC call exception is pending. This bit can be modified to change the pending status of the SVC call exception. 14 BUSP R/W 0 Bus Fault Pending Value Description 0 A bus fault exception is not pending. 1 A bus fault exception is pending. This bit can be modified to change the pending status of the bus fault exception. 13 MEMP R/W 0 Memory Management Fault Pending Value Description 0 A memory management fault exception is not pending. 1 A memory management fault exception is pending. This bit can be modified to change the pending status of the memory management fault exception. 12 USAGEP R/W 0 Usage Fault Pending Value Description 0 A usage fault exception is not pending. 1 A usage fault exception is pending. This bit can be modified to change the pending status of the usage fault exception. 11 TICK R/W 0 SysTick Exception Active Value Description 0 A SysTick exception is not active. 1 A SysTick exception is active. This bit can be modified to change the active status of the SysTick exception, however, see the Caution above before setting this bit. 166 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset 10 PNDSV R/W 0 Description PendSV Exception Active Value Description 0 A PendSV exception is not active. 1 A PendSV exception is active. This bit can be modified to change the active status of the PendSV exception, however, see the Caution above before setting this bit. 9 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 8 MON R/W 0 Debug Monitor Active Value Description 7 SVCA R/W 0 0 The Debug monitor is not active. 1 The Debug monitor is active. SVC Call Active Value Description 0 SVC call is not active. 1 SVC call is active. This bit can be modified to change the active status of the SVC call exception, however, see the Caution above before setting this bit. 6:4 reserved RO 0x0 3 USGA R/W 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. Usage Fault Active Value Description 0 Usage fault is not active. 1 Usage fault is active. This bit can be modified to change the active status of the usage fault exception, however, see the Caution above before setting this bit. 2 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 1 BUSA R/W 0 Bus Fault Active Value Description 0 Bus fault is not active. 1 Bus fault is active. This bit can be modified to change the active status of the bus fault exception, however, see the Caution above before setting this bit. March 19, 2011 167 Texas Instruments-Advance Information Cortex-M3 Peripherals Bit/Field Name Type Reset 0 MEMA R/W 0 Description Memory Management Fault Active Value Description 0 Memory management fault is not active. 1 Memory management fault is active. This bit can be modified to change the active status of the memory management fault exception, however, see the Caution above before setting this bit. 168 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 40: Configurable Fault Status (FAULTSTAT), offset 0xD28 Note: This register can only be accessed from privileged mode. The FAULTSTAT register indicates the cause of a memory management fault, bus fault, or usage fault. Each of these functions is assigned to a subregister as follows: ■ Usage Fault Status (UFAULTSTAT), bits 31:16 ■ Bus Fault Status (BFAULTSTAT), bits 15:8 ■ Memory Management Fault Status (MFAULTSTAT), bits 7:0 FAULTSTAT is byte accessible. FAULTSTAT or its subregisters can be accessed as follows: ■ ■ ■ ■ ■ The complete FAULTSTAT register, with a word access to offset 0xD28 The MFAULTSTAT, with a byte access to offset 0xD28 The MFAULTSTAT and BFAULTSTAT, with a halfword access to offset 0xD28 The BFAULTSTAT, with a byte access to offset 0xD29 The UFAULTSTAT, with a halfword access to offset 0xD2A Bits are cleared by writing a 1 to them. In a fault handler, the true faulting address can be determined by: 1. Read and save the Memory Management Fault Address (MMADDR) or Bus Fault Address (FAULTADDR) value. 2. Read the MMARV bit in MFAULTSTAT, or the BFARV bit in BFAULTSTAT to determine if the MMADDR or FAULTADDR contents are valid. Software must follow this sequence because another higher priority exception might change the MMADDR or FAULTADDR value. For example, if a higher priority handler preempts the current fault handler, the other fault might change the MMADDR or FAULTADDR value. Configurable Fault Status (FAULTSTAT) Base 0xE000.E000 Offset 0xD28 Type R/W1C, reset 0x0000.0000 31 30 29 28 27 26 reserved Type Reset RO 0 RO 0 RO 0 15 14 13 BFARV Type Reset R/W1C 0 reserved RO 0 RO 0 RO 0 RO 0 RO 0 25 24 DIV0 UNALIGN R/W1C 0 R/W1C 0 23 22 21 20 reserved RO 0 RO 0 RO 0 6 5 12 11 10 9 8 7 BSTKE BUSTKE IMPRE PRECISE IBUS MMARV R/W1C 0 R/W1C 0 R/W1C 0 R/W1C 0 R/W1C 0 R/W1C 0 reserved RO 0 RO 0 RO 0 19 18 17 16 NOCP INVPC INVSTAT UNDEF R/W1C 0 R/W1C 0 R/W1C 0 R/W1C 0 4 3 2 1 0 MSTKE MUSTKE reserved DERR IERR R/W1C 0 R/W1C 0 RO 0 R/W1C 0 R/W1C 0 Bit/Field Name Type Reset Description 31:26 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. March 19, 2011 169 Texas Instruments-Advance Information Cortex-M3 Peripherals Bit/Field Name Type Reset 25 DIV0 R/W1C 0 Description Divide-by-Zero Usage Fault Value Description 0 No divide-by-zero fault has occurred, or divide-by-zero trapping is not enabled. 1 The processor has executed an SDIV or UDIV instruction with a divisor of 0. When this bit is set, the PC value stacked for the exception return points to the instruction that performed the divide by zero. Trapping on divide-by-zero is enabled by setting the DIV0 bit in the Configuration and Control (CFGCTRL) register (see page 160). This bit is cleared by writing a 1 to it. 24 UNALIGN R/W1C 0 Unaligned Access Usage Fault Value Description 0 No unaligned access fault has occurred, or unaligned access trapping is not enabled. 1 The processor has made an unaligned memory access. Unaligned LDM, STM, LDRD, and STRD instructions always fault regardless of the configuration of this bit. Trapping on unaligned access is enabled by setting the UNALIGNED bit in the CFGCTRL register (see page 160). This bit is cleared by writing a 1 to it. 23:20 reserved RO 0x00 19 NOCP R/W1C 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. No Coprocessor Usage Fault Value Description 0 A usage fault has not been caused by attempting to access a coprocessor. 1 The processor has attempted to access a coprocessor. This bit is cleared by writing a 1 to it. 18 INVPC R/W1C 0 Invalid PC Load Usage Fault Value Description 0 A usage fault has not been caused by attempting to load an invalid PC value. 1 The processor has attempted an illegal load of EXC_RETURN to the PC as a result of an invalid context or an invalid EXC_RETURN value. When this bit is set, the PC value stacked for the exception return points to the instruction that tried to perform the illegal load of the PC. This bit is cleared by writing a 1 to it. 170 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset 17 INVSTAT R/W1C 0 Description Invalid State Usage Fault Value Description 0 A usage fault has not been caused by an invalid state. 1 The processor has attempted to execute an instruction that makes illegal use of the EPSR register. When this bit is set, the PC value stacked for the exception return points to the instruction that attempted the illegal use of the Execution Program Status Register (EPSR) register. This bit is not set if an undefined instruction uses the EPSR register. This bit is cleared by writing a 1 to it. 16 UNDEF R/W1C 0 Undefined Instruction Usage Fault Value Description 0 A usage fault has not been caused by an undefined instruction. 1 The processor has attempted to execute an undefined instruction. When this bit is set, the PC value stacked for the exception return points to the undefined instruction. An undefined instruction is an instruction that the processor cannot decode. This bit is cleared by writing a 1 to it. 15 BFARV R/W1C 0 Bus Fault Address Register Valid Value Description 0 The value in the Bus Fault Address (FAULTADDR) register is not a valid fault address. 1 The FAULTADDR register is holding a valid fault address. This bit is set after a bus fault, where the address is known. Other faults can clear this bit, such as a memory management fault occurring later. If a bus fault occurs and is escalated to a hard fault because of priority, the hard fault handler must clear this bit. This action prevents problems if returning to a stacked active bus fault handler whose FAULTADDR register value has been overwritten. This bit is cleared by writing a 1 to it. 14:13 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 12 BSTKE R/W1C 0 Stack Bus Fault Value Description 0 No bus fault has occurred on stacking for exception entry. 1 Stacking for an exception entry has caused one or more bus faults. When this bit is set, the SP is still adjusted but the values in the context area on the stack might be incorrect. A fault address is not written to the FAULTADDR register. This bit is cleared by writing a 1 to it. March 19, 2011 171 Texas Instruments-Advance Information Cortex-M3 Peripherals Bit/Field Name Type Reset 11 BUSTKE R/W1C 0 Description Unstack Bus Fault Value Description 0 No bus fault has occurred on unstacking for a return from exception. 1 Unstacking for a return from exception has caused one or more bus faults. This fault is chained to the handler. Thus, when this bit is set, the original return stack is still present. The SP is not adjusted from the failing return, a new save is not performed, and a fault address is not written to the FAULTADDR register. This bit is cleared by writing a 1 to it. 10 IMPRE R/W1C 0 Imprecise Data Bus Error Value Description 0 An imprecise data bus error has not occurred. 1 A data bus error has occurred, but the return address in the stack frame is not related to the instruction that caused the error. When this bit is set, a fault address is not written to the FAULTADDR register. This fault is asynchronous. Therefore, if the fault is detected when the priority of the current process is higher than the bus fault priority, the bus fault becomes pending and becomes active only when the processor returns from all higher-priority processes. If a precise fault occurs before the processor enters the handler for the imprecise bus fault, the handler detects that both the IMPRE bit is set and one of the precise fault status bits is set. This bit is cleared by writing a 1 to it. 9 PRECISE R/W1C 0 Precise Data Bus Error Value Description 0 A precise data bus error has not occurred. 1 A data bus error has occurred, and the PC value stacked for the exception return points to the instruction that caused the fault. When this bit is set, the fault address is written to the FAULTADDR register. This bit is cleared by writing a 1 to it. 8 IBUS R/W1C 0 Instruction Bus Error Value Description 0 An instruction bus error has not occurred. 1 An instruction bus error has occurred. The processor detects the instruction bus error on prefetching an instruction, but sets this bit only if it attempts to issue the faulting instruction. When this bit is set, a fault address is not written to the FAULTADDR register. This bit is cleared by writing a 1 to it. 172 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset 7 MMARV R/W1C 0 Description Memory Management Fault Address Register Valid Value Description 0 The value in the Memory Management Fault Address (MMADDR) register is not a valid fault address. 1 The MMADDR register is holding a valid fault address. If a memory management fault occurs and is escalated to a hard fault because of priority, the hard fault handler must clear this bit. This action prevents problems if returning to a stacked active memory management fault handler whose MMADDR register value has been overwritten. This bit is cleared by writing a 1 to it. 6:5 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 4 MSTKE R/W1C 0 Stack Access Violation Value Description 0 No memory management fault has occurred on stacking for exception entry. 1 Stacking for an exception entry has caused one or more access violations. When this bit is set, the SP is still adjusted but the values in the context area on the stack might be incorrect. A fault address is not written to the MMADDR register. This bit is cleared by writing a 1 to it. 3 MUSTKE R/W1C 0 Unstack Access Violation Value Description 0 No memory management fault has occurred on unstacking for a return from exception. 1 Unstacking for a return from exception has caused one or more access violations. This fault is chained to the handler. Thus, when this bit is set, the original return stack is still present. The SP is not adjusted from the failing return, a new save is not performed, and a fault address is not written to the MMADDR register. This bit is cleared by writing a 1 to it. 2 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. March 19, 2011 173 Texas Instruments-Advance Information Cortex-M3 Peripherals Bit/Field Name Type Reset 1 DERR R/W1C 0 Description Data Access Violation Value Description 0 A data access violation has not occurred. 1 The processor attempted a load or store at a location that does not permit the operation. When this bit is set, the PC value stacked for the exception return points to the faulting instruction and the address of the attempted access is written to the MMADDR register. This bit is cleared by writing a 1 to it. 0 IERR R/W1C 0 Instruction Access Violation Value Description 0 An instruction access violation has not occurred. 1 The processor attempted an instruction fetch from a location that does not permit execution. This fault occurs on any access to an XN region, even when the MPU is disabled or not present. When this bit is set, the PC value stacked for the exception return points to the faulting instruction and the address of the attempted access is not written to the MMADDR register. This bit is cleared by writing a 1 to it. 174 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 41: Hard Fault Status (HFAULTSTAT), offset 0xD2C Note: This register can only be accessed from privileged mode. The HFAULTSTAT register gives information about events that activate the hard fault handler. Bits are cleared by writing a 1 to them. Hard Fault Status (HFAULTSTAT) Base 0xE000.E000 Offset 0xD2C Type R/W1C, reset 0x0000.0000 Type Reset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 DBG FORCED R/W1C 0 R/W1C 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 reserved RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 VECT reserved RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 R/W1C 0 RO 0 reserved Type Reset Bit/Field Name Type Reset Description 31 DBG R/W1C 0 Debug Event This bit is reserved for Debug use. This bit must be written as a 0, otherwise behavior is unpredictable. 30 FORCED R/W1C 0 Forced Hard Fault Value Description 0 No forced hard fault has occurred. 1 A forced hard fault has been generated by escalation of a fault with configurable priority that cannot be handled, either because of priority or because it is disabled. When this bit is set, the hard fault handler must read the other fault status registers to find the cause of the fault. This bit is cleared by writing a 1 to it. 29:2 reserved RO 0x00 1 VECT R/W1C 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. Vector Table Read Fault Value Description 0 No bus fault has occurred on a vector table read. 1 A bus fault occurred on a vector table read. This error is always handled by the hard fault handler. When this bit is set, the PC value stacked for the exception return points to the instruction that was preempted by the exception. This bit is cleared by writing a 1 to it. 0 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. March 19, 2011 175 Texas Instruments-Advance Information Cortex-M3 Peripherals Register 42: Memory Management Fault Address (MMADDR), offset 0xD34 Note: This register can only be accessed from privileged mode. The MMADDR register contains the address of the location that generated a memory management fault. When an unaligned access faults, the address in the MMADDR register is the actual address that faulted. Because a single read or write instruction can be split into multiple aligned accesses, the fault address can be any address in the range of the requested access size. Bits in the Memory Management Fault Status (MFAULTSTAT) register indicate the cause of the fault and whether the value in the MMADDR register is valid (see page 169). Memory Management Fault Address (MMADDR) Base 0xE000.E000 Offset 0xD34 Type R/W, reset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - 7 6 5 4 3 2 1 0 R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - ADDR Type Reset R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - 15 14 13 12 11 10 9 8 ADDR Type Reset R/W - R/W - R/W - R/W - R/W - R/W - R/W - Bit/Field Name Type Reset 31:0 ADDR R/W - R/W - Description Fault Address When the MMARV bit of MFAULTSTAT is set, this field holds the address of the location that generated the memory management fault. 176 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 43: Bus Fault Address (FAULTADDR), offset 0xD38 Note: This register can only be accessed from privileged mode. The FAULTADDR register contains the address of the location that generated a bus fault. When an unaligned access faults, the address in the FAULTADDR register is the one requested by the instruction, even if it is not the address of the fault. Bits in the Bus Fault Status (BFAULTSTAT) register indicate the cause of the fault and whether the value in the FAULTADDR register is valid (see page 169). Bus Fault Address (FAULTADDR) Base 0xE000.E000 Offset 0xD38 Type R/W, reset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - 7 6 5 4 3 2 1 0 R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - ADDR Type Reset R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - 15 14 13 12 11 10 9 8 ADDR Type Reset R/W - R/W - R/W - R/W - R/W - R/W - R/W - Bit/Field Name Type Reset 31:0 ADDR R/W - 3.6 R/W - Description Fault Address When the FAULTADDRV bit of BFAULTSTAT is set, this field holds the address of the location that generated the bus fault. Memory Protection Unit (MPU) Register Descriptions This section lists and describes the Memory Protection Unit (MPU) registers, in numerical order by address offset. The MPU registers can only be accessed from privileged mode. March 19, 2011 177 Texas Instruments-Advance Information Cortex-M3 Peripherals Register 44: MPU Type (MPUTYPE), offset 0xD90 Note: This register can only be accessed from privileged mode. The MPUTYPE register indicates whether the MPU is present, and if so, how many regions it supports. MPU Type (MPUTYPE) Base 0xE000.E000 Offset 0xD90 Type RO, reset 0x0000.0800 31 30 29 28 27 26 25 24 23 22 21 20 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 DREGION Type Reset RO 0 RO 0 RO 0 RO 0 19 18 17 16 RO 0 IREGION RO 0 RO 0 RO 0 RO 0 4 3 2 1 reserved RO 1 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 0 SEPARATE RO 0 RO 0 RO 0 RO 0 Bit/Field Name Type Reset Description 31:24 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 23:16 IREGION RO 0x00 Number of I Regions This field indicates the number of supported MPU instruction regions. This field always contains 0x00. The MPU memory map is unified and is described by the DREGION field. 15:8 DREGION RO 0x08 Number of D Regions Value Description 0x08 Indicates there are eight supported MPU data regions. 7:1 reserved RO 0x00 0 SEPARATE RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. Separate or Unified MPU Value Description 0 Indicates the MPU is unified. 178 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 45: MPU Control (MPUCTRL), offset 0xD94 Note: This register can only be accessed from privileged mode. The MPUCTRL register enables the MPU, enables the default memory map background region, and enables use of the MPU when in the hard fault, Non-maskable Interrupt (NMI), and Fault Mask Register (FAULTMASK) escalated handlers. When the ENABLE and PRIVDEFEN bits are both set: ■ For privileged accesses, the default memory map is as described in “Memory Model” on page 97. Any access by privileged software that does not address an enabled memory region behaves as defined by the default memory map. ■ Any access by unprivileged software that does not address an enabled memory region causes a memory management fault. Execute Never (XN) and Strongly Ordered rules always apply to the System Control Space regardless of the value of the ENABLE bit. When the ENABLE bit is set, at least one region of the memory map must be enabled for the system to function unless the PRIVDEFEN bit is set. If the PRIVDEFEN bit is set and no regions are enabled, then only privileged software can operate. When the ENABLE bit is clear, the system uses the default memory map, which has the same memory attributes as if the MPU is not implemented (see Table 2-5 on page 100 for more information). The default memory map applies to accesses from both privileged and unprivileged software. When the MPU is enabled, accesses to the System Control Space and vector table are always permitted. Other areas are accessible based on regions and whether PRIVDEFEN is set. Unless HFNMIENA is set, the MPU is not enabled when the processor is executing the handler for an exception with priority –1 or –2. These priorities are only possible when handling a hard fault or NMI exception or when FAULTMASK is enabled. Setting the HFNMIENA bit enables the MPU when operating with these two priorities. MPU Control (MPUCTRL) Base 0xE000.E000 Offset 0xD94 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 8 7 6 5 4 3 2 1 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 reserved Type Reset reserved Type Reset RO 0 Bit/Field Name Type Reset 31:3 reserved RO 0x0000.000 PRIVDEFEN HFNMIENA R/W 0 R/W 0 ENABLE R/W 0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. March 19, 2011 179 Texas Instruments-Advance Information Cortex-M3 Peripherals Bit/Field Name Type Reset 2 PRIVDEFEN R/W 0 Description MPU Default Region This bit enables privileged software access to the default memory map. Value Description 0 If the MPU is enabled, this bit disables use of the default memory map. Any memory access to a location not covered by any enabled region causes a fault. 1 If the MPU is enabled, this bit enables use of the default memory map as a background region for privileged software accesses. When this bit is set, the background region acts as if it is region number -1. Any region that is defined and enabled has priority over this default map. If the MPU is disabled, the processor ignores this bit. 1 HFNMIENA R/W 0 MPU Enabled During Faults This bit controls the operation of the MPU during hard fault, NMI, and FAULTMASK handlers. Value Description 0 The MPU is disabled during hard fault, NMI, and FAULTMASK handlers, regardless of the value of the ENABLE bit. 1 The MPU is enabled during hard fault, NMI, and FAULTMASK handlers. When the MPU is disabled and this bit is set, the resulting behavior is unpredictable. 0 ENABLE R/W 0 MPU Enable Value Description 0 The MPU is disabled. 1 The MPU is enabled. When the MPU is disabled and the HFNMIENA bit is set, the resulting behavior is unpredictable. 180 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 46: MPU Region Number (MPUNUMBER), offset 0xD98 Note: This register can only be accessed from privileged mode. The MPUNUMBER register selects which memory region is referenced by the MPU Region Base Address (MPUBASE) and MPU Region Attribute and Size (MPUATTR) registers. Normally, the required region number should be written to this register before accessing the MPUBASE or the MPUATTR register. However, the region number can be changed by writing to the MPUBASE register with the VALID bit set (see page 182). This write updates the value of the REGION field. MPU Region Number (MPUNUMBER) Base 0xE000.E000 Offset 0xD98 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 1 0 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 9 8 7 6 5 4 3 2 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 NUMBER RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 R/W 0 R/W 0 R/W 0 Bit/Field Name Type Reset Description 31:3 reserved RO 0x0000.000 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 2:0 NUMBER R/W 0x0 MPU Region to Access This field indicates the MPU region referenced by the MPUBASE and MPUATTR registers. The MPU supports eight memory regions. March 19, 2011 181 Texas Instruments-Advance Information Cortex-M3 Peripherals Register 47: MPU Region Base Address (MPUBASE), offset 0xD9C Register 48: MPU Region Base Address Alias 1 (MPUBASE1), offset 0xDA4 Register 49: MPU Region Base Address Alias 2 (MPUBASE2), offset 0xDAC Register 50: MPU Region Base Address Alias 3 (MPUBASE3), offset 0xDB4 Note: This register can only be accessed from privileged mode. The MPUBASE register defines the base address of the MPU region selected by the MPU Region Number (MPUNUMBER) register and can update the value of the MPUNUMBER register. To change the current region number and update the MPUNUMBER register, write the MPUBASE register with the VALID bit set. The ADDR field is bits 31:N of the MPUBASE register. Bits (N-1):5 are reserved. The region size, as specified by the SIZE field in the MPU Region Attribute and Size (MPUATTR) register, defines the value of N where: N = Log2(Region size in bytes) If the region size is configured to 4 GB in the MPUATTR register, there is no valid ADDR field. In this case, the region occupies the complete memory map, and the base address is 0x0000.0000. The base address is aligned to the size of the region. For example, a 64-KB region must be aligned on a multiple of 64 KB, for example, at 0x0001.0000 or 0x0002.0000. MPU Region Base Address (MPUBASE) Base 0xE000.E000 Offset 0xD9C Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 VALID reserved WO 0 RO 0 ADDR Type Reset ADDR Type Reset R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 Bit/Field Name Type Reset 31:5 ADDR R/W 0x0000.000 R/W 0 R/W 0 R/W 0 R/W 0 REGION R/W 0 R/W 0 R/W 0 Description Base Address Mask Bits 31:N in this field contain the region base address. The value of N depends on the region size, as shown above. The remaining bits (N-1):5 are reserved. Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 182 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset 4 VALID WO 0 Description Region Number Valid Value Description 0 The MPUNUMBER register is not changed and the processor updates the base address for the region specified in the MPUNUMBER register and ignores the value of the REGION field. 1 The MPUNUMBER register is updated with the value of the REGION field and the base address is updated for the region specified in the REGION field. This bit is always read as 0. 3 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 2:0 REGION R/W 0x0 Region Number On a write, contains the value to be written to the MPUNUMBER register. On a read, returns the current region number in the MPUNUMBER register. March 19, 2011 183 Texas Instruments-Advance Information Cortex-M3 Peripherals Register 51: MPU Region Attribute and Size (MPUATTR), offset 0xDA0 Register 52: MPU Region Attribute and Size Alias 1 (MPUATTR1), offset 0xDA8 Register 53: MPU Region Attribute and Size Alias 2 (MPUATTR2), offset 0xDB0 Register 54: MPU Region Attribute and Size Alias 3 (MPUATTR3), offset 0xDB8 Note: This register can only be accessed from privileged mode. The MPUATTR register defines the region size and memory attributes of the MPU region specified by the MPU Region Number (MPUNUMBER) register and enables that region and any subregions. The MPUATTR register is accessible using word or halfword accesses with the most-significant halfword holding the region attributes and the least-significant halfword holds the region size and the region and subregion enable bits. The MPU access permission attribute bits, XN, AP, TEX, S, C, and B, control access to the corresponding memory region. If an access is made to an area of memory without the required permissions, then the MPU generates a permission fault. The SIZE field defines the size of the MPU memory region specified by the MPUNUMBER register as follows: (Region size in bytes) = 2(SIZE+1) The smallest permitted region size is 32 bytes, corresponding to a SIZE value of 4. Table 3-9 on page 184 gives example SIZE values with the corresponding region size and value of N in the MPU Region Base Address (MPUBASE) register. Table 3-9. Example SIZE Field Values a SIZE Encoding Region Size Value of N Note 00100b (0x4) 32 B 5 Minimum permitted size 01001b (0x9) 1 KB 10 - 10011b (0x13) 1 MB 20 - 11101b (0x1D) 1 GB 30 - 11111b (0x1F) 4 GB No valid ADDR field in MPUBASE; the Maximum possible size region occupies the complete memory map. a. Refers to the N parameter in the MPUBASE register (see page 182). MPU Region Attribute and Size (MPUATTR) Base 0xE000.E000 Offset 0xDA0 Type R/W, reset 0x0000.0000 31 30 29 28 27 reserved Type Reset 26 25 24 23 AP 21 reserved 20 19 18 TEX 17 16 XN reserved S C B RO 0 RO 0 RO 0 R/W 0 RO 0 R/W 0 R/W 0 R/W 0 RO 0 RO 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 RO 0 RO 0 R/W 0 R/W 0 R/W 0 R/W 0 SRD Type Reset 22 reserved SIZE 184 R/W 0 ENABLE R/W 0 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset Description 31:29 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 28 XN R/W 0 Instruction Access Disable Value Description 0 Instruction fetches are enabled. 1 Instruction fetches are disabled. 27 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 26:24 AP R/W 0 Access Privilege For information on using this bit field, see Table 3-5 on page 128. 23:22 reserved RO 0x0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 21:19 TEX R/W 0x0 Type Extension Mask For information on using this bit field, see Table 3-3 on page 127. 18 S R/W 0 Shareable For information on using this bit, see Table 3-3 on page 127. 17 C R/W 0 Cacheable For information on using this bit, see Table 3-3 on page 127. 16 B R/W 0 Bufferable For information on using this bit, see Table 3-3 on page 127. 15:8 SRD R/W 0x00 Subregion Disable Bits Value Description 0 The corresponding subregion is enabled. 1 The corresponding subregion is disabled. Region sizes of 128 bytes and less do not support subregions. When writing the attributes for such a region, configure the SRD field as 0x00. See the section called “Subregions” on page 126 for more information. 7:6 reserved RO 0x0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 5:1 SIZE R/W 0x0 Region Size Mask The SIZE field defines the size of the MPU memory region specified by the MPUNUMBER register. Refer to Table 3-9 on page 184 for more information. March 19, 2011 185 Texas Instruments-Advance Information Cortex-M3 Peripherals Bit/Field Name Type Reset 0 ENABLE R/W 0 Description Region Enable Value Description 0 The region is disabled. 1 The region is enabled. 186 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller 4 JTAG Interface The Joint Test Action Group (JTAG) port is an IEEE standard that defines a Test Access Port and Boundary Scan Architecture for digital integrated circuits and provides a standardized serial interface for controlling the associated test logic. The TAP, Instruction Register (IR), and Data Registers (DR) can be used to test the interconnections of assembled printed circuit boards and obtain manufacturing information on the components. The JTAG Port also provides a means of accessing and controlling design-for-test features such as I/O pin observation and control, scan testing, and debugging. The JTAG port is comprised of four pins: TCK, TMS, TDI, and TDO. Data is transmitted serially into the controller on TDI and out of the controller on TDO. The interpretation of this data is dependent on the current state of the TAP controller. For detailed information on the operation of the JTAG port and TAP controller, please refer to the IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture. ® The Stellaris JTAG controller works with the ARM JTAG controller built into the Cortex-M3 core by multiplexing the TDO outputs from both JTAG controllers. ARM JTAG instructions select the ARM TDO output while Stellaris JTAG instructions select the Stellaris TDO output. The multiplexer is controlled by the Stellaris JTAG controller, which has comprehensive programming for the ARM, Stellaris, and unimplemented JTAG instructions. The Stellaris JTAG module has the following features: ■ IEEE 1149.1-1990 compatible Test Access Port (TAP) controller ■ Four-bit Instruction Register (IR) chain for storing JTAG instructions ■ IEEE standard instructions: BYPASS, IDCODE, SAMPLE/PRELOAD, EXTEST and INTEST ■ ARM additional instructions: APACC, DPACC and ABORT ■ Integrated ARM Serial Wire Debug (SWD) – Serial Wire JTAG Debug Port (SWJ-DP) – Flash Patch and Breakpoint (FPB) unit for implementing breakpoints – Data Watchpoint and Trace (DWT) unit for implementing watchpoints, trigger resources, and system profiling – Instrumentation Trace Macrocell (ITM) for support of printf style debugging – Trace Port Interface Unit (TPIU) for bridging to a Trace Port Analyzer See the ARM® Debug Interface V5 Architecture Specification for more information on the ARM JTAG controller. March 19, 2011 187 Texas Instruments-Advance Information JTAG Interface 4.1 Block Diagram Figure 4-1. JTAG Module Block Diagram TCK TMS TAP Controller TDI Instruction Register (IR) BYPASS Data Register TDO Boundary Scan Data Register IDCODE Data Register ABORT Data Register DPACC Data Register APACC Data Register Cortex-M3 Debug Port 4.2 Signal Description Table 4-1 on page 188 and Table 4-2 on page 189 list the external signals of the JTAG/SWD controller and describe the function of each. The JTAG/SWD controller signals are alternate functions for some GPIO signals, however note that the reset state of the pins is for the JTAG/SWD function. The JTAG/SWD controller signals are under commit protection and require a special process to be configured as GPIOs, see “Commit Control” on page 405. The column in the table below titled "Pin Mux/Pin Assignment" lists the GPIO pin placement for the JTAG/SWD controller signals. The AFSEL bit in the GPIO Alternate Function Select (GPIOAFSEL) register (page 421) is set to choose the JTAG/SWD function. The number in parentheses is the encoding that must be programmed into the PMCn field in the GPIO Port Control (GPIOPCTL) register (page 439) to assign the JTAG/SWD controller signals to the specified GPIO port pin. For more information on configuring GPIOs, see “General-Purpose Input/Outputs (GPIOs)” on page 397. Table 4-1. Signals for JTAG_SWD_SWO (100LQFP) Pin Name Pin Number Pin Mux / Pin Assignment a Pin Type Buffer Type Description SWCLK 80 PC0 (3) I TTL JTAG/SWD CLK. SWDIO 79 PC1 (3) I/O TTL JTAG TMS and SWDIO. SWO 77 PC3 (3) O TTL JTAG TDO and SWO. TCK 80 PC0 (3) I TTL JTAG/SWD CLK. TDI 78 PC2 (3) I TTL JTAG TDI. TDO 77 PC3 (3) O TTL JTAG TDO and SWO. 188 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Table 4-1. Signals for JTAG_SWD_SWO (100LQFP) (continued) Pin Name Pin Number Pin Mux / Pin Assignment 79 TMS PC1 (3) a Pin Type Buffer Type I TTL Description JTAG TMS and SWDIO. a. The TTL designation indicates the pin has TTL-compatible voltage levels. Table 4-2. Signals for JTAG_SWD_SWO (108BGA) Pin Name Pin Number Pin Mux / Pin Assignment a Pin Type Buffer Type Description A9 PC0 (3) I TTL JTAG/SWD CLK. SWDIO B9 PC1 (3) I/O TTL JTAG TMS and SWDIO. SWO A10 PC3 (3) O TTL JTAG TDO and SWO. TCK A9 PC0 (3) I TTL JTAG/SWD CLK. SWCLK TDI B8 PC2 (3) I TTL JTAG TDI. TDO A10 PC3 (3) O TTL JTAG TDO and SWO. TMS B9 PC1 (3) I TTL JTAG TMS and SWDIO. a. The TTL designation indicates the pin has TTL-compatible voltage levels. 4.3 Functional Description A high-level conceptual drawing of the JTAG module is shown in Figure 4-1 on page 188. The JTAG module is composed of the Test Access Port (TAP) controller and serial shift chains with parallel update registers. The TAP controller is a simple state machine controlled by the TCK and TMS inputs. The current state of the TAP controller depends on the sequence of values captured on TMS at the rising edge of TCK. The TAP controller determines when the serial shift chains capture new data, shift data from TDI towards TDO, and update the parallel load registers. The current state of the TAP controller also determines whether the Instruction Register (IR) chain or one of the Data Register (DR) chains is being accessed. The serial shift chains with parallel load registers are comprised of a single Instruction Register (IR) chain and multiple Data Register (DR) chains. The current instruction loaded in the parallel load register determines which DR chain is captured, shifted, or updated during the sequencing of the TAP controller. Some instructions, like EXTEST and INTEST, operate on data currently in a DR chain and do not capture, shift, or update any of the chains. Instructions that are not implemented decode to the BYPASS instruction to ensure that the serial path between TDI and TDO is always connected (see Table 4-4 on page 195 for a list of implemented instructions). See “JTAG and Boundary Scan” on page 1304 for JTAG timing diagrams. Note: 4.3.1 Of all the possible reset sources, only Power-On reset (POR) and the assertion of the RST input have any effect on the JTAG module. The pin configurations are reset by both the RST input and POR, whereas the internal JTAG logic is only reset with POR. See “Reset Sources” on page 200 for more information on reset. JTAG Interface Pins The JTAG interface consists of four standard pins: TCK, TMS, TDI, and TDO. These pins and their associated state after a power-on reset or reset caused by the RST input are given in Table 4-3. Detailed information on each pin follows. Refer to “General-Purpose Input/Outputs (GPIOs)” on page 397 for information on how to reprogram the configuration of these pins. March 19, 2011 189 Texas Instruments-Advance Information JTAG Interface Table 4-3. JTAG Port Pins State after Power-On Reset or RST assertion 4.3.1.1 Pin Name Data Direction Internal Pull-Up Internal Pull-Down Drive Strength Drive Value TCK Input Enabled Disabled N/A N/A TMS Input Enabled Disabled N/A N/A TDI Input Enabled Disabled N/A N/A TDO Output Enabled Disabled 2-mA driver High-Z Test Clock Input (TCK) The TCK pin is the clock for the JTAG module. This clock is provided so the test logic can operate independently of any other system clocks and to ensure that multiple JTAG TAP controllers that are daisy-chained together can synchronously communicate serial test data between components. During normal operation, TCK is driven by a free-running clock with a nominal 50% duty cycle. When necessary, TCK can be stopped at 0 or 1 for extended periods of time. While TCK is stopped at 0 or 1, the state of the TAP controller does not change and data in the JTAG Instruction and Data Registers is not lost. By default, the internal pull-up resistor on the TCK pin is enabled after reset, assuring that no clocking occurs if the pin is not driven from an external source. The internal pull-up and pull-down resistors can be turned off to save internal power as long as the TCK pin is constantly being driven by an external source (see page 427 and page 429). 4.3.1.2 Test Mode Select (TMS) The TMS pin selects the next state of the JTAG TAP controller. TMS is sampled on the rising edge of TCK. Depending on the current TAP state and the sampled value of TMS, the next state may be entered. Because the TMS pin is sampled on the rising edge of TCK, the IEEE Standard 1149.1 expects the value on TMS to change on the falling edge of TCK. Holding TMS high for five consecutive TCK cycles drives the TAP controller state machine to the Test-Logic-Reset state. When the TAP controller enters the Test-Logic-Reset state, the JTAG module and associated registers are reset to their default values. This procedure should be performed to initialize the JTAG controller. The JTAG Test Access Port state machine can be seen in its entirety in Figure 4-2 on page 191. By default, the internal pull-up resistor on the TMS pin is enabled after reset. Changes to the pull-up resistor settings on GPIO Port C should ensure that the internal pull-up resistor remains enabled on PC1/TMS; otherwise JTAG communication could be lost (see page 427). 4.3.1.3 Test Data Input (TDI) The TDI pin provides a stream of serial information to the IR chain and the DR chains. TDI is sampled on the rising edge of TCK and, depending on the current TAP state and the current instruction, may present this data to the proper shift register chain. Because the TDI pin is sampled on the rising edge of TCK, the IEEE Standard 1149.1 expects the value on TDI to change on the falling edge of TCK. By default, the internal pull-up resistor on the TDI pin is enabled after reset. Changes to the pull-up resistor settings on GPIO Port C should ensure that the internal pull-up resistor remains enabled on PC2/TDI; otherwise JTAG communication could be lost (see page 427). 4.3.1.4 Test Data Output (TDO) The TDO pin provides an output stream of serial information from the IR chain or the DR chains. The value of TDO depends on the current TAP state, the current instruction, and the data in the 190 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller chain being accessed. In order to save power when the JTAG port is not being used, the TDO pin is placed in an inactive drive state when not actively shifting out data. Because TDO can be connected to the TDI of another controller in a daisy-chain configuration, the IEEE Standard 1149.1 expects the value on TDO to change on the falling edge of TCK. By default, the internal pull-up resistor on the TDO pin is enabled after reset, assuring that the pin remains at a constant logic level when the JTAG port is not being used. The internal pull-up and pull-down resistors can be turned off to save internal power if a High-Z output value is acceptable during certain TAP controller states (see page 427 and page 429). 4.3.2 JTAG TAP Controller The JTAG TAP controller state machine is shown in Figure 4-2. The TAP controller state machine is reset to the Test-Logic-Reset state on the assertion of a Power-On-Reset (POR). In order to reset the JTAG module after the microcontroller has been powered on, the TMS input must be held HIGH for five TCK clock cycles, resetting the TAP controller and all associated JTAG chains. Asserting the correct sequence on the TMS pin allows the JTAG module to shift in new instructions, shift in data, or idle during extended testing sequences. For detailed information on the function of the TAP controller and the operations that occur in each state, please refer to IEEE Standard 1149.1. Figure 4-2. Test Access Port State Machine Test Logic Reset 1 0 Run Test Idle 0 Select DR Scan 1 Select IR Scan 1 0 1 Capture DR 1 Capture IR 0 0 Shift DR Shift IR 0 1 Exit 1 DR Exit 1 IR 1 Pause IR 0 1 Exit 2 DR 0 1 0 Exit 2 IR 1 1 Update DR 4.3.3 1 0 Pause DR 1 0 1 0 0 1 0 Update IR 0 1 0 Shift Registers The Shift Registers consist of a serial shift register chain and a parallel load register. The serial shift register chain samples specific information during the TAP controller’s CAPTURE states and allows March 19, 2011 191 Texas Instruments-Advance Information JTAG Interface this information to be shifted out on TDO during the TAP controller’s SHIFT states. While the sampled data is being shifted out of the chain on TDO, new data is being shifted into the serial shift register on TDI. This new data is stored in the parallel load register during the TAP controller’s UPDATE states. Each of the shift registers is discussed in detail in “Register Descriptions” on page 195. 4.3.4 Operational Considerations Certain operational parameters must be considered when using the JTAG module. Because the JTAG pins can be programmed to be GPIOs, board configuration and reset conditions on these pins must be considered. In addition, because the JTAG module has integrated ARM Serial Wire Debug, the method for switching between these two operational modes is described below. 4.3.4.1 GPIO Functionality When the microcontroller is reset with either a POR or RST, the JTAG/SWD port pins default to their JTAG/SWD configurations. The default configuration includes enabling digital functionality (DEN[3:0] set in the Port C GPIO Digital Enable (GPIODEN) register), enabling the pull-up resistors (PUE[3:0] set in the Port C GPIO Pull-Up Select (GPIOPUR) register), disabling the pull-down resistors (PDE[3:0] cleared in the Port C GPIO Pull-Down Select (GPIOPDR) register) and enabling the alternate hardware function (AFSEL[3:0] set in the Port C GPIO Alternate Function Select (GPIOAFSEL) register) on the JTAG/SWD pins. See page 421, page 427, page 429, and page 432. It is possible for software to configure these pins as GPIOs after reset by clearing AFSEL[3:0] in the Port C GPIOAFSEL register. If the user does not require the JTAG/SWD port for debugging or board-level testing, this provides four more GPIOs for use in the design. Caution – It is possible to create a software sequence that prevents the debugger from connecting to the Stellaris microcontroller. If the program code loaded into flash immediately changes the JTAG pins to their GPIO functionality, the debugger may not have enough time to connect and halt the controller before the JTAG pin functionality switches. As a result, the debugger may be locked out of the part. This issue can be avoided with a software routine that restores JTAG functionality based on an external or software trigger. The GPIO commit control registers provide a layer of protection against accidental programming of critical hardware peripherals. Protection is provided for the NMI pin (PB7) and the four JTAG/SWD pins (PC[3:0]). Writes to protected bits of the GPIO Alternate Function Select (GPIOAFSEL) register (see page 421), GPIO Pull Up Select (GPIOPUR) register (see page 427), GPIO Pull-Down Select (GPIOPDR) register (see page 429), and GPIO Digital Enable (GPIODEN) register (see page 432) are not committed to storage unless the GPIO Lock (GPIOLOCK) register (see page 434) has been unlocked and the appropriate bits of the GPIO Commit (GPIOCR) register (see page 435) have been set. 4.3.4.2 Communication with JTAG/SWD Because the debug clock and the system clock can be running at different frequencies, care must be taken to maintain reliable communication with the JTAG/SWD interface. In the Capture-DR state, the result of the previous transaction, if any, is returned, together with a 3-bit ACK response. Software should check the ACK response to see if the previous operation has completed before initiating a new transaction. Alternatively, if the system clock is at least 8 times faster than the debug clock (TCK or SWCLK), the previous operation has enough time to complete and the ACK bits do not have to be checked. 192 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller 4.3.4.3 Recovering a "Locked" Microcontroller Note: Performing the sequence below restores the nonvolatile registers discussed in “Nonvolatile Register Programming” on page 309 to their factory default values. The mass erase of the Flash memory caused by the sequence below occurs prior to the nonvolatile registers being restored. If software configures any of the JTAG/SWD pins as GPIO and loses the ability to communicate with the debugger, there is a debug port unlock sequence that can be used to recover the microcontroller. Performing a total of ten JTAG-to-SWD and SWD-to-JTAG switch sequences while holding the microcontroller in reset mass erases the Flash memory. The debug port unlock sequence is: 1. Assert and hold the RST signal. 2. Perform steps 1 and 2 of the JTAG-to-SWD switch sequence on the section called “JTAG-to-SWD Switching” on page 194. 3. Perform steps 1 and 2 of the SWD-to-JTAG switch sequence on the section called “SWD-to-JTAG Switching” on page 194. 4. Perform steps 1 and 2 of the JTAG-to-SWD switch sequence. 5. Perform steps 1 and 2 of the SWD-to-JTAG switch sequence. 6. Perform steps 1 and 2 of the JTAG-to-SWD switch sequence. 7. Perform steps 1 and 2 of the SWD-to-JTAG switch sequence. 8. Perform steps 1 and 2 of the JTAG-to-SWD switch sequence. 9. Perform steps 1 and 2 of the SWD-to-JTAG switch sequence. 10. Perform steps 1 and 2 of the JTAG-to-SWD switch sequence. 11. Perform steps 1 and 2 of the SWD-to-JTAG switch sequence. 12. Release the RST signal. 13. Wait 400 ms. 14. Power-cycle the microcontroller. 4.3.4.4 ARM Serial Wire Debug (SWD) In order to seamlessly integrate the ARM Serial Wire Debug (SWD) functionality, a serial-wire debugger must be able to connect to the Cortex-M3 core without having to perform, or have any knowledge of, JTAG cycles. This integration is accomplished with a SWD preamble that is issued before the SWD session begins. The switching preamble used to enable the SWD interface of the SWJ-DP module starts with the TAP controller in the Test-Logic-Reset state. From here, the preamble sequences the TAP controller through the following states: Run Test Idle, Select DR, Select IR, Test Logic Reset, Test Logic Reset, Run Test Idle, Run Test Idle, Select DR, Select IR, Test Logic Reset, Test Logic Reset, Run Test Idle, Run Test Idle, Select DR, Select IR, and Test Logic Reset states. March 19, 2011 193 Texas Instruments-Advance Information JTAG Interface Stepping through this sequence of the TAP state machine enables the SWD interface and disables the JTAG interface. For more information on this operation and the SWD interface, see the ARM® Debug Interface V5 Architecture Specification. Because this sequence is a valid series of JTAG operations that could be issued, the ARM JTAG TAP controller is not fully compliant to the IEEE Standard 1149.1. This instance is the only one where the ARM JTAG TAP controller does not meet full compliance with the specification. Due to the low probability of this sequence occurring during normal operation of the TAP controller, it should not affect normal performance of the JTAG interface. JTAG-to-SWD Switching To switch the operating mode of the Debug Access Port (DAP) from JTAG to SWD mode, the external debug hardware must send the switching preamble to the microcontroller. The 16-bit TMS command for switching to SWD mode is defined as b1110.0111.1001.1110, transmitted LSB first. This command can also be represented as 0xE79E when transmitted LSB first. The complete switch sequence should consist of the following transactions on the TCK/SWCLK and TMS/SWDIO signals: 1. Send at least 50 TCK/SWCLK cycles with TMS/SWDIO High to ensure that both JTAG and SWD are in their reset/idle states. 2. Send the 16-bit JTAG-to-SWD switch command, 0xE79E, on TMS. 3. Send at least 50 TCK/SWCLK cycles with TMS/SWDIO High to ensure that if SWJ-DP was already in SWD mode, the SWD goes into the line reset state before sending the switch sequence. SWD-to-JTAG Switching To switch the operating mode of the Debug Access Port (DAP) from SWD to JTAG mode, the external debug hardware must send a switch command to the microcontroller. The 16-bit TMS command for switching to JTAG mode is defined as b1110.0111.0011.1100, transmitted LSB first. This command can also be represented as 0xE73C when transmitted LSB first. The complete switch sequence should consist of the following transactions on the TCK/SWCLK and TMS/SWDIO signals: 1. Send at least 50 TCK/SWCLK cycles with TMS/SWDIO High to ensure that both JTAG and SWD are in their reset/idle states. 2. Send the 16-bit SWD-to-JTAG switch command, 0xE73C, on TMS. 3. Send at least 50 TCK/SWCLK cycles with TMS/SWDIO High to ensure that if SWJ-DP was already in JTAG mode, the JTAG goes into the Test Logic Reset state before sending the switch sequence. 4.4 Initialization and Configuration After a Power-On-Reset or an external reset (RST), the JTAG pins are automatically configured for JTAG communication. No user-defined initialization or configuration is needed. However, if the user application changes these pins to their GPIO function, they must be configured back to their JTAG functionality before JTAG communication can be restored. To return the pins to their JTAG functions, enable the four JTAG pins (PC[3:0]) for their alternate function using the GPIOAFSEL register. In addition to enabling the alternate functions, any other changes to the GPIO pad configurations on the four JTAG pins (PC[3:0]) should be returned to their default settings. 194 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller 4.5 Register Descriptions The registers in the JTAG TAP Controller or Shift Register chains are not memory mapped and are not accessible through the on-chip Advanced Peripheral Bus (APB). Instead, the registers within the JTAG controller are all accessed serially through the TAP Controller. These registers include the Instruction Register and the six Data Registers. 4.5.1 Instruction Register (IR) The JTAG TAP Instruction Register (IR) is a four-bit serial scan chain connected between the JTAG TDI and TDO pins with a parallel load register. When the TAP Controller is placed in the correct states, bits can be shifted into the IR. Once these bits have been shifted into the chain and updated, they are interpreted as the current instruction. The decode of the IR bits is shown in Table 4-4. A detailed explanation of each instruction, along with its associated Data Register, follows. Table 4-4. JTAG Instruction Register Commands 4.5.1.1 IR[3:0] Instruction Description 0x0 EXTEST Drives the values preloaded into the Boundary Scan Chain by the SAMPLE/PRELOAD instruction onto the pads. 0x1 INTEST Drives the values preloaded into the Boundary Scan Chain by the SAMPLE/PRELOAD instruction into the controller. 0x2 SAMPLE / PRELOAD 0x8 ABORT Shifts data into the ARM Debug Port Abort Register. 0xA DPACC Shifts data into and out of the ARM DP Access Register. 0xB APACC Shifts data into and out of the ARM AC Access Register. 0xE IDCODE Loads manufacturing information defined by the IEEE Standard 1149.1 into the IDCODE chain and shifts it out. 0xF BYPASS Connects TDI to TDO through a single Shift Register chain. All Others Reserved Defaults to the BYPASS instruction to ensure that TDI is always connected to TDO. Captures the current I/O values and shifts the sampled values out of the Boundary Scan Chain while new preload data is shifted in. EXTEST Instruction The EXTEST instruction is not associated with its own Data Register chain. Instead, the EXTEST instruction uses the data that has been preloaded into the Boundary Scan Data Register using the SAMPLE/PRELOAD instruction. When the EXTEST instruction is present in the Instruction Register, the preloaded data in the Boundary Scan Data Register associated with the outputs and output enables are used to drive the GPIO pads rather than the signals coming from the core. With tests that drive known values out of the controller, this instruction can be used to verify connectivity. While the EXTEST instruction is present in the Instruction Register, the Boundary Scan Data Register can be accessed to sample and shift out the current data and load new data into the Boundary Scan Data Register. 4.5.1.2 INTEST Instruction The INTEST instruction is not associated with its own Data Register chain. Instead, the INTEST instruction uses the data that has been preloaded into the Boundary Scan Data Register using the SAMPLE/PRELOAD instruction. When the INTEST instruction is present in the Instruction Register, the preloaded data in the Boundary Scan Data Register associated with the inputs are used to drive the signals going into the core rather than the signals coming from the GPIO pads. With tests that drive known values into the controller, this instruction can be used for testing. It is important to note that although the RST input pin is on the Boundary Scan Data Register chain, it is only observable. March 19, 2011 195 Texas Instruments-Advance Information JTAG Interface While the INTEST instruction is present in the Instruction Register, the Boundary Scan Data Register can be accessed to sample and shift out the current data and load new data into the Boundary Scan Data Register. 4.5.1.3 SAMPLE/PRELOAD Instruction The SAMPLE/PRELOAD instruction connects the Boundary Scan Data Register chain between TDI and TDO. This instruction samples the current state of the pad pins for observation and preloads new test data. Each GPIO pad has an associated input, output, and output enable signal. When the TAP controller enters the Capture DR state during this instruction, the input, output, and output-enable signals to each of the GPIO pads are captured. These samples are serially shifted out on TDO while the TAP controller is in the Shift DR state and can be used for observation or comparison in various tests. While these samples of the inputs, outputs, and output enables are being shifted out of the Boundary Scan Data Register, new data is being shifted into the Boundary Scan Data Register from TDI. Once the new data has been shifted into the Boundary Scan Data Register, the data is saved in the parallel load registers when the TAP controller enters the Update DR state. This update of the parallel load register preloads data into the Boundary Scan Data Register that is associated with each input, output, and output enable. This preloaded data can be used with the EXTEST and INTEST instructions to drive data into or out of the controller. See “Boundary Scan Data Register” on page 197 for more information. 4.5.1.4 ABORT Instruction The ABORT instruction connects the associated ABORT Data Register chain between TDI and TDO. This instruction provides read and write access to the ABORT Register of the ARM Debug Access Port (DAP). Shifting the proper data into this Data Register clears various error bits or initiates a DAP abort of a previous request. See the “ABORT Data Register” on page 198 for more information. 4.5.1.5 DPACC Instruction The DPACC instruction connects the associated DPACC Data Register chain between TDI and TDO. This instruction provides read and write access to the DPACC Register of the ARM Debug Access Port (DAP). Shifting the proper data into this register and reading the data output from this register allows read and write access to the ARM debug and status registers. See “DPACC Data Register” on page 198 for more information. 4.5.1.6 APACC Instruction The APACC instruction connects the associated APACC Data Register chain between TDI and TDO. This instruction provides read and write access to the APACC Register of the ARM Debug Access Port (DAP). Shifting the proper data into this register and reading the data output from this register allows read and write access to internal components and buses through the Debug Port. See “APACC Data Register” on page 198 for more information. 4.5.1.7 IDCODE Instruction The IDCODE instruction connects the associated IDCODE Data Register chain between TDI and TDO. This instruction provides information on the manufacturer, part number, and version of the ARM core. This information can be used by testing equipment and debuggers to automatically configure input and output data streams. IDCODE is the default instruction loaded into the JTAG Instruction Register when a Power-On-Reset (POR) is asserted, or the Test-Logic-Reset state is entered. See “IDCODE Data Register” on page 197 for more information. 196 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller 4.5.1.8 BYPASS Instruction The BYPASS instruction connects the associated BYPASS Data Register chain between TDI and TDO. This instruction is used to create a minimum length serial path between the TDI and TDO ports. The BYPASS Data Register is a single-bit shift register. This instruction improves test efficiency by allowing components that are not needed for a specific test to be bypassed in the JTAG scan chain by loading them with the BYPASS instruction. See “BYPASS Data Register” on page 197 for more information. 4.5.2 Data Registers The JTAG module contains six Data Registers. These serial Data Register chains include: IDCODE, BYPASS, Boundary Scan, APACC, DPACC, and ABORT and are discussed in the following sections. 4.5.2.1 IDCODE Data Register The format for the 32-bit IDCODE Data Register defined by the IEEE Standard 1149.1 is shown in Figure 4-3. The standard requires that every JTAG-compliant microcontroller implement either the IDCODE instruction or the BYPASS instruction as the default instruction. The LSB of the IDCODE Data Register is defined to be a 1 to distinguish it from the BYPASS instruction, which has an LSB of 0. This definition allows auto-configuration test tools to determine which instruction is the default instruction. The major uses of the JTAG port are for manufacturer testing of component assembly and program development and debug. To facilitate the use of auto-configuration debug tools, the IDCODE instruction outputs a value of 0x4BA0.0477. This value allows the debuggers to automatically configure themselves to work correctly with the Cortex-M3 during debug. Figure 4-3. IDCODE Register Format 31 TDI 4.5.2.2 28 27 Version 12 11 Part Number 1 0 Manufacturer ID 1 TDO BYPASS Data Register The format for the 1-bit BYPASS Data Register defined by the IEEE Standard 1149.1 is shown in Figure 4-4. The standard requires that every JTAG-compliant microcontroller implement either the BYPASS instruction or the IDCODE instruction as the default instruction. The LSB of the BYPASS Data Register is defined to be a 0 to distinguish it from the IDCODE instruction, which has an LSB of 1. This definition allows auto-configuration test tools to determine which instruction is the default instruction. Figure 4-4. BYPASS Register Format 0 TDI 4.5.2.3 0 TDO Boundary Scan Data Register The format of the Boundary Scan Data Register is shown in Figure 4-5. Each GPIO pin, starting with a GPIO pin next to the JTAG port pins, is included in the Boundary Scan Data Register. Each March 19, 2011 197 Texas Instruments-Advance Information JTAG Interface GPIO pin has three associated digital signals that are included in the chain. These signals are input, output, and output enable, and are arranged in that order as shown in the figure. When the Boundary Scan Data Register is accessed with the SAMPLE/PRELOAD instruction, the input, output, and output enable from each digital pad are sampled and then shifted out of the chain to be verified. The sampling of these values occurs on the rising edge of TCK in the Capture DR state of the TAP controller. While the sampled data is being shifted out of the Boundary Scan chain in the Shift DR state of the TAP controller, new data can be preloaded into the chain for use with the EXTEST and INTEST instructions. The EXTEST instruction forces data out of the controller, and the INTEST instruction forces data into the controller. Figure 4-5. Boundary Scan Register Format TDI I N O U T O E ... O U T mth GPIO 1st GPIO 4.5.2.4 I N O E I N O U T O E (m+1)th GPIO ... I N O U T O E TDO GPIO nth APACC Data Register The format for the 35-bit APACC Data Register defined by ARM is described in the ARM® Debug Interface V5 Architecture Specification. 4.5.2.5 DPACC Data Register The format for the 35-bit DPACC Data Register defined by ARM is described in the ARM® Debug Interface V5 Architecture Specification. 4.5.2.6 ABORT Data Register The format for the 35-bit ABORT Data Register defined by ARM is described in the ARM® Debug Interface V5 Architecture Specification. 198 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller 5 System Control System control configures the overall operation of the device and provides information about the device. Configurable features include reset control, NMI operation, power control, clock control, and low-power modes. 5.1 Signal Description Table 5-1 on page 199 and Table 5-2 on page 199 list the external signals of the System Control module and describe the function of each. The NMI signal is the alternate function for the GPIO PB7 signal and functions as a GPIO after reset. PB7 is under commit protection and requires a special process to be configured as any alternate function or to subsequently return to the GPIO function, see “Commit Control” on page 405. The column in the table below titled "Pin Mux/Pin Assignment" lists the GPIO pin placement for the NMI signal. The AFSEL bit in the GPIO Alternate Function Select (GPIOAFSEL) register (page 421) should be set to choose the NMI function. The number in parentheses is the encoding that must be programmed into the PMCn field in the GPIO Port Control (GPIOPCTL) register (page 439) to assign the NMI signal to the specified GPIO port pin. For more information on configuring GPIOs, see “General-Purpose Input/Outputs (GPIOs)” on page 397. The remaining signals (with the word "fixed" in the Pin Mux/Pin Assignment column) have a fixed pin assignment and function. Table 5-1. Signals for System Control & Clocks (100LQFP) Pin Name Pin Number Pin Mux / Pin Assignment a Pin Type Buffer Type Description NMI 89 PB7 (4) I TTL Non-maskable interrupt. OSC0 48 fixed I Analog Main oscillator crystal input or an external clock reference input. OSC1 49 fixed O Analog Main oscillator crystal output. Leave unconnected when using a single-ended clock source. RST 64 fixed I TTL System reset input. a. The TTL designation indicates the pin has TTL-compatible voltage levels. Table 5-2. Signals for System Control & Clocks (108BGA) Pin Name Pin Number Pin Mux / Pin Assignment a Pin Type Buffer Type Description NMI A8 PB7 (4) I TTL Non-maskable interrupt. OSC0 L11 fixed I Analog Main oscillator crystal input or an external clock reference input. OSC1 M11 fixed O Analog Main oscillator crystal output. Leave unconnected when using a single-ended clock source. RST H11 fixed I TTL System reset input. a. The TTL designation indicates the pin has TTL-compatible voltage levels. 5.2 Functional Description The System Control module provides the following capabilities: ■ Device identification, see “Device Identification” on page 200 March 19, 2011 199 Texas Instruments-Advance Information System Control ■ Local control, such as reset (see “Reset Control” on page 200), power (see “Power Control” on page 205) and clock control (see “Clock Control” on page 206) ■ System control (Run, Sleep, and Deep-Sleep modes), see “System Control” on page 213 5.2.1 Device Identification Several read-only registers provide software with information on the microcontroller, such as version, part number, SRAM size, Flash memory size, and other features. See the DID0 (page 217), DID1 (page 245), DC0-DC9 (page 247) and NVMSTAT (page 268) registers. 5.2.2 Reset Control This section discusses aspects of hardware functions during reset as well as system software requirements following the reset sequence. 5.2.2.1 Reset Sources The LM3S9B92 microcontroller has six sources of reset: 1. Power-on reset (POR) (see page 201). 2. External reset input pin (RST) assertion (see page 201). 3. Internal brown-out (BOR) detector (see page 203). 4. Software-initiated reset (with the software reset registers) (see page 204). 5. A watchdog timer reset condition violation (see page 204). 6. MOSC failure (see page 205). Table 5-3 provides a summary of results of the various reset operations. Table 5-3. Reset Sources Reset Source Core Reset? JTAG Reset? On-Chip Peripherals Reset? Power-On Reset Yes Yes Yes RST Yes Yes Yes Brown-Out Reset Yes Yes Yes Software System Request Reset using the SYSRESREQ bit in the APINT register. Yes Yes Yes Software System Request Reset using the VECTRESET bit in the APINT register. Yes Yes No Software Peripheral Reset No Yes Yes a Watchdog Reset Yes Yes Yes MOSC Failure Reset Yes Yes Yes a. Programmable on a module-by-module basis using the Software Reset Control Registers. After a reset, the Reset Cause (RESC) register is set with the reset cause. The bits in this register are sticky and maintain their state across multiple reset sequences, except when an internal POR is the cause, in which case, all the bits in the RESC register are cleared except for the POR indicator. A bit in the RESC register can be cleared by writing a 0. 200 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller At any reset that resets the core, the user has the opportunity to direct the core to execute the ROM Boot Loader or the application in Flash memory by using any GPIO signal as configured in the Boot Configuration (BOOTCFG) register. At reset, the ROM is mapped over the Flash memory so that the ROM boot sequence is always executed. The boot sequence executed from ROM is as follows: 1. The BA bit (below) is cleared such that ROM is mapped to 0x01xx.xxxx and Flash memory is mapped to address 0x0. 2. The BOOTCFG register is read. If the EN bit is clear, the status of the specified GPIO pin is compared with the specified polarity. If the status matches the specified polarity, the ROM is mapped to address 0x0000.0000 and execution continues out of the ROM Boot Loader. 3. If the status doesn't match the specified polarity, the data at address 0x0000.0004 is read, and if the data at this address is 0xFFFF.FFFF, the ROM is mapped to address 0x0000.0000 and execution continues out of the ROM Boot Loader. 4. If there is valid data at address 0x0000.0004, the stack pointer (SP) is loaded from Flash memory at address 0x0000.0000 and the program counter (PC) is loaded from address 0x0000.0004. The user application begins executing. For example, if the BOOTCFG register is written and committed with the value of 0x0000.3C01, then PB7 is examined at reset to determine if the ROM Boot Loader should be executed. If PB7 is Low, the core unconditionally begins executing the ROM boot loader. If PB7 is High, then the application in Flash memory is executed if the reset vector at location 0x0000.0004 is not 0xFFFF.FFFF. Otherwise, the ROM boot loader is executed. 5.2.2.2 Power-On Reset (POR) Note: The JTAG controller can only be reset by the power-on reset and the brown-out reset. The internal Power-On Reset (POR) circuit monitors the power supply voltage (VDD) and generates a reset signal to all of the internal logic including JTAG when the power supply ramp reaches a threshold value (VTH). The microcontroller must be operating within the specified operating parameters when the on-chip power-on reset pulse is complete (see “Power and Brown-out Characteristics” on page 1302). For applications that require the use of an external reset signal to hold the microcontroller in reset longer than the internal POR, the RST input may be used as discussed in “External RST Pin” on page 201. The Power-On Reset sequence is as follows: 1. The microcontroller waits for internal POR to go inactive. 2. The internal reset is released and the core loads from memory the initial stack pointer, the initial program counter, and the first instruction designated by the program counter, and then begins execution. The internal POR is only active on the initial power-up of the microcontroller. The Power-On Reset timing is shown in Figure 26-4 on page 1303. 5.2.2.3 External RST Pin Note: It is recommended that the trace for the RST signal must be kept as short as possible. Be sure to place any components connected to the RST signal as close to the microcontroller as possible. March 19, 2011 201 Texas Instruments-Advance Information System Control If the application only uses the internal POR circuit, the RST input must be connected to the power supply (VDD) through an optional pull-up resistor (0 to 100K Ω) as shown in Figure 5-1 on page 202. Figure 5-1. Basic RST Configuration VDD Stellaris® RPU RST RPU = 0 to 100 kΩ The external reset pin (RST) resets the microcontroller including the core and all the on-chip peripherals except the JTAG TAP controller (see “JTAG Interface” on page 187). The external reset sequence is as follows: 1. The external reset pin (RST) is asserted for the duration specified by TMIN and then de-asserted (see “Reset” on page 1306). 2. The internal reset is released and the core loads from memory the initial stack pointer, the initial program counter, and the first instruction designated by the program counter, and then begins execution. To improve noise immunity and/or to delay reset at power up, the RST input may be connected to an RC network as shown in Figure 5-2 on page 202. Figure 5-2. External Circuitry to Extend Power-On Reset VDD Stellaris® RPU RST C1 RPU = 1 kΩ to 100 kΩ C1 = 1 nF to 10 µF If the application requires the use of an external reset switch, Figure 5-3 on page 203 shows the proper circuitry to use. 202 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Figure 5-3. Reset Circuit Controlled by Switch VDD Stellaris® RPU RST C1 RS Typical RPU = 10 kΩ Typical RS = 470 Ω C1 = 10 nF The RPU and C1 components define the power-on delay. The external reset timing is shown in Figure 26-10 on page 1306. 5.2.2.4 Brown-Out Reset (BOR) Note: The JTAG controller can only be reset by the power-on reset and the brown-out reset. The microcontroller provides a brown-out detection circuit that triggers if the power supply (VDD) drops below a brown-out threshold voltage (VBTH). If a brown-out condition is detected, the system may generate an interrupt or a system reset. The default condition is to generate an interrupt, so BOR must be enabled. Brown-out resets are controlled with the Power-On and Brown-Out Reset Control (PBORCTL) register. The BORIOR bit in the PBORCTL register must be set for a brown-out condition to trigger a reset; if BORIOR is clear, an interrupt is generated. When a Brown-out condition occurs during a Flash PROGRAM or ERASE operation, a full system reset is always triggered without regard to the setting in the PBORCTL register. The brown-out reset sequence is as follows: 1. When VDD drops below VBTH, an internal BOR condition is set. 2. If the BOR condition exists, an internal reset is asserted. 3. The internal reset is released and the microcontroller fetches and loads the initial stack pointer, the initial program counter, the first instruction designated by the program counter, and begins execution. 4. The internal BOR condition is reset after 500 µs to prevent another BOR condition from being set before software has a chance to investigate the original cause. The result of a brown-out reset is equivalent to that of an assertion of the external RST input, and the reset is held active until the proper VDD level is restored. The RESC register can be examined in the reset interrupt handler to determine if a Brown-Out condition was the cause of the reset, thus allowing software to determine what actions are required to recover. The internal Brown-Out Reset timing is shown in Figure 26-5 on page 1303. March 19, 2011 203 Texas Instruments-Advance Information System Control 5.2.2.5 Software Reset Software can reset a specific peripheral or generate a reset to the entire microcontroller. Peripherals can be individually reset by software via three registers that control reset signals to each on-chip peripheral (see the SRCRn registers, page 295). If the bit position corresponding to a peripheral is set and subsequently cleared, the peripheral is reset. The encoding of the reset registers is consistent with the encoding of the clock gating control for peripherals and on-chip functions (see “System Control” on page 213). The entire microcontroller, including the core, can be reset by software by setting the SYSRESREQ bit in the Application Interrupt and Reset Control (APINT) register. The software-initiated system reset sequence is as follows: 1. A software microcontroller reset is initiated by setting the SYSRESREQ bit. 2. An internal reset is asserted. 3. The internal reset is deasserted and the microcontroller loads from memory the initial stack pointer, the initial program counter, and the first instruction designated by the program counter, and then begins execution. The core only can be reset by software by setting the VECTRESET bit in the APINT register. The software-initiated core reset sequence is as follows: 1. A core reset is initiated by setting the VECTRESET bit. 2. An internal reset is asserted. 3. The internal reset is deasserted and the microcontroller loads from memory the initial stack pointer, the initial program counter, and the first instruction designated by the program counter, and then begins execution. The software-initiated system reset timing is shown in Figure 26-11 on page 1306. 5.2.2.6 Watchdog Timer Reset The Watchdog Timer module's function is to prevent system hangs. The LM3S9B92 microcontroller has two Watchdog Timer modules in case one watchdog clock source fails. One watchdog is run off the system clock and the other is run off the Precision Internal Oscillator (PIOSC). Each module operates in the same manner except that because the PIOSC watchdog timer module is in a different clock domain, register accesses must have a time delay between them. The watchdog timer can be configured to generate an interrupt to the microcontroller on its first time-out and to generate a reset on its second time-out. After the watchdog's first time-out event, the 32-bit watchdog counter is reloaded with the value of the Watchdog Timer Load (WDTLOAD) register and resumes counting down from that value. If the timer counts down to zero again before the first time-out interrupt is cleared, and the reset signal has been enabled, the watchdog timer asserts its reset signal to the microcontroller. The watchdog timer reset sequence is as follows: 1. The watchdog timer times out for the second time without being serviced. 2. An internal reset is asserted. 204 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller 3. The internal reset is released and the microcontroller loads from memory the initial stack pointer, the initial program counter, and the first instruction designated by the program counter, and then begins execution. For more information on the Watchdog Timer module, see “Watchdog Timers” on page 572. The watchdog reset timing is shown in Figure 26-12 on page 1307. 5.2.3 Non-Maskable Interrupt The microcontroller has three sources of non-maskable interrupt (NMI): ■ The assertion of the NMI signal ■ A main oscillator verification error ■ The NMISET bit in the Interrupt Control and State (INTCTRL) register in the Cortex™-M3 (see page 152). Software must check the cause of the interrupt in order to distinguish among the sources. 5.2.3.1 NMI Pin The NMI signal is the alternate function for GPIO port pin PB7. The alternate function must be enabled in the GPIO for the signal to be used as an interrupt, as described in “General-Purpose Input/Outputs (GPIOs)” on page 397. Note that enabling the NMI alternate function requires the use of the GPIO lock and commit function just like the GPIO port pins associated with JTAG/SWD functionality, see page 435. The active sense of the NMI signal is High; asserting the enabled NMI signal above VIH initiates the NMI interrupt sequence. 5.2.3.2 Main Oscillator Verification Failure The LM3S9B92 microcontroller provides a main oscillator verification circuit that generates an error condition if the oscillator is running too fast or too slow. If the main oscillator verification circuit is enabled and a failure occurs, a power-on reset is generated and control is transferred to the NMI handler. The NMI handler is used to address the main oscillator verification failure because the necessary code can be removed from the general reset handler, speeding up reset processing. The detection circuit is enabled by setting the CVAL bit in the Main Oscillator Control (MOSCCTL) register. The main oscillator verification error is indicated in the main oscillator fail status (MOSCFAIL) bit in the Reset Cause (RESC) register. The main oscillator verification circuit action is described in more detail in “Main Oscillator Verification Circuit” on page 212. 5.2.4 Power Control ® The Stellaris microcontroller provides an integrated LDO regulator that is used to provide power to the majority of the microcontroller's internal logic. Figure 5-4 shows the power architecture. An external regulator may be used instead of the on-chip LDO, but must meet the requirements in Table 26-20 on page 1302. Regardless of the LDO implementation, the internal LDO requires decoupling capacitors as specified in “On-Chip Low Drop-Out (LDO) Regulator Characteristics” on page 1295. Note: VDDA must be supplied with 3.3 V, or the microcontroller does not function properly. VDDA is the supply for all of the analog circuitry on the device, including the clock circuitry. March 19, 2011 205 Texas Instruments-Advance Information System Control Figure 5-4. Power Architecture VDDC Internal Logic and PLL VDDC GND GND LDO Low-Noise LDO +3.3V VDD GND I/O Buffers VDD GND VDDA GNDA Analog Circuits VDDA 5.2.5 GNDA Clock Control System control determines the control of clocks in this part. 5.2.5.1 Fundamental Clock Sources There are multiple clock sources for use in the microcontroller: ■ Precision Internal Oscillator (PIOSC). The precision internal oscillator is an on-chip clock source that is the clock source the microcontroller uses during and following POR. It does not require the use of any external components and provides a clock that is 16 MHz ±1% at room temperature and ±3% across temperature. The PIOSC allows for a reduced system cost in applications that require an accurate clock source. If the main oscillator is required, software must enable the main oscillator following reset and allow the main oscillator to stabilize before changing the clock reference. ■ Main Oscillator (MOSC). The main oscillator provides a frequency-accurate clock source by one of two means: an external single-ended clock source is connected to the OSC0 input pin, or an external crystal is connected across the OSC0 input and OSC1 output pins. If the PLL is being used, the crystal value must be one of the supported frequencies between 3.579545 MHz to 16.384 MHz (inclusive). If the PLL is not being used, the crystal may be any one of the supported frequencies between 1 MHz to 16.384 MHz. The single-ended clock source range is from DC 206 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller through the specified speed of the microcontroller. The supported crystals are listed in the XTAL bit field in the RCC register (see page 228). Note that the MOSC provides the clock source for the USB PLL and must be connected to a crystal or an oscillator. ■ Internal 30-kHz Oscillator. The internal 30-kHz oscillator provides an operational frequency of 30 kHz ± 50%. It is intended for use during Deep-Sleep power-saving modes. This power-savings mode benefits from reduced internal switching and also allows the MOSC to be powered down. The internal system clock (SysClk), is derived from any of the above sources plus two others: the output of the main internal PLL and the precision internal oscillator divided by four (4 MHz ± 1%). The frequency of the PLL clock reference must be in the range of 3.579545 MHz to 16.384 MHz (inclusive). Table 5-4 on page 207 shows how the various clock sources can be used in a system. Table 5-4. Clock Source Options 5.2.5.2 Clock Source Drive PLL? Used as SysClk? Precision Internal Oscillator Yes BYPASS = 0, OSCSRC = 0x1 Yes BYPASS = 1, OSCSRC = 0x1 Precision Internal Oscillator divide by 4 (4 MHz ± 1%) No - Yes BYPASS = 1, OSCSRC = 0x2 Main Oscillator Yes BYPASS = 0, OSCSRC = 0x0 Yes BYPASS = 1, OSCSRC = 0x0 Internal 30-kHz Oscillator No - Yes BYPASS = 1, OSCSRC = 0x3 Clock Configuration The Run-Mode Clock Configuration (RCC) and Run-Mode Clock Configuration 2 (RCC2) registers provide control for the system clock. The RCC2 register is provided to extend fields that offer additional encodings over the RCC register. When used, the RCC2 register field values are used by the logic over the corresponding field in the RCC register. In particular, RCC2 provides for a larger assortment of clock configuration options. These registers control the following clock functionality: ■ Source of clocks in sleep and deep-sleep modes ■ System clock derived from PLL or other clock source ■ Enabling/disabling of oscillators and PLL ■ Clock divisors ■ Crystal input selection Figure 5-5 shows the logic for the main clock tree. The peripheral blocks are driven by the system clock signal and can be individually enabled/disabled. When the PLL is enabled, the ADC clock signal is automatically divided down to 16 MHz from the PLL output for proper ADC operation. The PWM clock signal is a synchronous divide of the system clock to provide the PWM circuit with more range (set with PWMDIV in RCC). Note: When the ADC module is in operation, the system clock must be at least 16 MHz. When the USB module is in operation, MOSC must be provided with a clock source, and the system clock must be at least 20 MHz. March 19, 2011 207 Texas Instruments-Advance Information System Control Figure 5-5. Main Clock Tree XTALa USBPWRDN c USB PLL (480 MHz) ÷4 USB Clock RXINT RXFRAC I2S Receive MCLK TXINT TXFRAC I2S Transmit MCLK USEPWMDIV a PWMDW a PWM Clock XTALa PWRDN b MOSCDIS a PLL (400 MHz) Main OSC USESYSDIV a,d DIV400 c ÷2 IOSCDIS a System Clock Precision Internal OSC (16 MHz) SYSDIV e ÷4 BYPASS b,d Internal OSC (30 kHz) Hibernation OSC (32.768 kHz) PWRDN ADC Clock OSCSRC b,d ÷ 25 a. Control provided by RCC register bit/field. b. Control provided by RCC register bit/field or RCC2 register bit/field, if overridden with RCC2 register bit USERCC2. c. Control provided by RCC2 register bit/field. d. Also may be controlled by DSLPCLKCFG when in deep sleep mode. e. Control provided by RCC register SYSDIV field, RCC2 register SYSDIV2 field if overridden with USERCC2 bit, or [SYSDIV2,SYSDIV2LSB] if both USERCC2 and DIV400 bits are set. Note: The figure above shows all features available on all Stellaris® Tempest-class microcontrollers. Not all peripherals may be available on this device. Using the SYSDIV and SYSDIV2 Fields In the RCC register, the SYSDIV field specifies which divisor is used to generate the system clock from either the PLL output or the oscillator source (depending on how the BYPASS bit in this register 208 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller is configured). When using the PLL, the VCO frequency of 400 MHz is predivided by 2 before the divisor is applied. Table 5-5 shows how the SYSDIV encoding affects the system clock frequency, depending on whether the PLL is used (BYPASS=0) or another clock source is used (BYPASS=1). The divisor is equivalent to the SYSDIV encoding plus 1. For a list of possible clock sources, see Table 5-4 on page 207. Table 5-5. Possible System Clock Frequencies Using the SYSDIV Field SYSDIV 0x0 Divisor /1 a Frequency (BYPASS=0) Frequency (BYPASS=1) StellarisWare Parameter reserved SYSCTL_SYSDIV_1 Clock source frequency/2 b 0x1 /2 reserved Clock source frequency/2 SYSCTL_SYSDIV_2 0x2 /3 66.67 MHz Clock source frequency/3 SYSCTL_SYSDIV_3 0x3 /4 50 MHz Clock source frequency/4 SYSCTL_SYSDIV_4 0x4 /5 40 MHz Clock source frequency/5 SYSCTL_SYSDIV_5 0x5 /6 33.33 MHz Clock source frequency/6 SYSCTL_SYSDIV_6 0x6 /7 28.57 MHz Clock source frequency/7 SYSCTL_SYSDIV_7 0x7 /8 25 MHz Clock source frequency/8 SYSCTL_SYSDIV_8 0x8 /9 22.22 MHz Clock source frequency/9 SYSCTL_SYSDIV_9 0x9 /10 20 MHz Clock source frequency/10 SYSCTL_SYSDIV_10 0xA /11 18.18 MHz Clock source frequency/11 SYSCTL_SYSDIV_11 0xB /12 16.67 MHz Clock source frequency/12 SYSCTL_SYSDIV_12 0xC /13 15.38 MHz Clock source frequency/13 SYSCTL_SYSDIV_13 0xD /14 14.29 MHz Clock source frequency/14 SYSCTL_SYSDIV_14 0xE /15 13.33 MHz Clock source frequency/15 SYSCTL_SYSDIV_15 0xF /16 12.5 MHz (default) Clock source frequency/16 SYSCTL_SYSDIV_16 a. This parameter is used in functions such as SysCtlClockSet() in the Stellaris Peripheral Driver Library. b. SYSCTL_SYSDIV_1 does not set the USESYSDIV bit. As a result, using this parameter without enabling the PLL results in the system clock having the same frequency as the clock source. The SYSDIV2 field in the RCC2 register is 2 bits wider than the SYSDIV field in the RCC register so that additional larger divisors up to /64 are possible, allowing a lower system clock frequency for improved Deep Sleep power consumption. When using the PLL, the VCO frequency of 400 MHz is predivided by 2 before the divisor is applied. The divisor is equivalent to the SYSDIV2 encoding plus 1. Table 5-6 shows how the SYSDIV2 encoding affects the system clock frequency, depending on whether the PLL is used (BYPASS2=0) or another clock source is used (BYPASS2=1). For a list of possible clock sources, see Table 5-4 on page 207. Table 5-6. Examples of Possible System Clock Frequencies Using the SYSDIV2 Field SYSDIV2 Divisor a Frequency (BYPASS2=0) Frequency (BYPASS2=1) StellarisWare Parameter b 0x00 /1 reserved Clock source frequency/2 SYSCTL_SYSDIV_1 0x01 /2 reserved Clock source frequency/2 SYSCTL_SYSDIV_2 0x02 /3 66.67 MHz Clock source frequency/3 SYSCTL_SYSDIV_3 0x03 /4 50 MHz Clock source frequency/4 SYSCTL_SYSDIV_4 0x09 /5 40 MHz Clock source frequency/5 SYSCTL_SYSDIV_5 ... ... ... ... ... 0x09 /10 20 MHz Clock source frequency/10 SYSCTL_SYSDIV_10 ... ... ... ... ... March 19, 2011 209 Texas Instruments-Advance Information System Control Table 5-6. Examples of Possible System Clock Frequencies Using the SYSDIV2 Field (continued) Divisor SYSDIV2 0x3F /64 a Frequency (BYPASS2=0) Frequency (BYPASS2=1) StellarisWare Parameter 3.125 MHz Clock source frequency/64 SYSCTL_SYSDIV_64 a. This parameter is used in functions such as SysCtlClockSet() in the Stellaris Peripheral Driver Library. b. SYSCTL_SYSDIV_1 does not set the USESYSDIV bit. As a result, using this parameter without enabling the PLL results in the system clock having the same frequency as the clock source. To allow for additional frequency choices when using the PLL, the DIV400 bit is provided along with the SYSDIV2LSB bit. When the DIV400 bit is set, bit 22 becomes the LSB for SYSDIV2. In this situation, the divisor is equivalent to the (SYSDIV2 encoding with SYSDIV2LSB appended) plus one. Table 5-7 shows the frequency choices when DIV400 is set. When the DIV400 bit is clear, SYSDIV2LSB is ignored, and the system clock frequency is determined as shown in Table 5-6 on page 209. Table 5-7. Examples of Possible System Clock Frequencies with DIV400=1 /2 reserved - 0 /3 reserved - 1 /4 reserved - 0 /5 80 MHz SYSCTL_SYSDIV_2_5 1 /6 66.67 MHz SYSCTL_SYSDIV_3 0 /7 reserved - 1 /8 50 MHz SYSCTL_SYSDIV_4 0 /9 44.44 MHz SYSCTL_SYSDIV_4_5 1 /10 40 MHz SYSCTL_SYSDIV_5 ... ... ... ... 0 /127 3.15 MHz SYSCTL_SYSDIV_63_5 1 /128 3.125 MHz SYSCTL_SYSDIV_64 0x00 reserved 0x01 0x02 0x03 0x04 ... 0x3F b StellarisWare Parameter SYSDIV2LSB Divisor a Frequency (BYPASS2=0) SYSDIV2 a. Note that DIV400 and SYSDIV2LSB are only valid when BYPASS2=0. b. This parameter is used in functions such as SysCtlClockSet() in the Stellaris Peripheral Driver Library. 5.2.5.3 Precision Internal Oscillator Operation (PIOSC) The microcontroller powers up with the PIOSC running. If another clock source is desired, the PIOSC must remain enabled as it is used for internal functions. The PIOSC can only be disabled during Deep-Sleep mode. It can be powered down by setting the IOSCDIS bit in the RCC register. The PIOSC generates a 16-MHz clock with a ±1% accuracy at room temperatures. Across the extended temperature range, the accuracy is ±3%. At the factory, the PIOSC is set to 16 MHz at room temperature, however, the frequency can be trimmed for other voltage or temperature conditions using software in one of two ways: ■ Default calibration: clear the UTEN bit and set the UPDATE bit in the Precision Internal Oscillator Calibration (PIOSCCAL) register. ■ User-defined calibration: The user can program the UT value to adjust the PIOSC frequency. As the UT value increases, the generated period increases. To commit a new UT value, first set the 210 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller UTEN bit, then program the UT field, and then set the UPDATE bit. The adjustment finishes within a few clock periods and is glitch free. 5.2.5.4 Crystal Configuration for the Main Oscillator (MOSC) The main oscillator supports the use of a select number of crystals. If the main oscillator is used by the PLL as a reference clock, the supported range of crystals is 3.579545 to 16.384 MHz, otherwise, the range of supported crystals is 1 to 16.384 MHz. The XTAL bit in the RCC register (see page 228) describes the available crystal choices and default programming values. Software configures the RCC register XTAL field with the crystal number. If the PLL is used in the design, the XTAL field value is internally translated to the PLL settings. 5.2.5.5 Main PLL Frequency Configuration The main PLL is disabled by default during power-on reset and is enabled later by software if required. Software specifies the output divisor to set the system clock frequency and enables the main PLL to drive the output. The PLL operates at 400 MHz, but is divided by two prior to the application of the output divisor, unless the DIV400 bit in the RCC2 register is set. To configure the PIOSC to be the clock source for the main PLL, program the OSCRC2 field in the Run-Mode Clock Configuration 2 (RCC2) register to be 0x1. If the main oscillator provides the clock reference to the main PLL, the translation provided by hardware and used to program the PLL is available for software in the XTAL to PLL Translation (PLLCFG) register (see page 233). The internal translation provides a translation within ± 1% of the targeted PLL VCO frequency. Table 26-14 on page 1301 shows the actual PLL frequency and error for a given crystal choice. The Crystal Value field (XTAL) in the Run-Mode Clock Configuration (RCC) register (see page 228) describes the available crystal choices and default programming of the PLLCFG register. Any time the XTAL field changes, the new settings are translated and the internal PLL settings are updated. 5.2.5.6 USB PLL Frequency Configuration The USB PLL is disabled by default during power-on reset and is enabled later by software. The USB PLL must be enabled and running for proper USB function. The main oscillator is the only clock reference for the USB PLL. The USB PLL is enabled by clearing the USBPWRDN bit of the RCC2 register. The XTAL bit field (Crystal Value) of the RCC register describes the available crystal choices. The main oscillator must be connected to one of the following crystal values in order to correctly generate the USB clock: 4, 5, 6, 8, 10, 12, or 16 MHz. Only these crystals provide the necessary USB PLL VCO frequency to conform with the USB timing specifications. 5.2.5.7 PLL Modes Both PLLs have two modes of operation: Normal and Power-Down ■ Normal: The PLL multiplies the input clock reference and drives the output. ■ Power-Down: Most of the PLL internal circuitry is disabled and the PLL does not drive the output. The modes are programmed using the RCC/RCC2 register fields (see page 228 and page 236). March 19, 2011 211 Texas Instruments-Advance Information System Control 5.2.5.8 PLL Operation If a PLL configuration is changed, the PLL output frequency is unstable until it reconverges (relocks) to the new setting. The time between the configuration change and relock is TREADY (see Table 26-13 on page 1300). During the relock time, the affected PLL is not usable as a clock reference. Either PLL is changed by one of the following: ■ Change to the XTAL value in the RCC register—writes of the same value do not cause a relock. ■ Change in the PLL from Power-Down to Normal mode. A counter clocked by the system clock is used to measure the TREADY requirement. If the system clock is the main oscillator and it is running off an 8.192 MHz or slower external oscillator clock, the down counter is set to 0x1200 (that is, ~600 μs at an 8.192 MHz). If the system clock is running off the PIOSC or an external oscillator clock that is faster than 8.192 MHz, the down counter is set to 0x2400. Hardware is provided to keep the PLL from being used as a system clock until the TREADY condition is met after one of the two changes above. It is the user's responsibility to have a stable clock source (like the main oscillator) before the RCC/RCC2 register is switched to use the PLL. If the main PLL is enabled and the system clock is switched to use the PLL in one step, the system control hardware continues to clock the microcontroller from the oscillator selected by the RCC/RCC2 register until the main PLL is stable (TREADY time met), after which it changes to the PLL. Software can use many methods to ensure that the system is clocked from the main PLL, including periodically polling the PLLLRIS bit in the Raw Interrupt Status (RIS) register, and enabling the PLL Lock interrupt. The USB PLL is not protected during the lock time (TREADY), and software should ensure that the USB PLL has locked before using the interface. Software can use many methods to ensure the TREADY period has passed, including periodically polling the USBPLLLRIS bit in the Raw Interrupt Status (RIS) register, and enabling the USB PLL Lock interrupt. 5.2.5.9 Main Oscillator Verification Circuit The clock control includes circuitry to ensure that the main oscillator is running at the appropriate frequency. The circuit monitors the main oscillator frequency and signals if the frequency is outside of the allowable band of attached crystals. The detection circuit is enabled using the CVAL bit in the Main Oscillator Control (MOSCCTL) register. If this circuit is enabled and detects an error, the following sequence is performed by the hardware: 1. The MOSCFAIL bit in the Reset Cause (RESC) register is set. 2. If the internal oscillator (PIOSC) is disabled, it is enabled. 3. The system clock is switched from the main oscillator to the PIOSC. 4. An internal power-on reset is initiated that lasts for 32 PIOSC periods. 5. Reset is de-asserted and the processor is directed to the NMI handler during the reset sequence. if the MOSCIM bit in the MOSCCTL register is set, then the following sequence is performed by the hardware: 1. The system clock is switched from the main oscillator to the PIOSC. 212 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller 2. The MOFRIS bit in the RIS register is set to indicate a MOSC failure. 5.2.6 System Control For power-savings purposes, the RCGCn, SCGCn, and DCGCn registers control the clock gating logic for each peripheral or block in the system while the microcontroller is in Run, Sleep, and Deep-Sleep mode, respectively. These registers are located in the System Control register map starting at offsets 0x600, 0x700, and 0x800, respectively. There must be a delay of 3 system clocks after a peripheral module clock is enabled in the RCGC register before any module registers are accessed. There are three levels of operation for the microcontroller defined as: ■ Run mode ■ Sleep mode ■ Deep-Sleep mode The following sections describe the different modes in detail. Caution – If the Cortex-M3 Debug Access Port (DAP) has been enabled, and the device wakes from a low power sleep or deep-sleep mode, the core may start executing code before all clocks to peripherals have been restored to their Run mode configuration. The DAP is usually enabled by software tools accessing the JTAG or SWD interface when debugging or flash programming. If this condition occurs, a Hard Fault is triggered when software accesses a peripheral with an invalid clock. A software delay loop can be used at the beginning of the interrupt routine that is used to wake up a system from a WFI (Wait For Interrupt) instruction. This stalls the execution of any code that accesses a peripheral register that might cause a fault. This loop can be removed for production software as the DAP is most likely not enabled during normal execution. Because the DAP is disabled by default (power on reset), the user can also power cycle the device. The DAP is not enabled unless it is enabled through the JTAG or SWD interface. 5.2.6.1 Run Mode In Run mode, the microcontroller actively executes code. Run mode provides normal operation of the processor and all of the peripherals that are currently enabled by the RCGCn registers. The system clock can be any of the available clock sources including the PLL. 5.2.6.2 Sleep Mode In Sleep mode, the clock frequency of the active peripherals is unchanged, but the processor and the memory subsystem are not clocked and therefore no longer execute code. Sleep mode is entered by the Cortex-M3 core executing a WFI (Wait for Interrupt) instruction. Any properly configured interrupt event in the system brings the processor back into Run mode. See “Power Management” on page 116 for more details. Peripherals are clocked that are enabled in the SCGCn registers when auto-clock gating is enabled (see the RCC register) or the RCGCn registers when the auto-clock gating is disabled. The system clock has the same source and frequency as that during Run mode. 5.2.6.3 Deep-Sleep Mode In Deep-Sleep mode, the clock frequency of the active peripherals may change (depending on the Run mode clock configuration) in addition to the processor clock being stopped. An interrupt returns March 19, 2011 213 Texas Instruments-Advance Information System Control the microcontroller to Run mode from one of the sleep modes; the sleep modes are entered on request from the code. Deep-Sleep mode is entered by first setting the SLEEPDEEP bit in the System Control (SYSCTRL) register (see page 158) and then executing a WFI instruction. Any properly configured interrupt event in the system brings the processor back into Run mode. See “Power Management” on page 116 for more details. The Cortex-M3 processor core and the memory subsystem are not clocked in Deep-Sleep mode. Peripherals are clocked that are enabled in the DCGCn registers when auto-clock gating is enabled (see the RCC register) or the RCGCn registers when auto-clock gating is disabled. The system clock source is specified in the DSLPCLKCFG register. When the DSLPCLKCFG register is used, the internal oscillator source is powered up, if necessary, and other clocks are powered down. If the PLL is running at the time of the WFI instruction, hardware powers the PLL down and overrides the SYSDIV field of the active RCC/RCC2 register, to be determined by the DSDIVORIDE setting in the DSLPCLKCFG register, up to /16 or /64 respectively. When the Deep-Sleep exit event occurs, hardware brings the system clock back to the source and frequency it had at the onset of Deep-Sleep mode before enabling the clocks that had been stopped during the Deep-Sleep duration. If the PIOSC is used as the PLL reference clock source, it may continue to provide the clock during Deep-Sleep. See page 240. 5.3 Initialization and Configuration The PLL is configured using direct register writes to the RCC/RCC2 register. If the RCC2 register is being used, the USERCC2 bit must be set and the appropriate RCC2 bit/field is used. The steps required to successfully change the PLL-based system clock are: 1. Bypass the PLL and system clock divider by setting the BYPASS bit and clearing the USESYS bit in the RCC register, thereby configuring the microcontroller to run off a “raw” clock source and allowing for the new PLL configuration to be validated before switching the system clock to the PLL. 2. Select the crystal value (XTAL) and oscillator source (OSCSRC), and clear the PWRDN bit in RCC/RCC2. Setting the XTAL field automatically pulls valid PLL configuration data for the appropriate crystal, and clearing the PWRDN bit powers and enables the PLL and its output. 3. Select the desired system divider (SYSDIV) in RCC/RCC2 and set the USESYS bit in RCC. The SYSDIV field determines the system frequency for the microcontroller. 4. Wait for the PLL to lock by polling the PLLLRIS bit in the Raw Interrupt Status (RIS) register. 5. Enable use of the PLL by clearing the BYPASS bit in RCC/RCC2. 5.4 Register Map Table 5-8 on page 215 lists the System Control registers, grouped by function. The offset listed is a hexadecimal increment to the register's address, relative to the System Control base address of 0x400F.E000. Note: Spaces in the System Control register space that are not used are reserved for future or internal use. Software should not modify any reserved memory address. Additional Flash and ROM registers defined in the System Control register space are described in the “Internal Memory” on page 302. 214 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Table 5-8. System Control Register Map Description See page Offset Name Type Reset 0x000 DID0 RO - Device Identification 0 217 0x004 DID1 RO - Device Identification 1 245 0x008 DC0 RO 0x017F.007F Device Capabilities 0 247 0x010 DC1 RO - Device Capabilities 1 248 0x014 DC2 RO 0x570F.5337 Device Capabilities 2 250 0x018 DC3 RO 0xBFFF.FFFF Device Capabilities 3 252 0x01C DC4 RO 0x5000.F1FF Device Capabilities 4 255 0x020 DC5 RO 0x0F30.00FF Device Capabilities 5 257 0x024 DC6 RO 0x0000.0013 Device Capabilities 6 259 0x028 DC7 RO 0xFFFF.FFFF Device Capabilities 7 260 0x02C DC8 RO 0xFFFF.FFFF Device Capabilities 8 ADC Channels 264 0x030 PBORCTL R/W 0x0000.7FFD Brown-Out Reset Control 219 0x040 SRCR0 R/W 0x00000000 Software Reset Control 0 295 0x044 SRCR1 R/W 0x00000000 Software Reset Control 1 297 0x048 SRCR2 R/W 0x00000000 Software Reset Control 2 300 0x050 RIS RO 0x0000.0000 Raw Interrupt Status 220 0x054 IMC R/W 0x0000.0000 Interrupt Mask Control 222 0x058 MISC R/W1C 0x0000.0000 Masked Interrupt Status and Clear 224 0x05C RESC R/W - Reset Cause 226 0x060 RCC R/W 0x078E.3AD1 Run-Mode Clock Configuration 228 0x064 PLLCFG RO - XTAL to PLL Translation 233 0x06C GPIOHBCTL R/W 0x0000.0000 GPIO High-Performance Bus Control 234 0x070 RCC2 R/W 0x07C0.6810 Run-Mode Clock Configuration 2 236 0x07C MOSCCTL R/W 0x0000.0000 Main Oscillator Control 239 0x100 RCGC0 R/W 0x00000040 Run Mode Clock Gating Control Register 0 269 0x104 RCGC1 R/W 0x00000000 Run Mode Clock Gating Control Register 1 277 0x108 RCGC2 R/W 0x00000000 Run Mode Clock Gating Control Register 2 286 0x110 SCGC0 R/W 0x00000040 Sleep Mode Clock Gating Control Register 0 272 0x114 SCGC1 R/W 0x00000000 Sleep Mode Clock Gating Control Register 1 280 0x118 SCGC2 R/W 0x00000000 Sleep Mode Clock Gating Control Register 2 289 0x120 DCGC0 R/W 0x00000040 Deep Sleep Mode Clock Gating Control Register 0 275 0x124 DCGC1 R/W 0x00000000 Deep-Sleep Mode Clock Gating Control Register 1 283 March 19, 2011 215 Texas Instruments-Advance Information System Control Table 5-8. System Control Register Map (continued) See page Offset Name Type Reset 0x128 DCGC2 R/W 0x00000000 Deep Sleep Mode Clock Gating Control Register 2 292 0x144 DSLPCLKCFG R/W 0x0780.0000 Deep Sleep Clock Configuration 240 0x150 PIOSCCAL R/W 0x0000.0000 Precision Internal Oscillator Calibration 242 0x170 I2SMCLKCFG R/W 0x0000.0000 I2S MCLK Configuration 243 0x190 DC9 RO 0x00FF.00FF Device Capabilities 9 ADC Digital Comparators 266 0x1A0 NVMSTAT RO 0x0000.0001 Non-Volatile Memory Information 268 5.5 Description Register Descriptions All addresses given are relative to the System Control base address of 0x400F.E000. 216 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 1: Device Identification 0 (DID0), offset 0x000 This register identifies the version of the microcontroller. Each microcontroller is uniquely identified by the combined values of the CLASS field in the DID0 register and the PARTNO field in the DID1 register. Device Identification 0 (DID0) Base 0x400F.E000 Offset 0x000 Type RO, reset 31 30 28 27 26 VER reserved Type Reset 29 25 24 23 22 21 20 reserved 18 17 16 CLASS RO 0 RO 0 RO 0 RO 1 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 1 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RO - RO - RO - RO - RO - RO - RO - RO - RO - RO - RO - RO - RO - RO - RO - RO - MAJOR Type Reset 19 MINOR Bit/Field Name Type Reset Description 31 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 30:28 VER RO 0x1 DID0 Version This field defines the DID0 register format version. The version number is numeric. The value of the VER field is encoded as follows (all other encodings are reserved): Value Description 0x1 Second version of the DID0 register format. 27:24 reserved RO 0x0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 23:16 CLASS RO 0x04 Device Class The CLASS field value identifies the internal design from which all mask sets are generated for all microcontrollers in a particular product line. The CLASS field value is changed for new product lines, for changes in fab process (for example, a remap or shrink), or any case where the MAJOR or MINOR fields require differentiation from prior microcontrollers. The value of the CLASS field is encoded as follows (all other encodings are reserved): Value Description 0x04 Stellaris® Tempest-class microcontrollers March 19, 2011 217 Texas Instruments-Advance Information System Control Bit/Field Name Type Reset 15:8 MAJOR RO - Description Major Revision This field specifies the major revision number of the microcontroller. The major revision reflects changes to base layers of the design. The major revision number is indicated in the part number as a letter (A for first revision, B for second, and so on). This field is encoded as follows: Value Description 0x0 Revision A (initial device) 0x1 Revision B (first base layer revision) 0x2 Revision C (second base layer revision) and so on. 7:0 MINOR RO - Minor Revision This field specifies the minor revision number of the microcontroller. The minor revision reflects changes to the metal layers of the design. The MINOR field value is reset when the MAJOR field is changed. This field is numeric and is encoded as follows: Value Description 0x0 Initial device, or a major revision update. 0x1 First metal layer change. 0x2 Second metal layer change. and so on. 218 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 2: Brown-Out Reset Control (PBORCTL), offset 0x030 This register is responsible for controlling reset conditions after initial power-on reset. Brown-Out Reset Control (PBORCTL) Base 0x400F.E000 Offset 0x030 Type R/W, reset 0x0000.7FFD 31 30 29 28 27 26 25 24 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 8 7 6 5 4 3 2 1 0 BORIOR reserved RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 R/W 0 RO 0 reserved Type Reset reserved Type Reset Bit/Field Name Type Reset 31:2 reserved RO 0x0000.000 1 BORIOR R/W 0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. BOR Interrupt or Reset Value Description 0 reserved RO 0 0 A Brown Out Event causes an interrupt to be generated to the interrupt controller. 1 A Brown Out Event causes a reset of the microcontroller. Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. March 19, 2011 219 Texas Instruments-Advance Information System Control Register 3: Raw Interrupt Status (RIS), offset 0x050 This register indicates the status for system control raw interrupts. An interrupt is sent to the interrupt controller if the corresponding bit in the Interrupt Mask Control (IMC) register is set. Writing a 1 to the corresponding bit in the Masked Interrupt Status and Clear (MISC) register clears an interrupt status bit. Raw Interrupt Status (RIS) Base 0x400F.E000 Offset 0x050 Type RO, reset 0x0000.0000 31 30 29 28 27 26 25 24 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 7 6 5 4 3 2 1 0 BORRIS reserved RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 reserved Type Reset reserved Type Reset RO 0 MOSCPUPRIS USBPLLLRIS Bit/Field Name Type Reset 31:9 reserved RO 0x0000.00 8 MOSCPUPRIS RO 0 RO 0 RO 0 PLLLRIS RO 0 reserved Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. MOSC Power Up Raw Interrupt Status Value Description 1 Sufficient time has passed for the MOSC to reach the expected frequency. The value for this power-up time is indicated by TMOSC_SETTLE. 0 Sufficient time has not passed for the MOSC to reach the expected frequency. This bit is cleared by writing a 1 to the MOSCPUPMIS bit in the MISC register. 7 USBPLLLRIS RO 0 USB PLL Lock Raw Interrupt Status Value Description 1 The USB PLL timer has reached TREADY indicating that sufficient time has passed for the USB PLL to lock. 0 The USB PLL timer has not reached TREADY. This bit is cleared by writing a 1 to the USBPLLLMIS bit in the MISC register. 6 PLLLRIS RO 0 PLL Lock Raw Interrupt Status Value Description 1 The PLL timer has reached TREADY indicating that sufficient time has passed for the PLL to lock. 0 The PLL timer has not reached TREADY. This bit is cleared by writing a 1 to the PLLLMIS bit in the MISC register. 220 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset 5:2 reserved RO 0x0 1 BORRIS RO 0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. Brown-Out Reset Raw Interrupt Status Value Description 1 A brown-out condition is currently active. 0 A brown-out condition is not currently active. Note the BORIOR bit in the PBORCTL register must be cleared to cause an interrupt due to a Brown Out Event. This bit is cleared by writing a 1 to the BORMIS bit in the MISC register. 0 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. March 19, 2011 221 Texas Instruments-Advance Information System Control Register 4: Interrupt Mask Control (IMC), offset 0x054 This register contains the mask bits for system control raw interrupts. A raw interrupt, indicated by a bit being set in the Raw Interrupt Status (RIS) register, is sent to the interrupt controller if the corresponding bit in this register is set. Interrupt Mask Control (IMC) Base 0x400F.E000 Offset 0x054 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 7 6 5 4 3 2 1 0 BORIM reserved RO 0 RO 0 RO 0 RO 0 R/W 0 RO 0 reserved Type Reset reserved Type Reset RO 0 MOSCPUPIM USBPLLLIM Bit/Field Name Type Reset 31:9 reserved RO 0x0000.00 8 MOSCPUPIM R/W 0 R/W 0 R/W 0 PLLLIM R/W 0 reserved Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. MOSC Power Up Interrupt Mask Value Description 7 USBPLLLIM R/W 0 1 An interrupt is sent to the interrupt controller when the MOSCPUPRIS bit in the RIS register is set. 0 The MOSCPUPRIS interrupt is suppressed and not sent to the interrupt controller. USB PLL Lock Interrupt Mask Value Description 6 PLLLIM R/W 0 1 An interrupt is sent to the interrupt controller when the USBPLLLRIS bit in the RIS register is set. 0 The USBPLLLRIS interrupt is suppressed and not sent to the interrupt controller. PLL Lock Interrupt Mask Value Description 5:2 reserved RO 0x0 1 An interrupt is sent to the interrupt controller when the PLLLRIS bit in the RIS register is set. 0 The PLLLRIS interrupt is suppressed and not sent to the interrupt controller. Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 222 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset 1 BORIM R/W 0 Description Brown-Out Reset Interrupt Mask Value Description 0 reserved RO 0 1 An interrupt is sent to the interrupt controller when the BORRIS bit in the RIS register is set. 0 The BORRIS interrupt is suppressed and not sent to the interrupt controller. Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. March 19, 2011 223 Texas Instruments-Advance Information System Control Register 5: Masked Interrupt Status and Clear (MISC), offset 0x058 On a read, this register gives the current masked status value of the corresponding interrupt in the Raw Interrupt Status (RIS) register. All of the bits are R/W1C, thus writing a 1 to a bit clears the corresponding raw interrupt bit in the RIS register (see page 220). Masked Interrupt Status and Clear (MISC) Base 0x400F.E000 Offset 0x058 Type R/W1C, reset 0x0000.0000 31 30 29 28 27 26 25 24 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 7 6 5 4 3 2 1 0 BORMIS reserved RO 0 RO 0 RO 0 RO 0 R/W1C 0 RO 0 reserved Type Reset reserved Type Reset RO 0 MOSCPUPMIS USBPLLLMIS Bit/Field Name Type Reset 31:9 reserved RO 0x0000.00 8 MOSCPUPMIS R/W1C 0 R/W1C 0 R/W1C 0 PLLLMIS R/W1C 0 reserved Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. MOSC Power Up Masked Interrupt Status Value Description 7 USBPLLLMIS R/W1C 0 1 When read, a 1 indicates that an unmasked interrupt was signaled because sufficient time has passed for the MOSC PLL to lock. Writing a 1 to this bit clears it and also the MOSCPUPRIS bit in the RIS register. 0 When read, a 0 indicates that sufficient time has not passed for the MOSC PLL to lock. A write of 0 has no effect on the state of this bit. USB PLL Lock Masked Interrupt Status Value Description 1 When read, a 1 indicates that an unmasked interrupt was signaled because sufficient time has passed for the USB PLL to lock. Writing a 1 to this bit clears it and also the USBPLLLRIS bit in the RIS register. 0 When read, a 0 indicates that sufficient time has not passed for the USB PLL to lock. A write of 0 has no effect on the state of this bit. 224 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset 6 PLLLMIS R/W1C 0 Description PLL Lock Masked Interrupt Status Value Description 5:2 reserved RO 0x0 1 BORMIS R/W1C 0 1 When read, a 1 indicates that an unmasked interrupt was signaled because sufficient time has passed for the PLL to lock. Writing a 1 to this bit clears it and also the PLLLRIS bit in the RIS register. 0 When read, a 0 indicates that sufficient time has not passed for the PLL to lock. A write of 0 has no effect on the state of this bit. Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. BOR Masked Interrupt Status Value Description 0 reserved RO 0 1 When read, a 1 indicates that an unmasked interrupt was signaled because of a brown-out condition. Writing a 1 to this bit clears it and also the BORRIS bit in the RIS register. 0 When read, a 0 indicates that a brown-out condition has not occurred. A write of 0 has no effect on the state of this bit. Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. March 19, 2011 225 Texas Instruments-Advance Information System Control Register 6: Reset Cause (RESC), offset 0x05C This register is set with the reset cause after reset. The bits in this register are sticky and maintain their state across multiple reset sequences, except when an power-on reset is the cause, in which case, all bits other than POR in the RESC register are cleared. Reset Cause (RESC) Base 0x400F.E000 Offset 0x05C Type R/W, reset 31 30 29 28 27 26 25 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 RO 0 RO 0 RO 0 RO 0 RO 0 24 23 22 21 20 19 18 17 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 R/W - 9 8 7 6 5 4 3 2 1 0 WDT1 SW WDT0 BOR POR EXT RO 0 RO 0 RO 0 RO 0 R/W - R/W - R/W - R/W - R/W - R/W - reserved Type Reset MOSCFAIL reserved Type Reset RO 0 16 Bit/Field Name Type Reset Description 31:17 reserved RO 0x000 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 16 MOSCFAIL R/W - MOSC Failure Reset Value Description 15:6 reserved RO 0x00 5 WDT1 R/W - 1 When read, this bit indicates that the MOSC circuit was enabled for clock validation and failed, generating a reset event. 0 When read, this bit indicates that a MOSC failure has not generated a reset since the previous power-on reset. Writing a 0 to this bit clears it. Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. Watchdog Timer 1 Reset Value Description 1 When read, this bit indicates that Watchdog Timer 1 timed out and generated a reset. 0 When read, this bit indicates that Watchdog Timer 1 has not generated a reset since the previous power-on reset. Writing a 0 to this bit clears it. 226 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset 4 SW R/W - Description Software Reset Value Description 3 WDT0 R/W - 1 When read, this bit indicates that a software reset has caused a reset event. 0 When read, this bit indicates that a software reset has not generated a reset since the previous power-on reset. Writing a 0 to this bit clears it. Watchdog Timer 0 Reset Value Description 2 BOR R/W - 1 When read, this bit indicates that Watchdog Timer 0 timed out and generated a reset. 0 When read, this bit indicates that Watchdog Timer 0 has not generated a reset since the previous power-on reset. Writing a 0 to this bit clears it. Brown-Out Reset Value Description 1 POR R/W - 1 When read, this bit indicates that a brown-out reset has caused a reset event. 0 When read, this bit indicates that a brown-out reset has not generated a reset since the previous power-on reset. Writing a 0 to this bit clears it. Power-On Reset Value Description 0 EXT R/W - 1 When read, this bit indicates that a power-on reset has caused a reset event. 0 When read, this bit indicates that a power-on reset has not generated a reset. Writing a 0 to this bit clears it. External Reset Value Description 1 When read, this bit indicates that an external reset (RST assertion) has caused a reset event. 0 When read, this bit indicates that an external reset (RST assertion) has not caused a reset event since the previous power-on reset. Writing a 0 to this bit clears it. March 19, 2011 227 Texas Instruments-Advance Information System Control Register 7: Run-Mode Clock Configuration (RCC), offset 0x060 The bits in this register configure the system clock and oscillators. Run-Mode Clock Configuration (RCC) Base 0x400F.E000 Offset 0x060 Type R/W, reset 0x078E.3AD1 31 30 29 28 26 25 RO 0 RO 0 RO 0 RO 0 R/W 0 R/W 1 15 14 13 12 11 PWRDN reserved BYPASS R/W 1 RO 1 R/W 1 reserved Type Reset reserved Type Reset RO 0 RO 0 27 24 23 R/W 1 R/W 1 R/W 1 10 9 8 R/W 0 R/W 1 ACG 22 21 20 USESYSDIV reserved USEPWMDIV R/W 0 RO 0 R/W 0 R/W 1 R/W 1 R/W 1 RO 0 7 6 5 4 3 2 1 0 R/W 1 R/W 1 R/W 0 R/W 1 RO 0 SYSDIV XTAL R/W 0 OSCSRC 19 18 17 PWMDIV reserved RO 0 16 reserved IOSCDIS MOSCDIS R/W 0 R/W 1 Bit/Field Name Type Reset Description 31:28 reserved RO 0x0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 27 ACG R/W 0 Auto Clock Gating This bit specifies whether the system uses the Sleep-Mode Clock Gating Control (SCGCn) registers and Deep-Sleep-Mode Clock Gating Control (DCGCn) registers if the microcontroller enters a Sleep or Deep-Sleep mode (respectively). Value Description 1 The SCGCn or DCGCn registers are used to control the clocks distributed to the peripherals when the microcontroller is in a sleep mode. The SCGCn and DCGCn registers allow unused peripherals to consume less power when the microcontroller is in a sleep mode. 0 The Run-Mode Clock Gating Control (RCGCn) registers are used when the microcontroller enters a sleep mode. The RCGCn registers are always used to control the clocks in Run mode. 26:23 SYSDIV R/W 0xF System Clock Divisor Specifies which divisor is used to generate the system clock from either the PLL output or the oscillator source (depending on how the BYPASS bit in this register is configured). See Table 5-5 on page 209 for bit encodings. If the SYSDIV value is less than MINSYSDIV (see page 248), and the PLL is being used, then the MINSYSDIV value is used as the divisor. If the PLL is not being used, the SYSDIV value can be less than MINSYSDIV. 228 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset 22 USESYSDIV R/W 0 Description Enable System Clock Divider Value Description 1 The system clock divider is the source for the system clock. The system clock divider is forced to be used when the PLL is selected as the source. If the USERCC2 bit in the RCC2 register is set, then the SYSDIV2 field in the RCC2 register is used as the system clock divider rather than the SYSDIV field in this register. 0 The system clock is used undivided. 21 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 20 USEPWMDIV R/W 0 Enable PWM Clock Divisor Value Description 1 The PWM clock divider is the source for the PWM clock. 0 The system clock is the source for the PWM clock. Note that when the PWM divisor is used, it is applied to the clock for both PWM modules. 19:17 PWMDIV R/W 0x7 PWM Unit Clock Divisor This field specifies the binary divisor used to predivide the system clock down for use as the timing reference for the PWM module. The rising edge of this clock is synchronous with the system clock. Value Divisor 16:14 reserved RO 0x0 13 PWRDN R/W 1 0x0 /2 0x1 /4 0x2 /8 0x3 /16 0x4 /32 0x5 /64 0x6 /64 0x7 /64 (default) Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. PLL Power Down Value Description 1 The PLL is powered down. Care must be taken to ensure that another clock source is functioning and that the BYPASS bit is set before setting this bit. 0 The PLL is operating normally. March 19, 2011 229 Texas Instruments-Advance Information System Control Bit/Field Name Type Reset Description 12 reserved RO 1 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 11 BYPASS R/W 1 PLL Bypass Value Description 1 The system clock is derived from the OSC source and divided by the divisor specified by SYSDIV. 0 The system clock is the PLL output clock divided by the divisor specified by SYSDIV. See Table 5-5 on page 209 for programming guidelines. Note: The ADC must be clocked from the PLL or directly from a 16-MHz clock source to operate properly. 230 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset Description 10:6 XTAL R/W 0x0B Crystal Value This field specifies the crystal value attached to the main oscillator. The encoding for this field is provided below. Depending on the crystal used, the PLL frequency may not be exactly 400 MHz, see Table 26-14 on page 1301 for more information. Frequencies that may be used with the USB interface are indicated in the table. To function within the clocking requirements of the USB specification, a crystal of 4, 5, 6, 8, 10, 12, or 16 MHz must be used. Value Crystal Frequency (MHz) Not Crystal Frequency (MHz) Using Using the PLL the PLL 0x00 1.000 MHz reserved 0x01 1.8432 MHz reserved 0x02 2.000 MHz reserved 0x03 2.4576 MHz 0x04 reserved 3.579545 MHz 0x05 3.6864 MHz 0x06 4 MHz (USB) 0x07 4.096 MHz 0x08 4.9152 MHz 0x09 5 MHz (USB) 0x0A 5.12 MHz 0x0B 6 MHz (reset value)(USB) 0x0C 6.144 MHz 0x0D 7.3728 MHz 0x0E 8 MHz (USB) 0x0F 8.192 MHz 0x10 10.0 MHz (USB) 0x11 12.0 MHz (USB) 0x12 12.288 MHz 0x13 13.56 MHz 0x14 14.31818 MHz 0x15 16.0 MHz (USB) 0x16 16.384 MHz March 19, 2011 231 Texas Instruments-Advance Information System Control Bit/Field Name Type Reset 5:4 OSCSRC R/W 0x1 Description Oscillator Source Selects the input source for the OSC. The values are: Value Input Source 0x0 MOSC Main oscillator 0x1 PIOSC Precision internal oscillator (default) 0x2 PIOSC/4 Precision internal oscillator / 4 0x3 30 kHz 30-kHz internal oscillator For additional oscillator sources, see the RCC2 register. 3:2 reserved RO 0x0 1 IOSCDIS R/W 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. Precision Internal Oscillator Disable Value Description 0 MOSCDIS R/W 1 1 The precision internal oscillator (PIOSC) is disabled. 0 The precision internal oscillator is enabled. Main Oscillator Disable Value Description 1 The main oscillator is disabled (default). 0 The main oscillator is enabled. 232 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 8: XTAL to PLL Translation (PLLCFG), offset 0x064 This register provides a means of translating external crystal frequencies into the appropriate PLL settings. This register is initialized during the reset sequence and updated anytime that the XTAL field changes in the Run-Mode Clock Configuration (RCC) register (see page 228). The PLL frequency is calculated using the PLLCFG field values, as follows: PLLFreq = OSCFreq * F / (R + 1) XTAL to PLL Translation (PLLCFG) Base 0x400F.E000 Offset 0x064 Type RO, reset 31 30 29 28 27 26 25 24 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 RO - RO - RO - RO - RO - 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 8 7 6 5 4 3 2 1 0 RO - RO - RO - RO - RO - RO - RO - RO - RO - reserved Type Reset reserved Type Reset RO 0 RO 0 F R Bit/Field Name Type Reset Description 31:14 reserved RO 0x0000.0 13:5 F RO - PLL F Value This field specifies the value supplied to the PLL’s F input. 4:0 R RO - PLL R Value This field specifies the value supplied to the PLL’s R input. Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. March 19, 2011 233 Texas Instruments-Advance Information System Control Register 9: GPIO High-Performance Bus Control (GPIOHBCTL), offset 0x06C This register controls which internal bus is used to access each GPIO port. When a bit is clear, the corresponding GPIO port is accessed across the legacy Advanced Peripheral Bus (APB) bus and through the APB memory aperture. When a bit is set, the corresponding port is accessed across the Advanced High-Performance Bus (AHB) bus and through the AHB memory aperture. Each GPIO port can be individually configured to use AHB or APB, but may be accessed only through one aperture. The AHB bus provides better back-to-back access performance than the APB bus. The address aperture in the memory map changes for the ports that are enabled for AHB access (see Table 8-7 on page 408). GPIO High-Performance Bus Control (GPIOHBCTL) Base 0x400F.E000 Offset 0x06C Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 8 7 6 5 4 3 2 1 0 PORTJ PORTH PORTG PORTF PORTE PORTD PORTC PORTB PORTA R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 reserved Type Reset reserved Type Reset RO 0 Bit/Field Name Type Reset 31:9 reserved RO 0x0000.0 8 PORTJ R/W 0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. Port J Advanced High-Performance Bus This bit defines the memory aperture for Port J. Value Description 7 PORTH R/W 0 1 Advanced High-Performance Bus (AHB) 0 Advanced Peripheral Bus (APB). This bus is the legacy bus. Port H Advanced High-Performance Bus This bit defines the memory aperture for Port H. Value Description 6 PORTG R/W 0 1 Advanced High-Performance Bus (AHB) 0 Advanced Peripheral Bus (APB). This bus is the legacy bus. Port G Advanced High-Performance Bus This bit defines the memory aperture for Port G. Value Description 1 Advanced High-Performance Bus (AHB) 0 Advanced Peripheral Bus (APB). This bus is the legacy bus. 234 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset 5 PORTF R/W 0 Description Port F Advanced High-Performance Bus This bit defines the memory aperture for Port F. Value Description 4 PORTE R/W 0 1 Advanced High-Performance Bus (AHB) 0 Advanced Peripheral Bus (APB). This bus is the legacy bus. Port E Advanced High-Performance Bus This bit defines the memory aperture for Port E. Value Description 3 PORTD R/W 0 1 Advanced High-Performance Bus (AHB) 0 Advanced Peripheral Bus (APB). This bus is the legacy bus. Port D Advanced High-Performance Bus This bit defines the memory aperture for Port D. Value Description 2 PORTC R/W 0 1 Advanced High-Performance Bus (AHB) 0 Advanced Peripheral Bus (APB). This bus is the legacy bus. Port C Advanced High-Performance Bus This bit defines the memory aperture for Port C. Value Description 1 PORTB R/W 0 1 Advanced High-Performance Bus (AHB) 0 Advanced Peripheral Bus (APB). This bus is the legacy bus. Port B Advanced High-Performance Bus This bit defines the memory aperture for Port B. Value Description 0 PORTA R/W 0 1 Advanced High-Performance Bus (AHB) 0 Advanced Peripheral Bus (APB). This bus is the legacy bus. Port A Advanced High-Performance Bus This bit defines the memory aperture for Port A. Value Description 1 Advanced High-Performance Bus (AHB) 0 Advanced Peripheral Bus (APB). This bus is the legacy bus. March 19, 2011 235 Texas Instruments-Advance Information System Control Register 10: Run-Mode Clock Configuration 2 (RCC2), offset 0x070 This register overrides the RCC equivalent register fields, as shown in Table 5-9, when the USERCC2 bit is set, allowing the extended capabilities of the RCC2 register to be used while also providing a means to be backward-compatible to previous parts. Each RCC2 field that supersedes an RCC field is located at the same LSB bit position; however, some RCC2 fields are larger than the corresponding RCC field. Table 5-9. RCC2 Fields that Override RCC Fields RCC2 Field... Overrides RCC Field SYSDIV2, bits[28:23] SYSDIV, bits[26:23] PWRDN2, bit[13] PWRDN, bit[13] BYPASS2, bit[11] BYPASS, bit[11] OSCSRC2, bits[6:4] OSCSRC, bits[5:4] Run-Mode Clock Configuration 2 (RCC2) Base 0x400F.E000 Offset 0x070 Type R/W, reset 0x07C0.6810 31 30 USERCC2 DIV400 Type Reset R/W 0 Type Reset R/W 0 29 28 27 26 25 24 23 SYSDIV2 reserved RO 0 R/W 0 22 R/W 0 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 10 9 8 7 6 15 14 13 12 11 reserved USBPWRDN PWRDN2 reserved BYPASS2 RO 0 R/W 1 R/W 1 RO 0 R/W 1 reserved RO 0 21 20 19 RO 0 RO 0 Bit/Field Name Type Reset Description 31 USERCC2 R/W 0 Use RCC2 R/W 0 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 5 4 3 2 1 0 RO 0 RO 0 OSCSRC2 RO 0 18 reserved SYSDIV2LSB R/W 0 reserved R/W 1 RO 0 RO 0 Value Description 30 DIV400 R/W 0 1 The RCC2 register fields override the RCC register fields. 0 The RCC register fields are used, and the fields in RCC2 are ignored. Divide PLL as 400 MHz vs. 200 MHz This bit, along with the SYSDIV2LSB bit, allows additional frequency choices. Value Description 29 reserved RO 0x0 1 Append the SYSDIV2LSB bit to the SYSDIV2 field to create a 7 bit divisor using the 400 MHz PLL output, see Table 5-7 on page 210. 0 Use SYSDIV2 as is and apply to 200 MHz predivided PLL output. See Table 5-6 on page 209 for programming guidelines. Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 236 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset Description 28:23 SYSDIV2 R/W 0x0F System Clock Divisor 2 Specifies which divisor is used to generate the system clock from either the PLL output or the oscillator source (depending on how the BYPASS2 bit is configured). SYSDIV2 is used for the divisor when both the USESYSDIV bit in the RCC register and the USERCC2 bit in this register are set. See Table 5-6 on page 209 for programming guidelines. 22 SYSDIV2LSB R/W 1 Additional LSB for SYSDIV2 When DIV400 is set, this bit becomes the LSB of SYSDIV2. If DIV400 is clear, this bit is not used. See Table 5-6 on page 209 for programming guidelines. This bit can only be set or cleared when DIV400 is set. 21:15 reserved RO 0x0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 14 USBPWRDN R/W 1 Power-Down USB PLL Value Description 13 PWRDN2 R/W 1 1 The USB PLL is powered down. 0 The USB PLL operates normally. Power-Down PLL 2 Value Description 1 The PLL is powered down. 0 The PLL operates normally. 12 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 11 BYPASS2 R/W 1 PLL Bypass 2 Value Description 1 The system clock is derived from the OSC source and divided by the divisor specified by SYSDIV2. 0 The system clock is the PLL output clock divided by the divisor specified by SYSDIV2. See Table 5-6 on page 209 for programming guidelines. Note: 10:7 reserved RO 0x0 The ADC must be clocked from the PLL or directly from a 16-MHz clock source to operate properly. Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. March 19, 2011 237 Texas Instruments-Advance Information System Control Bit/Field Name Type Reset 6:4 OSCSRC2 R/W 0x1 Description Oscillator Source 2 Selects the input source for the OSC. The values are: Value Description 0x0 MOSC Main oscillator 0x1 PIOSC Precision internal oscillator 0x2 PIOSC/4 Precision internal oscillator / 4 0x3 30 kHz 30-kHz internal oscillator 0x4-0x7 Reserved 3:0 reserved RO 0x0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 238 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 11: Main Oscillator Control (MOSCCTL), offset 0x07C This register provides the ability to enable the MOSC clock verification circuit. When enabled, this circuit monitors the frequency of the MOSC to verify that the oscillator is operating within specified limits. If the clock goes invalid after being enabled, the microcontroller issues a power-on reset and reboots to the NMI handler. Main Oscillator Control (MOSCCTL) Base 0x400F.E000 Offset 0x07C Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 7 6 5 4 3 2 1 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 reserved Type Reset reserved Type Reset Bit/Field Name Type Reset 31:1 reserved RO 0x0000.000 0 CVAL R/W 0 RO 0 CVAL R/W 0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. Clock Validation for MOSC Value Description 1 The MOSC monitor circuit is enabled. 0 The MOSC monitor circuit is disabled. March 19, 2011 239 Texas Instruments-Advance Information System Control Register 12: Deep Sleep Clock Configuration (DSLPCLKCFG), offset 0x144 This register provides configuration information for the hardware control of Deep Sleep Mode. Deep Sleep Clock Configuration (DSLPCLKCFG) Base 0x400F.E000 Offset 0x144 Type R/W, reset 0x0780.0000 31 30 29 28 27 26 reserved Type Reset 25 24 23 22 21 20 DSDIVORIDE 18 17 16 reserved RO 0 RO 0 RO 0 R/W 0 R/W 0 R/W 1 R/W 1 R/W 1 R/W 1 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 R/W 0 R/W 0 RO 0 RO 0 RO 0 RO 0 reserved Type Reset 19 RO 0 DSOSCSRC R/W 0 reserved Bit/Field Name Type Reset Description 31:29 reserved RO 0x0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 28:23 DSDIVORIDE R/W 0x0F Divider Field Override If Deep-Sleep mode is enabled when the PLL is running, the PLL is disabled. This 6-bit field contains a system divider field that overrides the SYSDIV field in the RCC register or the SYSDIV2 field in the RCC2 register during Deep Sleep. This divider is applied to the source selected by the DSOSCSRC field. Value Description 0x0 /1 0x1 /2 0x2 /3 0x3 /4 ... ... 0x3F /64 22:7 reserved RO 0x000 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 240 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset 6:4 DSOSCSRC R/W 0x0 Description Clock Source Specifies the clock source during Deep-Sleep mode. Value Description 0x0 MOSC Use the main oscillator as the source. Note: If the PIOSC is being used as the clock reference for the PLL, the PIOSC is the clock source instead of MOSC in Deep-Sleep mode. 0x1 PIOSC Use the precision internal 16-MHz oscillator as the source. 0x2 Reserved 0x3 30 kHz Use the 30-kHz internal oscillator as the source. 0x4-0x7 Reserved 3:0 reserved RO 0x0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. March 19, 2011 241 Texas Instruments-Advance Information System Control Register 13: Precision Internal Oscillator Calibration (PIOSCCAL), offset 0x150 This register provides the ability to update or recalibrate the precision internal oscillator. Precision Internal Oscillator Calibration (PIOSCCAL) Base 0x400F.E000 Offset 0x150 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 22 21 20 19 18 17 16 R/W 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 UPDATE reserved R/W 0 RO 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 UTEN Type Reset reserved reserved Type Reset 23 RO 0 Bit/Field Name Type Reset 31 UTEN R/W 0 UT Description Use User Trim Value Value Description 30:9 reserved RO 0x0000 8 UPDATE R/W 0 1 The trim value in bits[6:0] of this register are used for any update trim operation. 0 The factory calibration value is used for an update trim operation. Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. Update Trim Value Description 1 Updates the PIOSC trim value with the UT bit. Used with UTEN. 0 No action. This bit is auto-cleared after the update. 7 reserved RO 0 6:0 UT R/W 0x0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. User Trim Value User trim value that can be loaded into the PIOSC. Refer to “Main PLL Frequency Configuration” on page 211 for more information on calibrating the PIOSC. 242 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 14: I2S MCLK Configuration (I2SMCLKCFG), offset 0x170 This register configures the receive and transmit fractional clock dividers for the for the I2S master transmit and receive clocks (I2S0TXMCLK and I2S0RXMCLK). Varying the integer and fractional inputs for the clocks allows greater accuracy in hitting the target I2S clock frequencies. Refer to “Clock Control” on page 822 for combinations of the TXI and TXF bits and the RXI and RXF bits that provide MCLK frequencies within acceptable error limits. I2S MCLK Configuration (I2SMCLKCFG) Base 0x400F.E000 Offset 0x170 Type R/W, reset 0x0000.0000 Type Reset Type Reset 31 30 RXEN reserved R/W 0 RO 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 13 12 11 10 9 15 14 TXEN reserved R/W 0 RO 0 29 28 27 26 25 24 23 22 21 20 19 18 RXI R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 8 7 6 5 4 3 2 TXI R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 Bit/Field Name Type Reset 31 RXEN R/W 0 17 16 R/W 0 R/W 0 1 0 R/W 0 R/W 0 RXF TXF R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 Description RX Clock Enable Value Description 1 The I2S receive clock generator is enabled. 0 The I2S receive clock generator is disabled. If the RXSLV bit in the I2S Module Configuration (I2SCFG) register is set, then the I2S0RXMCLK must be externally generated. 30 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 29:20 RXI R/W 0x0 RX Clock Integer Input This field contains the integer input for the receive clock generator. 19:16 RXF R/W 0x0 RX Clock Fractional Input This field contains the fractional input for the receive clock generator. 15 TXEN R/W 0 TX Clock Enable Value Description 14 reserved RO 0 1 The I2S transmit clock generator is enabled. 0 The I2S transmit clock generator is disabled. If the TXSLV bit in the I2S Module Configuration (I2SCFG) register is set, then the I2S0TXMCLK must be externally generated. Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. March 19, 2011 243 Texas Instruments-Advance Information System Control Bit/Field Name Type Reset Description 13:4 TXI R/W 0x00 TX Clock Integer Input This field contains the integer input for the transmit clock generator. 3:0 TXF R/W 0x0 TX Clock Fractional Input This field contains the fractional input for the transmit clock generator. 244 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 15: Device Identification 1 (DID1), offset 0x004 This register identifies the device family, part number, temperature range, and package type. Each microcontroller is uniquely identified by the combined values of the CLASS field in the DID0 register and the PARTNO field in the DID1 register. Device Identification 1 (DID1) Base 0x400F.E000 Offset 0x004 Type RO, reset 31 30 29 28 27 26 RO 0 15 25 24 23 22 21 20 RO 0 RO 0 RO 1 RO 0 RO 0 RO 0 RO 0 RO 0 RO 1 RO 1 RO 0 14 13 12 11 10 9 8 7 6 5 4 RO 0 RO 0 RO 0 RO 0 RO 0 RO - RO - RO - VER Type Reset FAM PINCOUNT Type Reset RO 0 RO 1 18 17 16 RO 1 RO 0 RO 1 RO 0 3 2 1 0 PARTNO reserved RO 0 19 TEMP Bit/Field Name Type Reset 31:28 VER RO 0x1 RO - PKG ROHS RO - RO 1 QUAL RO - RO - Description DID1 Version This field defines the DID1 register format version. The version number is numeric. The value of the VER field is encoded as follows (all other encodings are reserved): Value Description 0x1 27:24 FAM RO 0x0 Second version of the DID1 register format. Family This field provides the family identification of the device within the Luminary Micro product portfolio. The value is encoded as follows (all other encodings are reserved): Value Description 0x0 23:16 PARTNO RO 0x6A Stellaris family of microcontollers, that is, all devices with external part numbers starting with LM3S. Part Number This field provides the part number of the device within the family. The value is encoded as follows (all other encodings are reserved): Value Description 0x6A LM3S9B92 15:13 PINCOUNT RO 0x2 Package Pin Count This field specifies the number of pins on the device package. The value is encoded as follows (all other encodings are reserved): Value Description 0x2 100-pin package March 19, 2011 245 Texas Instruments-Advance Information System Control Bit/Field Name Type Reset Description 12:8 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 7:5 TEMP RO - Temperature Range This field specifies the temperature rating of the device. The value is encoded as follows (all other encodings are reserved): Value Description 4:3 PKG RO - 0x0 Commercial temperature range (0°C to 70°C) 0x1 Industrial temperature range (-40°C to 85°C) 0x2 Extended temperature range (-40°C to 105°C) Package Type This field specifies the package type. The value is encoded as follows (all other encodings are reserved): Value Description 0x0 SOIC package 0x1 LQFP package 0x2 BGA package 2 ROHS RO 1 RoHS-Compliance This bit specifies whether the device is RoHS-compliant. A 1 indicates the part is RoHS-compliant. 1:0 QUAL RO - Qualification Status This field specifies the qualification status of the device. The value is encoded as follows (all other encodings are reserved): Value Description 0x0 Engineering Sample (unqualified) 0x1 Pilot Production (unqualified) 0x2 Fully Qualified 246 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 16: Device Capabilities 0 (DC0), offset 0x008 This register is predefined by the part and can be used to verify features. Device Capabilities 0 (DC0) Base 0x400F.E000 Offset 0x008 Type RO, reset 0x017F.007F 31 30 29 28 27 26 25 24 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 1 15 14 13 12 11 10 9 8 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 23 22 21 20 19 18 17 16 RO 0 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 7 6 5 4 3 2 1 0 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 SRAMSZ Type Reset FLASHSZ Type Reset Bit/Field Name Type Reset 31:16 SRAMSZ RO 0x017F RO 0 Description SRAM Size Indicates the size of the on-chip SRAM memory. Value Description 0x017F 96 KB of SRAM 15:0 FLASHSZ RO 0x007F Flash Size Indicates the size of the on-chip flash memory. Value Description 0x007F 256 KB of Flash March 19, 2011 247 Texas Instruments-Advance Information System Control Register 17: Device Capabilities 1 (DC1), offset 0x010 This register is predefined by the part and can be used to verify features. If any bit is clear in this register, the module is not present. The corresponding bit in the RCGC0, SCGC0, and DCGC0 registers cannot be set. Device Capabilities 1 (DC1) Base 0x400F.E000 Offset 0x010 Type RO, reset 31 30 29 reserved Type Reset 28 WDT1 26 24 23 22 21 19 16 CAN1 CAN0 ADC1 ADC0 RO 0 RO 0 RO 1 RO 1 RO 0 RO 0 RO 0 RO 1 RO 0 RO 0 RO 1 RO 1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 MPU reserved TEMPSNS PLL WDT0 SWO SWD JTAG RO - RO - RO 1 RO 0 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 MAXADC0SPD RO 1 RO 1 RO 1 RO 1 reserved 17 RO 1 MAXADC1SPD PWM 18 RO 0 RO - reserved 20 RO 0 RO - reserved 25 RO 0 MINSYSDIV Type Reset 27 Bit/Field Name Type Reset Description 31:29 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 28 WDT1 RO 1 Watchdog Timer1 Present When set, indicates that watchdog timer 1 is present. 27:26 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 25 CAN1 RO 1 CAN Module 1 Present When set, indicates that CAN unit 1 is present. 24 CAN0 RO 1 CAN Module 0 Present When set, indicates that CAN unit 0 is present. 23:21 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 20 PWM RO 1 PWM Module Present When set, indicates that the PWM module is present. 19:18 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 17 ADC1 RO 1 ADC Module 1 Present When set, indicates that ADC module 1 is present. 16 ADC0 RO 1 ADC Module 0 Present When set, indicates that ADC module 0 is present 248 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset 15:12 MINSYSDIV RO - Description System Clock Divider Minimum 4-bit divider value for system clock. The reset value is hardware-dependent. See the RCC register for how to change the system clock divisor using the SYSDIV bit. Value Description 11:10 MAXADC1SPD RO 0x3 0x1 Specifies an 80-MHz CPU clock with a PLL divider of 2.5. 0x2 Specifies a 66.67-MHz CPU clock with a PLL divider of 3. 0x3 Specifies a 50-MHz CPU clock with a PLL divider of 4. 0x7 Specifies a 25-MHz clock with a PLL divider of 8. 0x9 Specifies a 20-MHz clock with a PLL divider of 10. Max ADC1 Speed This field indicates the maximum rate at which the ADC samples data. Value Description 0x3 9:8 MAXADC0SPD RO 0x3 1M samples/second Max ADC0 Speed This field indicates the maximum rate at which the ADC samples data. Value Description 0x3 1M samples/second 7 MPU RO 1 MPU Present When set, indicates that the Cortex-M3 Memory Protection Unit (MPU) module is present. See the "Cortex-M3 Peripherals" chapter for details on the MPU. 6 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 5 TEMPSNS RO 1 Temp Sensor Present When set, indicates that the on-chip temperature sensor is present. 4 PLL RO 1 PLL Present When set, indicates that the on-chip Phase Locked Loop (PLL) is present. 3 WDT0 RO 1 Watchdog Timer 0 Present When set, indicates that watchdog timer 0 is present. 2 SWO RO 1 SWO Trace Port Present When set, indicates that the Serial Wire Output (SWO) trace port is present. 1 SWD RO 1 SWD Present When set, indicates that the Serial Wire Debugger (SWD) is present. 0 JTAG RO 1 JTAG Present When set, indicates that the JTAG debugger interface is present. March 19, 2011 249 Texas Instruments-Advance Information System Control Register 18: Device Capabilities 2 (DC2), offset 0x014 This register is predefined by the part and can be used to verify features. If any bit is clear in this register, the module is not present. The corresponding bit in the RCGC0, SCGC0, and DCGC0 registers cannot be set. Device Capabilities 2 (DC2) Base 0x400F.E000 Offset 0x014 Type RO, reset 0x570F.5337 Type Reset Type Reset 31 30 29 28 27 26 25 24 reserved EPI0 reserved I2S0 reserved COMP2 COMP1 COMP0 RO 0 RO 1 RO 0 RO 1 RO 0 RO 1 RO 1 15 14 13 12 11 10 reserved I2C1 reserved I2C0 RO 0 RO 1 RO 0 RO 1 reserved RO 0 RO 0 23 22 21 20 19 18 17 16 RO 1 RO 0 RO 0 RO 0 RO 0 TIMER3 TIMER2 TIMER1 TIMER0 RO 1 RO 1 RO 1 RO 1 9 8 7 6 5 4 3 2 1 0 QEI1 QEI0 RO 1 RO 1 SSI1 SSI0 reserved UART2 UART1 UART0 RO 1 RO 1 RO 0 RO 1 RO 1 RO 1 reserved reserved RO 0 RO 0 Bit/Field Name Type Reset Description 31 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 30 EPI0 RO 1 EPI Module 0 Present When set, indicates that EPI module 0 is present. 29 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 28 I2S0 RO 1 I2S Module 0 Present When set, indicates that I2S module 0 is present. 27 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 26 COMP2 RO 1 Analog Comparator 2 Present When set, indicates that analog comparator 2 is present. 25 COMP1 RO 1 Analog Comparator 1 Present When set, indicates that analog comparator 1 is present. 24 COMP0 RO 1 Analog Comparator 0 Present When set, indicates that analog comparator 0 is present. 23:20 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 19 TIMER3 RO 1 Timer Module 3 Present When set, indicates that General-Purpose Timer module 3 is present. 18 TIMER2 RO 1 Timer Module 2 Present When set, indicates that General-Purpose Timer module 2 is present. 250 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset Description 17 TIMER1 RO 1 Timer Module 1 Present When set, indicates that General-Purpose Timer module 1 is present. 16 TIMER0 RO 1 Timer Module 0 Present When set, indicates that General-Purpose Timer module 0 is present. 15 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 14 I2C1 RO 1 I2C Module 1 Present When set, indicates that I2C module 1 is present. 13 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 12 I2C0 RO 1 I2C Module 0 Present When set, indicates that I2C module 0 is present. 11:10 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 9 QEI1 RO 1 QEI Module 1 Present When set, indicates that QEI module 1 is present. 8 QEI0 RO 1 QEI Module 0 Present When set, indicates that QEI module 0 is present. 7:6 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 5 SSI1 RO 1 SSI Module 1 Present When set, indicates that SSI module 1 is present. 4 SSI0 RO 1 SSI Module 0 Present When set, indicates that SSI module 0 is present. 3 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 2 UART2 RO 1 UART Module 2 Present When set, indicates that UART module 2 is present. 1 UART1 RO 1 UART Module 1 Present When set, indicates that UART module 1 is present. 0 UART0 RO 1 UART Module 0 Present When set, indicates that UART module 0 is present. March 19, 2011 251 Texas Instruments-Advance Information System Control Register 19: Device Capabilities 3 (DC3), offset 0x018 This register is predefined by the part and can be used to verify features. If any bit is clear in this register, the module is not present. The corresponding bit in the RCGC0, SCGC0, and DCGC0 registers cannot be set. Device Capabilities 3 (DC3) Base 0x400F.E000 Offset 0x018 Type RO, reset 0xBFFF.FFFF Type Reset Type Reset 31 30 29 28 27 26 25 24 32KHZ reserved CCP5 CCP4 CCP3 CCP2 CCP1 CCP0 RO 1 RO 0 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 PWMFAULT C2O PWM5 PWM4 PWM3 PWM2 PWM1 PWM0 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 C2PLUS C2MINUS RO 1 RO 1 C1O C1PLUS C1MINUS RO 1 RO 1 RO 1 C0O RO 1 23 22 21 20 19 18 17 16 ADC0AIN7 ADC0AIN6 ADC0AIN5 ADC0AIN4 ADC0AIN3 ADC0AIN2 ADC0AIN1 ADC0AIN0 C0PLUS C0MINUS RO 1 RO 1 Bit/Field Name Type Reset Description 31 32KHZ RO 1 32KHz Input Clock Available When set, indicates an even CCP pin is present and can be used as a 32-KHz input clock. 30 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 29 CCP5 RO 1 CCP5 Pin Present When set, indicates that Capture/Compare/PWM pin 5 is present. 28 CCP4 RO 1 CCP4 Pin Present When set, indicates that Capture/Compare/PWM pin 4 is present. 27 CCP3 RO 1 CCP3 Pin Present When set, indicates that Capture/Compare/PWM pin 3 is present. 26 CCP2 RO 1 CCP2 Pin Present When set, indicates that Capture/Compare/PWM pin 2 is present. 25 CCP1 RO 1 CCP1 Pin Present When set, indicates that Capture/Compare/PWM pin 1 is present. 24 CCP0 RO 1 CCP0 Pin Present When set, indicates that Capture/Compare/PWM pin 0 is present. 23 ADC0AIN7 RO 1 ADC Module 0 AIN7 Pin Present When set, indicates that ADC module 0 input pin 7 is present. 22 ADC0AIN6 RO 1 ADC Module 0 AIN6 Pin Present When set, indicates that ADC module 0 input pin 6 is present. 21 ADC0AIN5 RO 1 ADC Module 0 AIN5 Pin Present When set, indicates that ADC module 0 input pin 5 is present. 20 ADC0AIN4 RO 1 ADC Module 0 AIN4 Pin Present When set, indicates that ADC module 0 input pin 4 is present. 252 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset Description 19 ADC0AIN3 RO 1 ADC Module 0 AIN3 Pin Present When set, indicates that ADC module 0 input pin 3 is present. 18 ADC0AIN2 RO 1 ADC Module 0 AIN2 Pin Present When set, indicates that ADC module 0 input pin 2 is present. 17 ADC0AIN1 RO 1 ADC Module 0 AIN1 Pin Present When set, indicates that ADC module 0 input pin 1 is present. 16 ADC0AIN0 RO 1 ADC Module 0 AIN0 Pin Present When set, indicates that ADC module 0 input pin 0 is present. 15 PWMFAULT RO 1 PWM Fault Pin Present When set, indicates that a PWM Fault pin is present. See DC5 for specific Fault pins on this device. 14 C2O RO 1 C2o Pin Present When set, indicates that the analog comparator 2 output pin is present. 13 C2PLUS RO 1 C2+ Pin Present When set, indicates that the analog comparator 2 (+) input pin is present. 12 C2MINUS RO 1 C2- Pin Present When set, indicates that the analog comparator 2 (-) input pin is present. 11 C1O RO 1 C1o Pin Present When set, indicates that the analog comparator 1 output pin is present. 10 C1PLUS RO 1 C1+ Pin Present When set, indicates that the analog comparator 1 (+) input pin is present. 9 C1MINUS RO 1 C1- Pin Present When set, indicates that the analog comparator 1 (-) input pin is present. 8 C0O RO 1 C0o Pin Present When set, indicates that the analog comparator 0 output pin is present. 7 C0PLUS RO 1 C0+ Pin Present When set, indicates that the analog comparator 0 (+) input pin is present. 6 C0MINUS RO 1 C0- Pin Present When set, indicates that the analog comparator 0 (-) input pin is present. 5 PWM5 RO 1 PWM5 Pin Present When set, indicates that the PWM pin 5 is present. 4 PWM4 RO 1 PWM4 Pin Present When set, indicates that the PWM pin 4 is present. 3 PWM3 RO 1 PWM3 Pin Present When set, indicates that the PWM pin 3 is present. 2 PWM2 RO 1 PWM2 Pin Present When set, indicates that the PWM pin 2 is present. 1 PWM1 RO 1 PWM1 Pin Present When set, indicates that the PWM pin 1 is present. March 19, 2011 253 Texas Instruments-Advance Information System Control Bit/Field Name Type Reset 0 PWM0 RO 1 Description PWM0 Pin Present When set, indicates that the PWM pin 0 is present. 254 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 20: Device Capabilities 4 (DC4), offset 0x01C This register is predefined by the part and can be used to verify features. If any bit is clear in this register, the module is not present. The corresponding bit in the RCGC0, SCGC0, and DCGC0 registers cannot be set. Device Capabilities 4 (DC4) Base 0x400F.E000 Offset 0x01C Type RO, reset 0x5000.F1FF Type Reset Type Reset 31 30 29 28 27 26 25 24 23 22 reserved EPHY0 reserved EMAC0 RO 0 RO 1 RO 0 RO 1 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 CCP7 RO 1 CCP6 UDMA ROM GPIOJ RO 1 RO 1 RO 1 RO 1 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 6 5 4 3 2 1 0 GPIOH GPIOG GPIOF GPIOE GPIOD GPIOC GPIOB GPIOA RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 reserved reserved RO 0 RO 0 RO 0 Bit/Field Name Type Reset Description 31 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 30 EPHY0 RO 1 Ethernet PHY Layer 0 Present When set, indicates that Ethernet PHY layer 0 is present. 29 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 28 EMAC0 RO 1 Ethernet MAC Layer 0 Present When set, indicates that Ethernet MAC layer 0 is present. 27:16 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 15 CCP7 RO 1 CCP7 Pin Present When set, indicates that Capture/Compare/PWM pin 7 is present. 14 CCP6 RO 1 CCP6 Pin Present When set, indicates that Capture/Compare/PWM pin 6 is present. 13 UDMA RO 1 Micro-DMA Module Present When set, indicates that the micro-DMA module present. 12 ROM RO 1 Internal Code ROM Present When set, indicates that internal code ROM is present. 11:9 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 8 GPIOJ RO 1 GPIO Port J Present When set, indicates that GPIO Port J is present. March 19, 2011 255 Texas Instruments-Advance Information System Control Bit/Field Name Type Reset Description 7 GPIOH RO 1 GPIO Port H Present When set, indicates that GPIO Port H is present. 6 GPIOG RO 1 GPIO Port G Present When set, indicates that GPIO Port G is present. 5 GPIOF RO 1 GPIO Port F Present When set, indicates that GPIO Port F is present. 4 GPIOE RO 1 GPIO Port E Present When set, indicates that GPIO Port E is present. 3 GPIOD RO 1 GPIO Port D Present When set, indicates that GPIO Port D is present. 2 GPIOC RO 1 GPIO Port C Present When set, indicates that GPIO Port C is present. 1 GPIOB RO 1 GPIO Port B Present When set, indicates that GPIO Port B is present. 0 GPIOA RO 1 GPIO Port A Present When set, indicates that GPIO Port A is present. 256 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 21: Device Capabilities 5 (DC5), offset 0x020 This register is predefined by the part and can be used to verify features. If any bit is clear in this register, the module is not present. The corresponding bit in the RCGC0, SCGC0, and DCGC0 registers cannot be set. Device Capabilities 5 (DC5) Base 0x400F.E000 Offset 0x020 Type RO, reset 0x0F30.00FF 31 30 29 28 RO 0 RO 0 RO 0 RO 0 RO 1 RO 1 RO 1 RO 1 RO 0 RO 0 RO 1 15 14 13 12 11 10 9 8 7 6 PWM7 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 1 reserved Type Reset 27 26 25 24 RO 0 22 19 18 RO 1 RO 0 RO 0 RO 0 RO 0 5 4 3 2 1 0 PWM6 PWM5 PWM4 PWM3 PWM2 PWM1 PWM0 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 reserved PWMFAULT3 PWMFAULT2 PWMFAULT1 PWMFAULT0 reserved Type Reset 23 21 20 PWMEFLT PWMESYNC 17 16 reserved Bit/Field Name Type Reset Description 31:28 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 27 PWMFAULT3 RO 1 PWM Fault 3 Pin Present When set, indicates that the PWM Fault 3 pin is present. 26 PWMFAULT2 RO 1 PWM Fault 2 Pin Present When set, indicates that the PWM Fault 2 pin is present. 25 PWMFAULT1 RO 1 PWM Fault 1 Pin Present When set, indicates that the PWM Fault 1 pin is present. 24 PWMFAULT0 RO 1 PWM Fault 0 Pin Present When set, indicates that the PWM Fault 0 pin is present. 23:22 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 21 PWMEFLT RO 1 PWM Extended Fault Active When set, indicates that the PWM Extended Fault feature is active. 20 PWMESYNC RO 1 PWM Extended SYNC Active When set, indicates that the PWM Extended SYNC feature is active. 19:8 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 7 PWM7 RO 1 PWM7 Pin Present When set, indicates that the PWM pin 7 is present. 6 PWM6 RO 1 PWM6 Pin Present When set, indicates that the PWM pin 6 is present. March 19, 2011 257 Texas Instruments-Advance Information System Control Bit/Field Name Type Reset Description 5 PWM5 RO 1 PWM5 Pin Present When set, indicates that the PWM pin 5 is present. 4 PWM4 RO 1 PWM4 Pin Present When set, indicates that the PWM pin 4 is present. 3 PWM3 RO 1 PWM3 Pin Present When set, indicates that the PWM pin 3 is present. 2 PWM2 RO 1 PWM2 Pin Present When set, indicates that the PWM pin 2 is present. 1 PWM1 RO 1 PWM1 Pin Present When set, indicates that the PWM pin 1 is present. 0 PWM0 RO 1 PWM0 Pin Present When set, indicates that the PWM pin 0 is present. 258 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 22: Device Capabilities 6 (DC6), offset 0x024 This register is predefined by the part and can be used to verify features. If any bit is clear in this register, the module is not present. The corresponding bit in the RCGC0, SCGC0, and DCGC0 registers cannot be set. Device Capabilities 6 (DC6) Base 0x400F.E000 Offset 0x024 Type RO, reset 0x0000.0013 31 30 29 28 27 26 25 24 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 8 7 6 5 4 3 2 1 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 1 reserved Type Reset reserved Type Reset RO 0 USB0PHY RO 1 reserved RO 0 USB0 RO 1 Bit/Field Name Type Reset Description 31:5 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 4 USB0PHY RO 1 USB Module 0 PHY Present When set, indicates that the USB module 0 PHY is present. 3:2 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 1:0 USB0 RO 0x3 USB Module 0 Present Thie field indicates that USB module 0 is present and specifies its capability. Value Description 0x3 USB0 is OTG. March 19, 2011 259 Texas Instruments-Advance Information System Control Register 23: Device Capabilities 7 (DC7), offset 0x028 This register is predefined by the part and can be used to verify uDMA channel features. A 1 indicates the channel is available on this device; a 0 that the channel is only available on other devices in the family. Most channels have primary and secondary assignments. If the primary function is not available on this microcontroller, the secondary function becomes the primary function. If the secondary function is not available, the primary function is the only option. Device Capabilities 7 (DC7) Base 0x400F.E000 Offset 0x028 Type RO, reset 0xFFFF.FFFF 31 reserved Type Reset 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 DMACH30 DMACH29 DMACH28 DMACH27 DMACH26 DMACH25 DMACH24 DMACH23 DMACH22 DMACH21 DMACH20 DMACH19 DMACH18 DMACH17 DMACH16 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 DMACH15 DMACH14 DMACH13 DMACH12 DMACH11 DMACH10 DMACH9 DMACH8 DMACH7 DMACH6 DMACH5 DMACH4 DMACH3 DMACH2 DMACH1 DMACH0 Type Reset RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 Bit/Field Name Type Reset Description 31 reserved RO 1 Reserved Reserved for uDMA channel 31. 30 DMACH30 RO 1 SW When set, indicates uDMA channel 30 is available for software transfers. 29 DMACH29 RO 1 I2S0_TX / CAN1_TX When set, indicates uDMA channel 29 is available and connected to the transmit path of I2S module 0. If the corresponding bit in the DMACHASGN register is set, the channel is connected instead to the secondary channel assignment of CAN module 1 transmit. 28 DMACH28 RO 1 I2S0_RX / CAN1_RX When set, indicates uDMA channel 28 is available and connected to the receive path of I2S module 0. If the corresponding bit in the DMACHASGN register is set, the channel is connected instead to the secondary channel assignment of CAN module 1 receive. 27 DMACH27 RO 1 CAN1_TX / ADC1_SS3 When set, indicates uDMA channel 27 is available and connected to the transmit path of CAN module 1. If the corresponding bit in the DMACHASGN register is set, the channel is connected instead to the secondary channel assignment of ADC module 1 Sample Sequencer 3. 26 DMACH26 RO 1 CAN1_RX / ADC1_SS2 When set, indicates uDMA channel 26 is available and connected to the receive path of CAN module 1. If the corresponding bit in the DMACHASGN register is set, the channel is connected instead to the secondary channel assignment of ADC module 1 Sample Sequencer 2. 260 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset Description 25 DMACH25 RO 1 SSI1_TX / ADC1_SS1 When set, indicates uDMA channel 25 is available and connected to the transmit path of SSI module 1. If the corresponding bit in the DMACHASGN register is set, the channel is connected instead to the secondary channel assignment of ADC module 1 Sample Sequencer 1. 24 DMACH24 RO 1 SSI1_RX / ADC1_SS0 When set, indicates uDMA channel 24 is available and connected to the receive path of SSI module 1. If the corresponding bit in the DMACHASGN register is set, the channel is connected instead to the secondary channel assignment of ADC module 1 Sample Sequencer 0. 23 DMACH23 RO 1 UART1_TX / CAN2_TX When set, indicates uDMA channel 23 is available and connected to the transmit path of UART module 1. If the corresponding bit in the DMACHASGN register is set, the channel is connected instead to the secondary channel assignment of CAN module 2 transmit. 22 DMACH22 RO 1 UART1_RX / CAN2_RX When set, indicates uDMA channel 22 is available and connected to the receive path of UART module 1. If the corresponding bit in the DMACHASGN register is set, the channel is connected instead to the secondary channel assignment of CAN module 2 receive. 21 DMACH21 RO 1 Timer1B / EPI0_WFIFO When set, indicates uDMA channel 21 is available and connected to Timer 1B.If the corresponding bit in the DMACHASGN register is set, the channel is connected instead to the secondary channel assignment of EPI module write FIFO (WRIFO). 20 DMACH20 RO 1 Timer1A / EPI0_NBRFIFO When set, indicates uDMA channel 20 is available and connected to Timer 1A. If the corresponding bit in the DMACHASGN register is set, the channel is connected instead to the secondary channel assignment of EPI module 0 non-blocking read FIFO (NBRFIFO). 19 DMACH19 RO 1 Timer0B / Timer1B When set, indicates uDMA channel 19 is available and connected to Timer 0B. If the corresponding bit in the DMACHASGN register is set, the channel is connected instead to the secondary channel assignment of Timer 1B. 18 DMACH18 RO 1 Timer0A / Timer1A When set, indicates uDMA channel 18 is available and connected to Timer 0A. If the corresponding bit in the DMACHASGN register is set, the channel is connected instead to the secondary channel assignment of Timer 1A. 17 DMACH17 RO 1 ADC0_SS3 When set, indicates uDMA channel 17 is available and connected to ADC module 0 Sample Sequencer 3. 16 DMACH16 RO 1 ADC0_SS2 When set, indicates uDMA channel 16 is available and connected to ADC module 0 Sample Sequencer 2. March 19, 2011 261 Texas Instruments-Advance Information System Control Bit/Field Name Type Reset Description 15 DMACH15 RO 1 ADC0_SS1 / Timer2B When set, indicates uDMA channel 15 is available and connected to ADC module 0 Sample Sequencer 1. If the corresponding bit in the DMACHASGN register is set, the channel is connected instead to the secondary channel assignment of Timer 2B. 14 DMACH14 RO 1 ADC0_SS0 / Timer2A When set, indicates uDMA channel 14 is available and connected to ADC module 0 Sample Sequencer 0. If the corresponding bit in the DMACHASGN register is set, the channel is connected instead to the secondary channel assignment of Timer 2A. 13 DMACH13 RO 1 CAN0_TX / UART2_TX When set, indicates uDMA channel 13 is available and connected to the transmit path of CAN module 0. If the corresponding bit in the DMACHASGN register is set, the channel is connected instead to the secondary channel assignment of UART module 2 transmit. 12 DMACH12 RO 1 CAN0_RX / UART2_RX When set, indicates uDMA channel 12 is available and connected to the receive path of CAN module 0. If the corresponding bit in the DMACHASGN register is set, the channel is connected instead to the secondary channel assignment of UART module 2 receive. 11 DMACH11 RO 1 SSI0_TX / SSI1_TX When set, indicates uDMA channel 11 is available and connected to the transmit path of SSI module 0. If the corresponding bit in the DMACHASGN register is set, the channel is connected instead to the secondary channel assignment of SSI module 1 transmit. 10 DMACH10 RO 1 SSI0_RX / SSI1_RX When set, indicates uDMA channel 10 is available and connected to the receive path of SSI module 0. If the corresponding bit in the DMACHASGN register is set, the channel is connected instead to the secondary channel assignment of SSI module 1 receive. 9 DMACH9 RO 1 UART0_TX / UART1_TX When set, indicates uDMA channel 9 is available and connected to the transmit path of UART module 0. If the corresponding bit in the DMACHASGN register is set, the channel is connected instead to the seondary channel assignment of UART module 1 transmit. 8 DMACH8 RO 1 UART0_RX / UART1_RX When set, indicates uDMA channel 8 is available and connected to the receive path of UART module 0. If the corresponding bit in the DMACHASGN register is set, the channel is connected instead to the secondary channel assignment of UART module 1 receive. 7 DMACH7 RO 1 ETH_TX / Timer2B When set, indicates uDMA channel 7 is available and connected to the transmit path of the Ethernet module. If the corresponding bit in the DMACHASGN register is set, the channel is connected instead to the secondary channel assignment of Timer 2B. 6 DMACH6 RO 1 ETH_RX / Timer2A When set, indicates uDMA channel 6 is available and connected to the receive path of the Ethernet module. If the corresponding bit in the DMACHASGN register is set, the channel is connected instead to the secondary channel assignment of Timer 2A. 262 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset Description 5 DMACH5 RO 1 USB_EP3_TX / Timer2B When set, indicates uDMA channel 5 is available and connected to the transmit path of USB endpoint 3. If the corresponding bit in the DMACHASGN register is set, the channel is connected instead to the secondary channel assignment of Timer 2B. 4 DMACH4 RO 1 USB_EP3_RX / Timer2A When set, indicates uDMA channel 4 is available and connected to the receive path of USB endpoint 3. If the corresponding bit in the DMACHASGN register is set, the channel is connected instead to the secondary channel assignment of Timer 2A. 3 DMACH3 RO 1 USB_EP2_TX / Timer3B When set, indicates uDMA channel 3 is available and connected to the transmit path of USB endpoint 2. If the corresponding bit in the DMACHASGN register is set, the channel is connected instead to the secondary channel assignment of Timer 3B. 2 DMACH2 RO 1 USB_EP2_RX / Timer3A When set, indicates uDMA channel 2 is available and connected to the receive path of USB endpoint 2. If the corresponding bit in the DMACHASGN register is set, the channel is connected instead to the secondary channel assignment of Timer 3A. 1 DMACH1 RO 1 USB_EP1_TX / UART2_TX When set, indicates uDMA channel 1 is available and connected to the transmit path of USB endpoint 1. If the corresponding bit in the DMACHASGN register is set, the channel is connected instead to the secondary channel assignment of UART module 2 transmit. 0 DMACH0 RO 1 USB_EP1_RX / UART2_RX When set, indicates uDMA channel 0 is available and connected to the receive path of USB endpoint 1. If the corresponding bit in the DMACHASGN register is set, the channel is connected instead to the secondary channel assignment of UART module 2 receive. March 19, 2011 263 Texas Instruments-Advance Information System Control Register 24: Device Capabilities 8 ADC Channels (DC8), offset 0x02C This register is predefined by the part and can be used to verify features. Device Capabilities 8 ADC Channels (DC8) Base 0x400F.E000 Offset 0x02C Type RO, reset 0xFFFF.FFFF 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 ADC1AIN15 ADC1AIN14 ADC1AIN13 ADC1AIN12 ADC1AIN11 ADC1AIN10 ADC1AIN9 ADC1AIN8 ADC1AIN7 ADC1AIN6 ADC1AIN5 ADC1AIN4 ADC1AIN3 ADC1AIN2 ADC1AIN1 ADC1AIN0 Type Reset RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 ADC0AIN15 ADC0AIN14 ADC0AIN13 ADC0AIN12 ADC0AIN11 ADC0AIN10 ADC0AIN9 ADC0AIN8 ADC0AIN7 ADC0AIN6 ADC0AIN5 ADC0AIN4 ADC0AIN3 ADC0AIN2 ADC0AIN1 ADC0AIN0 Type Reset RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 Bit/Field Name Type Reset 31 ADC1AIN15 RO 1 ADC Module 1 AIN15 Pin Present When set, indicates that ADC module 1 input pin 15 is present. 30 ADC1AIN14 RO 1 ADC Module 1 AIN14 Pin Present When set, indicates that ADC module 1 input pin 14 is present. 29 ADC1AIN13 RO 1 ADC Module 1 AIN13 Pin Present When set, indicates that ADC module 1 input pin 13 is present. 28 ADC1AIN12 RO 1 ADC Module 1 AIN12 Pin Present When set, indicates that ADC module 1 input pin 12 is present. 27 ADC1AIN11 RO 1 ADC Module 1 AIN11 Pin Present When set, indicates that ADC module 1 input pin 11 is present. 26 ADC1AIN10 RO 1 ADC Module 1 AIN10 Pin Present When set, indicates that ADC module 1 input pin 10 is present. 25 ADC1AIN9 RO 1 ADC Module 1 AIN9 Pin Present When set, indicates that ADC module 1 input pin 9 is present. 24 ADC1AIN8 RO 1 ADC Module 1 AIN8 Pin Present When set, indicates that ADC module 1 input pin 8 is present. 23 ADC1AIN7 RO 1 ADC Module 1 AIN7 Pin Present When set, indicates that ADC module 1 input pin 7 is present. 22 ADC1AIN6 RO 1 ADC Module 1 AIN6 Pin Present When set, indicates that ADC module 1 input pin 6 is present. 21 ADC1AIN5 RO 1 ADC Module 1 AIN5 Pin Present When set, indicates that ADC module 1 input pin 5 is present. 20 ADC1AIN4 RO 1 ADC Module 1 AIN4 Pin Present When set, indicates that ADC module 1 input pin 4 is present. 19 ADC1AIN3 RO 1 ADC Module 1 AIN3 Pin Present When set, indicates that ADC module 1 input pin 3 is present. RO 1 Description 264 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset Description 18 ADC1AIN2 RO 1 ADC Module 1 AIN2 Pin Present When set, indicates that ADC module 1 input pin 2 is present. 17 ADC1AIN1 RO 1 ADC Module 1 AIN1 Pin Present When set, indicates that ADC module 1 input pin 1 is present. 16 ADC1AIN0 RO 1 ADC Module 1 AIN0 Pin Present When set, indicates that ADC module 1 input pin 0 is present. 15 ADC0AIN15 RO 1 ADC Module 0 AIN15 Pin Present When set, indicates that ADC module 0 input pin 15 is present. 14 ADC0AIN14 RO 1 ADC Module 0 AIN14 Pin Present When set, indicates that ADC module 0 input pin 14 is present. 13 ADC0AIN13 RO 1 ADC Module 0 AIN13 Pin Present When set, indicates that ADC module 0 input pin 13 is present. 12 ADC0AIN12 RO 1 ADC Module 0 AIN12 Pin Present When set, indicates that ADC module 0 input pin 12 is present. 11 ADC0AIN11 RO 1 ADC Module 0 AIN11 Pin Present When set, indicates that ADC module 0 input pin 11 is present. 10 ADC0AIN10 RO 1 ADC Module 0 AIN10 Pin Present When set, indicates that ADC module 0 input pin 10 is present. 9 ADC0AIN9 RO 1 ADC Module 0 AIN9 Pin Present When set, indicates that ADC module 0 input pin 9 is present. 8 ADC0AIN8 RO 1 ADC Module 0 AIN8 Pin Present When set, indicates that ADC module 0 input pin 8 is present. 7 ADC0AIN7 RO 1 ADC Module 0 AIN7 Pin Present When set, indicates that ADC module 0 input pin 7 is present. 6 ADC0AIN6 RO 1 ADC Module 0 AIN6 Pin Present When set, indicates that ADC module 0 input pin 6 is present. 5 ADC0AIN5 RO 1 ADC Module 0 AIN5 Pin Present When set, indicates that ADC module 0 input pin 5 is present. 4 ADC0AIN4 RO 1 ADC Module 0 AIN4 Pin Present When set, indicates that ADC module 0 input pin 4 is present. 3 ADC0AIN3 RO 1 ADC Module 0 AIN3 Pin Present When set, indicates that ADC module 0 input pin 3 is present. 2 ADC0AIN2 RO 1 ADC Module 0 AIN2 Pin Present When set, indicates that ADC module 0 input pin 2 is present. 1 ADC0AIN1 RO 1 ADC Module 0 AIN1 Pin Present When set, indicates that ADC module 0 input pin 1 is present. 0 ADC0AIN0 RO 1 ADC Module 0 AIN0 Pin Present When set, indicates that ADC module 0 input pin 0 is present. March 19, 2011 265 Texas Instruments-Advance Information System Control Register 25: Device Capabilities 9 ADC Digital Comparators (DC9), offset 0x190 This register is predefined by the part and can be used to verify features. Device Capabilities 9 ADC Digital Comparators (DC9) Base 0x400F.E000 Offset 0x190 Type RO, reset 0x00FF.00FF 31 30 29 28 27 26 25 24 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 reserved Type Reset RO 0 RO 0 RO 0 RO 0 23 22 21 20 19 18 17 16 ADC1DC7 ADC1DC6 ADC1DC5 ADC1DC4 ADC1DC3 ADC1DC2 ADC1DC1 ADC1DC0 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 7 6 5 4 3 2 1 0 ADC0DC7 ADC0DC6 ADC0DC5 ADC0DC4 ADC0DC3 ADC0DC2 ADC0DC1 ADC0DC0 RO 0 RO 0 RO 0 RO 0 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 Bit/Field Name Type Reset Description 31:24 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 23 ADC1DC7 RO 1 ADC1 DC7 Present When set, indicates that ADC module 1 Digital Comparator 7 is present. 22 ADC1DC6 RO 1 ADC1 DC6 Present When set, indicates that ADC module 1 Digital Comparator 6 is present. 21 ADC1DC5 RO 1 ADC1 DC5 Present When set, indicates that ADC module 1 Digital Comparator 5 is present. 20 ADC1DC4 RO 1 ADC1 DC4 Present When set, indicates that ADC module 1 Digital Comparator 4 is present. 19 ADC1DC3 RO 1 ADC1 DC3 Present When set, indicates that ADC module 1 Digital Comparator 3 is present. 18 ADC1DC2 RO 1 ADC1 DC2 Present When set, indicates that ADC module 1 Digital Comparator 2 is present. 17 ADC1DC1 RO 1 ADC1 DC1 Present When set, indicates that ADC module 1 Digital Comparator 1 is present. 16 ADC1DC0 RO 1 ADC1 DC0 Present When set, indicates that ADC module 1 Digital Comparator 0 is present. 15:8 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 7 ADC0DC7 RO 1 ADC0 DC7 Present When set, indicates that ADC module 0 Digital Comparator 7 is present. 6 ADC0DC6 RO 1 ADC0 DC6 Present When set, indicates that ADC module 0 Digital Comparator 6 is present. 266 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset Description 5 ADC0DC5 RO 1 ADC0 DC5 Present When set, indicates that ADC module 0 Digital Comparator 5 is present. 4 ADC0DC4 RO 1 ADC0 DC4 Present When set, indicates that ADC module 0 Digital Comparator 4 is present. 3 ADC0DC3 RO 1 ADC0 DC3 Present When set, indicates that ADC module 0 Digital Comparator 3 is present. 2 ADC0DC2 RO 1 ADC0 DC2 Present When set, indicates that ADC module 0 Digital Comparator 2 is present. 1 ADC0DC1 RO 1 ADC0 DC1 Present When set, indicates that ADC module 0 Digital Comparator 1 is present. 0 ADC0DC0 RO 1 ADC0 DC0 Present When set, indicates that ADC module 0 Digital Comparator 0 is present. March 19, 2011 267 Texas Instruments-Advance Information System Control Register 26: Non-Volatile Memory Information (NVMSTAT), offset 0x1A0 This register is predefined by the part and can be used to verify features. Non-Volatile Memory Information (NVMSTAT) Base 0x400F.E000 Offset 0x1A0 Type RO, reset 0x0000.0001 31 30 29 28 27 26 25 24 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 7 6 5 4 3 2 1 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 reserved Type Reset reserved Type Reset RO 0 FWB RO 1 Bit/Field Name Type Reset Description 31:1 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 0 FWB RO 1 32 Word Flash Write Buffer Active When set, indicates that the 32 word Flash memory write buffer feature is active. 268 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 27: Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100 This register controls the clock gating logic in normal Run mode. Each bit controls a clock enable for a given interface, function, or module. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled (saving power). If the module is unclocked, reads or writes to the module generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional modules are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or modules to control. This configuration is implemented to assure reasonable code compatibility with other family and future parts. RCGC0 is the clock configuration register for running operation, SCGC0 for Sleep operation, and DCGC0 for Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register specifies that the system uses sleep modes. Run Mode Clock Gating Control Register 0 (RCGC0) Base 0x400F.E000 Offset 0x100 Type R/W, reset 0x00000040 31 30 29 reserved Type Reset 28 WDT1 26 24 23 22 21 19 16 CAN1 CAN0 ADC1 ADC0 RO 0 RO 0 R/W 0 R/W 0 RO 0 RO 0 RO 0 R/W 0 RO 0 RO 0 R/W 0 R/W 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 reserved reserved RO 0 RO 0 RO 0 RO 1 MAXADC0SPD R/W 0 R/W 0 R/W 0 R/W 0 reserved RO 0 RO 0 reserved 17 R/W 0 MAXADC1SPD PWM 18 RO 0 RO 0 reserved 20 RO 0 RO 0 reserved 25 RO 0 reserved Type Reset 27 WDT0 R/W 0 reserved RO 0 RO 0 RO 0 Bit/Field Name Type Reset Description 31:29 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 28 WDT1 R/W 0 WDT1 Clock Gating Control This bit controls the clock gating for the Watchdog Timer module 1. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 27:26 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 25 CAN1 R/W 0 CAN1 Clock Gating Control This bit controls the clock gating for CAN module 1. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 24 CAN0 R/W 0 CAN0 Clock Gating Control This bit controls the clock gating for CAN module 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. March 19, 2011 269 Texas Instruments-Advance Information System Control Bit/Field Name Type Reset Description 23:21 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 20 PWM R/W 0 PWM Clock Gating Control This bit controls the clock gating for the PWM module. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 19:18 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 17 ADC1 R/W 0 ADC1 Clock Gating Control This bit controls the clock gating for SAR ADC module 1. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 16 ADC0 R/W 0 ADC0 Clock Gating Control This bit controls the clock gating for ADC module 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 15:12 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 11:10 MAXADC1SPD R/W 0 ADC1 Sample Speed This field sets the rate at which ADC module 1 samples data. You cannot set the rate higher than the maximum rate. You can set the sample rate by setting the MAXADC1SPD bit as follows (all other encodings are reserved): Value Description 9:8 MAXADC0SPD R/W 0 0x3 1M samples/second 0x2 500K samples/second 0x1 250K samples/second 0x0 125K samples/second ADC0 Sample Speed This field sets the rate at which ADC0 samples data. You cannot set the rate higher than the maximum rate. You can set the sample rate by setting the MAXADC0SPD bit as follows (all other encodings are reserved): Value Description 0x3 1M samples/second 0x2 500K samples/second 0x1 250K samples/second 0x0 125K samples/second 270 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset Description 7 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 6 reserved RO 1 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 5:4 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 3 WDT0 R/W 0 WDT0 Clock Gating Control This bit controls the clock gating for the Watchdog Timer module 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 2:0 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. March 19, 2011 271 Texas Instruments-Advance Information System Control Register 28: Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x110 This register controls the clock gating logic in Sleep mode. Each bit controls a clock enable for a given interface, function, or module. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled (saving power). If the module is unclocked, reads or writes to the module generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional modules are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or modules to control. This configuration is implemented to assure reasonable code compatibility with other family and future parts. RCGC0 is the clock configuration register for running operation, SCGC0 for Sleep operation, and DCGC0 for Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register specifies that the system uses sleep modes. Sleep Mode Clock Gating Control Register 0 (SCGC0) Base 0x400F.E000 Offset 0x110 Type R/W, reset 0x00000040 31 30 29 reserved Type Reset 28 WDT1 RO 0 RO 0 RO 0 R/W 0 15 14 13 12 reserved Type Reset RO 0 RO 0 RO 0 RO 0 27 26 reserved RO 0 RO 0 11 10 25 24 CAN1 CAN0 R/W 0 R/W 0 9 8 MAXADC1SPD MAXADC0SPD R/W 0 R/W 0 R/W 0 R/W 0 23 22 21 reserved RO 0 20 RO 0 RO 0 R/W 0 5 4 7 6 reserved reserved RO 0 RO 1 19 PWM reserved RO 0 RO 0 18 reserved RO 0 RO 0 3 2 WDT0 R/W 0 17 16 ADC1 ADC0 R/W 0 R/W 0 1 0 reserved RO 0 RO 0 RO 0 Bit/Field Name Type Reset Description 31:29 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 28 WDT1 R/W 0 WDT1 Clock Gating Control This bit controls the clock gating for Watchdog Timer module 1. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 27:26 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 25 CAN1 R/W 0 CAN1 Clock Gating Control This bit controls the clock gating for CAN module 1. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 24 CAN0 R/W 0 CAN0 Clock Gating Control This bit controls the clock gating for CAN module 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 272 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset Description 23:21 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 20 PWM R/W 0 PWM Clock Gating Control This bit controls the clock gating for the PWM module. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 19:18 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 17 ADC1 R/W 0 ADC1 Clock Gating Control This bit controls the clock gating for ADC module 1. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 16 ADC0 R/W 0 ADC0 Clock Gating Control This bit controls the clock gating for ADC module 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 15:12 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 11:10 MAXADC1SPD R/W 0 ADC1 Sample Speed This field sets the rate at which ADC module 1 samples data. You cannot set the rate higher than the maximum rate. You can set the sample rate by setting the MAXADC1SPD bit as follows (all other encodings are reserved): Value Description 9:8 MAXADC0SPD R/W 0 0x3 1M samples/second 0x2 500K samples/second 0x1 250K samples/second 0x0 125K samples/second ADC0 Sample Speed This field sets the rate at which ADC module 0 samples data. You cannot set the rate higher than the maximum rate. You can set the sample rate by setting the MAXADC0SPD bit as follows (all other encodings are reserved): Value Description 0x3 1M samples/second 0x2 500K samples/second 0x1 250K samples/second 0x0 125K samples/second March 19, 2011 273 Texas Instruments-Advance Information System Control Bit/Field Name Type Reset Description 7 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 6 reserved RO 1 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 5:4 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 3 WDT0 R/W 0 WDT0 Clock Gating Control This bit controls the clock gating for the Watchdog Timer module 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 2:0 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 274 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 29: Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x120 This register controls the clock gating logic in Deep-Sleep mode. Each bit controls a clock enable for a given interface, function, or module. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled (saving power). If the module is unclocked, reads or writes to the module generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional modules are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or modules to control. This configuration is implemented to assure reasonable code compatibility with other family and future parts. RCGC0 is the clock configuration register for running operation, SCGC0 for Sleep operation, and DCGC0 for Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register specifies that the system uses sleep modes. Deep Sleep Mode Clock Gating Control Register 0 (DCGC0) Base 0x400F.E000 Offset 0x120 Type R/W, reset 0x00000040 31 30 29 reserved Type Reset 28 WDT1 RO 0 RO 0 RO 0 R/W 0 15 14 13 12 27 26 reserved 25 24 CAN1 CAN0 23 RO 0 RO 0 R/W 0 R/W 0 RO 0 11 10 9 8 7 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 22 RO 0 RO 0 RO 0 20 RO 0 R/W 0 6 5 4 RO 1 19 PWM RO 0 reserved RO 0 21 reserved reserved RO 0 RO 0 18 reserved RO 0 RO 0 3 2 WDT0 R/W 0 17 16 ADC1 ADC0 R/W 0 R/W 0 1 0 reserved RO 0 RO 0 RO 0 Bit/Field Name Type Reset Description 31:29 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 28 WDT1 R/W 0 WDT1 Clock Gating Control This bit controls the clock gating for the Watchdog Timer module 1. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 27:26 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 25 CAN1 R/W 0 CAN1 Clock Gating Control This bit controls the clock gating for CAN module 1. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 24 CAN0 R/W 0 CAN0 Clock Gating Control This bit controls the clock gating for CAN module 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. March 19, 2011 275 Texas Instruments-Advance Information System Control Bit/Field Name Type Reset Description 23:21 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 20 PWM R/W 0 PWM Clock Gating Control This bit controls the clock gating for the PWM module. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 19:18 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 17 ADC1 R/W 0 ADC1 Clock Gating Control This bit controls the clock gating for ADC module 1. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 16 ADC0 R/W 0 ADC0 Clock Gating Control This bit controls the clock gating for ADC module 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 15:7 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 6 reserved RO 1 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 5:4 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 3 WDT0 R/W 0 WDT0 Clock Gating Control This bit controls the clock gating for the Watchdog Timer module 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 2:0 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 276 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 30: Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x104 This register controls the clock gating logic in normal Run mode. Each bit controls a clock enable for a given interface, function, or module. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled (saving power). If the module is unclocked, reads or writes to the module generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional modules are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or modules to control. This configuration is implemented to assure reasonable code compatibility with other family and future parts. RCGC1 is the clock configuration register for running operation, SCGC1 for Sleep operation, and DCGC1 for Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register specifies that the system uses sleep modes. Run Mode Clock Gating Control Register 1 (RCGC1) Base 0x400F.E000 Offset 0x104 Type R/W, reset 0x00000000 Type Reset Type Reset 31 30 29 28 27 26 25 24 reserved EPI0 reserved I2S0 reserved COMP2 COMP1 COMP0 RO 0 R/W 0 RO 0 R/W 0 RO 0 R/W 0 R/W 0 15 14 13 12 11 10 reserved I2C1 reserved I2C0 RO 0 R/W 0 RO 0 R/W 0 reserved RO 0 RO 0 23 22 21 20 19 18 17 16 R/W 0 RO 0 RO 0 RO 0 RO 0 TIMER3 TIMER2 TIMER1 TIMER0 R/W 0 R/W 0 R/W 0 R/W 0 9 8 7 6 5 4 3 2 1 0 QEI1 QEI0 R/W 0 R/W 0 SSI1 SSI0 reserved UART2 UART1 UART0 R/W 0 R/W 0 RO 0 R/W 0 R/W 0 R/W 0 reserved reserved RO 0 RO 0 Bit/Field Name Type Reset Description 31 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 30 EPI0 R/W 0 EPI0 Clock Gating This bit controls the clock gating for EPI module 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 29 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 28 I2S0 R/W 0 I2S0 Clock Gating This bit controls the clock gating for I2S module 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 27 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. March 19, 2011 277 Texas Instruments-Advance Information System Control Bit/Field Name Type Reset Description 26 COMP2 R/W 0 Analog Comparator 2 Clock Gating This bit controls the clock gating for analog comparator 2. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 25 COMP1 R/W 0 Analog Comparator 1 Clock Gating This bit controls the clock gating for analog comparator 1. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 24 COMP0 R/W 0 Analog Comparator 0 Clock Gating This bit controls the clock gating for analog comparator 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 23:20 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 19 TIMER3 R/W 0 Timer 3 Clock Gating Control This bit controls the clock gating for General-Purpose Timer module 3. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 18 TIMER2 R/W 0 Timer 2 Clock Gating Control This bit controls the clock gating for General-Purpose Timer module 2. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 17 TIMER1 R/W 0 Timer 1 Clock Gating Control This bit controls the clock gating for General-Purpose Timer module 1. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 16 TIMER0 R/W 0 Timer 0 Clock Gating Control This bit controls the clock gating for General-Purpose Timer module 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 15 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 14 I2C1 R/W 0 I2C1 Clock Gating Control This bit controls the clock gating for I2C module 1. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 13 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 278 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset Description 12 I2C0 R/W 0 I2C0 Clock Gating Control This bit controls the clock gating for I2C module 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 11:10 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 9 QEI1 R/W 0 QEI1 Clock Gating Control This bit controls the clock gating for QEI module 1. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 8 QEI0 R/W 0 QEI0 Clock Gating Control This bit controls the clock gating for QEI module 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 7:6 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 5 SSI1 R/W 0 SSI1 Clock Gating Control This bit controls the clock gating for SSI module 1. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 4 SSI0 R/W 0 SSI0 Clock Gating Control This bit controls the clock gating for SSI module 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 3 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 2 UART2 R/W 0 UART2 Clock Gating Control This bit controls the clock gating for UART module 2. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 1 UART1 R/W 0 UART1 Clock Gating Control This bit controls the clock gating for UART module 1. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 0 UART0 R/W 0 UART0 Clock Gating Control This bit controls the clock gating for UART module 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. March 19, 2011 279 Texas Instruments-Advance Information System Control Register 31: Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114 This register controls the clock gating logic in Sleep mode. Each bit controls a clock enable for a given interface, function, or module. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled (saving power). If the module is unclocked, reads or writes to the module generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional modules are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or modules to control. This configuration is implemented to assure reasonable code compatibility with other family and future parts. RCGC1 is the clock configuration register for running operation, SCGC1 for Sleep operation, and DCGC1 for Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register specifies that the system uses sleep modes. Sleep Mode Clock Gating Control Register 1 (SCGC1) Base 0x400F.E000 Offset 0x114 Type R/W, reset 0x00000000 Type Reset Type Reset 31 30 29 28 27 26 25 24 reserved EPI0 reserved I2S0 reserved COMP2 COMP1 COMP0 RO 0 R/W 0 RO 0 R/W 0 RO 0 R/W 0 R/W 0 R/W 0 RO 0 RO 0 11 10 7 6 15 14 13 12 reserved I2C1 reserved I2C0 RO 0 R/W 0 RO 0 R/W 0 reserved RO 0 RO 0 9 8 QEI1 QEI0 R/W 0 R/W 0 23 22 21 20 reserved reserved RO 0 RO 0 RO 0 RO 0 19 18 17 16 TIMER3 TIMER2 TIMER1 TIMER0 R/W 0 R/W 0 R/W 0 R/W 0 5 4 3 2 1 0 SSI1 SSI0 reserved UART2 UART1 UART0 R/W 0 R/W 0 RO 0 R/W 0 R/W 0 R/W 0 Bit/Field Name Type Reset Description 31 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 30 EPI0 R/W 0 EPI0 Clock Gating This bit controls the clock gating for EPI module 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 29 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 28 I2S0 R/W 0 I2S0 Clock Gating This bit controls the clock gating for I2S module 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 27 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 280 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset Description 26 COMP2 R/W 0 Analog Comparator 2 Clock Gating This bit controls the clock gating for analog comparator 2. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 25 COMP1 R/W 0 Analog Comparator 1 Clock Gating This bit controls the clock gating for analog comparator 1. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 24 COMP0 R/W 0 Analog Comparator 0 Clock Gating This bit controls the clock gating for analog comparator 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 23:20 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 19 TIMER3 R/W 0 Timer 3 Clock Gating Control This bit controls the clock gating for General-Purpose Timer module 3. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 18 TIMER2 R/W 0 Timer 2 Clock Gating Control This bit controls the clock gating for General-Purpose Timer module 2. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 17 TIMER1 R/W 0 Timer 1 Clock Gating Control This bit controls the clock gating for General-Purpose Timer module 1. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 16 TIMER0 R/W 0 Timer 0 Clock Gating Control This bit controls the clock gating for General-Purpose Timer module 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 15 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 14 I2C1 R/W 0 I2C1 Clock Gating Control This bit controls the clock gating for I2C module 1. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 13 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. March 19, 2011 281 Texas Instruments-Advance Information System Control Bit/Field Name Type Reset Description 12 I2C0 R/W 0 I2C0 Clock Gating Control This bit controls the clock gating for I2C module 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 11:10 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 9 QEI1 R/W 0 QEI1 Clock Gating Control This bit controls the clock gating for QEI module 1. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 8 QEI0 R/W 0 QEI0 Clock Gating Control This bit controls the clock gating for QEI module 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 7:6 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 5 SSI1 R/W 0 SSI1 Clock Gating Control This bit controls the clock gating for SSI module 1. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 4 SSI0 R/W 0 SSI0 Clock Gating Control This bit controls the clock gating for SSI module 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 3 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 2 UART2 R/W 0 UART2 Clock Gating Control This bit controls the clock gating for UART module 2. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 1 UART1 R/W 0 UART1 Clock Gating Control This bit controls the clock gating for UART module 1. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 0 UART0 R/W 0 UART0 Clock Gating Control This bit controls the clock gating for UART module 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 282 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 32: Deep-Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124 This register controls the clock gating logic in Deep-Sleep mode. Each bit controls a clock enable for a given interface, function, or module. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled (saving power). If the module is unclocked, reads or writes to the module generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional modules are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or modules to control. This configuration is implemented to assure reasonable code compatibility with other family and future parts. RCGC1 is the clock configuration register for running operation, SCGC1 for Sleep operation, and DCGC1 for Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register specifies that the system uses sleep modes. Deep-Sleep Mode Clock Gating Control Register 1 (DCGC1) Base 0x400F.E000 Offset 0x124 Type R/W, reset 0x00000000 Type Reset Type Reset 31 30 29 28 27 26 25 24 reserved EPI0 reserved I2S0 reserved COMP2 COMP1 COMP0 RO 0 R/W 0 RO 0 R/W 0 RO 0 R/W 0 R/W 0 R/W 0 RO 0 RO 0 11 10 7 6 15 14 13 12 reserved I2C1 reserved I2C0 RO 0 R/W 0 RO 0 R/W 0 reserved RO 0 RO 0 9 8 QEI1 QEI0 R/W 0 R/W 0 23 22 21 20 reserved reserved RO 0 RO 0 RO 0 RO 0 19 18 17 16 TIMER3 TIMER2 TIMER1 TIMER0 R/W 0 R/W 0 R/W 0 R/W 0 5 4 3 2 1 0 SSI1 SSI0 reserved UART2 UART1 UART0 R/W 0 R/W 0 RO 0 R/W 0 R/W 0 R/W 0 Bit/Field Name Type Reset Description 31 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 30 EPI0 R/W 0 EPI0 Clock Gating This bit controls the clock gating for EPI module 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 29 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 28 I2S0 R/W 0 I2S0 Clock Gating This bit controls the clock gating for I2S module 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 27 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. March 19, 2011 283 Texas Instruments-Advance Information System Control Bit/Field Name Type Reset Description 26 COMP2 R/W 0 Analog Comparator 2 Clock Gating This bit controls the clock gating for analog comparator 2. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 25 COMP1 R/W 0 Analog Comparator 1 Clock Gating This bit controls the clock gating for analog comparator 1. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 24 COMP0 R/W 0 Analog Comparator 0 Clock Gating This bit controls the clock gating for analog comparator 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 23:20 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 19 TIMER3 R/W 0 Timer 3 Clock Gating Control This bit controls the clock gating for General-Purpose Timer module 3. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 18 TIMER2 R/W 0 Timer 2 Clock Gating Control This bit controls the clock gating for General-Purpose Timer module 2. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 17 TIMER1 R/W 0 Timer 1 Clock Gating Control This bit controls the clock gating for General-Purpose Timer module 1. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 16 TIMER0 R/W 0 Timer 0 Clock Gating Control This bit controls the clock gating for General-Purpose Timer module 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 15 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 14 I2C1 R/W 0 I2C1 Clock Gating Control This bit controls the clock gating for I2C module 1. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 13 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 284 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset Description 12 I2C0 R/W 0 I2C0 Clock Gating Control This bit controls the clock gating for I2C module 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 11:10 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 9 QEI1 R/W 0 QEI1 Clock Gating Control This bit controls the clock gating for QEI module 1. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 8 QEI0 R/W 0 QEI0 Clock Gating Control This bit controls the clock gating for QEI module 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 7:6 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 5 SSI1 R/W 0 SSI1 Clock Gating Control This bit controls the clock gating for SSI module 1. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 4 SSI0 R/W 0 SSI0 Clock Gating Control This bit controls the clock gating for SSI module 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 3 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 2 UART2 R/W 0 UART2 Clock Gating Control This bit controls the clock gating for UART module 2. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 1 UART1 R/W 0 UART1 Clock Gating Control This bit controls the clock gating for UART module 1. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 0 UART0 R/W 0 UART0 Clock Gating Control This bit controls the clock gating for UART module 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. March 19, 2011 285 Texas Instruments-Advance Information System Control Register 33: Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108 This register controls the clock gating logic in normal Run mode. Each bit controls a clock enable for a given interface, function, or module. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled (saving power). If the module is unclocked, reads or writes to the module generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional modules are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or modules to control. This configuration is implemented to assure reasonable code compatibility with other family and future parts. RCGC2 is the clock configuration register for running operation, SCGC2 for Sleep operation, and DCGC2 for Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register specifies that the system uses sleep modes. Run Mode Clock Gating Control Register 2 (RCGC2) Base 0x400F.E000 Offset 0x108 Type R/W, reset 0x00000000 Type Reset 31 30 29 28 reserved EPHY0 reserved EMAC0 RO 0 R/W 0 RO 0 15 14 13 reserved Type Reset RO 0 RO 0 27 26 25 24 23 R/W 0 RO 0 RO 0 RO 0 RO 0 RO 0 12 11 10 9 8 RO 0 RO 0 UDMA R/W 0 22 21 20 19 18 17 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 R/W 0 7 6 5 4 3 2 1 0 GPIOJ GPIOH GPIOG GPIOF GPIOE GPIOD GPIOC GPIOB GPIOA R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 reserved reserved RO 0 RO 0 16 USB0 Bit/Field Name Type Reset Description 31 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 30 EPHY0 R/W 0 PHY0 Clock Gating Control This bit controls the clock gating for Ethernet PHY layer 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 29 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 28 EMAC0 R/W 0 MAC0 Clock Gating Control This bit controls the clock gating for Ethernet MAC layer 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 27:17 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 286 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset Description 16 USB0 R/W 0 USB0 Clock Gating Control This bit controls the clock gating for USB module 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 15:14 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 13 UDMA R/W 0 Micro-DMA Clock Gating Control This bit controls the clock gating for micro-DMA. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 12:9 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 8 GPIOJ R/W 0 Port J Clock Gating Control This bit controls the clock gating for Port J. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 7 GPIOH R/W 0 Port H Clock Gating Control This bit controls the clock gating for Port H. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 6 GPIOG R/W 0 Port G Clock Gating Control This bit controls the clock gating for Port G. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 5 GPIOF R/W 0 Port F Clock Gating Control This bit controls the clock gating for Port F. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 4 GPIOE R/W 0 Port E Clock Gating Control Port E Clock Gating Control. This bit controls the clock gating for Port E. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 3 GPIOD R/W 0 Port D Clock Gating Control Port D Clock Gating Control. This bit controls the clock gating for Port D. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. March 19, 2011 287 Texas Instruments-Advance Information System Control Bit/Field Name Type Reset Description 2 GPIOC R/W 0 Port C Clock Gating Control This bit controls the clock gating for Port C. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 1 GPIOB R/W 0 Port B Clock Gating Control This bit controls the clock gating for Port B. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 0 GPIOA R/W 0 Port A Clock Gating Control This bit controls the clock gating for Port A. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 288 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 34: Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118 This register controls the clock gating logic in Sleep mode. Each bit controls a clock enable for a given interface, function, or module. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled (saving power). If the module is unclocked, reads or writes to the module generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional modules are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or modules to control. This configuration is implemented to assure reasonable code compatibility with other family and future parts. RCGC2 is the clock configuration register for running operation, SCGC2 for Sleep operation, and DCGC2 for Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register specifies that the system uses sleep modes. Sleep Mode Clock Gating Control Register 2 (SCGC2) Base 0x400F.E000 Offset 0x118 Type R/W, reset 0x00000000 Type Reset 31 30 29 28 reserved EPHY0 reserved EMAC0 RO 0 R/W 0 RO 0 R/W 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 reserved Type Reset RO 0 RO 0 UDMA R/W 0 27 26 25 23 22 21 20 19 18 17 reserved reserved RO 0 24 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 16 USB0 RO 0 RO 0 RO 0 RO 0 RO 0 R/W 0 8 7 6 5 4 3 2 1 0 GPIOJ GPIOH GPIOG GPIOF GPIOE GPIOD GPIOC GPIOB GPIOA R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 Bit/Field Name Type Reset Description 31 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 30 EPHY0 R/W 0 PHY0 Clock Gating Control This bit controls the clock gating for Ethernet PHY layer 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 29 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 28 EMAC0 R/W 0 MAC0 Clock Gating Control This bit controls the clock gating for Ethernet MAC layer 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 27:17 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. March 19, 2011 289 Texas Instruments-Advance Information System Control Bit/Field Name Type Reset Description 16 USB0 R/W 0 USB0 Clock Gating Control This bit controls the clock gating for USB module 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 15:14 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 13 UDMA R/W 0 Micro-DMA Clock Gating Control This bit controls the clock gating for micro-DMA. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 12:9 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 8 GPIOJ R/W 0 Port J Clock Gating Control This bit controls the clock gating for Port J. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 7 GPIOH R/W 0 Port H Clock Gating Control This bit controls the clock gating for Port H. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 6 GPIOG R/W 0 Port G Clock Gating Control This bit controls the clock gating for Port G. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 5 GPIOF R/W 0 Port F Clock Gating Control This bit controls the clock gating for Port F. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 4 GPIOE R/W 0 Port E Clock Gating Control Port E Clock Gating Control. This bit controls the clock gating for Port E. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 3 GPIOD R/W 0 Port D Clock Gating Control Port D Clock Gating Control. This bit controls the clock gating for Port D. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 290 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset Description 2 GPIOC R/W 0 Port C Clock Gating Control This bit controls the clock gating for Port C. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 1 GPIOB R/W 0 Port B Clock Gating Control This bit controls the clock gating for Port B. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 0 GPIOA R/W 0 Port A Clock Gating Control This bit controls the clock gating for Port A. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. March 19, 2011 291 Texas Instruments-Advance Information System Control Register 35: Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128 This register controls the clock gating logic in Deep-Sleep mode. Each bit controls a clock enable for a given interface, function, or module. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled (saving power). If the module is unclocked, reads or writes to the module generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional modules are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or modules to control. This configuration is implemented to assure reasonable code compatibility with other family and future parts. RCGC2 is the clock configuration register for running operation, SCGC2 for Sleep operation, and DCGC2 for Deep-Sleep operation. Setting the ACG bit in the Run-Mode Clock Configuration (RCC) register specifies that the system uses sleep modes. Deep Sleep Mode Clock Gating Control Register 2 (DCGC2) Base 0x400F.E000 Offset 0x128 Type R/W, reset 0x00000000 Type Reset 31 30 29 28 reserved EPHY0 reserved EMAC0 RO 0 R/W 0 RO 0 R/W 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 reserved Type Reset RO 0 RO 0 UDMA R/W 0 27 26 25 23 22 21 20 19 18 17 reserved reserved RO 0 24 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 16 USB0 RO 0 RO 0 RO 0 RO 0 RO 0 R/W 0 8 7 6 5 4 3 2 1 0 GPIOJ GPIOH GPIOG GPIOF GPIOE GPIOD GPIOC GPIOB GPIOA R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 Bit/Field Name Type Reset Description 31 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 30 EPHY0 R/W 0 PHY0 Clock Gating Control This bit controls the clock gating for Ethernet PHY layer 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 29 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 28 EMAC0 R/W 0 MAC0 Clock Gating Control This bit controls the clock gating for Ethernet MAC layer 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 27:17 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 292 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset Description 16 USB0 R/W 0 USB0 Clock Gating Control This bit controls the clock gating for USB module 0. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 15:14 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 13 UDMA R/W 0 Micro-DMA Clock Gating Control This bit controls the clock gating for micro-DMA. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 12:9 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 8 GPIOJ R/W 0 Port J Clock Gating Control This bit controls the clock gating for Port J. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 7 GPIOH R/W 0 Port H Clock Gating Control This bit controls the clock gating for Port H. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 6 GPIOG R/W 0 Port G Clock Gating Control This bit controls the clock gating for Port G. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 5 GPIOF R/W 0 Port F Clock Gating Control This bit controls the clock gating for Port F. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 4 GPIOE R/W 0 Port E Clock Gating Control Port E Clock Gating Control. This bit controls the clock gating for Port E. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 3 GPIOD R/W 0 Port D Clock Gating Control Port D Clock Gating Control. This bit controls the clock gating for Port D. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. March 19, 2011 293 Texas Instruments-Advance Information System Control Bit/Field Name Type Reset Description 2 GPIOC R/W 0 Port C Clock Gating Control This bit controls the clock gating for Port C. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 1 GPIOB R/W 0 Port B Clock Gating Control This bit controls the clock gating for Port B. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 0 GPIOA R/W 0 Port A Clock Gating Control This bit controls the clock gating for Port A. If set, the module receives a clock and functions. Otherwise, the module is unclocked and disabled. If the module is unclocked, a read or write to the module generates a bus fault. 294 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 36: Software Reset Control 0 (SRCR0), offset 0x040 This register allows individual modules to be reset. Writes to this register are masked by the bits in the Device Capabilities 1 (DC1) register. Software Reset Control 0 (SRCR0) Base 0x400F.E000 Offset 0x040 Type R/W, reset 0x00000000 31 30 29 reserved Type Reset 28 WDT1 27 26 reserved 25 24 23 22 21 reserved 20 PWM 18 reserved 17 16 CAN1 CAN0 ADC1 ADC0 RO 0 RO 0 RO 0 R/W 0 RO 0 RO 0 R/W 0 R/W 0 RO 0 RO 0 RO 0 R/W 0 RO 0 RO 0 R/W 0 R/W 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 reserved Type Reset 19 WDT0 R/W 0 reserved RO 0 RO 0 RO 0 Bit/Field Name Type Reset Description 31:29 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 28 WDT1 R/W 0 WDT1 Reset Control When this bit is set, Watchdog Timer module 1 is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. 27:26 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 25 CAN1 R/W 0 CAN1 Reset Control When this bit is set, CAN module 1 is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. 24 CAN0 R/W 0 CAN0 Reset Control When this bit is set, CAN module 0 is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. 23:21 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 20 PWM R/W 0 PWM Reset Control When this bit is set, PWM module 0 is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. 19:18 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. March 19, 2011 295 Texas Instruments-Advance Information System Control Bit/Field Name Type Reset Description 17 ADC1 R/W 0 ADC1 Reset Control When this bit is set, ADC module 1 is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. 16 ADC0 R/W 0 ADC0 Reset Control When this bit is set, ADC module 0 is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. 15:4 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 3 WDT0 R/W 0 WDT0 Reset Control When this bit is set, Watchdog Timer module 0 is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. 2:0 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 296 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 37: Software Reset Control 1 (SRCR1), offset 0x044 This register allows individual modules to be reset. Writes to this register are masked by the bits in the Device Capabilities 2 (DC2) register. Software Reset Control 1 (SRCR1) Base 0x400F.E000 Offset 0x044 Type R/W, reset 0x00000000 Type Reset Type Reset 31 30 29 28 27 26 25 24 reserved EPI0 reserved I2S0 reserved COMP2 COMP1 COMP0 RO 0 R/W 0 RO 0 R/W 0 RO 0 R/W 0 R/W 0 15 14 13 12 11 10 reserved I2C1 reserved I2C0 RO 0 R/W 0 RO 0 R/W 0 reserved RO 0 RO 0 23 22 21 20 19 18 17 16 R/W 0 RO 0 RO 0 RO 0 RO 0 TIMER3 TIMER2 TIMER1 TIMER0 R/W 0 R/W 0 R/W 0 R/W 0 9 8 7 6 5 4 3 2 1 0 QEI1 QEI0 R/W 0 R/W 0 SSI1 SSI0 reserved UART2 UART1 UART0 R/W 0 R/W 0 RO 0 R/W 0 R/W 0 R/W 0 reserved reserved RO 0 RO 0 Bit/Field Name Type Reset Description 31 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 30 EPI0 R/W 0 EPI0 Reset Control When this bit is set, EPI module 0 is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. 29 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 28 I2S0 R/W 0 I2S0 Reset Control When this bit is set, I2S module 0 is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. 27 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 26 COMP2 R/W 0 Analog Comp 2 Reset Control When this bit is set, Analog Comparator module 2 is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. 25 COMP1 R/W 0 Analog Comp 1 Reset Control When this bit is set, Analog Comparator module 1 is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. 24 COMP0 R/W 0 Analog Comp 0 Reset Control When this bit is set, Analog Comparator module 0 is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. March 19, 2011 297 Texas Instruments-Advance Information System Control Bit/Field Name Type Reset Description 23:20 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 19 TIMER3 R/W 0 Timer 3 Reset Control Timer 3 Reset Control. When this bit is set, General-Purpose Timer module 3 is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. 18 TIMER2 R/W 0 Timer 2 Reset Control When this bit is set, General-Purpose Timer module 2 is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. 17 TIMER1 R/W 0 Timer 1 Reset Control When this bit is set, General-Purpose Timer module 1 is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. 16 TIMER0 R/W 0 Timer 0 Reset Control When this bit is set, General-Purpose Timer module 0 is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. 15 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 14 I2C1 R/W 0 I2C1 Reset Control When this bit is set, I2C module 1 is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. 13 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 12 I2C0 R/W 0 I2C0 Reset Control When this bit is set, I2C module 0 is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. 11:10 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 9 QEI1 R/W 0 QEI1 Reset Control When this bit is set, QEI module 1 is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. 8 QEI0 R/W 0 QEI0 Reset Control When this bit is set, QEI module 0 is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. 7:6 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 298 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset Description 5 SSI1 R/W 0 SSI1 Reset Control When this bit is set, SSI module 1 is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. 4 SSI0 R/W 0 SSI0 Reset Control When this bit is set, SSI module 0 is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. 3 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 2 UART2 R/W 0 UART2 Reset Control When this bit is set, UART module 2 is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. 1 UART1 R/W 0 UART1 Reset Control When this bit is set, UART module 1 is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. 0 UART0 R/W 0 UART0 Reset Control When this bit is set, UART module 0 is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. March 19, 2011 299 Texas Instruments-Advance Information System Control Register 38: Software Reset Control 2 (SRCR2), offset 0x048 This register allows individual modules to be reset. Writes to this register are masked by the bits in the Device Capabilities 4 (DC4) register. Software Reset Control 2 (SRCR2) Base 0x400F.E000 Offset 0x048 Type R/W, reset 0x00000000 Type Reset 31 30 29 28 reserved EPHY0 reserved EMAC0 RO 0 R/W 0 RO 0 15 14 13 reserved Type Reset RO 0 RO 0 27 26 25 24 23 R/W 0 RO 0 RO 0 RO 0 RO 0 RO 0 12 11 10 9 8 RO 0 RO 0 UDMA R/W 0 22 21 20 19 18 17 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 R/W 0 7 6 5 4 3 2 1 0 GPIOJ GPIOH GPIOG GPIOF GPIOE GPIOD GPIOC GPIOB GPIOA R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 reserved reserved RO 0 RO 0 16 USB0 Bit/Field Name Type Reset Description 31 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 30 EPHY0 R/W 0 PHY0 Reset Control When this bit is set, Ethernet PHY layer 0 is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. 29 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 28 EMAC0 R/W 0 MAC0 Reset Control When this bit is set, Ethernet MAC layer 0 is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. 27:17 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 16 USB0 R/W 0 USB0 Reset Control When this bit is set, USB module 0 is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. 15:14 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 13 UDMA R/W 0 Micro-DMA Reset Control When this bit is set, uDMA module is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. 12:9 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 300 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset Description 8 GPIOJ R/W 0 Port J Reset Control When this bit is set, Port J module is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. 7 GPIOH R/W 0 Port H Reset Control When this bit is set, Port H module is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. 6 GPIOG R/W 0 Port G Reset Control When this bit is set, Port G module is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. 5 GPIOF R/W 0 Port F Reset Control When this bit is set, Port F module is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. 4 GPIOE R/W 0 Port E Reset Control When this bit is set, Port E module is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. 3 GPIOD R/W 0 Port D Reset Control When this bit is set, Port D module is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. 2 GPIOC R/W 0 Port C Reset Control When this bit is set, Port C module is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. 1 GPIOB R/W 0 Port B Reset Control When this bit is set, Port B module is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. 0 GPIOA R/W 0 Port A Reset Control When this bit is set, Port A module is reset. All internal data is lost and the registers are returned to their reset states. This bit must be manually cleared after being set. March 19, 2011 301 Texas Instruments-Advance Information Internal Memory 6 Internal Memory The LM3S9B92 microcontroller comes with 96 KB of bit-banded SRAM, internal ROM,and 256 KB of Flash memory. The Flash memory controller provides a user-friendly interface, making Flash memory programming a simple task. Flash memory protection can be applied to the Flash memory on a 2-KB block basis. 6.1 Block Diagram Figure 6-1 on page 302 illustrates the internal memory blocks and control logic. The dashed boxes in the figure indicate registers residing in the System Control module. Figure 6-1. Internal Memory Block Diagram ROM Control ROM Array RMCTL Icode Bus Flash Control Cortex-M3 Dcode Bus FMA FMD FMC FCRIS FCIM FCMISC Flash Array System Bus Flash Write Buffer FMC2 FWBVAL FWBn 32 words Flash Protection Bridge FMPREn FMPRE FMPPEn FMPPE User Registers Flash Timing BOOTCFG USECRL USER_REG0 USER_REG1 USER_REG2 USER_REG3 SRAM Array 6.2 Functional Description This section describes the functionality of the SRAM, ROM, and Flash memories. Note: The μDMA controller can transfer data to and from the on-chip SRAM. However, because the Flash memory and ROM are located on a separate internal bus, it is not possible to transfer data from the Flash memory or ROM with the μDMA controller. 302 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller 6.2.1 SRAM ® The internal SRAM of the Stellaris devices is located at address 0x2000.0000 of the device memory map. To reduce the number of time consuming read-modify-write (RMW) operations, ARM provides bit-banding technology in the processor. With a bit-band-enabled processor, certain regions in the memory map (SRAM and peripheral space) can use address aliases to access individual bits in a single, atomic operation. The bit-band base is located at address 0x2200.0000. The bit-band alias is calculated by using the formula: bit-band alias = bit-band base + (byte offset * 32) + (bit number * 4) For example, if bit 3 at address 0x2000.1000 is to be modified, the bit-band alias is calculated as: 0x2200.0000 + (0x1000 * 32) + (3 * 4) = 0x2202.000C With the alias address calculated, an instruction performing a read/write to address 0x2202.000C allows direct access to only bit 3 of the byte at address 0x2000.1000. For details about bit-banding, see “Bit-Banding” on page 102. Note: 6.2.2 The SRAM is implemented using two 32-bit wide SRAM banks (separate SRAM arrays). The banks are partitioned such that one bank contains all even words (the even bank) and the other contains all odd words (the odd bank). A write access that is followed immediately by a read access to the same bank incurs a stall of a single clock cycle. However, a write to one bank followed by a read of the other bank can occur in successive clock cycles without incurring any delay. ROM The internal ROM of the Stellaris device is located at address 0x0100.0000 of the device memory map. Detailed information on the ROM contents can be found in the Stellaris® ROM User’s Guide. The ROM contains the following components: ■ Stellaris Boot Loader and vector table ■ Stellaris Peripheral Driver Library (DriverLib) release for product-specific peripherals and interfaces ■ Advanced Encryption Standard (AES) cryptography tables ■ Cyclic Redundancy Check (CRC) error detection functionality The boot loader is used as an initial program loader (when the Flash memory is empty) as well as an application-initiated firmware upgrade mechanism (by calling back to the boot loader). The Peripheral Driver Library APIs in ROM can be called by applications, reducing Flash memory requirements and freeing the Flash memory to be used for other purposes (such as additional features in the application). Advance Encryption Standard (AES) is a publicly defined encryption standard used by the U.S. Government and Cyclic Redundancy Check (CRC) is a technique to validate a span of data has the same contents as when previously checked. 6.2.2.1 Boot Loader Overview The Stellaris Boot Loader is used to download code to the Flash memory of a device without the use of a debug interface. When the core is reset, the user has the opportunity to direct the core to execute the ROM Boot Loader or the application in Flash memory by using any GPIO signal in Ports A-H as configured in the Boot Configuration (BOOTCFG) register. March 19, 2011 303 Texas Instruments-Advance Information Internal Memory At reset, the ROM is mapped over the Flash memory so that the ROM boot sequence is always executed. The boot sequence executed from ROM is as follows: 1. The BA bit (below) is cleared such that ROM is mapped to 0x01xx.xxxx and Flash memory is mapped to address 0x0. 2. The BOOTCFG register is read. If the EN bit is clear, the status of the specified GPIO pin is compared with the specified polarity. If the status matches the specified polarity, the ROM is mapped to address 0x0000.0000 and execution continues out of the ROM Boot Loader. 3. If the status doesn't match the specified polarity, the data at address 0x0000.0004 is read, and if the data at this address is 0xFFFF.FFFF, the ROM is mapped to address 0x0000.0000 and execution continues out of the ROM Boot Loader. 4. If there is data at address 0x0000.0004 that is not 0xFFFF.FFFF, the stack pointer (SP) is loaded from Flash memory at address 0x0000.0000 and the program counter (PC) is loaded from address 0x0000.0004. The user application begins executing. The boot loader uses a simple packet interface to provide synchronous communication with the device. The speed of the boot loader is determined by the internal oscillator (PIOSC) frequency as it does not enable the PLL. The following serial interfaces can be used: ■ UART0 ■ SSI0 ■ I2C0 ■ Ethernet For simplicity, both the data format and communication protocol are identical for all serial interfaces. Note: The Flash-memory-resident version of the Boot Loader also supports CAN and USB. See the Stellaris® Boot Loader User's Guide for information on the boot loader software. 6.2.2.2 Stellaris Peripheral Driver Library The Stellaris Peripheral Driver Library contains a file called driverlib/rom.h that assists with calling the peripheral driver library functions in the ROM. The detailed description of each function is available in the Stellaris® ROM User’s Guide. See the "Using the ROM" chapter of the Stellaris® Peripheral Driver Library User's Guide for more details on calling the ROM functions and using driverlib/rom.h. A table at the beginning of the ROM points to the entry points for the APIs that are provided in the ROM. Accessing the API through these tables provides scalability; while the API locations may change in future versions of the ROM, the API tables will not. The tables are split into two levels; the main table contains one pointer per peripheral which points to a secondary table that contains one pointer per API that is associated with that peripheral. The main table is located at 0x0100.0010, right after the Cortex-M3 vector table in the ROM. DriverLib functions are described in detail in the Stellaris® Peripheral Driver Library User's Guide. Additional APIs are available for graphics and USB functions, but are not preloaded into ROM. The Stellaris Graphics Library provides a set of graphics primitives and a widget set for creating graphical user interfaces on Stellaris microcontroller-based boards that have a graphical display (for more information, see the Stellaris® Graphics Library User's Guide). The Stellaris USB Library is a set 304 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller of data types and functions for creating USB Device, Host or On-The-Go (OTG) applications on Stellaris microcontroller-based boards (for more information, see the Stellaris® USB Library User's Guide). 6.2.2.3 Advanced Encryption Standard (AES) Cryptography Tables AES is a strong encryption method with reasonable performance and size. AES is fast in both hardware and software, is fairly easy to implement, and requires little memory. AES is ideal for applications that can use pre-arranged keys, such as setup during manufacturing or configuration. Four data tables used by the XySSL AES implementation are provided in the ROM. The first is the forward S-box substitution table, the second is the reverse S-box substitution table, the third is the forward polynomial table, and the final is the reverse polynomial table. See the Stellaris® ROM User’s Guide for more information on AES. 6.2.2.4 Cyclic Redundancy Check (CRC) Error Detection The CRC technique can be used to validate correct receipt of messages (nothing lost or modified in transit), to validate data after decompression, to validate that Flash memory contents have not been changed, and for other cases where the data needs to be validated. A CRC is preferred over a simple checksum (e.g. XOR all bits) because it catches changes more readily. See the Stellaris® ROM User’s Guide for more information on CRC. 6.2.3 Flash Memory At system clock speeds of 50 MHz and below, the Flash memory is read in a single cycle. The Flash memory is organized as a set of 1-KB blocks that can be individually erased. An individual 32-bit word can be programmed to change bits from 1 to 0. In addition, a write buffer provides the ability to concurrently program 32 continuous words in Flash memory. Erasing a block causes the entire contents of the block to be reset to all 1s. The 1-KB blocks are paired into sets of 2-KB blocks that can be individually protected. The protection allows blocks to be marked as read-only or execute-only, providing different levels of code protection. Read-only blocks cannot be erased or programmed, protecting the contents of those blocks from being modified. Execute-only blocks cannot be erased or programmed and can only be read by the controller instruction fetch mechanism, protecting the contents of those blocks from being read by either the controller or by a debugger. Caution – The Stellaris Flash memory array has ECC which uses a test port into the Flash memory to continually scan the array for ECC errors and to correct any that are detected. This operation is transparent to the microcontroller. The BIST must scan the entire memory array occasionally to ensure integrity, taking about five minutes to do so. In systems where the microcontroller is frequently powered for less than five minutes, power should be removed from the microcontroller in a controlled manner to ensure proper operation. This controlled manner can either be through entering Hibernation mode or software can request permission to power down the part using the USDREQ bit in the Flash Control (FCTL) register and wait to receive an acknowledge from the USDACK bit prior to removing power. If the microcontroller is powered down using this controlled method, the BIST engine keeps track of where it was in the memory array and it always scans the complete array after any aggregate of five minutes powered-on, regardless of the number of intervening power cycles. If the microcontroller is powered down before five minutes of being powered up, BIST starts again from wherever it left off before the last controlled power-down or from 0 if there never was a controlled power down. An occasional short power down is not a concern, but the microcontroller should not always be powered down frequently in an uncontrolled manner. The microcontroller can be power-cycled as frequently as necessary if it is powered-down in a controlled manner. March 19, 2011 305 Texas Instruments-Advance Information Internal Memory 6.2.3.1 Prefetch Buffer The Flash memory controller has a prefetch buffer that is automatically used when the CPU frequency is greater than 50 MHz. In this mode, the Flash memory operates at half of the system clock. The prefetch buffer fetches two 32-bit words per clock allowing instructions to be fetched with no wait states while code is executing linearly. The fetch buffer includes a branch speculation mechanism that recognizes a branch and avoids extra wait states by not reading the next word pair. Also, short loop branches often stay in the buffer. As a result, some branches can be executed with no wait states. Other branches incur a single wait state. 6.2.3.2 Flash Memory Protection The user is provided two forms of Flash memory protection per 2-KB Flash memory block in four pairs of 32-bit wide registers. The policy for each protection form is controlled by individual bits (per policy per block) in the FMPPEn and FMPREn registers. ■ Flash Memory Protection Program Enable (FMPPEn): If a bit is set, the corresponding block may be programmed (written) or erased. If a bit is cleared, the corresponding block may not be changed. ■ Flash Memory Protection Read Enable (FMPREn): If a bit is set, the corresponding block may be executed or read by software or debuggers. If a bit is cleared, the corresponding block may only be executed, and contents of the memory block are prohibited from being read as data. The policies may be combined as shown in Table 6-1 on page 306. Table 6-1. Flash Memory Protection Policy Combinations FMPPEn FMPREn 0 0 Protection Execute-only protection. The block may only be executed and may not be written or erased. This mode is used to protect code. 1 0 The block may be written, erased or executed, but not read. This combination is unlikely to be used. 0 1 Read-only protection. The block may be read or executed but may not be written or erased. This mode is used to lock the block from further modification while allowing any read or execute access. 1 1 No protection. The block may be written, erased, executed or read. A Flash memory access that attempts to read a read-protected block (FMPREn bit is set) is prohibited and generates a bus fault. A Flash memory access that attempts to program or erase a program-protected block (FMPPEn bit is set) is prohibited and can optionally generate an interrupt (by setting the AMASK bit in the Flash Controller Interrupt Mask (FCIM) register) to alert software developers of poorly behaving software during the development and debug phases. The factory settings for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. These settings create a policy of open access and programmability. The register bits may be changed by clearing the specific register bit. The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. The changes are committed using the Flash Memory Control (FMC) register. Details on programming these bits are discussed in “Nonvolatile Register Programming” on page 309. 6.2.3.3 Interrupts The Flash memory controller can generate interrupts when the following conditions are observed: 306 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller ■ Programming Interrupt - signals when a program or erase action is complete. ■ Access Interrupt - signals when a program or erase action has been attempted on a 2-kB block of memory that is protected by its corresponding FMPPEn bit. The interrupt events that can trigger a controller-level interrupt are defined in the Flash Controller Masked Interrupt Status (FCMIS) register (see page 318) by setting the corresponding MASK bits. If interrupts are not used, the raw interrupt status is always visible via the Flash Controller Raw Interrupt Status (FCRIS) register (see page 317). Interrupts are always cleared (for both the FCMIS and FCRIS registers) by writing a 1 to the corresponding bit in the Flash Controller Masked Interrupt Status and Clear (FCMISC) register (see page 319). 6.2.3.4 Flash Memory Programming The Stellaris devices provide a user-friendly interface for Flash memory programming. All erase/program operations are handled via three registers: Flash Memory Address (FMA), Flash Memory Data (FMD), and Flash Memory Control (FMC). Note that if the debug capabilities of the microcontroller have been deactivated, resulting in a "locked" state, a recovery sequence must be performed in order to reactivate the debug module. See “Recovering a "Locked" Microcontroller” on page 193. During a Flash memory operation (write, page erase, or mass erase) access to the Flash memory is inhibited. As a result, instruction and literal fetches are held off until the Flash memory operation is complete. If instruction execution is required during a Flash memory operation, the code that is executing must be placed in SRAM and executed from there while the flash operation is in progress. Caution – The Flash memory is divided into sectors of electrically separated address ranges of 4 KB each, aligned on 4 KB boundaries. Erase/program operations on a 1-KB page have an electrical effect on the other three 1-KB pages within the sector. A specific 1-KB page must be erased after 6 total erase/program cycles occur to the other pages within its 4-KB sector. The following sequence of operations on a 4-KB sector of Flash memory (Page 0..3) provides an example: ■ Page 3 is erase and programmed with values. ■ Page 0, Page 1, and Page 2 are erased and then programmed with values. At this point Page 3 has been affected by 3 erase/program cycles. ■ Page 0, Page 1, and Page 2 are again erased and then programmed with values. At this point Page 3 has been affected by 6 erase/program cycles. ■ If the contents of Page 3 must continue to be valid, Page 3 must be erased and reprogrammed before any other page in this sector has another erase or program operation. To program a 32-bit word 1. Write source data to the FMD register. 2. Write the target address to the FMA register. 3. Write the Flash memory write key and the WRITE bit (a value of 0xA442.0001) to the FMC register. 4. Poll the FMC register until the WRITE bit is cleared. March 19, 2011 307 Texas Instruments-Advance Information Internal Memory Important: To ensure proper operation, two writes to the same word must be separated by an ERASE. The following two sequences are allowed: ■ ERASE -> PROGRAM value -> PROGRAM 0x0000.0000 ■ ERASE -> PROGRAM value -> ERASE The following sequence is NOT allowed: ■ ERASE -> PROGRAM value -> PROGRAM value To perform an erase of a 1-KB page 1. Write the page address to the FMA register. 2. Write the Flash memory write key and the ERASE bit (a value of 0xA442.0002) to the FMC register. 3. Poll the FMC register until the ERASE bit is cleared or, alternatively, enable the programming interrupt using the PMASK bit in the FCIM register. To perform a mass erase of the Flash memory 1. Write the Flash memory write key and the MERASE bit (a value of 0xA442.0004) to the FMC register. 2. Poll the FMC register until the MERASE bit is cleared or, alternatively, enable the programming interrupt using the PMASK bit in the FCIM register. 6.2.3.5 32-Word Flash Memory Write Buffer A 32-word write buffer provides the capability to perform faster write accesses to the Flash memory by concurrently programing 32 words with a single buffered Flash memory write operation. The buffered Flash memory write operation takes the same amount of time as the single word write operation controlled by bit 0 in the FMC register. The data for the buffered write is written to the Flash Write Buffer (FWBn) registers. The registers are 32-word aligned with Flash memory, and therefore the register FWB0 corresponds with the address in FMA where bits [6:0] of FMA are all 0. FWB1 corresponds with the address in FMA + 0x4 and so on. Only the FWBn registers that have been updated since the previous buffered Flash memory write operation are written. The Flash Write Buffer Valid (FWBVAL) register shows which registers have been written since the last buffered Flash memory write operation. This register contains a bit for each of the 32 FWBn registers, where bit[n] of FWBVAL corresponds to FWBn. The FWBn register has been updated if the corresponding bit in the FWBVAL register is set. To program 32 words with a single buffered Flash memory write operation 1. Write the source data to the FWBn registers. 2. Write the target address to the FMA register. This must be a 32-word aligned address (that is, bits [6:0] in FMA must be 0s). 3. Write the Flash memory write key and the WRBUF bit (a value of 0xA442.0001) to the FMC2 register. 308 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller 4. Poll the FMC2 register until the WRBUF bit is cleared or wait for the PMIS interrupt to be signaled. 6.2.3.6 Nonvolatile Register Programming This section discusses how to update registers that are resident within the Flash memory itself. These registers exist in a separate space from the main Flash memory array and are not affected by an ERASE or MASS ERASE operation. The bits in these registers can be changed from 1 to 0 with a write operation. The register contents are unaffected by any reset condition except power-on reset, which returns the register contents to 0xFFFF.FFFF. By committing the register values using the COMT bit in the FMC register, the register contents become nonvolatile and are therefore retained following power cycling. Once the register contents are committed, the only way to restore the factory default values is to perform the sequence described in “Recovering a "Locked" Microcontroller” on page 193. With the exception of the Boot Configuration (BOOTCFG) register, the settings in these registers can be tested before committing them to Flash memory. For the BOOTCFG register, the data to be written is loaded into the FMD register before it is committed. The FMD register is read only and does not allow the BOOTCFG operation to be tried before committing it to nonvolatile memory. Important: The Flash memory resident registers can only have bits changed from 1 to 0 by user programming and can only be committed once. After being committed, these registers can only be restored to their factory default values only by performing the sequence described in “Recovering a "Locked" Microcontroller” on page 193. The mass erase of the main Flash memory array caused by the sequence is performed prior to restoring these registers. In addition, the USER_REG0, USER_REG1, USER_REG2, USER_REG3, and BOOTCFG registers each use bit 31 (NW) to indicate that they have not been committed and bits in the register may be changed from 1 to 0. Table 6-2 on page 309 provides the FMA address required for commitment of each of the registers and the source of the data to be written when the FMC register is written with a value of 0xA442.0008. After writing the COMT bit, the user may poll the FMC register to wait for the commit operation to complete. Table 6-2. User-Programmable Flash Memory Resident Registers FMA Value Data Source FMPRE0 Register to be Committed 0x0000.0000 FMPRE0 FMPRE1 0x0000.0002 FMPRE1 FMPRE2 0x0000.0004 FMPRE2 FMPRE3 0x0000.0006 FMPRE3 FMPPE0 0x0000.0001 FMPPE0 FMPPE1 0x0000.0003 FMPPE1 FMPPE2 0x0000.0005 FMPPE2 FMPPE3 0x0000.0007 FMPPE3 USER_REG0 0x8000.0000 USER_REG0 USER_REG1 0x8000.0001 USER_REG1 USER_REG2 0x8000.0002 USER_REG2 USER_REG3 0x8000.0003 USER_REG3 BOOTCFG 0x7510.0000 FMD March 19, 2011 309 Texas Instruments-Advance Information Internal Memory 6.3 Register Map Table 6-3 on page 310 lists the ROM Controller register and the Flash memory and control registers. The offset listed is a hexadecimal increment to the register's address. The FMA, FMD, FMC, FCRIS, FCIM, FCMISC, FMC2, FWBVAL, and FWBn register offsets are relative to the Flash memory control base address of 0x400F.D000. The ROM and Flash memory protection register offsets are relative to the System Control base address of 0x400F.E000. Table 6-3. Flash Register Map Offset Name Type Reset See page Description Flash Memory Registers (Flash Control Offset) 0x000 FMA R/W 0x0000.0000 Flash Memory Address 312 0x004 FMD R/W 0x0000.0000 Flash Memory Data 313 0x008 FMC R/W 0x0000.0000 Flash Memory Control 314 0x00C FCRIS RO 0x0000.0000 Flash Controller Raw Interrupt Status 317 0x010 FCIM R/W 0x0000.0000 Flash Controller Interrupt Mask 318 0x014 FCMISC R/W1C 0x0000.0000 Flash Controller Masked Interrupt Status and Clear 319 0x020 FMC2 R/W 0x0000.0000 Flash Memory Control 2 320 0x030 FWBVAL R/W 0x0000.0000 Flash Write Buffer Valid 321 0x0F8 FCTL R/W 0x0000.0000 Flash Control 322 0x100 0x17C FWBn R/W 0x0000.0000 Flash Write Buffer n 323 ROM Control 324 Memory Registers (System Control Offset) 0x0F0 RMCTL R/W1C - 0x130 FMPRE0 R/W 0xFFFF.FFFF Flash Memory Protection Read Enable 0 325 0x200 FMPRE0 R/W 0xFFFF.FFFF Flash Memory Protection Read Enable 0 325 0x134 FMPPE0 R/W 0xFFFF.FFFF Flash Memory Protection Program Enable 0 326 0x400 FMPPE0 R/W 0xFFFF.FFFF Flash Memory Protection Program Enable 0 326 0x1D0 BOOTCFG R/W 0xFFFF.FFFE Boot Configuration 327 0x1E0 USER_REG0 R/W 0xFFFF.FFFF User Register 0 329 0x1E4 USER_REG1 R/W 0xFFFF.FFFF User Register 1 330 0x1E8 USER_REG2 R/W 0xFFFF.FFFF User Register 2 331 0x1EC USER_REG3 R/W 0xFFFF.FFFF User Register 3 332 0x204 FMPRE1 R/W 0xFFFF.FFFF Flash Memory Protection Read Enable 1 333 0x208 FMPRE2 R/W 0xFFFF.FFFF Flash Memory Protection Read Enable 2 334 0x20C FMPRE3 R/W 0xFFFF.FFFF Flash Memory Protection Read Enable 3 335 0x404 FMPPE1 R/W 0xFFFF.FFFF Flash Memory Protection Program Enable 1 336 310 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Table 6-3. Flash Register Map (continued) Name Type Reset 0x408 FMPPE2 R/W 0xFFFF.FFFF Flash Memory Protection Program Enable 2 337 0x40C FMPPE3 R/W 0xFFFF.FFFF Flash Memory Protection Program Enable 3 338 6.4 Description See page Offset Flash Memory Register Descriptions (Flash Control Offset) This section lists and describes the Flash Memory registers, in numerical order by address offset. Registers in this section are relative to the Flash control base address of 0x400F.D000. March 19, 2011 311 Texas Instruments-Advance Information Internal Memory Register 1: Flash Memory Address (FMA), offset 0x000 During a write operation, this register contains a 4-byte-aligned address and specifies where the data is written. During erase operations, this register contains a 1 KB-aligned CPU byte address and specifies which block is erased. Note that the alignment requirements must be met by software or the results of the operation are unpredictable. Flash Memory Address (FMA) Base 0x400F.D000 Offset 0x000 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 24 23 22 21 20 19 18 17 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 R/W 0 R/W 0 9 8 7 6 5 4 3 2 1 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 reserved Type Reset 16 OFFSET OFFSET Type Reset Bit/Field Name Type Reset Description 31:18 reserved RO 0x0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 17:0 OFFSET R/W 0x0 Address Offset Address offset in Flash memory where operation is performed, except for nonvolatile registers (see “Nonvolatile Register Programming” on page 309 for details on values for this field). 312 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 2: Flash Memory Data (FMD), offset 0x004 This register contains the data to be written during the programming cycle or read during the read cycle. Note that the contents of this register are undefined for a read access of an execute-only block. This register is not used during erase cycles. Flash Memory Data (FMD) Base 0x400F.D000 Offset 0x004 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 DATA Type Reset DATA Type Reset Bit/Field Name Type 31:0 DATA R/W Reset Description 0x0000.0000 Data Value Data value for write operation. March 19, 2011 313 Texas Instruments-Advance Information Internal Memory Register 3: Flash Memory Control (FMC), offset 0x008 When this register is written, the Flash memory controller initiates the appropriate access cycle for the location specified by the Flash Memory Address (FMA) register (see page 312). If the access is a write access, the data contained in the Flash Memory Data (FMD) register (see page 313) is written to the specified address. This register must be the final register written and initiates the memory operation. The four control bits in the lower byte of this register are used to initiate memory operations. Care must be taken not to set multiple control bits as the results of such an operation are unpredictable. Caution – If any of bits [15:4] are written to 1, the device may become inoperable. These bits should always be written to 0. In all registers, the value of a reserved bit should be preserved across a read-modify-write operation. Flash Memory Control (FMC) Base 0x400F.D000 Offset 0x008 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 WO 0 WO 0 WO 0 WO 0 WO 0 WO 0 WO 0 WO 0 WO 0 WO 0 WO 0 WO 0 WO 0 WO 0 WO 0 WO 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 COMT MERASE ERASE WRITE RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 R/W 0 R/W 0 R/W 0 R/W 0 WRKEY Type Reset reserved Type Reset Bit/Field Name Type Reset Description 31:16 WRKEY WO 0x0000 Flash Memory Write Key This field contains a write key, which is used to minimize the incidence of accidental Flash memory writes. The value 0xA442 must be written into this field for a Flash memory write to occur. Writes to the FMC register without this WRKEY value are ignored. A read of this field returns the value 0. 15:4 reserved RO 0x000 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 314 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset 3 COMT R/W 0 Description Commit Register Value This bit is used to commit writes to Flash-memory-resident registers and to monitor the progress of that process. Value Description 1 Set this bit to commit (write) the register value to a Flash-memory-resident register. When read, a 1 indicates that the previous commit access is not complete. 0 A write of 0 has no effect on the state of this bit. When read, a 0 indicates that the previous commit access is complete. See “Nonvolatile Register Programming” on page 309 for more information on programming Flash-memory-resident registers. 2 MERASE R/W 0 Mass Erase Flash Memory This bit is used to mass erase the Flash main memory and to monitor the progress of that process. Value Description 1 Set this bit to erase the Flash main memory. When read, a 1 indicates that the previous mass erase access is not complete. 0 A write of 0 has no effect on the state of this bit. When read, a 0 indicates that the previous mass erase access is complete. For information on erase time, see “Flash Memory Characteristics” on page 1295. 1 ERASE R/W 0 Erase a Page of Flash Memory This bit is used to erase a page of Flash memory and to monitor the progress of that process. Value Description 1 Set this bit to erase the Flash memory page specified by the contents of the FMA register. When read, a 1 indicates that the previous page erase access is not complete. 0 A write of 0 has no effect on the state of this bit. When read, a 0 indicates that the previous page erase access is complete. For information on erase time, see “Flash Memory Characteristics” on page 1295. March 19, 2011 315 Texas Instruments-Advance Information Internal Memory Bit/Field Name Type Reset 0 WRITE R/W 0 Description Write a Word into Flash Memory This bit is used to write a word into Flash memory and to monitor the progress of that process. Value Description 1 Set this bit to write the data stored in the FMD register into the Flash memory location specified by the contents of the FMA register. When read, a 1 indicates that the write update access is not complete. 0 A write of 0 has no effect on the state of this bit. When read, a 0 indicates that the previous write update access is complete. For information on programming time, see “Flash Memory Characteristics” on page 1295. 316 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 4: Flash Controller Raw Interrupt Status (FCRIS), offset 0x00C This register indicates that the Flash memory controller has an interrupt condition. An interrupt is sent to the interrupt controller only if the corresponding FCIM register bit is set. Flash Controller Raw Interrupt Status (FCRIS) Base 0x400F.D000 Offset 0x00C Type RO, reset 0x0000.0000 31 30 29 28 27 26 25 24 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 8 7 6 5 4 3 2 1 0 PRIS ARIS RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 reserved Type Reset reserved Type Reset Bit/Field Name Type Reset Description 31:2 reserved RO 0x0000.000 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 1 PRIS RO 0 Programming Raw Interrupt Status This bit provides status on programming cycles which are write or erase actions generated through the FMC or FMC2 register bits (see page 314 and page 320). Value Description 1 The programming or erase cycle has completed. 0 The programming or erase cycle has not completed. This status is sent to the interrupt controller when the PMASK bit in the FCIM register is set. This bit is cleared by writing a 1 to the PMISC bit in the FCMISC register. 0 ARIS RO 0 Access Raw Interrupt Status Value Description 1 A program or erase action was attempted on a block of Flash memory that contradicts the protection policy for that block as set in the FMPPEn registers. 0 No access has tried to improperly program or erase the Flash memory. This status is sent to the interrupt controller when the AMASK bit in the FCIM register is set. This bit is cleared by writing a 1 to the AMISC bit in the FCMISC register. March 19, 2011 317 Texas Instruments-Advance Information Internal Memory Register 5: Flash Controller Interrupt Mask (FCIM), offset 0x010 This register controls whether the Flash memory controller generates interrupts to the controller. Flash Controller Interrupt Mask (FCIM) Base 0x400F.D000 Offset 0x010 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 8 7 6 5 4 3 2 1 0 PMASK AMASK RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 R/W 0 R/W 0 reserved Type Reset reserved Type Reset Bit/Field Name Type Reset Description 31:2 reserved RO 0x0000.000 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 1 PMASK R/W 0 Programming Interrupt Mask This bit controls the reporting of the programming raw interrupt status to the interrupt controller. Value Description 0 AMASK R/W 0 1 An interrupt is sent to the interrupt controller when the PRIS bit is set. 0 The PRIS interrupt is suppressed and not sent to the interrupt controller. Access Interrupt Mask This bit controls the reporting of the access raw interrupt status to the interrupt controller. Value Description 1 An interrupt is sent to the interrupt controller when the ARIS bit is set. 0 The ARIS interrupt is suppressed and not sent to the interrupt controller. 318 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 6: Flash Controller Masked Interrupt Status and Clear (FCMISC), offset 0x014 This register provides two functions. First, it reports the cause of an interrupt by indicating which interrupt source or sources are signalling the interrupt. Second, it serves as the method to clear the interrupt reporting. Flash Controller Masked Interrupt Status and Clear (FCMISC) Base 0x400F.D000 Offset 0x014 Type R/W1C, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 Bit/Field Name Type Reset 31:2 reserved RO 0x0000.000 1 PMISC R/W1C 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 1 0 PMISC AMISC R/W1C 0 R/W1C 0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. Programming Masked Interrupt Status and Clear Value Description 0 AMISC R/W1C 0 1 When read, a 1 indicates that an unmasked interrupt was signaled because a programming cycle completed. Writing a 1 to this bit clears PMISC and also the PRIS bit in the FCRIS register (see page 317). 0 When read, a 0 indicates that a programming cycle complete interrupt has not occurred. A write of 0 has no effect on the state of this bit. Access Masked Interrupt Status and Clear Value Description 1 When read, a 1 indicates that an unmasked interrupt was signaled because a program or erase action was attempted on a block of Flash memory that contradicts the protection policy for that block as set in the FMPPEn registers. Writing a 1 to this bit clears AMISC and also the ARIS bit in the FCRIS register (see page 317). 0 When read, a 0 indicates that no improper accesses have occurred. A write of 0 has no effect on the state of this bit. March 19, 2011 319 Texas Instruments-Advance Information Internal Memory Register 7: Flash Memory Control 2 (FMC2), offset 0x020 When this register is written, the Flash memory controller initiates the appropriate access cycle for the location specified by the Flash Memory Address (FMA) register (see page 312). If the access is a write access, the data contained in the Flash Write Buffer (FWB) registers is written. This register must be the final register written as it initiates the memory operation. Flash Memory Control 2 (FMC2) Base 0x400F.D000 Offset 0x020 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 WO 0 WO 0 WO 0 WO 0 WO 0 WO 0 WO 0 WO 0 WO 0 8 7 6 5 4 3 2 1 WRKEY Type Reset WO 0 WO 0 WO 0 WO 0 WO 0 WO 0 WO 0 15 14 13 12 11 10 9 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 0 WRBUF RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 R/W 0 Bit/Field Name Type Reset Description 31:16 WRKEY WO 0x0000 Flash Memory Write Key This field contains a write key, which is used to minimize the incidence of accidental Flash memory writes. The value 0xA442 must be written into this field for a write to occur. Writes to the FMC2 register without this WRKEY value are ignored. A read of this field returns the value 0. 15:1 reserved RO 0x000 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 0 WRBUF R/W 0 Buffered Flash Memory Write This bit is used to start a buffered write to Flash memory. Value Description 1 Set this bit to write the data stored in the FWBn registers to the location specified by the contents of the FMA register. When read, a 1 indicates that the previous buffered Flash memory write access is not complete. 0 A write of 0 has no effect on the state of this bit. When read, a 0 indicates that the previous buffered Flash memory write access is complete. For information on programming time, see “Flash Memory Characteristics” on page 1295. 320 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 8: Flash Write Buffer Valid (FWBVAL), offset 0x030 This register provides a bitwise status of which FWBn registers have been written by the processor since the last write of the Flash memory write buffer. The entries with a 1 are written on the next write of the Flash memory write buffer. This register is cleared after the write operation by hardware. A protection violation on the write operation also clears this status. Software can program the same 32 words to various Flash memory locations by setting the FWB[n] bits after they are cleared by the write operation. The next write operation then uses the same data as the previous one. In addition, if a FWBn register change should not be written to Flash memory, software can clear the corresponding FWB[n] bit to preserve the existing data when the next write operation occurs. Flash Write Buffer Valid (FWBVAL) Base 0x400F.D000 Offset 0x030 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 FWB[n] Type Reset R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 FWB[n] Type Reset R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 Bit/Field Name Type Reset 31:0 FWB[n] R/W 0x0 R/W 0 Description Flash Memory Write Buffer Value Description 1 The corresponding FWBn register has been updated since the last buffer write operation and is ready to be written to Flash memory. 0 The corresponding FWBn register has no new data to be written. Bit 0 corresponds to FWB0, offset 0x100, and bit 31 corresponds to FWB31, offset 0x13C. March 19, 2011 321 Texas Instruments-Advance Information Internal Memory Register 9: Flash Control (FCTL), offset 0x0F8 This register is used to ensure that the microcontroller is powered down in a controlled fashion in systems where power is cycled more frequently than once every five minutes. The USDREQ bit should be set to indicate that power is going to be turned off. Software should poll the USDACK bit to determine when it is acceptable to power down. Flash Control (FCTL) Base 0x400F.D000 Offset 0x0F8 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 8 7 6 5 4 3 2 1 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 reserved Type Reset reserved Type Reset Bit/Field Name Type Reset 31:2 reserved RO 0x0000.000 1 USDACK RO 0 USDACK USDREQ RO 0 R/W 0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. User Shut Down Acknowledge Value Description 1 The microcontroller can be powered down. 0 The microcontroller cannot yet be powered down. This bit should be set within 50 ms of setting the USDREQ bit. 0 USDREQ R/W 0 User Shut Down Request Value Description 1 Requests permission to power down the microcontroller. 0 No effect. 322 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 10: Flash Write Buffer n (FWBn), offset 0x100 - 0x17C These 32 registers hold the contents of the data to be written into the Flash memory on a buffered Flash memory write operation. The offset selects one of the 32-bit registers. Only FWBn registers that have been updated since the preceding buffered Flash memory write operation are written into the Flash memory, so it is not necessary to write the entire bank of registers in order to write 1 or 2 words. The FWBn registers are written into the Flash memory with the FWB0 register corresponding to the address contained in FMA. FWB1 is written to the address FMA+0x4 etc. Note that only data bits that are 0 result in the Flash memory being modified. A data bit that is 1 leaves the content of the Flash memory bit at its previous value. Flash Write Buffer n (FWBn) Base 0x400F.D000 Offset 0x100 - 0x17C Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 DATA Type Reset DATA Type Reset Bit/Field Name Type 31:0 DATA R/W 6.5 Reset Description 0x0000.0000 Data Data to be written into the Flash memory. Memory Register Descriptions (System Control Offset) The remainder of this section lists and describes the registers that reside in the System Control address space, in numerical order by address offset. Registers in this section are relative to the System Control base address of 0x400F.E000. March 19, 2011 323 Texas Instruments-Advance Information Internal Memory Register 11: ROM Control (RMCTL), offset 0x0F0 This register provides control of the ROM controller state. This register offset is relative to the System Control base address of 0x400F.E000. At reset, the ROM is mapped over the Flash memory so that the ROM boot sequence is always executed. The boot sequence executed from ROM is as follows: 1. The BA bit (below) is cleared such that ROM is mapped to 0x01xx.xxxx and Flash memory is mapped to address 0x0. 2. The BOOTCFG register is read. If the EN bit is clear, the status of the specified GPIO pin is compared with the specified polarity. If the status matches the specified polarity, the ROM is mapped to address 0x0000.0000 and execution continues out of the ROM Boot Loader. 3. If the status doesn't match the specified polarity, the data at address 0x0000.0004 is read, and if the data at this address is 0xFFFF.FFFF, the ROM is mapped to address 0x0000.0000 and execution continues out of the ROM Boot Loader. 4. If there is data at address 0x0000.0004 that is not 0xFFFF.FFFF, the stack pointer (SP) is loaded from Flash memory at address 0x0000.0000 and the program counter (PC) is loaded from address 0x0000.0004. The user application begins executing. ROM Control (RMCTL) Base 0x400F.E000 Offset 0x0F0 Type R/W1C, reset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 8 7 6 5 4 3 2 1 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 Bit/Field Name Type Reset 31:1 reserved RO 0x0000.000 0 BA R/W1C 1 RO 0 0 BA RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 R/W1C 1 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. Boot Alias Value Description 1 The microcontroller's ROM appears at address 0x0. 0 The Flash memory is at address 0x0. This bit is cleared by writing a 1 to this bit position. 324 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 12: Flash Memory Protection Read Enable 0 (FMPRE0), offset 0x130 and 0x200 Note: This register is aliased for backwards compatability. Note: Offset is relative to System Control base address of 0x400FE000. This register stores the read-only protection bits for each 2-KB flash block (FMPPEn stores the execute-only bits). Flash memory up to a total of 64 KB is controlled by this register. Other FMPREn registers (if any) provide protection for other 64K blocks. This register is loaded during the power-on reset sequence. The factory settings for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. The reset value shown only applies to power-on reset; any other type of reset does not affect this register. Once committed, the only way to restore the factory default value of this register is to perform the "Recover Locked Device" sequence detailed in the JTAG chapter. For additional information, see the "Flash Memory Protection" section. Flash Memory Protection Read Enable 0 (FMPRE0) Base 0x400F.E000 Offset 0x130 and 0x200 Type R/W, reset 0xFFFF.FFFF 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 READ_ENABLE Type Reset R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 15 14 13 12 11 10 9 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 8 7 6 5 4 3 2 1 0 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 READ_ENABLE Type Reset R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 Bit/Field Name Type 31:0 READ_ENABLE R/W R/W 1 Reset R/W 1 R/W 1 Description 0xFFFFFFFF Flash Read Enable Configures 2-KB flash blocks to be read or executed only. The policies may be combined as shown in the table “Flash Protection Policy Combinations”. Value Description 0xFFFFFFFF Bits [31:0] each enable protection on a 2-KB block of Flash memory up to the total of 64 KB. March 19, 2011 325 Texas Instruments-Advance Information Internal Memory Register 13: Flash Memory Protection Program Enable 0 (FMPPE0), offset 0x134 and 0x400 Note: This register is aliased for backwards compatability. Note: Offset is relative to System Control base address of 0x400FE000. This register stores the execute-only protection bits for each 2-KB flash block (FMPREn stores the execute-only bits). Flash memory up to a total of 64 KB is controlled by this register. Other FMPPEn registers (if any) provide protection for other 64K blocks. This register is loaded during the power-on reset sequence. The factory settings for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. The reset value shown only applies to power-on reset; any other type of reset does not affect this register. Once committed, the only way to restore the factory default value of this register is to perform the "Recover Locked Device" sequence detailed in the JTAG chapter. For additional information, see the "Flash Memory Protection" section. Flash Memory Protection Program Enable 0 (FMPPE0) Base 0x400F.E000 Offset 0x134 and 0x400 Type R/W, reset 0xFFFF.FFFF 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 PROG_ENABLE Type Reset R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 15 14 13 12 11 10 9 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 8 7 6 5 4 3 2 1 0 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 PROG_ENABLE Type Reset R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 Bit/Field Name Type 31:0 PROG_ENABLE R/W R/W 1 Reset R/W 1 R/W 1 Description 0xFFFFFFFF Flash Programming Enable Configures 2-KB flash blocks to be execute only. The policies may be combined as shown in the table “Flash Protection Policy Combinations”. Value Description 0xFFFFFFFF Bits [31:0] each enable protection on a 2-KB block of Flash memory up to the total of 64 KB. 326 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 14: Boot Configuration (BOOTCFG), offset 0x1D0 Note: Offset is relative to System Control base address of 0x400FE000. This register provides configuration of a GPIO pin to enable the ROM Boot Loader as well as a write-once mechanism to disable external debugger access to the device. Upon reset, the user has the opportunity to direct the core to execute the ROM Boot Loader or the application in Flash memory by using any GPIO signal from Ports A-H as configured by the bits in this register. If the EN bit is set or the specified pin does not have the required polarity, the system control module checks address 0x000.0004 to see if the Flash memory has a valid reset vector. If the data at address 0x0000.0004 is 0xFFFF.FFFF, then it is assumed that the Flash memory has not yet been programmed, and the core executes the ROM Boot Loader. The DBG0 bit (bit 0) is set to 0 from the factory and the DBG1 bit (bit 1) is set to 1, which enables external debuggers. Clearing the DBG1 bit disables any external debugger access to the device permanently, starting with the next power-up cycle of the device. The NW bit (bit 31) indicates that the register has not yet been committed and is controlled through hardware to ensure that the register is only committed once. Prior to being committed, bits can only be changed from 1 to 0. The reset value shown only applies to power-on reset; any other type of reset does not affect this register. The only way to restore the factory default value of this register is to perform the "Recover Locked Device" sequence detailed in the JTAG chapter. Boot Configuration (BOOTCFG) Base 0x400F.E000 Offset 0x1D0 Type R/W, reset 0xFFFF.FFFE 31 30 29 28 27 26 25 24 NW Type Reset R/W 1 15 RO 1 RO 1 RO 1 14 13 12 PORT Type Reset R/W 1 23 22 21 20 19 18 17 16 RO 1 RO 1 reserved R/W 1 RO 1 RO 1 11 10 PIN R/W 1 R/W 1 R/W 1 R/W 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 7 6 5 4 3 2 9 8 POL EN R/W 1 R/W 1 Bit/Field Name Type Reset 31 NW R/W 1 30:16 reserved RO 0x7FFF reserved RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 1 0 DBG1 DBG0 R/W 1 R/W 0 Description Not Written When set, this bit indicates that this 32-bit register has not been committed. When clear, this bit specifies that this register has been committed and may not be committed again. Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. March 19, 2011 327 Texas Instruments-Advance Information Internal Memory Bit/Field Name Type Reset 15:13 PORT R/W 0x7 Description Boot GPIO Port This field selects the port of the GPIO port pin that enables the ROM boot loader at reset. Value Description 12:10 PIN R/W 0x7 0x0 Port A 0x1 Port B 0x2 Port C 0x3 Port D 0x4 Port E 0x5 Port F 0x6 Port G 0x7 Port H Boot GPIO Pin This field selects the pin number of the GPIO port pin that enables the ROM boot loader at reset. Value Description 0x0 Pin 0 0x1 Pin 1 0x2 Pin 2 0x3 Pin 3 0x4 Pin 4 0x5 Pin 5 0x6 Pin 6 0x7 Pin 7 9 POL R/W 0x1 Boot GPIO Polarity When set, this bit selects a high level for the GPIO port pin to enable the ROM boot loader at reset. When clear, this bit selects a low level for the GPIO port pin. 8 EN R/W 0x1 Boot GPIO Enable Clearing this bit enables the use of a GPIO pin to enable the ROM Boot Loader at reset. When this bit is set, the contents of address 0x0000.0004 are checked to see if the Flash memory has been programmed. If the contents are not 0xFFFF.FFFF, the core executes out of Flash memory. If the Flash has not been programmed, the core executes out of ROM. 7:2 reserved RO 0x3F Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 1 DBG1 R/W 1 Debug Control 1 The DBG1 bit must be 1 and DBG0 must be 0 for debug to be available. 0 DBG0 R/W 0x0 Debug Control 0 The DBG1 bit must be 1 and DBG0 must be 0 for debug to be available. 328 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 15: User Register 0 (USER_REG0), offset 0x1E0 Note: Offset is relative to System Control base address of 0x400FE000. This register provides 31 bits of user-defined data that is non-volatile and can only be committed once. Bit 31 indicates that the register is available to be committed and is controlled through hardware to ensure that the register is only committed once. Prior to being committed, bits can only be changed from 1 to 0. The reset value shown only applies to power-on reset; any other type of reset does not affect this register. The write-once characteristics of this register are useful for keeping static information like communication addresses that need to be unique per part and would otherwise require an external EEPROM or other non-volatile device. The only way to restore the factory default value of this register is to perform the "Recover Locked Device" sequence detailed in the JTAG section. User Register 0 (USER_REG0) Base 0x400F.E000 Offset 0x1E0 Type R/W, reset 0xFFFF.FFFF 31 30 29 28 27 26 25 24 NW Type Reset 23 22 21 20 19 18 17 16 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 7 6 5 4 3 2 1 0 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 DATA R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 15 14 13 12 11 10 9 8 DATA Type Reset R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 Bit/Field Name Type Reset 31 NW R/W 1 30:0 DATA R/W R/W 1 Description Not Written When set, this bit indicates that this 32-bit register has not been committed. When clear, this bit specifies that this register has been committed and may not be committed again. 0x7FFFFFFF User Data Contains the user data value. This field is initialized to all 1s and can only be committed once. March 19, 2011 329 Texas Instruments-Advance Information Internal Memory Register 16: User Register 1 (USER_REG1), offset 0x1E4 Note: Offset is relative to System Control base address of 0x400FE000. This register provides 31 bits of user-defined data that is non-volatile and can only be written once. Bit 31 indicates that the register is available to be written and is controlled through hardware to ensure that the register is only written once. The write-once characteristics of this register are useful for keeping static information like communication addresses that need to be unique per part and would otherwise require an external EEPROM or other non-volatile device. User Register 1 (USER_REG1) Base 0x400F.E000 Offset 0x1E4 Type R/W, reset 0xFFFF.FFFF 31 30 29 28 27 26 25 24 NW Type Reset 23 22 21 20 19 18 17 16 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 7 6 5 4 3 2 1 0 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 DATA R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 15 14 13 12 11 10 9 8 DATA Type Reset R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 Bit/Field Name Type Reset 31 NW R/W 1 30:0 DATA R/W R/W 1 Description Not Written When set, this bit indicates that this 32-bit register has not been committed. When clear, this bit specifies that this register has been committed and may not be committed again. 0x7FFFFFFF User Data Contains the user data value. This field is initialized to all 1s and can only be committed once. 330 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 17: User Register 2 (USER_REG2), offset 0x1E8 Note: Offset is relative to System Control base address of 0x400FE000. This register provides 31 bits of user-defined data that is non-volatile and can only be written once. Bit 31 indicates that the register is available to be written and is controlled through hardware to ensure that the register is only written once. The write-once characteristics of this register are useful for keeping static information like communication addresses that need to be unique per part and would otherwise require an external EEPROM or other non-volatile device. User Register 2 (USER_REG2) Base 0x400F.E000 Offset 0x1E8 Type R/W, reset 0xFFFF.FFFF 31 30 29 28 27 26 25 24 NW Type Reset 23 22 21 20 19 18 17 16 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 7 6 5 4 3 2 1 0 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 DATA R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 15 14 13 12 11 10 9 8 DATA Type Reset R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 Bit/Field Name Type Reset 31 NW R/W 1 30:0 DATA R/W R/W 1 Description Not Written When set, this bit indicates that this 32-bit register has not been committed. When clear, this bit specifies that this register has been committed and may not be committed again. 0x7FFFFFFF User Data Contains the user data value. This field is initialized to all 1s and can only be committed once. March 19, 2011 331 Texas Instruments-Advance Information Internal Memory Register 18: User Register 3 (USER_REG3), offset 0x1EC Note: Offset is relative to System Control base address of 0x400FE000. This register provides 31 bits of user-defined data that is non-volatile and can only be written once. Bit 31 indicates that the register is available to be written and is controlled through hardware to ensure that the register is only written once. The write-once characteristics of this register are useful for keeping static information like communication addresses that need to be unique per part and would otherwise require an external EEPROM or other non-volatile device. User Register 3 (USER_REG3) Base 0x400F.E000 Offset 0x1EC Type R/W, reset 0xFFFF.FFFF 31 30 29 28 27 26 25 24 NW Type Reset 23 22 21 20 19 18 17 16 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 7 6 5 4 3 2 1 0 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 DATA R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 15 14 13 12 11 10 9 8 DATA Type Reset R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 Bit/Field Name Type Reset 31 NW R/W 1 30:0 DATA R/W R/W 1 Description Not Written When set, this bit indicates that this 32-bit register has not been committed. When clear, this bit specifies that this register has been committed and may not be committed again. 0x7FFFFFFF User Data Contains the user data value. This field is initialized to all 1s and can only be committed once. 332 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 19: Flash Memory Protection Read Enable 1 (FMPRE1), offset 0x204 Note: Offset is relative to System Control base address of 0x400FE000. This register stores the read-only protection bits for each 2-KB flash block (FMPPEn stores the execute-only bits). Flash memory up to a total of 64 KB is controlled by this register. Other FMPREn registers (if any) provide protection for other 64K blocks. This register is loaded during the power-on reset sequence. The factory settings for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. The reset value shown only applies to power-on reset; any other type of reset does not affect this register. Once committed, the only way to restore the factory default value of this register is to perform the "Recover Locked Device" sequence detailed in the JTAG chapter. If the Flash memory size on the device is less than 64 KB, this register usually reads as zeroes, but software should not rely on these bits to be zero. For additional information, see the "Flash Memory Protection" section. Flash Memory Protection Read Enable 1 (FMPRE1) Base 0x400F.E000 Offset 0x204 Type R/W, reset 0xFFFF.FFFF 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 READ_ENABLE Type Reset R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 15 14 13 12 11 10 9 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 8 7 6 5 4 3 2 1 0 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 READ_ENABLE Type Reset R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 Bit/Field Name Type 31:0 READ_ENABLE R/W R/W 1 Reset R/W 1 R/W 1 Description 0xFFFFFFFF Flash Read Enable Configures 2-KB flash blocks to be read or executed only. The policies may be combined as shown in the table “Flash Protection Policy Combinations”. Value Description 0xFFFFFFFF Bits [31:0] each enable protection on a 2-KB block of Flash memory in memory range from 65 to 128 KB. March 19, 2011 333 Texas Instruments-Advance Information Internal Memory Register 20: Flash Memory Protection Read Enable 2 (FMPRE2), offset 0x208 Note: Offset is relative to System Control base address of 0x400FE000. This register stores the read-only protection bits for each 2-KB flash block (FMPPEn stores the execute-only bits). Flash memory up to a total of 64 KB is controlled by this register. Other FMPREn registers (if any) provide protection for other 64K blocks. This register is loaded during the power-on reset sequence. The factory settings for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. The reset value shown only applies to power-on reset; any other type of reset does not affect this register. Once committed, the only way to restore the factory default value of this register is to perform the "Recover Locked Device" sequence detailed in the JTAG chapter. If the Flash memory size on the device is less than 128 KB, this register usually reads as zeroes, but software should not rely on these bits to be zero. For additional information, see the "Flash Memory Protection" section. Flash Memory Protection Read Enable 2 (FMPRE2) Base 0x400F.E000 Offset 0x208 Type R/W, reset 0xFFFF.FFFF 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 READ_ENABLE Type Reset R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 15 14 13 12 11 10 9 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 8 7 6 5 4 3 2 1 0 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 READ_ENABLE Type Reset R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 Bit/Field Name Type 31:0 READ_ENABLE R/W R/W 1 Reset R/W 1 R/W 1 Description 0xFFFFFFFF Flash Read Enable Configures 2-KB flash blocks to be read or executed only. The policies may be combined as shown in the table “Flash Protection Policy Combinations”. Value Description 0xFFFFFFFF Bits [31:0] each enable protection on a 2-KB block of Flash memory in the range from 129 to 192 KB. 334 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 21: Flash Memory Protection Read Enable 3 (FMPRE3), offset 0x20C Note: Offset is relative to System Control base address of 0x400FE000. This register stores the read-only protection bits for each 2-KB flash block (FMPPEn stores the execute-only bits). Flash memory up to a total of 64 KB is controlled by this register. Other FMPREn registers (if any) provide protection for other 64K blocks. This register is loaded during the power-on reset sequence. The factory settings for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. The reset value shown only applies to power-on reset; any other type of reset does not affect this register. Once committed, the only way to restore the factory default value of this register is to perform the "Recover Locked Device" sequence detailed in the JTAG chapter. If the Flash memory size on the device is less than 192 KB, this register usually reads as zeroes, but software should not rely on these bits to be zero. For additional information, see the "Flash Memory Protection" section. Flash Memory Protection Read Enable 3 (FMPRE3) Base 0x400F.E000 Offset 0x20C Type R/W, reset 0xFFFF.FFFF 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 READ_ENABLE Type Reset R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 15 14 13 12 11 10 9 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 8 7 6 5 4 3 2 1 0 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 READ_ENABLE Type Reset R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 Bit/Field Name Type 31:0 READ_ENABLE R/W R/W 1 Reset R/W 1 R/W 1 Description 0xFFFFFFFF Flash Read Enable Configures 2-KB flash blocks to be read or executed only. The policies may be combined as shown in the table “Flash Protection Policy Combinations”. Value Description 0xFFFFFFFF Bits [31:0] each enable protection on a 2-KB block of Flash memory in the range from 193 to 256 KB. March 19, 2011 335 Texas Instruments-Advance Information Internal Memory Register 22: Flash Memory Protection Program Enable 1 (FMPPE1), offset 0x404 Note: Offset is relative to System Control base address of 0x400FE000. This register stores the execute-only protection bits for each 2-KB flash block (FMPREn stores the execute-only bits). Flash memory up to a total of 64 KB is controlled by this register. Other FMPPEn registers (if any) provide protection for other 64K blocks. This register is loaded during the power-on reset sequence. The factory settings for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. The reset value shown only applies to power-on reset; any other type of reset does not affect this register. Once committed, the only way to restore the factory default value of this register is to perform the "Recover Locked Device" sequence detailed in the JTAG chapter. If the Flash memory size on the device is less than 64 KB, this register usually reads as zeroes, but software should not rely on these bits to be zero. For additional information, see the "Flash Memory Protection" section. Flash Memory Protection Program Enable 1 (FMPPE1) Base 0x400F.E000 Offset 0x404 Type R/W, reset 0xFFFF.FFFF 31 30 29 28 27 26 25 24 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 15 14 13 12 11 10 9 8 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 23 22 21 20 19 18 17 16 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 7 6 5 4 3 2 1 0 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 PROG_ENABLE Type Reset PROG_ENABLE Type Reset Bit/Field Name Type 31:0 PROG_ENABLE R/W Reset R/W 1 R/W 1 Description 0xFFFFFFFF Flash Programming Enable Configures 2-KB flash blocks to be execute only. The policies may be combined as shown in the table “Flash Protection Policy Combinations”. Value Description 0xFFFFFFFF Bits [31:0] each enable protection on a 2-KB block of Flash memory in memory range from 65 to 128 KB. 336 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 23: Flash Memory Protection Program Enable 2 (FMPPE2), offset 0x408 Note: Offset is relative to System Control base address of 0x400FE000. This register stores the execute-only protection bits for each 2-KB flash block (FMPREn stores the execute-only bits). Flash memory up to a total of 64 KB is controlled by this register. Other FMPPEn registers (if any) provide protection for other 64K blocks. This register is loaded during the power-on reset sequence. The factory settings for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. The reset value shown only applies to power-on reset; any other type of reset does not affect this register. Once committed, the only way to restore the factory default value of this register is to perform the "Recover Locked Device" sequence detailed in the JTAG chapter. If the Flash memory size on the device is less than 128 KB, this register usually reads as zeroes, but software should not rely on these bits to be zero. For additional information, see the "Flash Memory Protection" section. Flash Memory Protection Program Enable 2 (FMPPE2) Base 0x400F.E000 Offset 0x408 Type R/W, reset 0xFFFF.FFFF 31 30 29 28 27 26 25 24 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 15 14 13 12 11 10 9 8 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 23 22 21 20 19 18 17 16 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 7 6 5 4 3 2 1 0 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 PROG_ENABLE Type Reset PROG_ENABLE Type Reset Bit/Field Name Type 31:0 PROG_ENABLE R/W Reset R/W 1 R/W 1 Description 0xFFFFFFFF Flash Programming Enable Configures 2-KB flash blocks to be execute only. The policies may be combined as shown in the table “Flash Protection Policy Combinations”. Value Description 0xFFFFFFFF Bits [31:0] each enable protection on a 2-KB block of Flash memory in the range from 129 to 192 KB. March 19, 2011 337 Texas Instruments-Advance Information Internal Memory Register 24: Flash Memory Protection Program Enable 3 (FMPPE3), offset 0x40C Note: Offset is relative to System Control base address of 0x400FE000. This register stores the execute-only protection bits for each 2-KB flash block (FMPREn stores the execute-only bits). Flash memory up to a total of 64 KB is controlled by this register. Other FMPPEn registers (if any) provide protection for other 64K blocks. This register is loaded during the power-on reset sequence. The factory settings for the FMPREn and FMPPEn registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. The reset value shown only applies to power-on reset; any other type of reset does not affect this register. Once committed, the only way to restore the factory default value of this register is to perform the "Recover Locked Device" sequence detailed in the JTAG chapter. If the Flash memory size on the device is less than 192 KB, this register usually reads as zeroes, but software should not rely on these bits to be zero. For additional information, see the "Flash Memory Protection" section. Flash Memory Protection Program Enable 3 (FMPPE3) Base 0x400F.E000 Offset 0x40C Type R/W, reset 0xFFFF.FFFF 31 30 29 28 27 26 25 24 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 15 14 13 12 11 10 9 8 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 23 22 21 20 19 18 17 16 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 7 6 5 4 3 2 1 0 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 R/W 1 PROG_ENABLE Type Reset PROG_ENABLE Type Reset Bit/Field Name Type 31:0 PROG_ENABLE R/W Reset R/W 1 R/W 1 Description 0xFFFFFFFF Flash Programming Enable Configures 2-KB flash blocks to be execute only. The policies may be combined as shown in the table “Flash Protection Policy Combinations”. Value Description 0xFFFFFFFF Bits [31:0] each enable protection on a 2-KB block of Flash memory in the range from 193 to 256 KB. 338 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller 7 Micro Direct Memory Access (μDMA) The LM3S9B92 microcontroller includes a Direct Memory Access (DMA) controller, known as micro-DMA (μDMA). The μDMA controller provides a way to offload data transfer tasks from the Cortex™-M3 processor, allowing for more efficient use of the processor and the available bus bandwidth. The μDMA controller can perform transfers between memory and peripherals. It has dedicated channels for each supported on-chip module and can be programmed to automatically perform transfers between peripherals and memory as the peripheral is ready to transfer more data. The μDMA controller provides the following features: ® ® ■ ARM PrimeCell 32-channel configurable µDMA controller ■ Support for memory-to-memory, memory-to-peripheral, and peripheral-to-memory in multiple transfer modes – Basic for simple transfer scenarios – Ping-pong for continuous data flow – Scatter-gather for a programmable list of arbitrary transfers initiated from a single request ■ Highly flexible and configurable channel operation – Independently configured and operated channels – Dedicated channels for supported on-chip modules – Primary and secondary channel assignments – One channel each for receive and transmit path for bidirectional modules – Dedicated channel for software-initiated transfers – Per-channel configurable priority scheme – Optional software-initiated requests for any channel ■ Two levels of priority ■ Design optimizations for improved bus access performance between µDMA controller and the processor core – µDMA controller access is subordinate to core access – RAM striping – Peripheral bus segmentation ■ Data sizes of 8, 16, and 32 bits ■ Transfer size is programmable in binary steps from 1 to 1024 ■ Source and destination address increment size of byte, half-word, word, or no increment ■ Maskable peripheral requests March 19, 2011 339 Texas Instruments-Advance Information Micro Direct Memory Access (μDMA) 7.1 Block Diagram Figure 7-1. μDMA Block Diagram uDMA Controller DMA error System Memory CH Control Table Peripheral DMA Channel 0 • • • Peripheral DMA Channel N-1 Nested Vectored Interrupt Controller (NVIC) IRQ General Peripheral N Registers request done request done request done DMASTAT DMACFG DMACTLBASE DMAALTBASE DMAWAITSTAT DMASWREQ DMAUSEBURSTSET DMAUSEBURSTCLR DMAREQMASKSET DMAREQMASKCLR DMAENASET DMAENACLR DMAALTSET DMAALTCLR DMAPRIOSET DMAPRIOCLR DMAERRCLR DMACHASGN DMASRCENDP DMADSTENDP DMACHCTRL • • • DMASRCENDP DMADSTENDP DMACHCTRL Transfer Buffers Used by µDMA ARM Cortex-M3 7.2 Functional Description The μDMA controller is a flexible and highly configurable DMA controller designed to work efficiently with the microcontroller's Cortex-M3 processor core. It supports multiple data sizes and address increment schemes, multiple levels of priority among DMA channels, and several transfer modes to allow for sophisticated programmed data transfers. The μDMA controller's usage of the bus is always subordinate to the processor core, so it never holds up a bus transaction by the processor. Because the μDMA controller is only using otherwise-idle bus cycles, the data transfer bandwidth it provides is essentially free, with no impact on the rest of the system. The bus architecture has been optimized to greatly enhance the ability of the processor core and the μDMA controller to efficiently share the on-chip bus, thus improving performance. The optimizations include RAM striping and peripheral bus segmentation, which in many cases allow both the processor core and the μDMA controller to access the bus and perform simultaneous data transfers. The μDMA controller can transfer data to and from the on-chip SRAM. However, because the Flash memory and ROM are located on a separate internal bus, it is not possible to transfer data from the Flash memory or ROM with the μDMA controller. Each peripheral function that is supported has a dedicated channel on the μDMA controller that can be configured independently. The μDMA controller implements a unique configuration method using channel control structures that are maintained in system memory by the processor. While simple transfer modes are supported, it is also possible to build up sophisticated "task" lists in memory that allow the μDMA controller to perform arbitrary-sized transfers to and from arbitrary locations as part of a single transfer request. The μDMA controller also supports the use of ping-pong buffering to accommodate constant streaming of data to or from a peripheral. Each channel also has a configurable arbitration size. The arbitration size is the number of items that are transferred in a burst before the μDMA controller rearbitrates for channel priority. Using the 340 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller arbitration size, it is possible to control exactly how many items are transferred to or from a peripheral each time it makes a μDMA service request. 7.2.1 Channel Assignments μDMA channels 0-31 are assigned to peripherals according to the following table. The DMA Channel Assignment (DMACHASGN) register (see page 387) can be used to specify the primary or secondary assignment. If the primary function is not available on this microcontroller, the secondary function becomes the primary function. If the secondary function is not available, the primary function is the only option. Note: Channels noted in the table as "Available for software" may be assigned to peripherals in the future. However, they are currently available for software use. Channel 30 is dedicated for software use. The USB endpoints mapped to μDMA channels 0-3 can be changed with the USBDMASEL register (see page 1099). Because of the way the μDMA controller interacts with peripherals, the μDMA channel for the peripheral must be enabled in order for the μDMA controller to be able to read and write the peripheral registers, even if a different μDMA channel is used to perform the μDMA transfer. To minimize confusion and chance of software errors, it is best practice to use a peripheral's μDMA channel for performing all μDMA transfers for that peripheral, even if it is processor-triggered and using AUTO mode, which could be considered a software transfer. Note that if the software channel is used, interrupts occur on the dedicated μDMA interrupt vector. If the peripheral channel is used, then the interrupt occurs on the interrupt vector for the peripheral. Table 7-1. μDMA Channel Assignments μDMA Channel Primary Assignment Secondary Assignment 0 USB Endpoint 1 Receive UART2 Receive 1 USB Endpoint 1 Transmit UART2 Transmit 2 USB Endpoint 2 Receive General-Purpose Timer 3A 3 USB Endpoint 2 Transmit General-Purpose Timer 3B 4 USB Endpoint 3 Receive General-Purpose Timer 2A 5 USB Endpoint 3 Transmit General-Purpose Timer 2B 6 Ethernet Receive General-Purpose Timer 2A 7 Ethernet Transmit General-Purpose Timer 2B 8 UART0 Receive UART1 Receive 9 UART0 Transmit UART1 Transmit 10 SSI0 Receive SSI1 Receive 11 SSI0 Transmit SSI1 Transmit 12 Available for software UART2 Receive 13 Available for software UART2 Transmit 14 ADC0 Sample Sequencer 0 General-Purpose Timer 2A 15 ADC0 Sample Sequencer 1 General-Purpose Timer 2B 16 ADC0 Sample Sequencer 2 Available for software 17 ADC0 Sample Sequencer 3 Available for software 18 General-Purpose Timer 0A General-Purpose Timer 1A 19 General-Purpose Timer 0B General-Purpose Timer 1B March 19, 2011 341 Texas Instruments-Advance Information Micro Direct Memory Access (μDMA) Table 7-1. μDMA Channel Assignments (continued) μDMA Channel 7.2.2 Primary Assignment Secondary Assignment 20 General-Purpose Timer 1A EPI0 NBRFIFO 21 General-Purpose Timer 1B EPI0 WFIFO 22 UART1 Receive Available for software 23 UART1 Transmit Available for software 24 SSI1 Receive ADC1 Sample Sequencer 0 25 SSI1 Transmit ADC1 Sample Sequencer 1 26 Available for software ADC1 Sample Sequencer 2 27 Available for software ADC1 Sample Sequencer 3 28 I2S0 Receive Available for software 29 I2S0 Available for software 30 Dedicated for software use 31 Reserved Transmit Priority The μDMA controller assigns priority to each channel based on the channel number and the priority level bit for the channel. Channel number 0 has the highest priority and as the channel number increases, the priority of a channel decreases. Each channel has a priority level bit to provide two levels of priority: default priority and high priority. If the priority level bit is set, then that channel has higher priority than all other channels at default priority. If multiple channels are set for high priority, then the channel number is used to determine relative priority among all the high priority channels. The priority bit for a channel can be set using the DMA Channel Priority Set (DMAPRIOSET) register and cleared with the DMA Channel Priority Clear (DMAPRIOCLR) register. 7.2.3 Arbitration Size When a μDMA channel requests a transfer, the μDMA controller arbitrates among all the channels making a request and services the μDMA channel with the highest priority. Once a transfer begins, it continues for a selectable number of transfers before rearbitrating among the requesting channels again. The arbitration size can be configured for each channel, ranging from 1 to 1024 item transfers. After the μDMA controller transfers the number of items specified by the arbitration size, it then checks among all the channels making a request and services the channel with the highest priority. If a lower priority μDMA channel uses a large arbitration size, the latency for higher priority channels is increased because the μDMA controller completes the lower priority burst before checking for higher priority requests. Therefore, lower priority channels should not use a large arbitration size for best response on high priority channels. The arbitration size can also be thought of as a burst size. It is the maximum number of items that are transferred at any one time in a burst. Here, the term arbitration refers to determination of μDMA channel priority, not arbitration for the bus. When the μDMA controller arbitrates for the bus, the processor always takes priority. Furthermore, the μDMA controller is held off whenever the processor must perform a bus transaction on the same bus, even in the middle of a burst transfer. 7.2.4 Request Types The μDMA controller responds to two types of requests from a peripheral: single or burst. Each peripheral may support either or both types of requests. A single request means that the peripheral 342 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller is ready to transfer one item, while a burst request means that the peripheral is ready to transfer multiple items. The μDMA controller responds differently depending on whether the peripheral is making a single request or a burst request. If both are asserted, and the μDMA channel has been set up for a burst transfer, then the burst request takes precedence. See Table 7-2 on page 343, which shows how each peripheral supports the two request types. Table 7-2. Request Type Support 7.2.4.1 Peripheral Single Request Signal Burst Request Signal ADC None Sequencer IE bit EPI WFIFO None WFIFO Level (configurable) EPI NBRFIFO None NBRFIFO Level (configurable) Ethernet TX TX FIFO empty None Ethernet RX RX packet received None General-Purpose Timer Raw interrupt pulse None I2S TX None FIFO service request I2S RX None FIFO service request SSI TX TX FIFO Not Full TX FIFO Level (fixed at 4) SSI RX RX FIFO Not Empty RX FIFO Level (fixed at 4) UART TX TX FIFO Not Full TX FIFO Level (configurable) UART RX RX FIFO Not Empty RX FIFO Level (configurable) USB TX None FIFO TXRDY USB RX None FIFO RXRDY Single Request When a single request is detected, and not a burst request, the μDMA controller transfers one item and then stops to wait for another request. 7.2.4.2 Burst Request When a burst request is detected, the μDMA controller transfers the number of items that is the lesser of the arbitration size or the number of items remaining in the transfer. Therefore, the arbitration size should be the same as the number of data items that the peripheral can accommodate when making a burst request. For example, the UART generates a burst request based on the FIFO trigger level. In this case, the arbitration size should be set to the amount of data that the FIFO can transfer when the trigger level is reached. A burst transfer runs to completion once it is started, and cannot be interrupted, even by a higher priority channel. Burst transfers complete in a shorter time than the same number of non-burst transfers. It may be desirable to use only burst transfers and not allow single transfers. For example, perhaps the nature of the data is such that it only makes sense when transferred together as a single unit rather than one piece at a time. The single request can be disabled by using the DMA Channel Useburst Set (DMAUSEBURSTSET) register. By setting the bit for a channel in this register, the μDMA controller only responds to burst requests for that channel. 7.2.5 Channel Configuration The μDMA controller uses an area of system memory to store a set of channel control structures in a table. The control table may have one or two entries for each μDMA channel. Each entry in the table structure contains source and destination pointers, transfer size, and transfer mode. The March 19, 2011 343 Texas Instruments-Advance Information Micro Direct Memory Access (μDMA) control table can be located anywhere in system memory, but it must be contiguous and aligned on a 1024-byte boundary. Table 7-3 on page 344 shows the layout in memory of the channel control table. Each channel may have one or two control structures in the control table: a primary control structure and an optional alternate control structure. The table is organized so that all of the primary entries are in the first half of the table, and all the alternate structures are in the second half of the table. The primary entry is used for simple transfer modes where transfers can be reconfigured and restarted after each transfer is complete. In this case, the alternate control structures are not used and therefore only the first half of the table must be allocated in memory; the second half of the control table is not necessary, and that memory can be used for something else. If a more complex transfer mode is used such as ping-pong or scatter-gather, then the alternate control structure is also used and memory space should be allocated for the entire table. Any unused memory in the control table may be used by the application. This includes the control structures for any channels that are unused by the application as well as the unused control word for each channel. Table 7-3. Control Structure Memory Map Offset Channel 0x0 0, Primary 0x10 1, Primary ... ... 0x1F0 31, Primary 0x200 0, Alternate 0x210 1, Alternate ... 0x3F0 ... 31, Alternate Table 7-4 shows an individual control structure entry in the control table. Each entry is aligned on a 16-byte boundary. The entry contains four long words: the source end pointer, the destination end pointer, the control word, and an unused entry. The end pointers point to the ending address of the transfer and are inclusive. If the source or destination is non-incrementing (as for a peripheral register), then the pointer should point to the transfer address. Table 7-4. Channel Control Structure Offset Description 0x000 Source End Pointer 0x004 Destination End Pointer 0x008 Control Word 0x00C Unused The control word contains the following fields: ■ Source and destination data sizes ■ Source and destination address increment size ■ Number of transfers before bus arbitration ■ Total number of items to transfer 344 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller ■ Useburst flag ■ Transfer mode The control word and each field are described in detail in “μDMA Channel Control Structure” on page 361. The μDMA controller updates the transfer size and transfer mode fields as the transfer is performed. At the end of a transfer, the transfer size indicates 0, and the transfer mode indicates "stopped." Because the control word is modified by the μDMA controller, it must be reconfigured before each new transfer. The source and destination end pointers are not modified, so they can be left unchanged if the source or destination addresses remain the same. Prior to starting a transfer, a μDMA channel must be enabled by setting the appropriate bit in the DMA Channel Enable Set (DMAENASET) register. A channel can be disabled by setting the channel bit in the DMA Channel Enable Clear (DMAENACLR) register. At the end of a complete μDMA transfer, the controller automatically disables the channel. 7.2.6 Transfer Modes The μDMA controller supports several transfer modes. Two of the modes support simple one-time transfers. Several complex modes support a continuous flow of data. 7.2.6.1 Stop Mode While Stop is not actually a transfer mode, it is a valid value for the mode field of the control word. When the mode field has this value, the μDMA controller does not perform any transfers and disables the channel if it is enabled. At the end of a transfer, the μDMA controller updates the control word to set the mode to Stop. 7.2.6.2 Basic Mode In Basic mode, the μDMA controller performs transfers as long as there are more items to transfer, and a transfer request is present. This mode is used with peripherals that assert a μDMA request signal whenever the peripheral is ready for a data transfer. Basic mode should not be used in any situation where the request is momentary even though the entire transfer should be completed. For example, a software-initiated transfer creates a momentary request, and in Basic mode, only the number of transfers specified by the ARBSIZE field in the DMA Channel Control Word (DMACHCTL) register is transferred on a software request, even if there is more data to transfer. When all of the items have been transferred using Basic mode, the μDMA controller sets the mode for that channel to Stop. 7.2.6.3 Auto Mode Auto mode is similar to Basic mode, except that once a transfer request is received, the transfer runs to completion, even if the μDMA request is removed. This mode is suitable for software-triggered transfers. Generally, Auto mode is not used with a peripheral. When all the items have been transferred using Auto mode, the μDMA controller sets the mode for that channel to Stop. 7.2.6.4 Ping-Pong Ping-Pong mode is used to support a continuous data flow to or from a peripheral. To use Ping-Pong mode, both the primary and alternate data structures must be implemented. Both structures are set up by the processor for data transfer between memory and a peripheral. The transfer is started using the primary control structure. When the transfer using the primary control structure is complete, the μDMA controller reads the alternate control structure for that channel to continue the transfer. March 19, 2011 345 Texas Instruments-Advance Information Micro Direct Memory Access (μDMA) Each time this happens, an interrupt is generated, and the processor can reload the control structure for the just-completed transfer. Data flow can continue indefinitely this way, using the primary and alternate control structures to switch back and forth between buffers as the data flows to or from the peripheral. Refer to Figure 7-2 on page 346 for an example showing operation in Ping-Pong mode. Figure 7-2. Example of Ping-Pong μDMA Transaction µDMA Controller SOURCE DEST CONTROL Unused transfers using BUFFER A transfer continues using alternate Primary Structure Cortex-M3 Processor SOURCE DEST CONTROL Unused Pe rip he ral /µD M AI nte Time transfers using BUFFER B SOURCE DEST CONTROL Unused Alternate Structure SOURCE DEST CONTROL Unused BUFFER B · Process data in BUFFER A · Reload primary structure Pe rip he ral /µD M AI nte r transfers using BUFFER A rup t BUFFER A · Process data in BUFFER B · Reload alternate structure transfer continues using alternate Primary Structure rru p t transfer continues using primary Alternate Structure BUFFER A Pe rip he ral /µD M AI nte transfers using BUFFER B rru pt BUFFER B · Process data in BUFFER B · Reload alternate structure 346 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller 7.2.6.5 Memory Scatter-Gather Memory Scatter-Gather mode is a complex mode used when data must be transferred to or from varied locations in memory instead of a set of contiguous locations in a memory buffer. For example, a gather μDMA operation could be used to selectively read the payload of several stored packets of a communication protocol and store them together in sequence in a memory buffer. In Memory Scatter-Gather mode, the primary control structure is used to program the alternate control structure from a table in memory. The table is set up by the processor software and contains a list of control structures, each containing the source and destination end pointers, and the control word for a specific transfer. The mode of each control word must be set to Scatter-Gather mode. Each entry in the table is copied in turn to the alternate structure where it is then executed. The μDMA controller alternates between using the primary control structure to copy the next transfer instruction from the list and then executing the new transfer instruction. The end of the list is marked by programming the control word for the last entry to use Auto transfer mode. Once the last transfer is performed using Auto mode, the μDMA controller stops. A completion interrupt is generated only after the last transfer. It is possible to loop the list by having the last entry copy the primary control structure to point back to the beginning of the list (or to a new list). It is also possible to trigger a set of other channels to perform a transfer, either directly, by programming a write to the software trigger for another channel, or indirectly, by causing a peripheral action that results in a μDMA request. By programming the μDMA controller using this method, a set of arbitrary transfers can be performed based on a single μDMA request. Refer to Figure 7-3 on page 348 and Figure 7-4 on page 349, which show an example of operation in Memory Scatter-Gather mode. This example shows a gather operation, where data in three separate buffers in memory is copied together into one buffer. Figure 7-3 on page 348 shows how the application sets up a μDMA task list in memory that is used by the controller to perform three sets of copy operations from different locations in memory. The primary control structure for the channel that is used for the operation is configured to copy from the task list to the alternate control structure. Figure 7-4 on page 349 shows the sequence as the μDMA controller performs the three sets of copy operations. First, using the primary control structure, the μDMA controller loads the alternate control structure with task A. It then performs the copy operation specified by task A, copying the data from the source buffer A to the destination buffer. Next, the μDMA controller again uses the primary control structure to load task B into the alternate control structure, and then performs the B operation with the alternate control structure. The process is repeated for task C. March 19, 2011 347 Texas Instruments-Advance Information Micro Direct Memory Access (μDMA) Figure 7-3. Memory Scatter-Gather, Setup and Configuration 1 2 3 Source and Destination Buffer in Memory Task List in Memory Channel Control Table in Memory 4 WORDS (SRC A) SRC A DST ITEMS=4 16 WORDS (SRC B) SRC Unused DST SRC ITEMS=12 DST B “TASK” A ITEMS=16 Channel Primary Control Structure “TASK” B Unused SRC DST ITEMS=1 “TASK” C Unused SRC DST Channel Alternate Control Structure ITEMS=n 1 WORD (SRC C) C 4 (DEST A) 16 (DEST B) 1 (DEST C) NOTES: 1. Application has a need to copy data items from three separate locations in memory into one combined buffer. 2. Application sets up µDMA “task list” in memory, which contains the pointers and control configuration for three µDMA copy “tasks.” 3. Application sets up the channel primary control structure to copy each task configuration, one at a time, to the alternate control structure, where it is executed by the µDMA controller. 348 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Figure 7-4. Memory Scatter-Gather, μDMA Copy Sequence Task List in Memory Buffers in Memory µDMA Control Table in Memory SRC A SRC SRC B PRI COPIED DST TASK A TASK B SRC SRC C ALT COPIED DST TASK C DEST A DEST B DEST C Then, using the channel’s alternate control structure, the µDMA controller copies data from the source buffer A to the destination buffer. Using the channel’s primary control structure, the µDMA controller copies task A configuration to the channel’s alternate control structure. Task List in Memory Buffers in Memory µDMA Control Table in Memory SRC A SRC B SRC PRI DST TASK A SRC TASK B TASK C SRC C COPIED ALT COPIED DST DEST A DEST B DEST C Then, using the channel’s alternate control structure, the µDMA controller copies data from the source buffer B to the destination buffer. Using the channel’s primary control structure, the µDMA controller copies task B configuration to the channel’s alternate control structure. Task List in Memory Buffers in Memory µDMA Control Table in Memory SRC A SRC SRC B PRI DST TASK A SRC TASK B TASK C SRC C ALT DST DEST A COPIED COPIED DEST B DEST C Using the channel’s primary control structure, the µDMA controller copies task C configuration to the channel’s alternate control structure. Then, using the channel’s alternate control structure, the µDMA controller copies data from the source buffer C to the destination buffer. March 19, 2011 349 Texas Instruments-Advance Information Micro Direct Memory Access (μDMA) 7.2.6.6 Peripheral Scatter-Gather Peripheral Scatter-Gather mode is very similar to Memory Scatter-Gather, except that the transfers are controlled by a peripheral making a μDMA request. Upon detecting a request from the peripheral, the μDMA controller uses the primary control structure to copy one entry from the list to the alternate control structure and then performs the transfer. At the end of this transfer, the next transfer is started only if the peripheral again asserts a μDMA request. The μDMA controller continues to perform transfers from the list only when the peripheral is making a request, until the last transfer is complete. A completion interrupt is generated only after the last transfer. By using this method, the μDMA controller can transfer data to or from a peripheral from a set of arbitrary locations whenever the peripheral is ready to transfer data. Refer to Figure 7-5 on page 351 and Figure 7-6 on page 352, which show an example of operation in Peripheral Scatter-Gather mode. This example shows a gather operation, where data from three separate buffers in memory is copied to a single peripheral data register. Figure 7-5 on page 351 shows how the application sets up a µDMA task list in memory that is used by the controller to perform three sets of copy operations from different locations in memory. The primary control structure for the channel that is used for the operation is configured to copy from the task list to the alternate control structure. Figure 7-6 on page 352 shows the sequence as the µDMA controller performs the three sets of copy operations. First, using the primary control structure, the µDMA controller loads the alternate control structure with task A. It then performs the copy operation specified by task A, copying the data from the source buffer A to the peripheral data register. Next, the µDMA controller again uses the primary control structure to load task B into the alternate control structure, and then performs the B operation with the alternate control structure. The process is repeated for task C. 350 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Figure 7-5. Peripheral Scatter-Gather, Setup and Configuration 1 2 3 Source Buffer in Memory Task List in Memory Channel Control Table in Memory 4 WORDS (SRC A) SRC A DST ITEMS=4 16 WORDS (SRC B) SRC DST SRC ITEMS=12 DST B “TASK” A Unused ITEMS=16 Channel Primary Control Structure “TASK” B Unused SRC DST ITEMS=1 “TASK” C Unused SRC DST Channel Alternate Control Structure ITEMS=n 1 WORD (SRC C) C Peripheral Data Register DEST NOTES: 1. Application has a need to copy data items from three separate locations in memory into a peripheral data register. 2. Application sets up µDMA “task list” in memory, which contains the pointers and control configuration for three µDMA copy “tasks.” 3. Application sets up the channel primary control structure to copy each task configuration, one at a time, to the alternate control structure, where it is executed by the µDMA controller. March 19, 2011 351 Texas Instruments-Advance Information Micro Direct Memory Access (μDMA) Figure 7-6. Peripheral Scatter-Gather, μDMA Copy Sequence Task List in Memory Buffers in Memory µDMA Control Table in Memory SRC A SRC SRC B PRI COPIED DST TASK A TASK B SRC SRC C ALT COPIED DST TASK C Then, using the channel’s alternate control structure, the µDMA controller copies data from the source buffer A to the peripheral data register. Using the channel’s primary control structure, the µDMA controller copies task A configuration to the channel’s alternate control structure. Task List in Memory Peripheral Data Register Buffers in Memory µDMA Control Table in Memory SRC A SRC SRC B PRI DST TASK A SRC TASK B TASK C SRC C COPIED ALT COPIED DST Then, using the channel’s alternate control structure, the µDMA controller copies data from the source buffer B to the peripheral data register. Using the channel’s primary control structure, the µDMA controller copies task B configuration to the channel’s alternate control structure. Task List in Memory Peripheral Data Register Buffers in Memory µDMA Control Table in Memory SRC A SRC SRC B PRI DST TASK A SRC TASK B TASK C SRC C ALT DST COPIED COPIED Peripheral Data Register Using the channel’s primary control structure, the µDMA controller copies task C configuration to the channel’s alternate control structure. Then, using the channel’s alternate control structure, the µDMA controller copies data from the source buffer C to the peripheral data register. 352 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller 7.2.7 Transfer Size and Increment The μDMA controller supports transfer data sizes of 8, 16, or 32 bits. The source and destination data size must be the same for any given transfer. The source and destination address can be auto-incremented by bytes, half-words, or words, or can be set to no increment. The source and destination address increment values can be set independently, and it is not necessary for the address increment to match the data size as long as the increment is the same or larger than the data size. For example, it is possible to perform a transfer using 8-bit data size, but using an address increment of full words (4 bytes). The data to be transferred must be aligned in memory according to the data size (8, 16, or 32 bits). Table 7-5 shows the configuration to read from a peripheral that supplies 8-bit data. Table 7-5. μDMA Read Example: 8-Bit Peripheral 7.2.8 Field Configuration Source data size 8 bits Destination data size 8 bits Source address increment No increment Destination address increment Byte Source end pointer Peripheral read FIFO register Destination end pointer End of the data buffer in memory Peripheral Interface Each peripheral that supports μDMA has a single request and/or burst request signal that is asserted when the peripheral is ready to transfer data (see Table 7-2 on page 343). The request signal can be disabled or enabled using the DMA Channel Request Mask Set (DMAREQMASKSET) and DMA Channel Request Mask Clear (DMAREQMASKCLR) registers. The μDMA request signal is disabled, or masked, when the channel request mask bit is set. When the request is not masked, the μDMA channel is configured correctly and enabled, and the peripheral asserts the request signal, the μDMA controller begins the transfer. Note: When using μDMA to transfer data to and from a peripheral, the peripheral must disable all interrupts to the NVIC. When a μDMA transfer is complete, the μDMA controller generates an interrupt, see “Interrupts and Errors” on page 354 for more information. For more information on how a specific peripheral interacts with the μDMA controller, refer to the DMA Operation section in the chapter that discusses that peripheral. 7.2.9 Software Request One μDMA channel is dedicated to software-initiated transfers. This channel also has a dedicated interrupt to signal completion of a μDMA transfer. A transfer is initiated by software by first configuring and enabling the transfer, and then issuing a software request using the DMA Channel Software Request (DMASWREQ) register. For software-based transfers, the Auto transfer mode should be used. It is possible to initiate a transfer on any channel using the DMASWREQ register. If a request is initiated by software using a peripheral μDMA channel, then the completion interrupt occurs on the interrupt vector for the peripheral instead of the software interrupt vector. Any channel may be used for software requests as long as the corresponding peripheral is not using μDMA for data transfer. March 19, 2011 353 Texas Instruments-Advance Information Micro Direct Memory Access (μDMA) 7.2.10 Interrupts and Errors When a μDMA transfer is complete, the μDMA controller generates a completion interrupt on the interrupt vector of the peripheral. Therefore, if μDMA is used to transfer data for a peripheral and interrupts are used, then the interrupt handler for that peripheral must be designed to handle the μDMA transfer completion interrupt. If the transfer uses the software μDMA channel, then the completion interrupt occurs on the dedicated software μDMA interrupt vector (see Table 7-6 on page 354). When μDMA is enabled for a peripheral, the μDMA controller stops the normal transfer interrupts for a peripheral from reaching the interrupt controller (the interrupts are still reported in the peripheral's interrupt registers). Thus, when a large amount of data is transferred using μDMA, instead of receiving multiple interrupts from the peripheral as data flows, the interrupt controller receives only one interrupt when the transfer is complete. Unmasked peripheral error interrupts continue to be sent to the interrupt controller. If the μDMA controller encounters a bus or memory protection error as it attempts to perform a data transfer, it disables the μDMA channel that caused the error and generates an interrupt on the μDMA error interrupt vector. The processor can read the DMA Bus Error Clear (DMAERRCLR) register to determine if an error is pending. The ERRCLR bit is set if an error occurred. The error can be cleared by writing a 1 to the ERRCLR bit. Table 7-6 shows the dedicated interrupt assignments for the μDMA controller. Table 7-6. μDMA Interrupt Assignments Interrupt Assignment 46 μDMA Software Channel Transfer 47 μDMA Error 7.3 Initialization and Configuration 7.3.1 Module Initialization Before the μDMA controller can be used, it must be enabled in the System Control block and in the peripheral. The location of the channel control structure must also be programmed. The following steps should be performed one time during system initialization: 1. The μDMA peripheral must be enabled in the System Control block. To do this, set the UDMA bit of the System Control RCGC2 register (see page 286). 2. Enable the μDMA controller by setting the MASTEREN bit of the DMA Configuration (DMACFG) register. 3. Program the location of the channel control table by writing the base address of the table to the DMA Channel Control Base Pointer (DMACTLBASE) register. The base address must be aligned on a 1024-byte boundary. 7.3.2 Configuring a Memory-to-Memory Transfer μDMA channel 30 is dedicated for software-initiated transfers. However, any channel can be used for software-initiated, memory-to-memory transfer if the associated peripheral is not being used. 354 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller 7.3.2.1 Configure the Channel Attributes First, configure the channel attributes: 1. Program bit 30 of the DMA Channel Priority Set (DMAPRIOSET) or DMA Channel Priority Clear (DMAPRIOCLR) registers to set the channel to High priority or Default priority. 2. Set bit 30 of the DMA Channel Primary Alternate Clear (DMAALTCLR) register to select the primary channel control structure for this transfer. 3. Set bit 30 of the DMA Channel Useburst Clear (DMAUSEBURSTCLR) register to allow the μDMA controller to respond to single and burst requests. 4. Set bit 30 of the DMA Channel Request Mask Clear (DMAREQMASKCLR) register to allow the μDMA controller to recognize requests for this channel. 7.3.2.2 Configure the Channel Control Structure Now the channel control structure must be configured. This example transfers 256 words from one memory buffer to another. Channel 30 is used for a software transfer, and the control structure for channel 30 is at offset 0x1E0 of the channel control table. The channel control structure for channel 30 is located at the offsets shown in Table 7-7. Table 7-7. Channel Control Structure Offsets for Channel 30 Offset Description Control Table Base + 0x1E0 Channel 30 Source End Pointer Control Table Base + 0x1E4 Channel 30 Destination End Pointer Control Table Base + 0x1E8 Channel 30 Control Word Configure the Source and Destination The source and destination end pointers must be set to the last address for the transfer (inclusive). 1. Program the source end pointer at offset 0x1E0 to the address of the source buffer + 0x3FC. 2. Program the destination end pointer at offset 0x1E4 to the address of the destination buffer + 0x3FC. The control word at offset 0x1E8 must be programmed according to Table 7-8. Table 7-8. Channel Control Word Configuration for Memory Transfer Example Field in DMACHCTL Bits Value DSTINC 31:30 2 32-bit destination address increment DSTSIZE 29:28 2 32-bit destination data size SRCINC 27:26 2 32-bit source address increment SRCSIZE 25:24 2 32-bit source data size reserved 23:18 0 Reserved ARBSIZE 17:14 3 Arbitrates after 8 transfers XFERSIZE 13:4 255 3 0 N/A for this transfer type 2:0 2 Use Auto-request transfer mode NXTUSEBURST XFERMODE March 19, 2011 Description Transfer 256 items 355 Texas Instruments-Advance Information Micro Direct Memory Access (μDMA) 7.3.2.3 Start the Transfer Now the channel is configured and is ready to start. 1. Enable the channel by setting bit 30 of the DMA Channel Enable Set (DMAENASET) register. 2. Issue a transfer request by setting bit 30 of the DMA Channel Software Request (DMASWREQ) register. The μDMA transfer begins. If the interrupt is enabled, then the processor is notified by interrupt when the transfer is complete. If needed, the status can be checked by reading bit 30 of the DMAENASET register. This bit is automatically cleared when the transfer is complete. The status can also be checked by reading the XFERMODE field of the channel control word at offset 0x1E8. This field is automatically cleared at the end of the transfer. 7.3.3 Configuring a Peripheral for Simple Transmit This example configures the μDMA controller to transmit a buffer of data to a peripheral. The peripheral has a transmit FIFO with a trigger level of 4. The example peripheral uses μDMA channel 7. 7.3.3.1 Configure the Channel Attributes First, configure the channel attributes: 1. Configure bit 7 of the DMA Channel Priority Set (DMAPRIOSET) or DMA Channel Priority Clear (DMAPRIOCLR) registers to set the channel to High priority or Default priority. 2. Set bit 7 of the DMA Channel Primary Alternate Clear (DMAALTCLR) register to select the primary channel control structure for this transfer. 3. Set bit 7 of the DMA Channel Useburst Clear (DMAUSEBURSTCLR) register to allow the μDMA controller to respond to single and burst requests. 4. Set bit 7 of the DMA Channel Request Mask Clear (DMAREQMASKCLR) register to allow the μDMA controller to recognize requests for this channel. 7.3.3.2 Configure the Channel Control Structure This example transfers 64 bytes from a memory buffer to the peripheral's transmit FIFO register using μDMA channel 7. The control structure for channel 7 is at offset 0x070 of the channel control table. The channel control structure for channel 7 is located at the offsets shown in Table 7-9. Table 7-9. Channel Control Structure Offsets for Channel 7 Offset Description Control Table Base + 0x070 Channel 7 Source End Pointer Control Table Base + 0x074 Channel 7 Destination End Pointer Control Table Base + 0x078 Channel 7 Control Word Configure the Source and Destination The source and destination end pointers must be set to the last address for the transfer (inclusive). Because the peripheral pointer does not change, it simply points to the peripheral's data register. 1. Program the source end pointer at offset 0x070 to the address of the source buffer + 0x3F. 356 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller 2. Program the destination end pointer at offset 0x074 to the address of the peripheral's transmit FIFO register. The control word at offset 0x078 must be programmed according to Table 7-10. Table 7-10. Channel Control Word Configuration for Peripheral Transmit Example Field in DMACHCTL Bits Value DSTINC 31:30 3 Destination address does not increment DSTSIZE 29:28 0 8-bit destination data size SRCINC 27:26 0 8-bit source address increment SRCSIZE 25:24 0 8-bit source data size reserved 23:18 0 Reserved ARBSIZE 17:14 2 Arbitrates after 4 transfers XFERSIZE 13:4 63 Transfer 64 items 3 0 N/A for this transfer type 2:0 1 Use Basic transfer mode NXTUSEBURST XFERMODE Note: 7.3.3.3 Description In this example, it is not important if the peripheral makes a single request or a burst request. Because the peripheral has a FIFO that triggers at a level of 4, the arbitration size is set to 4. If the peripheral does make a burst request, then 4 bytes are transferred, which is what the FIFO can accommodate. If the peripheral makes a single request (if there is any space in the FIFO), then one byte is transferred at a time. If it is important to the application that transfers only be made in bursts, then the Channel Useburst SET[7] bit should be set in the DMA Channel Useburst Set (DMAUSEBURSTSET) register. Start the Transfer Now the channel is configured and is ready to start. 1. Enable the channel by setting bit 7 of the DMA Channel Enable Set (DMAENASET) register. The μDMA controller is now configured for transfer on channel 7. The controller makes transfers to the peripheral whenever the peripheral asserts a μDMA request. The transfers continue until the entire buffer of 64 bytes has been transferred. When that happens, the μDMA controller disables the channel and sets the XFERMODE field of the channel control word to 0 (Stopped). The status of the transfer can be checked by reading bit 7 of the DMA Channel Enable Set (DMAENASET) register. This bit is automatically cleared when the transfer is complete. The status can also be checked by reading the XFERMODE field of the channel control word at offset 0x078. This field is automatically cleared at the end of the transfer. If peripheral interrupts are enabled, then the peripheral interrupt handler receives an interrupt when the entire transfer is complete. 7.3.4 Configuring a Peripheral for Ping-Pong Receive This example configures the μDMA controller to continuously receive 8-bit data from a peripheral into a pair of 64-byte buffers. The peripheral has a receive FIFO with a trigger level of 8. The example peripheral uses μDMA channel 8. 7.3.4.1 Configure the Channel Attributes First, configure the channel attributes: March 19, 2011 357 Texas Instruments-Advance Information Micro Direct Memory Access (μDMA) 1. Configure bit 8 of the DMA Channel Priority Set (DMAPRIOSET) or DMA Channel Priority Clear (DMAPRIOCLR) registers to set the channel to High priority or Default priority. 2. Set bit 8 of the DMA Channel Primary Alternate Clear (DMAALTCLR) register to select the primary channel control structure for this transfer. 3. Set bit 8 of the DMA Channel Useburst Clear (DMAUSEBURSTCLR) register to allow the μDMA controller to respond to single and burst requests. 4. Set bit 8 of the DMA Channel Request Mask Clear (DMAREQMASKCLR) register to allow the μDMA controller to recognize requests for this channel. 7.3.4.2 Configure the Channel Control Structure This example transfers bytes from the peripheral's receive FIFO register into two memory buffers of 64 bytes each. As data is received, when one buffer is full, the μDMA controller switches to use the other. To use Ping-Pong buffering, both primary and alternate channel control structures must be used. The primary control structure for channel 8 is at offset 0x080 of the channel control table, and the alternate channel control structure is at offset 0x280. The channel control structures for channel 8 are located at the offsets shown in Table 7-11. Table 7-11. Primary and Alternate Channel Control Structure Offsets for Channel 8 Offset Description Control Table Base + 0x080 Channel 8 Primary Source End Pointer Control Table Base + 0x084 Channel 8 Primary Destination End Pointer Control Table Base + 0x088 Channel 8 Primary Control Word Control Table Base + 0x280 Channel 8 Alternate Source End Pointer Control Table Base + 0x284 Channel 8 Alternate Destination End Pointer Control Table Base + 0x288 Channel 8 Alternate Control Word Configure the Source and Destination The source and destination end pointers must be set to the last address for the transfer (inclusive). Because the peripheral pointer does not change, it simply points to the peripheral's data register. Both the primary and alternate sets of pointers must be configured. 1. Program the primary source end pointer at offset 0x080 to the address of the peripheral's receive buffer. 2. Program the primary destination end pointer at offset 0x084 to the address of ping-pong buffer A + 0x3F. 3. Program the alternate source end pointer at offset 0x280 to the address of the peripheral's receive buffer. 4. Program the alternate destination end pointer at offset 0x284 to the address of ping-pong buffer B + 0x3F. The primary control word at offset 0x088 and the alternate control word at offset 0x288 are initially programmed the same way. 1. Program the primary channel control word at offset 0x088 according to Table 7-12. 358 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller 2. Program the alternate channel control word at offset 0x288 according to Table 7-12. Table 7-12. Channel Control Word Configuration for Peripheral Ping-Pong Receive Example Field in DMACHCTL Bits Value DSTINC 31:30 0 8-bit destination address increment DSTSIZE 29:28 0 8-bit destination data size SRCINC 27:26 3 Source address does not increment SRCSIZE 25:24 0 8-bit source data size reserved 23:18 0 Reserved ARBSIZE 17:14 3 Arbitrates after 8 transfers XFERSIZE 13:4 63 Transfer 64 items 3 0 N/A for this transfer type 2:0 3 Use Ping-Pong transfer mode NXTUSEBURST XFERMODE Note: 7.3.4.3 Description In this example, it is not important if the peripheral makes a single request or a burst request. Because the peripheral has a FIFO that triggers at a level of 8, the arbitration size is set to 8. If the peripheral does make a burst request, then 8 bytes are transferred, which is what the FIFO can accommodate. If the peripheral makes a single request (if there is any data in the FIFO), then one byte is transferred at a time. If it is important to the application that transfers only be made in bursts, then the Channel Useburst SET[8] bit should be set in the DMA Channel Useburst Set (DMAUSEBURSTSET) register. Configure the Peripheral Interrupt An interrupt handler should be configured when using μDMA Ping-Pong mode, it is best to use an interrupt handler. However, the Ping-Pong mode can be configured without interrupts by polling. The interrupt handler is triggered after each buffer is complete. 1. Configure and enable an interrupt handler for the peripheral. 7.3.4.4 Enable the μDMA Channel Now the channel is configured and is ready to start. 1. Enable the channel by setting bit 8 of the DMA Channel Enable Set (DMAENASET) register. 7.3.4.5 Process Interrupts The μDMA controller is now configured and enabled for transfer on channel 8. When the peripheral asserts the μDMA request signal, the μDMA controller makes transfers into buffer A using the primary channel control structure. When the primary transfer to buffer A is complete, it switches to the alternate channel control structure and makes transfers into buffer B. At the same time, the primary channel control word mode field is configured to indicate Stopped, and an interrupt is When an interrupt is triggered, the interrupt handler must determine which buffer is complete and process the data or set a flag that the data must be processed by non-interrupt buffer processing code. Then the next buffer transfer must be set up. In the interrupt handler: 1. Read the primary channel control word at offset 0x088 and check the XFERMODE field. If the field is 0, this means buffer A is complete. If buffer A is complete, then: March 19, 2011 359 Texas Instruments-Advance Information Micro Direct Memory Access (μDMA) a. Process the newly received data in buffer A or signal the buffer processing code that buffer A has data available. b. Reprogram the primary channel control word at offset 0x88 according to Table 7-12 on page 359. 2. Read the alternate channel control word at offset 0x288 and check the XFERMODE field. If the field is 0, this means buffer B is complete. If buffer B is complete, then: a. Process the newly received data in buffer B or signal the buffer processing code that buffer B has data available. b. Reprogram the alternate channel control word at offset 0x288 according to Table 7-12 on page 359. 7.3.5 Configuring Channel Assignments Channel assignments for each μDMA channel can be changed using the DMACHASGN register. Each bit represents a μDMA channel. If the bit is set, then the secondary function is used for the channel. Refer to Table 7-1 on page 341 for channel assignments. For example, to use SSI1 Receive on channel 8 instead of UART0, set bit 8 of the DMACHASGN register. 7.4 Register Map Table 7-13 on page 360 lists the μDMA channel control structures and registers. The channel control structure shows the layout of one entry in the channel control table. The channel control table is located in system memory, and the location is determined by the application, that is, the base address is n/a (not applicable). In the table below, the offset for the channel control structures is the offset from the entry in the channel control table. See “Channel Configuration” on page 343 and Table 7-3 on page 344 for a description of how the entries in the channel control table are located in memory. The μDMA register addresses are given as a hexadecimal increment, relative to the μDMA base address of 0x400F.F000. Note that the μDMA module clock must be enabled before the registers can be programmed (see page 286). There must be a delay of 3 system clocks after the μDMA module clock is enabled before any μDMA module registers are accessed. Table 7-13. μDMA Register Map Offset Name Type Reset Description See page μDMA Channel Control Structure (Offset from Channel Control Table Base) 0x000 DMASRCENDP R/W - DMA Channel Source Address End Pointer 362 0x004 DMADSTENDP R/W - DMA Channel Destination Address End Pointer 363 0x008 DMACHCTL R/W - DMA Channel Control Word 364 DMA Status 369 DMA Configuration 371 DMA Channel Control Base Pointer 372 μDMA Registers (Offset from μDMA Base Address) 0x000 DMASTAT RO 0x001F.0000 0x004 DMACFG WO - 0x008 DMACTLBASE R/W 0x0000.0000 360 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Table 7-13. μDMA Register Map (continued) Offset Name 0x00C Reset DMAALTBASE RO 0x0000.0200 DMA Alternate Channel Control Base Pointer 373 0x010 DMAWAITSTAT RO 0xFFFF.FFC0 DMA Channel Wait-on-Request Status 374 0x014 DMASWREQ WO - DMA Channel Software Request 375 0x018 DMAUSEBURSTSET R/W 0x0000.0000 DMA Channel Useburst Set 376 0x01C DMAUSEBURSTCLR WO - DMA Channel Useburst Clear 377 0x020 DMAREQMASKSET R/W 0x0000.0000 DMA Channel Request Mask Set 378 0x024 DMAREQMASKCLR WO - DMA Channel Request Mask Clear 379 0x028 DMAENASET R/W 0x0000.0000 DMA Channel Enable Set 380 0x02C DMAENACLR WO - DMA Channel Enable Clear 381 0x030 DMAALTSET R/W 0x0000.0000 DMA Channel Primary Alternate Set 382 0x034 DMAALTCLR WO - DMA Channel Primary Alternate Clear 383 0x038 DMAPRIOSET R/W 0x0000.0000 DMA Channel Priority Set 384 0x03C DMAPRIOCLR WO - DMA Channel Priority Clear 385 0x04C DMAERRCLR R/W 0x0000.0000 DMA Bus Error Clear 386 0x500 DMACHASGN R/W 0x0000.0000 DMA Channel Assignment 387 0xFD0 DMAPeriphID4 RO 0x0000.0004 DMA Peripheral Identification 4 392 0xFE0 DMAPeriphID0 RO 0x0000.0030 DMA Peripheral Identification 0 388 0xFE4 DMAPeriphID1 RO 0x0000.00B2 DMA Peripheral Identification 1 389 0xFE8 DMAPeriphID2 RO 0x0000.000B DMA Peripheral Identification 2 390 0xFEC DMAPeriphID3 RO 0x0000.0000 DMA Peripheral Identification 3 391 0xFF0 DMAPCellID0 RO 0x0000.000D DMA PrimeCell Identification 0 393 0xFF4 DMAPCellID1 RO 0x0000.00F0 DMA PrimeCell Identification 1 394 0xFF8 DMAPCellID2 RO 0x0000.0005 DMA PrimeCell Identification 2 395 0xFFC DMAPCellID3 RO 0x0000.00B1 DMA PrimeCell Identification 3 396 7.5 Description See page Type μDMA Channel Control Structure The μDMA Channel Control Structure holds the transfer settings for a μDMA channel. Each channel has two control structures, which are located in a table in system memory. Refer to “Channel Configuration” on page 343 for an explanation of the Channel Control Table and the Channel Control Structure. The channel control structure is one entry in the channel control table. Each channel has a primary and alternate structure. The primary control structures are located at offsets 0x0, 0x10, 0x20 and so on. The alternate control structures are located at offsets 0x200, 0x210, 0x220, and so on. March 19, 2011 361 Texas Instruments-Advance Information Micro Direct Memory Access (μDMA) Register 1: DMA Channel Source Address End Pointer (DMASRCENDP), offset 0x000 DMA Channel Source Address End Pointer (DMASRCENDP) is part of the Channel Control Structure and is used to specify the source address for a μDMA transfer. The μDMA controller can transfer data to and from the on-chip SRAM. However, because the Flash memory and ROM are located on a separate internal bus, it is not possible to transfer data from the Flash memory or ROM with the μDMA controller. Note: The offset specified is from the base address of the control structure in system memory, not the μDMA module base address. DMA Channel Source Address End Pointer (DMASRCENDP) Base n/a Offset 0x000 Type R/W, reset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - 7 6 5 4 3 2 1 0 R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - ADDR Type Reset R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - 15 14 13 12 11 10 9 8 ADDR Type Reset R/W - R/W - R/W - R/W - R/W - R/W - R/W - Bit/Field Name Type Reset 31:0 ADDR R/W - R/W - Description Source Address End Pointer This field points to the last address of the μDMA transfer source (inclusive). If the source address is not incrementing (the SRCINC field in the DMACHCTL register is 0x3), then this field points at the source location itself (such as a peripheral data register). 362 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 2: DMA Channel Destination Address End Pointer (DMADSTENDP), offset 0x004 DMA Channel Destination Address End Pointer (DMADSTENDP) is part of the Channel Control Structure and is used to specify the destination address for a μDMA transfer. Note: The offset specified is from the base address of the control structure in system memory, not the μDMA module base address. DMA Channel Destination Address End Pointer (DMADSTENDP) Base n/a Offset 0x004 Type R/W, reset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - ADDR Type Reset ADDR Type Reset Bit/Field Name Type Reset 31:0 ADDR R/W - Description Destination Address End Pointer This field points to the last address of the μDMA transfer destination (inclusive). If the destination address is not incrementing (the DSTINC field in the DMACHCTL register is 0x3), then this field points at the destination location itself (such as a peripheral data register). March 19, 2011 363 Texas Instruments-Advance Information Micro Direct Memory Access (μDMA) Register 3: DMA Channel Control Word (DMACHCTL), offset 0x008 DMA Channel Control Word (DMACHCTL) is part of the Channel Control Structure and is used to specify parameters of a μDMA transfer. Note: The offset specified is from the base address of the control structure in system memory, not the μDMA module base address. DMA Channel Control Word (DMACHCTL) Base n/a Offset 0x008 Type R/W, reset 31 30 DSTINC Type Reset 29 28 27 DSTSIZE 26 24 23 22 21 SRCSIZE 20 R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - 15 14 13 12 11 10 9 8 7 6 5 4 R/W - XFERSIZE R/W - R/W - R/W - R/W - R/W - Bit/Field Name Type Reset 31:30 DSTINC R/W - 18 17 R/W - R/W - 3 2 R/W - R/W - R/W - R/W - R/W - R/W - R/W - 1 0 XFERMODE NXTUSEBURST R/W - 16 ARBSIZE R/W - R/W - 19 reserved R/W - ARBSIZE Type Reset 25 SRCINC R/W - R/W - R/W - Description Destination Address Increment This field configures the destination address increment. The address increment value must be equal or greater than the value of the destination size (DSTSIZE). Value Description 29:28 DSTSIZE R/W - 0x0 Byte Increment by 8-bit locations 0x1 Half-word Increment by 16-bit locations 0x2 Word Increment by 32-bit locations 0x3 No increment Address remains set to the value of the Destination Address End Pointer (DMADSTENDP) for the channel Destination Data Size This field configures the destination item data size. Note: DSTSIZE must be the same as SRCSIZE. Value Description 0x0 Byte 8-bit data size 0x1 Half-word 16-bit data size 0x2 Word 32-bit data size 0x3 Reserved 364 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset 27:26 SRCINC R/W - Description Source Address Increment This field configures the source address increment. The address increment value must be equal or greater than the value of the source size (SRCSIZE). Value Description 25:24 SRCSIZE R/W - 0x0 Byte Increment by 8-bit locations 0x1 Half-word Increment by 16-bit locations 0x2 Word Increment by 32-bit locations 0x3 No increment Address remains set to the value of the Source Address End Pointer (DMASRCENDP) for the channel Source Data Size This field configures the source item data size. Note: DSTSIZE must be the same as SRCSIZE. Value Description 23:18 reserved R/W - 0x0 Byte 8-bit data size. 0x1 Half-word 16-bit data size. 0x2 Word 32-bit data size. 0x3 Reserved Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. March 19, 2011 365 Texas Instruments-Advance Information Micro Direct Memory Access (μDMA) Bit/Field Name Type Reset 17:14 ARBSIZE R/W - Description Arbitration Size This field configures the number of transfers that can occur before the μDMA controller re-arbitrates. The possible arbitration rate configurations represent powers of 2 and are shown below. Value Description 0x0 1 Transfer Arbitrates after each μDMA transfer 0x1 2 Transfers 0x2 4 Transfers 0x3 8 Transfers 0x4 16 Transfers 0x5 32 Transfers 0x6 64 Transfers 0x7 128 Transfers 0x8 256 Transfers 0x9 512 Transfers 0xA-0xF 1024 Transfers In this configuration, no arbitration occurs during the μDMA transfer because the maximum transfer size is 1024. 13:4 XFERSIZE R/W - Transfer Size (minus 1) This field configures the total number of items to transfer. The value of this field is 1 less than the number to transfer (value 0 means transfer 1 item). The maximum value for this 10-bit field is 1023 which represents a transfer size of 1024 items. The transfer size is the number of items, not the number of bytes. If the data size is 32 bits, then this value is the number of 32-bit words to transfer. The μDMA controller updates this field immediately prior to entering the arbitration process, so it contains the number of outstanding items that is necessary to complete the μDMA cycle. 3 NXTUSEBURST R/W - Next Useburst This field controls whether the Useburst SET[n] bit is automatically set for the last transfer of a peripheral scatter-gather operation. Normally, for the last transfer, if the number of remaining items to transfer is less than the arbitration size, the μDMA controller uses single transfers to complete the transaction. If this bit is set, then the controller uses a burst transfer to complete the last transfer. 366 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset 2:0 XFERMODE R/W - Description μDMA Transfer Mode This field configures the operating mode of the μDMA cycle. Refer to “Transfer Modes” on page 345 for a detailed explanation of transfer modes. Because this register is in system RAM, it has no reset value. Therefore, this field should be initialized to 0 before the channel is enabled. Value Description 0x0 Stop 0x1 Basic 0x2 Auto-Request 0x3 Ping-Pong 0x4 Memory Scatter-Gather 0x5 Alternate Memory Scatter-Gather 0x6 Peripheral Scatter-Gather 0x7 Alternate Peripheral Scatter-Gather XFERMODE Bit Field Values. Stop Channel is stopped or configuration data is invalid. No more transfers can occur. Basic For each trigger (whether from a peripheral or a software request), the μDMA controller performs the number of transfers specified by the ARBSIZE field. Auto-Request The initial request (software- or peripheral-initiated) is sufficient to complete the entire transfer of XFERSIZE items without any further requests. Ping-Pong This mode uses both the primary and alternate control structures for this channel. When the number of transfers specified by the XFERSIZE field have completed for the current control structure (primary or alternate), the µDMA controller switches to the other one. These switches continue until one of the control structures is not set to ping-pong mode. At that point, the µDMA controller stops. An interrupt is generated on completion of the transfers configured by each control structure. See “Ping-Pong” on page 345. Memory Scatter-Gather When using this mode, the primary control structure for the channel is configured to allow a list of operations (tasks) to be performed. The source address pointer specifies the start of a table of tasks to be copied to the alternate control structure for this channel. The XFERMODE field for the alternate control structure should be configured to 0x5 (Alternate memory scatter-gather) to perform the task. When the task completes, the µDMA switches back to the primary channel control structure, which then copies the next task to the alternate control structure. This process continues until the table of tasks is empty. The last task must have an XFERMODE value other than 0x5. Note that for continuous operation, the last task can update the primary channel control structure back to the start of the list or to another list. See “Memory Scatter-Gather” on page 347. March 19, 2011 367 Texas Instruments-Advance Information Micro Direct Memory Access (μDMA) Alternate Memory Scatter-Gather This value must be used in the alternate channel control data structure when the μDMA controller operates in Memory Scatter-Gather mode. Peripheral Scatter-Gather This value must be used in the primary channel control data structure when the μDMA controller operates in Peripheral Scatter-Gather mode. In this mode, the μDMA controller operates exactly the same as in Memory Scatter-Gather mode, except that instead of performing the number of transfers specified by the XFERSIZE field in the alternate control structure at one time, the μDMA controller only performs the number of transfers specified by the ARBSIZE field per trigger; see Basic mode for details. See “Peripheral Scatter-Gather” on page 350. Alternate Peripheral Scatter-Gather This value must be used in the alternate channel control data structure when the μDMA controller operates in Peripheral Scatter-Gather mode. 7.6 μDMA Register Descriptions The register addresses given are relative to the μDMA base address of 0x400F.F000. 368 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 4: DMA Status (DMASTAT), offset 0x000 The DMA Status (DMASTAT) register returns the status of the μDMA controller. You cannot read this register when the μDMA controller is in the reset state. DMA Status (DMASTAT) Base 0x400F.F000 Offset 0x000 Type RO, reset 0x001F.0000 31 30 29 28 27 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 RO 0 RO 0 RO 0 RO 0 26 25 24 23 22 21 20 19 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 1 RO 1 10 9 8 7 6 5 4 3 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 reserved Type Reset STATE RO 0 17 16 RO 1 RO 1 RO 1 2 1 0 DMACHANS reserved Type Reset 18 reserved RO 0 MASTEN RO 0 RO 0 Bit/Field Name Type Reset Description 31:21 reserved RO 0x000 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 20:16 DMACHANS RO 0x1F Available μDMA Channels Minus 1 This field contains a value equal to the number of μDMA channels the μDMA controller is configured to use, minus one. The value of 0x1F corresponds to 32 μDMA channels. 15:8 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 7:4 STATE RO 0x0 Control State Machine Status This field shows the current status of the control state machine. Status can be one of the following. Value Description 0x0 Idle 0x1 Reading channel controller data. 0x2 Reading source end pointer. 0x3 Reading destination end pointer. 0x4 Reading source data. 0x5 Writing destination data. 0x6 Waiting for µDMA request to clear. 0x7 Writing channel controller data. 0x8 Stalled 0x9 Done 0xA-0xF Undefined 3:1 reserved RO 0x0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. March 19, 2011 369 Texas Instruments-Advance Information Micro Direct Memory Access (μDMA) Bit/Field Name Type Reset 0 MASTEN RO 0 Description Master Enable Status Value Description 0 The μDMA controller is disabled. 1 The μDMA controller is enabled. 370 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 5: DMA Configuration (DMACFG), offset 0x004 The DMACFG register controls the configuration of the μDMA controller. DMA Configuration (DMACFG) Base 0x400F.F000 Offset 0x004 Type WO, reset 31 30 29 28 27 26 25 24 WO - WO - WO - WO - WO - WO - WO - WO - 15 14 13 12 11 10 9 8 WO - WO - WO - WO - WO - WO - WO - 23 22 21 20 19 18 17 16 WO - WO - WO - WO - WO - WO - WO - WO - 7 6 5 4 3 2 1 0 WO - WO - WO - WO - WO - WO - WO - reserved Type Reset reserved Type Reset WO - MASTEN WO - Bit/Field Name Type Reset Description 31:1 reserved WO - Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 0 MASTEN WO - Controller Master Enable Value Description 0 Disables the μDMA controller. 1 Enables μDMA controller. March 19, 2011 371 Texas Instruments-Advance Information Micro Direct Memory Access (μDMA) Register 6: DMA Channel Control Base Pointer (DMACTLBASE), offset 0x008 The DMACTLBASE register must be configured so that the base pointer points to a location in system memory. The amount of system memory that must be assigned to the μDMA controller depends on the number of μDMA channels used and whether the alternate channel control data structure is used. See “Channel Configuration” on page 343 for details about the Channel Control Table. The base address must be aligned on a 1024-byte boundary. This register cannot be read when the μDMA controller is in the reset state. DMA Channel Control Base Pointer (DMACTLBASE) Base 0x400F.F000 Offset 0x008 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 ADDR Type Reset R/W 0 R/W 0 R/W 0 15 14 13 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 12 11 10 9 8 7 6 5 4 3 2 1 0 RO 0 RO 0 RO 0 RO 0 RO 0 ADDR Type Reset R/W 0 R/W 0 R/W 0 reserved R/W 0 R/W 0 R/W 0 RO 0 RO 0 RO 0 RO 0 RO 0 Bit/Field Name Type Reset Description 31:10 ADDR R/W 0x0000.00 Channel Control Base Address This field contains the pointer to the base address of the channel control table. The base address must be 1024-byte aligned. 9:0 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 372 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 7: DMA Alternate Channel Control Base Pointer (DMAALTBASE), offset 0x00C The DMAALTBASE register returns the base address of the alternate channel control data. This register removes the necessity for application software to calculate the base address of the alternate channel control structures. This register cannot be read when the μDMA controller is in the reset state. DMA Alternate Channel Control Base Pointer (DMAALTBASE) Base 0x400F.F000 Offset 0x00C Type RO, reset 0x0000.0200 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 7 6 5 4 3 2 1 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 ADDR Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 ADDR Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 Bit/Field Name Type 31:0 ADDR RO RO 1 Reset RO 0 Description 0x0000.0200 Alternate Channel Address Pointer This field provides the base address of the alternate channel control structures. March 19, 2011 373 Texas Instruments-Advance Information Micro Direct Memory Access (μDMA) Register 8: DMA Channel Wait-on-Request Status (DMAWAITSTAT), offset 0x010 This read-only register indicates that the μDMA channel is waiting on a request. A peripheral can hold off the μDMA from performing a single request until the peripheral is ready for a burst request to enhance the μDMA performance. The use of this feature is dependent on the design of the peripheral and is not controllable by software in any way. This register cannot be read when the μDMA controller is in the reset state. DMA Channel Wait-on-Request Status (DMAWAITSTAT) Base 0x400F.F000 Offset 0x010 Type RO, reset 0xFFFF.FFC0 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 WAITREQ[n] Type Reset RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 15 14 13 12 11 10 9 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 8 7 6 5 4 3 2 1 0 RO 1 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 WAITREQ[n] Type Reset RO 1 RO 1 RO 1 RO 1 RO 1 RO 1 Bit/Field Name Type 31:0 WAITREQ[n] RO RO 1 Reset RO 1 RO 1 Description 0xFFFF.FFC0 Channel [n] Wait Status These bits provide the channel wait-on-request status. Bit 0 corresponds to channel 0. Value Description 1 The corresponding channel is waiting on a request. 0 The corresponding channel is not waiting on a request. 374 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 9: DMA Channel Software Request (DMASWREQ), offset 0x014 Each bit of the DMASWREQ register represents the corresponding μDMA channel. Setting a bit generates a request for the specified μDMA channel. DMA Channel Software Request (DMASWREQ) Base 0x400F.F000 Offset 0x014 Type WO, reset 31 30 29 28 27 26 25 24 WO - WO - WO - WO - WO - WO - WO - WO - 15 14 13 12 11 10 9 8 WO - WO - WO - WO - WO - WO - WO - WO - 23 22 21 20 19 18 17 16 WO - WO - WO - WO - WO - WO - WO - WO - 7 6 5 4 3 2 1 0 WO - WO - WO - WO - WO - WO - WO - SWREQ[n] Type Reset SWREQ[n] Type Reset Bit/Field Name Type Reset 31:0 SWREQ[n] WO - WO - Description Channel [n] Software Request These bits generate software requests. Bit 0 corresponds to channel 0. Value Description 1 Generate a software request for the corresponding channel. 0 No request generated. These bits are automatically cleared when the software request has been completed. March 19, 2011 375 Texas Instruments-Advance Information Micro Direct Memory Access (μDMA) Register 10: DMA Channel Useburst Set (DMAUSEBURSTSET), offset 0x018 Each bit of the DMAUSEBURSTSET register represents the corresponding μDMA channel. Setting a bit disables the channel's single request input from generating requests, configuring the channel to only accept burst requests. Reading the register returns the status of USEBURST. If the amount of data to transfer is a multiple of the arbitration (burst) size, the corresponding SET[n] bit is cleared after completing the final transfer. If there are fewer items remaining to transfer than the arbitration (burst) size, the μDMA controller automatically clears the corresponding SET[n] bit, allowing the remaining items to transfer using single requests. In order to resume transfers using burst requests, the corresponding bit must be set again. A bit should not be set if the corresponding peripheral does not support the burst request model. Refer to “Request Types” on page 342 for more details about request types. DMA Channel Useburst Set (DMAUSEBURSTSET) Base 0x400F.F000 Offset 0x018 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 SET[n] Type Reset SET[n] Type Reset Bit/Field Name Type 31:0 SET[n] R/W Reset Description 0x0000.0000 Channel [n] Useburst Set Value Description 0 μDMA channel [n] responds to single or burst requests. 1 μDMA channel [n] responds only to burst requests. Bit 0 corresponds to channel 0. This bit is automatically cleared as described above. A bit can also be manually cleared by setting the corresponding CLR[n] bit in the DMAUSEBURSTCLR register. 376 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 11: DMA Channel Useburst Clear (DMAUSEBURSTCLR), offset 0x01C Each bit of the DMAUSEBURSTCLR register represents the corresponding μDMA channel. Setting a bit clears the corresponding SET[n] bit in the DMAUSEBURSTSET register. DMA Channel Useburst Clear (DMAUSEBURSTCLR) Base 0x400F.F000 Offset 0x01C Type WO, reset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - CLR[n] Type Reset CLR[n] Type Reset Bit/Field Name Type Reset 31:0 CLR[n] WO - Description Channel [n] Useburst Clear Value Description 0 No effect. 1 Setting a bit clears the corresponding SET[n] bit in the DMAUSEBURSTSET register meaning that µDMA channel [n] responds to single and burst requests. March 19, 2011 377 Texas Instruments-Advance Information Micro Direct Memory Access (μDMA) Register 12: DMA Channel Request Mask Set (DMAREQMASKSET), offset 0x020 Each bit of the DMAREQMASKSET register represents the corresponding μDMA channel. Setting a bit disables μDMA requests for the channel. Reading the register returns the request mask status. When a μDMA channel's request is masked, that means the peripheral can no longer request μDMA transfers. The channel can then be used for software-initiated transfers. DMA Channel Request Mask Set (DMAREQMASKSET) Base 0x400F.F000 Offset 0x020 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 SET[n] Type Reset R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 SET[n] Type Reset R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 Bit/Field Name Type 31:0 SET[n] R/W R/W 0 Reset R/W 0 Description 0x0000.0000 Channel [n] Request Mask Set Value Description 0 The peripheral associated with channel [n] is enabled to request μDMA transfers. 1 The peripheral associated with channel [n] is not able to request μDMA transfers. Channel [n] may be used for software-initiated transfers. Bit 0 corresponds to channel 0. A bit can only be cleared by setting the corresponding CLR[n] bit in the DMAREQMASKCLR register. 378 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 13: DMA Channel Request Mask Clear (DMAREQMASKCLR), offset 0x024 Each bit of the DMAREQMASKCLR register represents the corresponding μDMA channel. Setting a bit clears the corresponding SET[n] bit in the DMAREQMASKSET register. DMA Channel Request Mask Clear (DMAREQMASKCLR) Base 0x400F.F000 Offset 0x024 Type WO, reset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 WO - WO - WO - WO - WO - WO - WO - WO - 7 6 5 4 3 2 1 0 WO - WO - WO - WO - WO - WO - WO - WO - CLR[n] Type Reset WO - WO - WO - WO - WO - WO - WO - WO - 15 14 13 12 11 10 9 8 CLR[n] Type Reset WO - WO - WO - WO - WO - WO - WO - Bit/Field Name Type Reset 31:0 CLR[n] WO - WO - Description Channel [n] Request Mask Clear Value Description 0 No effect. 1 Setting a bit clears the corresponding SET[n] bit in the DMAREQMASKSET register meaning that the peripheral associated with channel [n] is enabled to request μDMA transfers. March 19, 2011 379 Texas Instruments-Advance Information Micro Direct Memory Access (μDMA) Register 14: DMA Channel Enable Set (DMAENASET), offset 0x028 Each bit of the DMAENASET register represents the corresponding µDMA channel. Setting a bit enables the corresponding µDMA channel. Reading the register returns the enable status of the channels. If a channel is enabled but the request mask is set (DMAREQMASKSET), then the channel can be used for software-initiated transfers. DMA Channel Enable Set (DMAENASET) Base 0x400F.F000 Offset 0x028 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 SET[n] Type Reset SET[n] Type Reset Bit/Field Name Type 31:0 SET[n] R/W Reset Description 0x0000.0000 Channel [n] Enable Set Value Description 0 µDMA Channel [n] is disabled. 1 µDMA Channel [n] is enabled. Bit 0 corresponds to channel 0. A bit can only be cleared by setting the corresponding CLR[n] bit in the DMAENACLR register. 380 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 15: DMA Channel Enable Clear (DMAENACLR), offset 0x02C Each bit of the DMAENACLR register represents the corresponding µDMA channel. Setting a bit clears the corresponding SET[n] bit in the DMAENASET register. DMA Channel Enable Clear (DMAENACLR) Base 0x400F.F000 Offset 0x02C Type WO, reset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - CLR[n] Type Reset CLR[n] Type Reset Bit/Field Name Type Reset 31:0 CLR[n] WO - Description Clear Channel [n] Enable Clear Value Description 0 No effect. 1 Setting a bit clears the corresponding SET[n] bit in the DMAENASET register meaning that channel [n] is disabled for μDMA transfers. Note: The controller disables a channel when it completes the μDMA cycle. March 19, 2011 381 Texas Instruments-Advance Information Micro Direct Memory Access (μDMA) Register 16: DMA Channel Primary Alternate Set (DMAALTSET), offset 0x030 Each bit of the DMAALTSET register represents the corresponding µDMA channel. Setting a bit configures the µDMA channel to use the alternate control data structure. Reading the register returns the status of which control data structure is in use for the corresponding µDMA channel. DMA Channel Primary Alternate Set (DMAALTSET) Base 0x400F.F000 Offset 0x030 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 SET[n] Type Reset SET[n] Type Reset Bit/Field Name Type 31:0 SET[n] R/W Reset Description 0x0000.0000 Channel [n] Alternate Set Value Description 0 µDMA channel [n] is using the primary control structure. 1 µDMA channel [n] is using the alternate control structure. Bit 0 corresponds to channel 0. A bit can only be cleared by setting the corresponding CLR[n] bit in the DMAALTCLR register. Note: For Ping-Pong and Scatter-Gather cycle types, the µDMA controller automatically sets these bits to select the alternate channel control data structure. 382 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 17: DMA Channel Primary Alternate Clear (DMAALTCLR), offset 0x034 Each bit of the DMAALTCLR register represents the corresponding μDMA channel. Setting a bit clears the corresponding SET[n] bit in the DMAALTSET register. DMA Channel Primary Alternate Clear (DMAALTCLR) Base 0x400F.F000 Offset 0x034 Type WO, reset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 WO - WO - WO - WO - WO - WO - WO - WO - 7 6 5 4 3 2 1 0 WO - WO - WO - WO - WO - WO - WO - WO - CLR[n] Type Reset WO - WO - WO - WO - WO - WO - WO - WO - 15 14 13 12 11 10 9 8 CLR[n] Type Reset WO - WO - WO - WO - WO - WO - WO - Bit/Field Name Type Reset 31:0 CLR[n] WO - WO - Description Channel [n] Alternate Clear Value Description 0 No effect. 1 Setting a bit clears the corresponding SET[n] bit in the DMAALTSET register meaning that channel [n] is using the primary control structure. Note: For Ping-Pong and Scatter-Gather cycle types, the µDMA controller automatically sets these bits to select the alternate channel control data structure. March 19, 2011 383 Texas Instruments-Advance Information Micro Direct Memory Access (μDMA) Register 18: DMA Channel Priority Set (DMAPRIOSET), offset 0x038 Each bit of the DMAPRIOSET register represents the corresponding µDMA channel. Setting a bit configures the µDMA channel to have a high priority level. Reading the register returns the status of the channel priority mask. DMA Channel Priority Set (DMAPRIOSET) Base 0x400F.F000 Offset 0x038 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 SET[n] Type Reset SET[n] Type Reset Bit/Field Name Type 31:0 SET[n] R/W Reset Description 0x0000.0000 Channel [n] Priority Set Value Description 0 µDMA channel [n] is using the default priority level. 1 µDMA channel [n] is using a high priority level. Bit 0 corresponds to channel 0. A bit can only be cleared by setting the corresponding CLR[n] bit in the DMAPRIOCLR register. 384 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 19: DMA Channel Priority Clear (DMAPRIOCLR), offset 0x03C Each bit of the DMAPRIOCLR register represents the corresponding µDMA channel. Setting a bit clears the corresponding SET[n] bit in the DMAPRIOSET register. DMA Channel Priority Clear (DMAPRIOCLR) Base 0x400F.F000 Offset 0x03C Type WO, reset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - WO - CLR[n] Type Reset CLR[n] Type Reset Bit/Field Name Type Reset 31:0 CLR[n] WO - Description Channel [n] Priority Clear Value Description 0 No effect. 1 Setting a bit clears the corresponding SET[n] bit in the DMAPRIOSET register meaning that channel [n] is using the default priority level. March 19, 2011 385 Texas Instruments-Advance Information Micro Direct Memory Access (μDMA) Register 20: DMA Bus Error Clear (DMAERRCLR), offset 0x04C The DMAERRCLR register is used to read and clear the µDMA bus error status. The error status is set if the μDMA controller encountered a bus error while performing a transfer. If a bus error occurs on a channel, that channel is automatically disabled by the μDMA controller. The other channels are unaffected. DMA Bus Error Clear (DMAERRCLR) Base 0x400F.F000 Offset 0x04C Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 7 6 5 4 3 2 1 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 reserved Type Reset reserved Type Reset Bit/Field Name Type Reset 31:1 reserved RO 0x0000.000 0 ERRCLR R/W1C 0 RO 0 ERRCLR R/W1C 0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. μDMA Bus Error Status Value Description 0 No bus error is pending. 1 A bus error is pending. This bit is cleared by writing a 1 to it. 386 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 21: DMA Channel Assignment (DMACHASGN), offset 0x500 Each bit of the DMACHASGN register represents the corresponding µDMA channel. Setting a bit selects the secondary channel assignment as specified in Table 7-1 on page 341. DMA Channel Assignment (DMACHASGN) Base 0x400F.F000 Offset 0x500 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - 15 14 13 12 11 10 9 8 R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - 23 22 21 20 19 18 17 16 R/W - R/W - R/W - R/W - R/W - R/W - R/W - R/W - 7 6 5 4 3 2 1 0 R/W - R/W - R/W - R/W - R/W - R/W - R/W - CHASGN[n] Type Reset CHASGN[n] Type Reset Bit/Field Name Type Reset 31:0 CHASGN[n] R/W - R/W - Description Channel [n] Assignment Select Value Description 0 Use the primary channel assignment. 1 Use the secondary channel assignment. March 19, 2011 387 Texas Instruments-Advance Information Micro Direct Memory Access (μDMA) Register 22: DMA Peripheral Identification 0 (DMAPeriphID0), offset 0xFE0 The DMAPeriphIDn registers are hard-coded, and the fields within the registers determine the reset values. DMA Peripheral Identification 0 (DMAPeriphID0) Base 0x400F.F000 Offset 0xFE0 Type RO, reset 0x0000.0030 31 30 29 28 27 26 25 24 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 8 7 6 5 4 3 2 1 0 RO 0 RO 0 RO 0 RO 1 RO 1 RO 0 RO 0 RO 0 RO 0 reserved Type Reset reserved Type Reset PID0 RO 0 Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 7:0 PID0 RO 0x30 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. μDMA Peripheral ID Register [7:0] Can be used by software to identify the presence of this peripheral. 388 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 23: DMA Peripheral Identification 1 (DMAPeriphID1), offset 0xFE4 The DMAPeriphIDn registers are hard-coded, and the fields within the registers determine the reset values. DMA Peripheral Identification 1 (DMAPeriphID1) Base 0x400F.F000 Offset 0xFE4 Type RO, reset 0x0000.00B2 31 30 29 28 27 26 25 24 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 8 7 6 5 4 3 2 1 0 RO 0 RO 1 RO 0 RO 1 RO 1 RO 0 RO 0 RO 1 RO 0 reserved Type Reset reserved Type Reset PID1 RO 0 Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 7:0 PID1 RO 0xB2 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. μDMA Peripheral ID Register [15:8] Can be used by software to identify the presence of this peripheral. March 19, 2011 389 Texas Instruments-Advance Information Micro Direct Memory Access (μDMA) Register 24: DMA Peripheral Identification 2 (DMAPeriphID2), offset 0xFE8 The DMAPeriphIDn registers are hard-coded, and the fields within the registers determine the reset values. DMA Peripheral Identification 2 (DMAPeriphID2) Base 0x400F.F000 Offset 0xFE8 Type RO, reset 0x0000.000B 31 30 29 28 27 26 25 24 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 8 7 6 5 4 3 2 1 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 1 RO 0 RO 1 RO 1 reserved Type Reset reserved Type Reset PID2 RO 0 Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 7:0 PID2 RO 0x0B Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. μDMA Peripheral ID Register [23:16] Can be used by software to identify the presence of this peripheral. 390 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 25: DMA Peripheral Identification 3 (DMAPeriphID3), offset 0xFEC The DMAPeriphIDn registers are hard-coded and the fields within the registers determine the reset values. DMA Peripheral Identification 3 (DMAPeriphID3) Base 0x400F.F000 Offset 0xFEC Type RO, reset 0x0000.0000 31 30 29 28 27 26 25 24 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 8 7 6 5 4 3 2 1 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 reserved Type Reset reserved Type Reset PID3 RO 0 Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 7:0 PID3 RO 0x00 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. μDMA Peripheral ID Register [31:24] Can be used by software to identify the presence of this peripheral. March 19, 2011 391 Texas Instruments-Advance Information Micro Direct Memory Access (μDMA) Register 26: DMA Peripheral Identification 4 (DMAPeriphID4), offset 0xFD0 The DMAPeriphIDn registers are hard-coded, and the fields within the registers determine the reset values. DMA Peripheral Identification 4 (DMAPeriphID4) Base 0x400F.F000 Offset 0xFD0 Type RO, reset 0x0000.0004 31 30 29 28 27 26 25 24 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 8 7 6 5 4 3 2 1 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 1 RO 0 RO 0 reserved Type Reset reserved Type Reset PID4 RO 0 Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 7:0 PID4 RO 0x04 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. μDMA Peripheral ID Register Can be used by software to identify the presence of this peripheral. 392 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 27: DMA PrimeCell Identification 0 (DMAPCellID0), offset 0xFF0 The DMAPCellIDn registers are hard-coded, and the fields within the registers determine the reset values. DMA PrimeCell Identification 0 (DMAPCellID0) Base 0x400F.F000 Offset 0xFF0 Type RO, reset 0x0000.000D 31 30 29 28 27 26 25 24 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 8 7 6 5 4 3 2 1 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 1 RO 1 RO 0 RO 1 reserved Type Reset reserved Type Reset CID0 RO 0 Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 7:0 CID0 RO 0x0D Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. μDMA PrimeCell ID Register [7:0] Provides software a standard cross-peripheral identification system. March 19, 2011 393 Texas Instruments-Advance Information Micro Direct Memory Access (μDMA) Register 28: DMA PrimeCell Identification 1 (DMAPCellID1), offset 0xFF4 The DMAPCellIDn registers are hard-coded, and the fields within the registers determine the reset values. DMA PrimeCell Identification 1 (DMAPCellID1) Base 0x400F.F000 Offset 0xFF4 Type RO, reset 0x0000.00F0 31 30 29 28 27 26 25 24 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 8 7 6 5 4 3 2 1 0 RO 0 RO 1 RO 1 RO 1 RO 1 RO 0 RO 0 RO 0 RO 0 reserved Type Reset reserved Type Reset CID1 RO 0 Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 7:0 CID1 RO 0xF0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. μDMA PrimeCell ID Register [15:8] Provides software a standard cross-peripheral identification system. 394 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 29: DMA PrimeCell Identification 2 (DMAPCellID2), offset 0xFF8 The DMAPCellIDn registers are hard-coded, and the fields within the registers determine the reset values. DMA PrimeCell Identification 2 (DMAPCellID2) Base 0x400F.F000 Offset 0xFF8 Type RO, reset 0x0000.0005 31 30 29 28 27 26 25 24 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 8 7 6 5 4 3 2 1 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 1 RO 0 RO 1 reserved Type Reset reserved Type Reset CID2 RO 0 Bit/Field Name Type Reset Description 31:8 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 7:0 CID2 RO 0x05 μDMA PrimeCell ID Register [23:16] Provides software a standard cross-peripheral identification system. March 19, 2011 395 Texas Instruments-Advance Information Micro Direct Memory Access (μDMA) Register 30: DMA PrimeCell Identification 3 (DMAPCellID3), offset 0xFFC The DMAPCellIDn registers are hard-coded, and the fields within the registers determine the reset values. DMA PrimeCell Identification 3 (DMAPCellID3) Base 0x400F.F000 Offset 0xFFC Type RO, reset 0x0000.00B1 31 30 29 28 27 26 25 24 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 8 7 6 5 4 3 2 1 0 RO 0 RO 1 RO 0 RO 1 RO 1 RO 0 RO 0 RO 0 RO 1 reserved Type Reset reserved Type Reset CID3 RO 0 Bit/Field Name Type Reset Description 31:8 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 7:0 CID3 RO 0xB1 μDMA PrimeCell ID Register [31:24] Provides software a standard cross-peripheral identification system. 396 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller 8 General-Purpose Input/Outputs (GPIOs) The GPIO module is composed of nine physical GPIO blocks, each corresponding to an individual GPIO port (Port A, Port B, Port C, Port D, Port E, Port F, Port G, Port H, Port J). The GPIO module supports up to 65 programmable input/output pins, depending on the peripherals being used. The GPIO module has the following features: ■ Up to 65 GPIOs, depending on configuration ■ Highly flexible pin muxing allows use as GPIO or one of several peripheral functions ■ 5-V-tolerant in input configuration ■ Fast toggle capable of a change every two clock cycles ■ Two means of port access: either Advanced High-Performance Bus (AHB) with better back-to-back access performance, or the legacy Advanced Peripheral Bus (APB) for backwards-compatibility with existing code ■ Programmable control for GPIO interrupts – Interrupt generation masking – Edge-triggered on rising, falling, or both – Level-sensitive on High or Low values ■ Bit masking in both read and write operations through address lines ■ Can be used to initiate an ADC sample sequence ■ Pins configured as digital inputs are Schmitt-triggered ■ Programmable control for GPIO pad configuration – Weak pull-up or pull-down resistors – 2-mA, 4-mA, and 8-mA pad drive for digital communication; up to four pads can be configured with an 18-mA pad drive for high-current applications – Slew rate control for the 8-mA drive – Open drain enables – Digital input enables 8.1 Signal Description GPIO signals have alternate hardware functions. Table 8-2 on page 398 and Table 8-3 on page 400 list the GPIO pins and their analog and digital alternate functions. The AINx and VREFA analog signals are not 5-V tolerant and go through an isolation circuit before reaching their circuitry. These signals are configured by clearing the corresponding DEN bit in the GPIO Digital Enable (GPIODEN) register and setting the corresponding AMSEL bit in the GPIO Analog Mode Select (GPIOAMSEL) register. Other analog signals are 5-V tolerant and are connected directly to their circuitry (C0-, March 19, 2011 397 Texas Instruments-Advance Information General-Purpose Input/Outputs (GPIOs) C0+, C1-, C1+, C2-, C2+, USB0VBUS, USB0ID). These signals are configured by clearing the DEN bit in the GPIO Digital Enable (GPIODEN) register. The digital alternate hardware functions are enabled by setting the appropriate bit in the GPIO Alternate Function Select (GPIOAFSEL) and GPIODEN registers and configuring the PMCx bit field in the GPIO Port Control (GPIOPCTL) register to the numeric encoding shown in the table below. Note that each pin must be programmed individually; no type of grouping is implied by the columns in the table. Table entries that are shaded gray are the default values for the corresponding GPIO pin. Important: All GPIO pins are configured as GPIOs and tri-stated by default (GPIOAFSEL=0, GPIODEN=0, GPIOPDR=0, GPIOPUR=0, and GPIOPCTL=0, with the exception of the four JTAG/SWD pins (shown in the table below). A Power-On-Reset (POR) or asserting RST puts the pins back to their default state. Table 8-1. GPIO Pins With Non-Zero Reset Values GPIO Pins Default State PA[1:0] UART0 GPIOAFSEL GPIODEN GPIOPDR GPIOPUR 0 1 0 GPIOPCTL 0 0x1 PA[5:2] SSI0 0 1 0 0 0x1 PB[3:2] I2C0 0 1 0 0 0x1 PC[3:0] JTAG/SWD 1 1 0 1 0x3 Table 8-2. GPIO Pins and Alternate Functions (100LQFP) a Digital Function (GPIOPCTL PMCx Bit Field Encoding) IO Pin Analog Function 1 2 3 4 5 6 7 8 9 10 11 PA0 26 - U0Rx - - - - - - I2C1SCL U1Rx - - PA1 27 - U0Tx - - - - - - I2C1SDA U1Tx - - PA2 28 - SSI0Clk - - PWM4 - - - - I2S0RXSD - - PA3 29 - SSI0Fss - - PWM5 - - - - I2S0RXMCLK - - PA4 30 - SSI0Rx - - PWM6 CAN0Rx - - - I2S0TXSCK - - PA5 31 - SSI0Tx - - PWM7 CAN0Tx - - - I2S0TXWS - - PA6 34 - I2C1SCL CCP1 - PWM0 PWM4 CAN0Rx - USB0EPEN U1CTS - - USB0PFLT U1DCD PA7 35 - I2C1SDA CCP4 - PWM1 PWM5 CAN0Tx CCP3 - - PB0 66 USB0ID CCP0 PWM2 - - U1Rx - - - - - - PB1 67 USB0VBUS CCP2 PWM3 - CCP1 U1Tx - - - - - - IDX0 PB2 72 - I2C0SCL PB3 65 - I2C0SDA Fault0 - CCP3 CCP0 - - USB0EPEN - - - - Fault3 - - - USB0PFLT - - - PB4 92 AIN10 C0- - - - U2Rx CAN0Rx IDX0 U1Rx EPI0S23 - - - PB5 91 AIN11 C1- C0o CCP5 CCP6 CCP0 CAN0Tx CCP2 U1Tx EPI0S22 - - - PB6 90 VREFA C0+ CCP1 CCP7 C0o Fault1 IDX0 CCP5 - - I2S0TXSCK - - PB7 89 - - - - NMI - - - - - - - PC0 80 - - - TCK SWCLK - - - - - - - - PC1 79 - - - TMS SWDIO - - - - - - - - 398 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Table 8-2. GPIO Pins and Alternate Functions (100LQFP) (continued) a Digital Function (GPIOPCTL PMCx Bit Field Encoding) IO Pin Analog Function 1 2 3 4 5 6 7 8 9 10 11 PC2 78 - - - TDI - - - - - - - - PC3 77 - - - TDO SWO - - - - - - - - PC4 25 - CCP5 PhA0 - PWM6 CCP2 CCP4 - EPI0S2 CCP1 - - PC5 24 C1+ CCP1 C1o C0o Fault2 CCP3 USB0EPEN - EPI0S3 - - - PC6 23 C2+ CCP3 PhB0 C2o PWM7 U1Rx CCP0 USB0PFLT EPI0S4 - - - PC7 22 C2- CCP4 PhB0 - CCP0 U1Tx USB0PFLT C1o - - - PD0 10 AIN15 PWM0 CAN0Rx IDX0 U2Rx U1Rx CCP6 - I2S0RXSCK U1CTS - - PD1 11 AIN14 PWM1 CAN0Tx PhA0 U2Tx U1Tx CCP7 - I2S0RXWS U1DCD CCP2 PhB1 EPI0S5 PD2 12 AIN13 U1Rx CCP6 PWM2 CCP5 - - - EPI0S20 - - - PD3 13 AIN12 U1Tx CCP7 PWM3 CCP0 - - - EPI0S21 - - - PD4 97 AIN7 CCP0 CCP3 - - - - - I2S0RXSD U1RI EPI0S19 - PD5 98 AIN6 CCP2 CCP4 - - - - - I2S0RXMCLK U2Rx EPI0S28 - PD6 99 AIN5 Fault0 - - - - - - I2S0TXSCK U2Tx EPI0S29 - PD7 100 AIN4 IDX0 C0o CCP1 - - - - I2S0TXWS U1DTR EPI0S30 - PE0 74 - PWM4 SSI1Clk CCP3 - - - - EPI0S8 USB0PFLT - - PE1 75 - PWM5 SSI1Fss Fault0 CCP2 CCP6 - - EPI0S9 - - - PE2 95 AIN9 CCP4 SSI1Rx PhB1 PhA0 CCP2 - - EPI0S24 - - - PE3 96 AIN8 CCP1 SSI1Tx PhA1 PhB0 CCP7 - - EPI0S25 - - - PE4 6 AIN3 CCP3 - - Fault0 U2Tx CCP2 - - I2S0TXWS - - PE5 5 AIN2 CCP5 - - - - - - - I2S0TXSD - - PE6 2 AIN1 PWM4 C1o - - - - - - U1CTS - - PE7 1 AIN0 PWM5 C2o - - - - - - U1DCD - - PF0 47 - CAN1Rx PhB0 PWM0 - - - - I2S0TXSD U1DSR - - I2S0TXMCLK U1RTS PF1 61 - CAN1Tx IDX1 PWM1 - - - - CCP3 - PF2 60 - LED1 PWM4 - PWM2 - - - - SSI1Clk - - PF3 59 - LED0 PWM5 - PWM3 - - - - SSI1Fss - - PF4 42 - CCP0 C0o - Fault0 - - - EPI0S12 SSI1Rx - - PF5 41 - CCP2 C1o - - - - - EPI0S15 SSI1Tx - - PG0 19 - U2Rx PWM0 I2C1SCL PWM4 - - - - USB0EPEN EPI0S13 - PG1 18 - U2Tx PWM1 I2C1SDA PWM5 - - - EPI0S14 - - - PG7 36 - PhB1 - - PWM7 - - - CCP5 EPI0S31 - - PH0 86 - CCP6 PWM2 - - - - - EPI0S6 PWM4 - - PH1 85 - CCP7 PWM3 - - - - - EPI0S7 PWM5 - - PH2 84 - IDX1 C1o - Fault3 - - - EPI0S1 - - - PH3 83 - PhB0 Fault0 - USB0EPEN - - - EPI0S0 - - - PH4 76 - - - - USB0PFLT - - - EPI0S10 - - SSI1Clk PH5 63 - - - - - - - - EPI0S11 - PH6 62 - - - - - - - - EPI0S26 - PWM4 SSI1Rx PH7 15 - - - - - - - - EPI0S27 - PWM5 SSI1Tx March 19, 2011 Fault2 SSI1Fss 399 Texas Instruments-Advance Information General-Purpose Input/Outputs (GPIOs) Table 8-2. GPIO Pins and Alternate Functions (100LQFP) (continued) a Digital Function (GPIOPCTL PMCx Bit Field Encoding) IO Pin Analog Function 1 2 3 4 5 6 7 8 9 10 11 PJ0 14 - - - - - - - - EPI0S16 - PWM0 I2C1SCL PJ1 87 - - - - - - - - EPI0S17 USB0PFLT PWM1 I2C1SDA PJ2 39 - - - - - - - - EPI0S18 Fault0 - PJ3 50 - - - - - - - - EPI0S19 U1CTS CCP6 - PJ4 52 - - - - - - - - EPI0S28 U1DCD CCP4 - PJ5 53 - - - - - - - - EPI0S29 U1DSR CCP2 - PJ6 54 - - - - - - - - EPI0S30 U1RTS CCP1 - PJ7 55 - - - - - - - - CCP0 - 10 11 - CCP0 U1DTR a. The digital signals that are shaded gray are the power-on default values for the corresponding GPIO pin. Table 8-3. GPIO Pins and Alternate Functions (108BGA) IO Pin Analog Function a Digital Function (GPIOPCTL PMCx Bit Field Encoding) 1 2 3 4 5 6 7 8 9 PA0 L3 - U0Rx - - - - - - I2C1SCL U1Rx - - PA1 M3 - U0Tx - - - - - - I2C1SDA U1Tx - - PA2 M4 - SSI0Clk - - PWM4 - - - - I2S0RXSD - - PA3 L4 - SSI0Fss - - PWM5 - - - - I2S0RXMCLK - - PA4 L5 - SSI0Rx - - PWM6 CAN0Rx - - - I2S0TXSCK - - PA5 M5 - SSI0Tx - - PWM7 CAN0Tx - - - I2S0TXWS - - PA6 L6 - I2C1SCL CCP1 - PWM0 PWM4 CAN0Rx - USB0EPEN U1CTS - - PA7 M6 - I2C1SDA CCP4 - PWM1 PWM5 CAN0Tx CCP3 USB0PFLT U1DCD - - PB0 E12 USB0ID CCP0 PWM2 - - U1Rx - - - - - - PB1 D12 USB0VBUS CCP2 PWM3 - CCP1 U1Tx - - - - - - IDX0 PB2 A11 - I2C0SCL PB3 E11 - I2C0SDA Fault0 - CCP3 CCP0 - - USB0EPEN - - - - Fault3 - - - USB0PFLT - - - PB4 A6 AIN10 C0- - - - U2Rx CAN0Rx IDX0 U1Rx EPI0S23 - - - PB5 B7 AIN11 C1- C0o CCP5 CCP6 CCP0 CAN0Tx CCP2 U1Tx EPI0S22 - - - PB6 A7 VREFA C0+ CCP1 CCP7 C0o Fault1 IDX0 CCP5 - - I2S0TXSCK - - PB7 A8 - - - - NMI - - - - - - - PC0 A9 - - - TCK SWCLK - - - - - - - - PC1 B9 - - - TMS SWDIO - - - - - - - - PC2 B8 - - - TDI - - - - - - - - PC3 A10 - - - TDO SWO - - - - - - - - PC4 L1 - CCP5 PhA0 - PWM6 CCP2 CCP4 - EPI0S2 CCP1 - - PC5 M1 C1+ CCP1 C1o C0o Fault2 CCP3 USB0EPEN - EPI0S3 - - - PC6 M2 C2+ CCP3 PhB0 C2o PWM7 U1Rx CCP0 USB0PFLT EPI0S4 - - - 400 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Table 8-3. GPIO Pins and Alternate Functions (108BGA) (continued) a Digital Function (GPIOPCTL PMCx Bit Field Encoding) IO Pin Analog Function 1 2 3 4 5 6 7 8 9 10 11 PC7 L2 C2- CCP4 PhB0 - CCP0 U1Tx USB0PFLT C1o EPI0S5 - - - PD0 G1 AIN15 PWM0 CAN0Rx IDX0 U2Rx U1Rx CCP6 - I2S0RXSCK U1CTS - - CCP2 PhB1 - - PD1 G2 AIN14 PWM1 CAN0Tx PhA0 U2Tx U1Tx CCP7 - I2S0RXWS U1DCD PD2 H2 AIN13 U1Rx CCP6 PWM2 CCP5 - - - EPI0S20 - PD3 H1 AIN12 U1Tx CCP7 PWM3 CCP0 - - - EPI0S21 - - - PD4 B5 AIN7 CCP0 CCP3 - - - - - I2S0RXSD U1RI EPI0S19 - PD5 C6 AIN6 CCP2 CCP4 - - - - - I2S0RXMCLK U2Rx EPI0S28 - PD6 A3 AIN5 Fault0 - - - - - - I2S0TXSCK U2Tx EPI0S29 - PD7 A2 AIN4 IDX0 C0o CCP1 - - - - I2S0TXWS U1DTR EPI0S30 - CCP3 PE0 B11 - PWM4 SSI1Clk - - - - EPI0S8 USB0PFLT - - PE1 A12 - PWM5 SSI1Fss Fault0 CCP2 CCP6 - - EPI0S9 - - - PE2 A4 AIN9 CCP4 SSI1Rx PhB1 PhA0 CCP2 - - EPI0S24 - - - PE3 B4 AIN8 CCP1 SSI1Tx PhA1 PhB0 CCP7 - - EPI0S25 - - - PE4 B2 AIN3 CCP3 - - Fault0 U2Tx CCP2 - - I2S0TXWS - - PE5 B3 AIN2 CCP5 - - - - - - - I2S0TXSD - - PE6 A1 AIN1 PWM4 C1o - - - - - - U1CTS - - PE7 B1 AIN0 PWM5 C2o - - - - - - U1DCD - - PF0 M9 - CAN1Rx PhB0 PWM0 - - - - I2S0TXSD U1DSR - - PF1 H12 - CAN1Tx IDX1 PWM1 - - - - I2S0TXMCLK U1RTS CCP3 - PF2 J11 - LED1 PWM4 - PWM2 - - - - SSI1Clk - - PF3 J12 - LED0 PWM5 - PWM3 - - - - SSI1Fss - - PF4 K4 - CCP0 C0o - Fault0 - - - EPI0S12 SSI1Rx - - - EPI0S15 SSI1Tx PF5 K3 - CCP2 C1o - - - - PG0 K1 - U2Rx PWM0 I2C1SCL PWM4 - - PG1 K2 - U2Tx PWM1 I2C1SDA PWM5 - - PG7 C10 - PhB1 - - PWM7 - - PH0 C9 - CCP6 PWM2 - - - - - - - - - EPI0S14 - - - - CCP5 EPI0S31 - - - EPI0S6 PWM4 - - USB0EPEN EPI0S13 - PH1 C8 - CCP7 PWM3 - - - - - EPI0S7 PWM5 - - PH2 D11 - IDX1 C1o - Fault3 - - - EPI0S1 - - - PH3 D10 - PhB0 Fault0 - USB0EPEN - - - EPI0S0 - - - PH4 B10 - - - - USB0PFLT - - - EPI0S10 - - SSI1Clk PH5 F10 - - - - - - - - EPI0S11 - PH6 G3 - - - - - - - - EPI0S26 - PWM4 SSI1Rx PH7 H3 - - - - - - - - EPI0S27 - PWM5 SSI1Tx PJ0 F3 - - - - - - - - EPI0S16 - PWM0 I2C1SCL PJ1 B6 - - - - - - - - EPI0S17 USB0PFLT PJ2 K6 - - - - - - - - EPI0S18 PJ3 M10 - - - - - - - - PJ4 K11 - - - - - - - - PJ5 K12 - - - - - - - - March 19, 2011 Fault2 SSI1Fss PWM1 I2C1SDA Fault0 - EPI0S19 U1CTS CCP6 - EPI0S28 U1DCD CCP4 - EPI0S29 U1DSR CCP2 - CCP0 401 Texas Instruments-Advance Information General-Purpose Input/Outputs (GPIOs) Table 8-3. GPIO Pins and Alternate Functions (108BGA) (continued) a Digital Function (GPIOPCTL PMCx Bit Field Encoding) IO Pin Analog Function 1 2 3 4 5 6 7 PJ6 L10 - - - - - - - - PJ7 L12 - - - - - - - - 8 9 EPI0S30 U1RTS - U1DTR 10 11 CCP1 - CCP0 - a. The digital signals that are shaded gray are the power-on default values for the corresponding GPIO pin. 8.2 Functional Description Each GPIO port is a separate hardware instantiation of the same physical block (see Figure 8-1 on page 402 and Figure 8-2 on page 403). The LM3S9B92 microcontroller contains nineports and thus nine of these physical GPIO blocks. Note that not all pins may be implemented on every block. Some GPIO pins can function as I/O signals for the on-chip peripheral modules. For information on which GPIO pins are used for alternate hardware functions, refer to Table 24-5 on page 1247. Figure 8-1. Digital I/O Pads Commit Control GPIOLOCK GPIOCR Port Control GPIOPCTL Mode Control GPIOAFSEL Periph 1 DEMUX Alternate Input Alternate Output Alternate Output Enable MUX Periph 0 Pad Input Periph n GPIO Output GPIO Output Enable Interrupt Control Pad Control GPIOIS GPIOIBE GPIOIEV GPIOIM GPIORIS GPIOMIS GPIOICR GPIODR2R GPIODR4R GPIODR8R GPIOSLR GPIOPUR GPIOPDR GPIOODR GPIODEN MUX GPIODATA GPIODIR Interrupt MUX GPIO Input Data Control Pad Output Digital I/O Pad Package I/O Pin Pad Output Enable Identification Registers GPIOPeriphID0 GPIOPeriphID1 GPIOPeriphID2 GPIOPeriphID3 GPIOPeriphID4 GPIOPeriphID5 GPIOPeriphID6 GPIOPeriphID7 GPIOPCellID0 GPIOPCellID1 GPIOPCellID2 GPIOPCellID3 402 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Figure 8-2. Analog/Digital I/O Pads Commit Control GPIOLOCK GPIOCR Port Control GPIOPCTL Mode Control GPIOAFSEL Periph 1 DEMUX Alternate Input Alternate Output Alternate Output Enable MUX Periph 0 Pad Input Periph n MUX MUX Data Control Pad Output Pad Output Enable Analog/Digital I/O Pad Package I/O Pin GPIO Input GPIO Output GPIODATA GPIODIR Interrupt GPIO Output Enable Interrupt Control GPIOIS GPIOIBE GPIOIEV GPIOIM GPIORIS GPIOMIS GPIOICR Pad Control GPIODR2R GPIODR4R GPIODR8R GPIOSLR GPIOPUR GPIOPDR GPIOODR GPIODEN GPIOAMSEL Analog Circuitry Identification Registers GPIOPeriphID0 GPIOPeriphID1 GPIOPeriphID2 GPIOPeriphID3 8.2.1 GPIOPeriphID4 GPIOPeriphID5 GPIOPeriphID6 GPIOPeriphID7 GPIOPCellID0 GPIOPCellID1 GPIOPCellID2 GPIOPCellID3 ADC (for GPIO pins that connect to the ADC input MUX) Isolation Circuit Data Control The data control registers allow software to configure the operational modes of the GPIOs. The data direction register configures the GPIO as an input or an output while the data register either captures incoming data or drives it out to the pads. Caution – It is possible to create a software sequence that prevents the debugger from connecting to the Stellaris® microcontroller. If the program code loaded into flash immediately changes the JTAG pins to their GPIO functionality, the debugger may not have enough time to connect and halt the controller before the JTAG pin functionality switches. As a result, the debugger may be locked out of the part. This issue can be avoided with a software routine that restores JTAG functionality based on an external or software trigger. 8.2.1.1 Data Direction Operation The GPIO Direction (GPIODIR) register (see page 412) is used to configure each individual pin as an input or output. When the data direction bit is cleared, the GPIO is configured as an input, and the corresponding data register bit captures and stores the value on the GPIO port. When the data direction bit is set, the GPIO is configured as an output, and the corresponding data register bit is driven out on the GPIO port. March 19, 2011 403 Texas Instruments-Advance Information General-Purpose Input/Outputs (GPIOs) 8.2.1.2 Data Register Operation To aid in the efficiency of software, the GPIO ports allow for the modification of individual bits in the GPIO Data (GPIODATA) register (see page 411) by using bits [9:2] of the address bus as a mask. In this manner, software drivers can modify individual GPIO pins in a single instruction without affecting the state of the other pins. This method is more efficient than the conventional method of performing a read-modify-write operation to set or clear an individual GPIO pin. To implement this feature, the GPIODATA register covers 256 locations in the memory map. During a write, if the address bit associated with that data bit is set, the value of the GPIODATA register is altered. If the address bit is cleared, the data bit is left unchanged. For example, writing a value of 0xEB to the address GPIODATA + 0x098 has the results shown in Figure 8-3, where u indicates that data is unchanged by the write. Figure 8-3. GPIODATA Write Example ADDR[9:2] 0x098 9 8 7 6 5 4 3 2 1 0 0 0 1 0 0 1 1 0 0 0 0xEB 1 1 1 0 1 0 1 1 GPIODATA u u 1 u u 0 1 u 7 6 5 4 3 2 1 0 During a read, if the address bit associated with the data bit is set, the value is read. If the address bit associated with the data bit is cleared, the data bit is read as a zero, regardless of its actual value. For example, reading address GPIODATA + 0x0C4 yields as shown in Figure 8-4. Figure 8-4. GPIODATA Read Example 8.2.2 ADDR[9:2] 0x0C4 9 8 7 6 5 4 3 2 1 0 0 0 1 1 0 0 0 1 0 0 GPIODATA 1 0 1 1 1 1 1 0 Returned Value 0 0 1 1 0 0 0 0 7 6 5 4 3 2 1 0 Interrupt Control The interrupt capabilities of each GPIO port are controlled by a set of seven registers. These registers are used to select the source of the interrupt, its polarity, and the edge properties. When one or more GPIO inputs cause an interrupt, a single interrupt output is sent to the interrupt controller for the entire GPIO port. For edge-triggered interrupts, software must clear the interrupt to enable any further interrupts. For a level-sensitive interrupt, the external source must hold the level constant for the interrupt to be recognized by the controller. Three registers define the edge or sense that causes interrupts: ■ GPIO Interrupt Sense (GPIOIS) register (see page 413) 404 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller ■ GPIO Interrupt Both Edges (GPIOIBE) register (see page 414) ■ GPIO Interrupt Event (GPIOIEV) register (see page 415) Interrupts are enabled/disabled via the GPIO Interrupt Mask (GPIOIM) register (see page 416). When an interrupt condition occurs, the state of the interrupt signal can be viewed in two locations: the GPIO Raw Interrupt Status (GPIORIS) and GPIO Masked Interrupt Status (GPIOMIS) registers (see page 417 and page 418). As the name implies, the GPIOMIS register only shows interrupt conditions that are allowed to be passed to the interrupt controller. The GPIORIS register indicates that a GPIO pin meets the conditions for an interrupt, but has not necessarily been sent to the interrupt controller. Interrupts are cleared by writing a 1 to the appropriate bit of the GPIO Interrupt Clear (GPIOICR) register (see page 420). When programming the interrupt control registers (GPIOIS, GPIOIBE, or GPIOIEV), the interrupts should be masked (GPIOIM cleared). Writing any value to an interrupt control register can generate a spurious interrupt if the corresponding bits are enabled. 8.2.2.1 ADC Trigger Source In addition to providing GPIO functionality, PB4 can also be used as an external trigger for the ADC. If PB4 is configured as a non-masked interrupt pin (the appropriate bit of GPIOIM is set), an interrupt for Port B is generated, and an external trigger signal is sent to the ADC. If the ADC Event Multiplexer Select (ADCEMUX) register is configured to use the external trigger, an ADC conversion is initiated. See page 629. If no other Port B pins are being used to generate interrupts, the Interrupt 0-31 Set Enable (EN0) register can disable the Port B interrupts, and the ADC interrupt can be used to read back the converted data. Otherwise, the Port B interrupt handler must ignore and clear interrupts on PB4 and wait for the ADC interrupt, or the ADC interrupt must be disabled in the EN0 register and the Port B interrupt handler must poll the ADC registers until the conversion is completed. See page 136 for more information. 8.2.3 Mode Control The GPIO pins can be controlled by either software or hardware. Software control is the default for most signals and corresponds to the GPIO mode, where the GPIODATA register is used to read or write the corresponding pins. When hardware control is enabled via the GPIO Alternate Function Select (GPIOAFSEL) register (see page 421), the pin state is controlled by its alternate function (that is, the peripheral). Further pin muxing options are provided through the GPIO Port Control (GPIOPCTL) register which selects one of several peripheral functions for each GPIO. For information on the configuration options, refer to Table 24-5 on page 1247. Note: 8.2.4 If any pin is to be used as an ADC input, the appropriate bit in the GPIOAMSEL register must be set to disable the analog isolation circuit. Commit Control The GPIO commit control registers provide a layer of protection against accidental programming of critical hardware peripherals. Protection is provided for the NMI pin (PB7) and the four JTAG/SWD pins (PC[3:0]). Writes to protected bits of the GPIO Alternate Function Select (GPIOAFSEL) register (see page 421), GPIO Pull Up Select (GPIOPUR) register (see page 427), GPIO Pull-Down Select (GPIOPDR) register (see page 429), and GPIO Digital Enable (GPIODEN) register (see March 19, 2011 405 Texas Instruments-Advance Information General-Purpose Input/Outputs (GPIOs) page 432) are not committed to storage unless the GPIO Lock (GPIOLOCK) register (see page 434) has been unlocked and the appropriate bits of the GPIO Commit (GPIOCR) register (see page 435) have been set. 8.2.5 Pad Control The pad control registers allow software to configure the GPIO pads based on the application requirements. The pad control registers include the GPIODR2R, GPIODR4R, GPIODR8R, GPIOODR, GPIOPUR, GPIOPDR, GPIOSLR, and GPIODEN registers. These registers control drive strength, open-drain configuration, pull-up and pull-down resistors, slew-rate control and digital input enable for each GPIO. For special high-current applications, the GPIO output buffers may be used with the following restrictions. With the GPIO pins configured as 8-mA output drivers, a total of four GPIO outputs may be used to sink current loads up to 18 mA each. At 18-mA sink current loading, the VOL value is specified as 1.2 V. The high-current GPIO package pins must be selected such that there are only a maximum of two per side of the physical package or BGA pin group with the total number of high-current GPIO outputs not exceeding four for the entire package. 8.2.6 Identification The identification registers configured at reset allow software to detect and identify the module as a GPIO block. The identification registers include the GPIOPeriphID0-GPIOPeriphID7 registers as well as the GPIOPCellID0-GPIOPCellID3 registers. 8.3 Initialization and Configuration The GPIO modules may be accessed via two different memory apertures. The legacy aperture, the Advanced Peripheral Bus (APB), is backwards-compatible with previous Stellaris parts. The other aperture, the Advanced High-Performance Bus (AHB), offers the same register map but provides better back-to-back access performance than the APB bus. These apertures are mutually exclusive. The aperture enabled for a given GPIO port is controlled by the appropriate bit in the GPIOHBCTL register (see page 234). To use the pins in a particular GPIO port, the clock for the port must be enabled by setting the appropriate GPIO Port bit field (GPIOn) in the RCGC2 register (see page 286). When the internal POR signal is asserted and until otherwise configured, all GPIO pins are configured to be undriven (tristate): GPIOAFSEL=0, GPIODEN=0, GPIOPDR=0, and GPIOPUR=0, except for the pins shown in Table 8-1 on page 398. Table 8-4 on page 406 shows all possible configurations of the GPIO pads and the control register settings required to achieve them. Table 8-5 on page 407 shows how a rising edge interrupt is configured for pin 2 of a GPIO port. Table 8-4. GPIO Pad Configuration Examples a Configuration Digital Input (GPIO) GPIO Register Bit Value AFSEL 0 DIR ODR 0 0 DEN 1 PUR ? PDR DR2R DR4R DR8R X X X ? SLR X Digital Output (GPIO) 0 1 0 1 ? ? ? ? ? ? Open Drain Output (GPIO) 0 1 1 1 X X ? ? ? ? Open Drain Input/Output (I2C) 1 X 1 1 X X ? ? ? ? Digital Input (Timer CCP) 1 X 0 1 ? ? X X X X 406 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Table 8-4. GPIO Pad Configuration Examples (continued) a Configuration Digital Input (QEI) GPIO Register Bit Value AFSEL DIR 1 ODR X DEN 0 PUR 1 PDR ? DR2R DR4R DR8R X X X ? SLR X Digital Output (PWM) 1 X 0 1 ? ? ? ? ? ? Digital Output (Timer PWM) 1 X 0 1 ? ? ? ? ? ? Digital Input/Output (SSI) 1 X 0 1 ? ? ? ? ? ? Digital Input/Output (UART) 1 X 0 1 ? ? ? ? ? ? Analog Input (Comparator) 0 0 0 0 0 0 X X X X Digital Output (Comparator) 1 X 0 1 ? ? ? ? ? ? a. X=Ignored (don’t care bit) ?=Can be either 0 or 1, depending on the configuration Table 8-5. GPIO Interrupt Configuration Example a Pin 2 Bit Value Desired Interrupt Event Trigger Register GPIOIS 7 6 5 4 3 2 1 0 0=edge 1=level X X X X X 0 X X GPIOIBE 0=single edge 1=both edges X X X X X 0 X X GPIOIEV 0=Low level, or falling edge 1=High level, or rising edge X X X X X 1 X X GPIOIM 0=masked 1=not masked 0 0 0 0 0 1 0 0 a. X=Ignored (don’t care bit) 8.4 Register Map Table 8-7 on page 408 lists the GPIO registers. Each GPIO port can be accessed through one of two bus apertures. The legacy aperture, the Advanced Peripheral Bus (APB), is backwards-compatible with previous Stellaris parts. The other aperture, the Advanced High-Performance Bus (AHB), offers the same register map but provides better back-to-back access performance than the APB bus. Important: The GPIO registers in this chapter are duplicated in each GPIO block; however, depending on the block, all eight bits may not be connected to a GPIO pad. In those cases, writing to unconnected bits has no effect, and reading unconnected bits returns no meaningful data. The offset listed is a hexadecimal increment to the register’s address, relative to that GPIO port’s base address: ■ GPIO Port A (APB): 0x4000.4000 ■ GPIO Port A (AHB): 0x4005.8000 ■ GPIO Port B (APB): 0x4000.5000 March 19, 2011 407 Texas Instruments-Advance Information General-Purpose Input/Outputs (GPIOs) ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ GPIO Port B (AHB): 0x4005.9000 GPIO Port C (APB): 0x4000.6000 GPIO Port C (AHB): 0x4005.A000 GPIO Port D (APB): 0x4000.7000 GPIO Port D (AHB): 0x4005.B000 GPIO Port E (APB): 0x4002.4000 GPIO Port E (AHB): 0x4005.C000 GPIO Port F (APB): 0x4002.5000 GPIO Port F (AHB): 0x4005.D000 GPIO Port G (APB): 0x4002.6000 GPIO Port G (AHB): 0x4005.E000 GPIO Port H (APB): 0x4002.7000 GPIO Port H (AHB): 0x4005.F000 GPIO Port J (APB): 0x4003.D000 GPIO Port J (AHB): 0x4006.0000 Note that each GPIO module clock must be enabled before the registers can be programmed (see page 286). There must be a delay of 3 system clocks after the GPIO module clock is enabled before any GPIO module registers are accessed. Important: All GPIO pins are configured as GPIOs and tri-stated by default (GPIOAFSEL=0, GPIODEN=0, GPIOPDR=0, GPIOPUR=0, and GPIOPCTL=0, with the exception of the four JTAG/SWD pins (shown in the table below). A Power-On-Reset (POR) or asserting RST puts the pins back to their default state. Table 8-6. GPIO Pins With Non-Zero Reset Values GPIO Pins Default State GPIOAFSEL GPIODEN GPIOPDR GPIOPUR GPIOPCTL PA[1:0] UART0 0 1 0 0 0x1 PA[5:2] SSI0 0 1 0 0 0x1 PB[3:2] I2C0 0 1 0 0 0x1 PC[3:0] JTAG/SWD 1 1 0 1 0x3 The default register type for the GPIOCR register is RO for all GPIO pins with the exception of the NMI pin and the four JTAG/SWD pins (PB7 and PC[3:0]). These five pins are the only GPIOs that are protected by the GPIOCR register. Because of this, the register type for GPIO Port B7 and GPIO Port C[3:0] is R/W. The default reset value for the GPIOCR register is 0x0000.00FF for all GPIO pins, with the exception of the NMI pin and the four JTAG/SWD pins (PB7 and PC[3:0]). To ensure that the JTAG port is not accidentally programmed as GPIO pins, the PC[3:0] pins default to non-committable. Similarly, to ensure that the NMI pin is not accidentally programmed as a GPIO pin, the PB7 pin defaults to non-committable. Because of this, the default reset value of GPIOCR for GPIO Port B is 0x0000.007F while the default reset value of GPIOCR for Port C is 0x0000.00F0. Table 8-7. GPIO Register Map Description See page Offset Name Type Reset 0x000 GPIODATA R/W 0x0000.0000 GPIO Data 411 0x400 GPIODIR R/W 0x0000.0000 GPIO Direction 412 408 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Table 8-7. GPIO Register Map (continued) Description See page Offset Name Type Reset 0x404 GPIOIS R/W 0x0000.0000 GPIO Interrupt Sense 413 0x408 GPIOIBE R/W 0x0000.0000 GPIO Interrupt Both Edges 414 0x40C GPIOIEV R/W 0x0000.0000 GPIO Interrupt Event 415 0x410 GPIOIM R/W 0x0000.0000 GPIO Interrupt Mask 416 0x414 GPIORIS RO 0x0000.0000 GPIO Raw Interrupt Status 417 0x418 GPIOMIS RO 0x0000.0000 GPIO Masked Interrupt Status 418 0x41C GPIOICR W1C 0x0000.0000 GPIO Interrupt Clear 420 0x420 GPIOAFSEL R/W - GPIO Alternate Function Select 421 0x500 GPIODR2R R/W 0x0000.00FF GPIO 2-mA Drive Select 423 0x504 GPIODR4R R/W 0x0000.0000 GPIO 4-mA Drive Select 424 0x508 GPIODR8R R/W 0x0000.0000 GPIO 8-mA Drive Select 425 0x50C GPIOODR R/W 0x0000.0000 GPIO Open Drain Select 426 0x510 GPIOPUR R/W - GPIO Pull-Up Select 427 0x514 GPIOPDR R/W 0x0000.0000 GPIO Pull-Down Select 429 0x518 GPIOSLR R/W 0x0000.0000 GPIO Slew Rate Control Select 431 0x51C GPIODEN R/W - GPIO Digital Enable 432 0x520 GPIOLOCK R/W 0x0000.0001 GPIO Lock 434 0x524 GPIOCR - - GPIO Commit 435 0x528 GPIOAMSEL R/W 0x0000.0000 GPIO Analog Mode Select 437 0x52C GPIOPCTL R/W - GPIO Port Control 439 0xFD0 GPIOPeriphID4 RO 0x0000.0000 GPIO Peripheral Identification 4 441 0xFD4 GPIOPeriphID5 RO 0x0000.0000 GPIO Peripheral Identification 5 442 0xFD8 GPIOPeriphID6 RO 0x0000.0000 GPIO Peripheral Identification 6 443 0xFDC GPIOPeriphID7 RO 0x0000.0000 GPIO Peripheral Identification 7 444 0xFE0 GPIOPeriphID0 RO 0x0000.0061 GPIO Peripheral Identification 0 445 0xFE4 GPIOPeriphID1 RO 0x0000.0000 GPIO Peripheral Identification 1 446 0xFE8 GPIOPeriphID2 RO 0x0000.0018 GPIO Peripheral Identification 2 447 0xFEC GPIOPeriphID3 RO 0x0000.0001 GPIO Peripheral Identification 3 448 0xFF0 GPIOPCellID0 RO 0x0000.000D GPIO PrimeCell Identification 0 449 0xFF4 GPIOPCellID1 RO 0x0000.00F0 GPIO PrimeCell Identification 1 450 0xFF8 GPIOPCellID2 RO 0x0000.0005 GPIO PrimeCell Identification 2 451 0xFFC GPIOPCellID3 RO 0x0000.00B1 GPIO PrimeCell Identification 3 452 March 19, 2011 409 Texas Instruments-Advance Information General-Purpose Input/Outputs (GPIOs) 8.5 Register Descriptions The remainder of this section lists and describes the GPIO registers, in numerical order by address offset. 410 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 1: GPIO Data (GPIODATA), offset 0x000 The GPIODATA register is the data register. In software control mode, values written in the GPIODATA register are transferred onto the GPIO port pins if the respective pins have been configured as outputs through the GPIO Direction (GPIODIR) register (see page 412). In order to write to GPIODATA, the corresponding bits in the mask, resulting from the address bus bits [9:2], must be set. Otherwise, the bit values remain unchanged by the write. Similarly, the values read from this register are determined for each bit by the mask bit derived from the address used to access the data register, bits [9:2]. Bits that are set in the address mask cause the corresponding bits in GPIODATA to be read, and bits that are clear in the address mask cause the corresponding bits in GPIODATA to be read as 0, regardless of their value. A read from GPIODATA returns the last bit value written if the respective pins are configured as outputs, or it returns the value on the corresponding input pin when these are configured as inputs. All bits are cleared by a reset. GPIO Data (GPIODATA) GPIO Port A (APB) base: 0x4000.4000 GPIO Port A (AHB) base: 0x4005.8000 GPIO Port B (APB) base: 0x4000.5000 GPIO Port B (AHB) base: 0x4005.9000 GPIO Port C (APB) base: 0x4000.6000 GPIO Port C (AHB) base: 0x4005.A000 GPIO Port D (APB) base: 0x4000.7000 GPIO Port D (AHB) base: 0x4005.B000 GPIO Port E (APB) base: 0x4002.4000 GPIO Port E (AHB) base: 0x4005.C000 GPIO Port F (APB) base: 0x4002.5000 GPIO Port F (AHB) base: 0x4005.D000 GPIO Port G (APB) base: 0x4002.6000 GPIO Port G (AHB) base: 0x4005.E000 GPIO Port H (APB) base: 0x4002.7000 GPIO Port H (AHB) base: 0x4005.F000 GPIO Port J (APB) base: 0x4003.D000 GPIO Port J (AHB) base: 0x4006.0000 Offset 0x000 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 8 7 6 5 4 3 2 1 0 RO 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 reserved Type Reset reserved Type Reset DATA RO 0 Bit/Field Name Type Reset Description 31:8 reserved RO 0x0000.00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 7:0 DATA R/W 0x00 GPIO Data This register is virtually mapped to 256 locations in the address space. To facilitate the reading and writing of data to these registers by independent drivers, the data read from and written to the registers are masked by the eight address lines [9:2]. Reads from this register return its current state. Writes to this register only affect bits that are not masked by ADDR[9:2] and are configured as outputs. See “Data Register Operation” on page 404 for examples of reads and writes. March 19, 2011 411 Texas Instruments-Advance Information General-Purpose Input/Outputs (GPIOs) Register 2: GPIO Direction (GPIODIR), offset 0x400 The GPIODIR register is the data direction register. Setting a bit in the GPIODIR register configures the corresponding pin to be an output, while clearing a bit configures the corresponding pin to be an input. All bits are cleared by a reset, meaning all GPIO pins are inputs by default. GPIO Direction (GPIODIR) GPIO Port A (APB) base: 0x4000.4000 GPIO Port A (AHB) base: 0x4005.8000 GPIO Port B (APB) base: 0x4000.5000 GPIO Port B (AHB) base: 0x4005.9000 GPIO Port C (APB) base: 0x4000.6000 GPIO Port C (AHB) base: 0x4005.A000 GPIO Port D (APB) base: 0x4000.7000 GPIO Port D (AHB) base: 0x4005.B000 GPIO Port E (APB) base: 0x4002.4000 GPIO Port E (AHB) base: 0x4005.C000 GPIO Port F (APB) base: 0x4002.5000 GPIO Port F (AHB) base: 0x4005.D000 GPIO Port G (APB) base: 0x4002.6000 GPIO Port G (AHB) base: 0x4005.E000 GPIO Port H (APB) base: 0x4002.7000 GPIO Port H (AHB) base: 0x4005.F000 GPIO Port J (APB) base: 0x4003.D000 GPIO Port J (AHB) base: 0x4006.0000 Offset 0x400 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 3 2 1 0 R/W 0 R/W 0 R/W 0 R/W 0 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 reserved Type Reset RO 0 RO 0 RO 0 RO 0 DIR RO 0 RO 0 RO 0 Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 7:0 DIR R/W 0x00 RO 0 R/W 0 R/W 0 R/W 0 R/W 0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. GPIO Data Direction Value Description 0 Corresponding pin is an input. 1 Corresponding pins is an output. 412 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 3: GPIO Interrupt Sense (GPIOIS), offset 0x404 The GPIOIS register is the interrupt sense register. Setting a bit in the GPIOIS register configures the corresponding pin to detect levels, while clearing a bit configures the corresponding pin to detect edges. All bits are cleared by a reset. GPIO Interrupt Sense (GPIOIS) GPIO Port A (APB) base: 0x4000.4000 GPIO Port A (AHB) base: 0x4005.8000 GPIO Port B (APB) base: 0x4000.5000 GPIO Port B (AHB) base: 0x4005.9000 GPIO Port C (APB) base: 0x4000.6000 GPIO Port C (AHB) base: 0x4005.A000 GPIO Port D (APB) base: 0x4000.7000 GPIO Port D (AHB) base: 0x4005.B000 GPIO Port E (APB) base: 0x4002.4000 GPIO Port E (AHB) base: 0x4005.C000 GPIO Port F (APB) base: 0x4002.5000 GPIO Port F (AHB) base: 0x4005.D000 GPIO Port G (APB) base: 0x4002.6000 GPIO Port G (AHB) base: 0x4005.E000 GPIO Port H (APB) base: 0x4002.7000 GPIO Port H (AHB) base: 0x4005.F000 GPIO Port J (APB) base: 0x4003.D000 GPIO Port J (AHB) base: 0x4006.0000 Offset 0x404 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 3 2 1 0 R/W 0 R/W 0 R/W 0 R/W 0 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 reserved Type Reset RO 0 RO 0 RO 0 RO 0 IS RO 0 RO 0 RO 0 Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 7:0 IS R/W 0x00 RO 0 R/W 0 R/W 0 R/W 0 R/W 0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. GPIO Interrupt Sense Value Description 0 The edge on the corresponding pin is detected (edge-sensitive). 1 The level on the corresponding pin is detected (level-sensitive). March 19, 2011 413 Texas Instruments-Advance Information General-Purpose Input/Outputs (GPIOs) Register 4: GPIO Interrupt Both Edges (GPIOIBE), offset 0x408 The GPIOIBE register allows both edges to cause interrupts. When the corresponding bit in the GPIO Interrupt Sense (GPIOIS) register (see page 413) is set to detect edges, setting a bit in the GPIOIBE register configures the corresponding pin to detect both rising and falling edges, regardless of the corresponding bit in the GPIO Interrupt Event (GPIOIEV) register (see page 415). Clearing a bit configures the pin to be controlled by the GPIOIEV register. All bits are cleared by a reset. GPIO Interrupt Both Edges (GPIOIBE) GPIO Port A (APB) base: 0x4000.4000 GPIO Port A (AHB) base: 0x4005.8000 GPIO Port B (APB) base: 0x4000.5000 GPIO Port B (AHB) base: 0x4005.9000 GPIO Port C (APB) base: 0x4000.6000 GPIO Port C (AHB) base: 0x4005.A000 GPIO Port D (APB) base: 0x4000.7000 GPIO Port D (AHB) base: 0x4005.B000 GPIO Port E (APB) base: 0x4002.4000 GPIO Port E (AHB) base: 0x4005.C000 GPIO Port F (APB) base: 0x4002.5000 GPIO Port F (AHB) base: 0x4005.D000 GPIO Port G (APB) base: 0x4002.6000 GPIO Port G (AHB) base: 0x4005.E000 GPIO Port H (APB) base: 0x4002.7000 GPIO Port H (AHB) base: 0x4005.F000 GPIO Port J (APB) base: 0x4003.D000 GPIO Port J (AHB) base: 0x4006.0000 Offset 0x408 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 3 2 1 0 R/W 0 R/W 0 R/W 0 R/W 0 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 reserved Type Reset RO 0 RO 0 RO 0 RO 0 IBE RO 0 RO 0 RO 0 Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 7:0 IBE R/W 0x00 RO 0 R/W 0 R/W 0 R/W 0 R/W 0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. GPIO Interrupt Both Edges Value Description 0 Interrupt generation is controlled by the GPIO Interrupt Event (GPIOIEV) register (see page 415). 1 Both edges on the corresponding pin trigger an interrupt. 414 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 5: GPIO Interrupt Event (GPIOIEV), offset 0x40C The GPIOIEV register is the interrupt event register. Setting a bit in the GPIOIEV register configures the corresponding pin to detect rising edges or high levels, depending on the corresponding bit value in the GPIO Interrupt Sense (GPIOIS) register (see page 413). Clearing a bit configures the pin to detect falling edges or low levels, depending on the corresponding bit value in the GPIOIS register. All bits are cleared by a reset. GPIO Interrupt Event (GPIOIEV) GPIO Port A (APB) base: 0x4000.4000 GPIO Port A (AHB) base: 0x4005.8000 GPIO Port B (APB) base: 0x4000.5000 GPIO Port B (AHB) base: 0x4005.9000 GPIO Port C (APB) base: 0x4000.6000 GPIO Port C (AHB) base: 0x4005.A000 GPIO Port D (APB) base: 0x4000.7000 GPIO Port D (AHB) base: 0x4005.B000 GPIO Port E (APB) base: 0x4002.4000 GPIO Port E (AHB) base: 0x4005.C000 GPIO Port F (APB) base: 0x4002.5000 GPIO Port F (AHB) base: 0x4005.D000 GPIO Port G (APB) base: 0x4002.6000 GPIO Port G (AHB) base: 0x4005.E000 GPIO Port H (APB) base: 0x4002.7000 GPIO Port H (AHB) base: 0x4005.F000 GPIO Port J (APB) base: 0x4003.D000 GPIO Port J (AHB) base: 0x4006.0000 Offset 0x40C Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 3 2 1 0 R/W 0 R/W 0 R/W 0 R/W 0 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 reserved Type Reset RO 0 RO 0 RO 0 RO 0 IEV RO 0 RO 0 RO 0 Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 7:0 IEV R/W 0x00 RO 0 R/W 0 R/W 0 R/W 0 R/W 0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. GPIO Interrupt Event Value Description 0 A falling edge or a Low level on the corresponding pin triggers an interrupt. 1 A rising edge or a High level on the corresponding pin triggers an interrupt. March 19, 2011 415 Texas Instruments-Advance Information General-Purpose Input/Outputs (GPIOs) Register 6: GPIO Interrupt Mask (GPIOIM), offset 0x410 The GPIOIM register is the interrupt mask register. Setting a bit in the GPIOIM register allows interrupts that are generated by the corresponding pin to be sent to the interrupt controller on the combined interrupt signal. Clearing a bit prevents an interrupt on the corresponding pin from being sent to the interrupt controller. All bits are cleared by a reset. GPIO Interrupt Mask (GPIOIM) GPIO Port A (APB) base: 0x4000.4000 GPIO Port A (AHB) base: 0x4005.8000 GPIO Port B (APB) base: 0x4000.5000 GPIO Port B (AHB) base: 0x4005.9000 GPIO Port C (APB) base: 0x4000.6000 GPIO Port C (AHB) base: 0x4005.A000 GPIO Port D (APB) base: 0x4000.7000 GPIO Port D (AHB) base: 0x4005.B000 GPIO Port E (APB) base: 0x4002.4000 GPIO Port E (AHB) base: 0x4005.C000 GPIO Port F (APB) base: 0x4002.5000 GPIO Port F (AHB) base: 0x4005.D000 GPIO Port G (APB) base: 0x4002.6000 GPIO Port G (AHB) base: 0x4005.E000 GPIO Port H (APB) base: 0x4002.7000 GPIO Port H (AHB) base: 0x4005.F000 GPIO Port J (APB) base: 0x4003.D000 GPIO Port J (AHB) base: 0x4006.0000 Offset 0x410 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 3 2 1 0 R/W 0 R/W 0 R/W 0 R/W 0 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 reserved Type Reset RO 0 RO 0 RO 0 RO 0 IME RO 0 RO 0 RO 0 Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 7:0 IME R/W 0x00 RO 0 R/W 0 R/W 0 R/W 0 R/W 0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. GPIO Interrupt Mask Enable Value Description 0 The interrupt from the corresponding pin is masked. 1 The interrupt from the corresponding pin is sent to the interrupt controller. 416 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 7: GPIO Raw Interrupt Status (GPIORIS), offset 0x414 The GPIORIS register is the raw interrupt status register. A bit in this register is set when an interrupt condition occurs on the corresponding GPIO pin. If the corresponding bit in the GPIO Interrupt Mask (GPIOIM) register (see page 416) is set, the interrupt is sent to the interrupt controller. Bits read as zero indicate that corresponding input pins have not initiated an interrupt. A bit in this register can be cleared by writing a 1 to the corresponding bit in the GPIO Interrupt Clear (GPIOICR) register. GPIO Raw Interrupt Status (GPIORIS) GPIO Port A (APB) base: 0x4000.4000 GPIO Port A (AHB) base: 0x4005.8000 GPIO Port B (APB) base: 0x4000.5000 GPIO Port B (AHB) base: 0x4005.9000 GPIO Port C (APB) base: 0x4000.6000 GPIO Port C (AHB) base: 0x4005.A000 GPIO Port D (APB) base: 0x4000.7000 GPIO Port D (AHB) base: 0x4005.B000 GPIO Port E (APB) base: 0x4002.4000 GPIO Port E (AHB) base: 0x4005.C000 GPIO Port F (APB) base: 0x4002.5000 GPIO Port F (AHB) base: 0x4005.D000 GPIO Port G (APB) base: 0x4002.6000 GPIO Port G (AHB) base: 0x4005.E000 GPIO Port H (APB) base: 0x4002.7000 GPIO Port H (AHB) base: 0x4005.F000 GPIO Port J (APB) base: 0x4003.D000 GPIO Port J (AHB) base: 0x4006.0000 Offset 0x414 Type RO, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 3 2 1 0 RO 0 RO 0 RO 0 RO 0 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RIS RO 0 RO 0 RO 0 Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 7:0 RIS RO 0x00 RO 0 RO 0 RO 0 RO 0 RO 0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. GPIO Interrupt Raw Status Value Description 1 An interrupt condition has occurred on the corresponding pin. 0 An interrupt condition has not occurred on the corresponding pin. A bit is cleared by writing a 1 to the corresponding bit in the GPIOICR register. March 19, 2011 417 Texas Instruments-Advance Information General-Purpose Input/Outputs (GPIOs) Register 8: GPIO Masked Interrupt Status (GPIOMIS), offset 0x418 The GPIOMIS register is the masked interrupt status register. If a bit is set in this register, the corresponding interrupt has triggered an interrupt to the interrupt controller. If a bit is clear, either no interrupt has been generated, or the interrupt is masked. In addition to providing GPIO functionality, PB4 can also be used as an external trigger for the ADC. If PB4 is configured as a non-masked interrupt pin (the appropriate bit of GPIOIM is set), an interrupt for Port B is generated, and an external trigger signal is sent to the ADC. If the ADC Event Multiplexer Select (ADCEMUX) register is configured to use the external trigger, an ADC conversion is initiated. See page 629. If no other Port B pins are being used to generate interrupts, the Interrupt 0-31 Set Enable (EN0) register can disable the Port B interrupts, and the ADC interrupt can be used to read back the converted data. Otherwise, the Port B interrupt handler must ignore and clear interrupts on PB4 and wait for the ADC interrupt, or the ADC interrupt must be disabled in the EN0 register and the Port B interrupt handler must poll the ADC registers until the conversion is completed. See page 136 for more information. GPIOMIS is the state of the interrupt after masking. GPIO Masked Interrupt Status (GPIOMIS) GPIO Port A (APB) base: 0x4000.4000 GPIO Port A (AHB) base: 0x4005.8000 GPIO Port B (APB) base: 0x4000.5000 GPIO Port B (AHB) base: 0x4005.9000 GPIO Port C (APB) base: 0x4000.6000 GPIO Port C (AHB) base: 0x4005.A000 GPIO Port D (APB) base: 0x4000.7000 GPIO Port D (AHB) base: 0x4005.B000 GPIO Port E (APB) base: 0x4002.4000 GPIO Port E (AHB) base: 0x4005.C000 GPIO Port F (APB) base: 0x4002.5000 GPIO Port F (AHB) base: 0x4005.D000 GPIO Port G (APB) base: 0x4002.6000 GPIO Port G (AHB) base: 0x4005.E000 GPIO Port H (APB) base: 0x4002.7000 GPIO Port H (AHB) base: 0x4005.F000 GPIO Port J (APB) base: 0x4003.D000 GPIO Port J (AHB) base: 0x4006.0000 Offset 0x418 Type RO, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 3 2 1 0 RO 0 RO 0 RO 0 RO 0 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 reserved Type Reset RO 0 RO 0 RO 0 RO 0 MIS RO 0 RO 0 RO 0 Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 RO 0 RO 0 RO 0 RO 0 RO 0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 418 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Bit/Field Name Type Reset Description 7:0 MIS RO 0x00 GPIO Masked Interrupt Status Value Description 1 An interrupt condition on the corresponding pin has triggered an interrupt to the interrupt controller. 0 An interrupt condition on the corresponding pin is masked or has not occurred. A bit is cleared by writing a 1 to the corresponding bit in the GPIOICR register. March 19, 2011 419 Texas Instruments-Advance Information General-Purpose Input/Outputs (GPIOs) Register 9: GPIO Interrupt Clear (GPIOICR), offset 0x41C The GPIOICR register is the interrupt clear register. Writing a 1 to a bit in this register clears the corresponding interrupt bit in the GPIORIS and GPIOMIS registers. Writing a 0 has no effect. GPIO Interrupt Clear (GPIOICR) GPIO Port A (APB) base: 0x4000.4000 GPIO Port A (AHB) base: 0x4005.8000 GPIO Port B (APB) base: 0x4000.5000 GPIO Port B (AHB) base: 0x4005.9000 GPIO Port C (APB) base: 0x4000.6000 GPIO Port C (AHB) base: 0x4005.A000 GPIO Port D (APB) base: 0x4000.7000 GPIO Port D (AHB) base: 0x4005.B000 GPIO Port E (APB) base: 0x4002.4000 GPIO Port E (AHB) base: 0x4005.C000 GPIO Port F (APB) base: 0x4002.5000 GPIO Port F (AHB) base: 0x4005.D000 GPIO Port G (APB) base: 0x4002.6000 GPIO Port G (AHB) base: 0x4005.E000 GPIO Port H (APB) base: 0x4002.7000 GPIO Port H (AHB) base: 0x4005.F000 GPIO Port J (APB) base: 0x4003.D000 GPIO Port J (AHB) base: 0x4006.0000 Offset 0x41C Type W1C, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 3 2 1 0 W1C 0 W1C 0 W1C 0 W1C 0 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 reserved Type Reset RO 0 RO 0 RO 0 RO 0 IC RO 0 RO 0 RO 0 Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 7:0 IC W1C 0x00 RO 0 W1C 0 W1C 0 W1C 0 W1C 0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. GPIO Interrupt Clear Value Description 1 The corresponding interrupt is cleared. 0 The corresponding interrupt is unaffected. 420 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 10: GPIO Alternate Function Select (GPIOAFSEL), offset 0x420 The GPIOAFSEL register is the mode control select register. If a bit is clear, the pin is used as a GPIO and is controlled by the GPIO registers. Setting a bit in this register configures the corresponding GPIO line to be controlled by an associated peripheral. Several possible peripheral functions are multiplexed on each GPIO. The GPIO Port Control (GPIOPCTL) register is used to select one of the possible functions. Table 24-5 on page 1247 details which functions are muxed on each GPIO pin. The reset value for this register is 0x0000.0000 for GPIO ports that are not listed in the table below. Important: All GPIO pins are configured as GPIOs and tri-stated by default (GPIOAFSEL=0, GPIODEN=0, GPIOPDR=0, GPIOPUR=0, and GPIOPCTL=0, with the exception of the four JTAG/SWD pins (shown in the table below). A Power-On-Reset (POR) or asserting RST puts the pins back to their default state. Table 8-8. GPIO Pins With Non-Zero Reset Values GPIO Pins Default State PA[1:0] UART0 GPIOAFSEL GPIODEN GPIOPDR GPIOPUR 0 1 0 0 GPIOPCTL 0x1 PA[5:2] SSI0 0 1 0 0 0x1 PB[3:2] I2C0 0 1 0 0 0x1 PC[3:0] JTAG/SWD 1 1 0 1 0x3 Caution – It is possible to create a software sequence that prevents the debugger from connecting to the Stellaris microcontroller. If the program code loaded into flash immediately changes the JTAG pins to their GPIO functionality, the debugger may not have enough time to connect and halt the controller before the JTAG pin functionality switches. As a result, the debugger may be locked out of the part. This issue can be avoided with a software routine that restores JTAG functionality based on an external or software trigger. The GPIO commit control registers provide a layer of protection against accidental programming of critical hardware peripherals. Protection is provided for the NMI pin (PB7) and the four JTAG/SWD pins (PC[3:0]). Writes to protected bits of the GPIO Alternate Function Select (GPIOAFSEL) register (see page 421), GPIO Pull Up Select (GPIOPUR) register (see page 427), GPIO Pull-Down Select (GPIOPDR) register (see page 429), and GPIO Digital Enable (GPIODEN) register (see page 432) are not committed to storage unless the GPIO Lock (GPIOLOCK) register (see page 434) has been unlocked and the appropriate bits of the GPIO Commit (GPIOCR) register (see page 435) have been set. When using the I2C module, in addition to setting the GPIOAFSEL register bits for the I2C clock and data pins, the data pins should be set to open drain using the GPIO Open Drain Select (GPIOODR) register (see examples in “Initialization and Configuration” on page 406). March 19, 2011 421 Texas Instruments-Advance Information General-Purpose Input/Outputs (GPIOs) GPIO Alternate Function Select (GPIOAFSEL) GPIO Port A (APB) base: 0x4000.4000 GPIO Port A (AHB) base: 0x4005.8000 GPIO Port B (APB) base: 0x4000.5000 GPIO Port B (AHB) base: 0x4005.9000 GPIO Port C (APB) base: 0x4000.6000 GPIO Port C (AHB) base: 0x4005.A000 GPIO Port D (APB) base: 0x4000.7000 GPIO Port D (AHB) base: 0x4005.B000 GPIO Port E (APB) base: 0x4002.4000 GPIO Port E (AHB) base: 0x4005.C000 GPIO Port F (APB) base: 0x4002.5000 GPIO Port F (AHB) base: 0x4005.D000 GPIO Port G (APB) base: 0x4002.6000 GPIO Port G (AHB) base: 0x4005.E000 GPIO Port H (APB) base: 0x4002.7000 GPIO Port H (AHB) base: 0x4005.F000 GPIO Port J (APB) base: 0x4003.D000 GPIO Port J (AHB) base: 0x4006.0000 Offset 0x420 Type R/W, reset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 3 2 1 0 R/W - R/W - R/W - R/W - reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 reserved Type Reset RO 0 RO 0 RO 0 RO 0 AFSEL RO 0 RO 0 RO 0 Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 7:0 AFSEL R/W - RO 0 R/W - R/W - R/W - R/W - Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. GPIO Alternate Function Select Value Description 0 The associated pin functions as a GPIO and is controlled by the GPIO registers. 1 The associated pin functions as a peripheral signal and is controlled by the alternate hardware function. The reset value for this register is 0x0000.0000 for GPIO ports that are not listed in Table 8-1 on page 398. 422 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 11: GPIO 2-mA Drive Select (GPIODR2R), offset 0x500 The GPIODR2R register is the 2-mA drive control register. Each GPIO signal in the port can be individually configured without affecting the other pads. When setting the DRV2 bit for a GPIO signal, the corresponding DRV4 bit in the GPIODR4R register and DRV8 bit in the GPIODR8R register are automatically cleared by hardware. By default, all GPIO pins have 2-mA drive. GPIO 2-mA Drive Select (GPIODR2R) GPIO Port A (APB) base: 0x4000.4000 GPIO Port A (AHB) base: 0x4005.8000 GPIO Port B (APB) base: 0x4000.5000 GPIO Port B (AHB) base: 0x4005.9000 GPIO Port C (APB) base: 0x4000.6000 GPIO Port C (AHB) base: 0x4005.A000 GPIO Port D (APB) base: 0x4000.7000 GPIO Port D (AHB) base: 0x4005.B000 GPIO Port E (APB) base: 0x4002.4000 GPIO Port E (AHB) base: 0x4005.C000 GPIO Port F (APB) base: 0x4002.5000 GPIO Port F (AHB) base: 0x4005.D000 GPIO Port G (APB) base: 0x4002.6000 GPIO Port G (AHB) base: 0x4005.E000 GPIO Port H (APB) base: 0x4002.7000 GPIO Port H (AHB) base: 0x4005.F000 GPIO Port J (APB) base: 0x4003.D000 GPIO Port J (AHB) base: 0x4006.0000 Offset 0x500 Type R/W, reset 0x0000.00FF 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 3 2 1 0 R/W 1 R/W 1 R/W 1 R/W 1 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 reserved Type Reset RO 0 RO 0 RO 0 RO 0 DRV2 RO 0 RO 0 RO 0 Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 7:0 DRV2 R/W 0xFF RO 0 R/W 1 R/W 1 R/W 1 R/W 1 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. Output Pad 2-mA Drive Enable Value Description 1 The corresponding GPIO pin has 2-mA drive. 0 The drive for the corresponding GPIO pin is controlled by the GPIODR4R or GPIODR8R register. Setting a bit in either the GPIODR4 register or the GPIODR8 register clears the corresponding 2-mA enable bit. The change is effective on the second clock cycle after the write if accessing GPIO via the APB memory aperture. If using AHB access, the change is effective on the next clock cycle. March 19, 2011 423 Texas Instruments-Advance Information General-Purpose Input/Outputs (GPIOs) Register 12: GPIO 4-mA Drive Select (GPIODR4R), offset 0x504 The GPIODR4R register is the 4-mA drive control register. Each GPIO signal in the port can be individually configured without affecting the other pads. When setting the DRV4 bit for a GPIO signal, the corresponding DRV2 bit in the GPIODR2R register and DRV8 bit in the GPIODR8R register are automatically cleared by hardware. GPIO 4-mA Drive Select (GPIODR4R) GPIO Port A (APB) base: 0x4000.4000 GPIO Port A (AHB) base: 0x4005.8000 GPIO Port B (APB) base: 0x4000.5000 GPIO Port B (AHB) base: 0x4005.9000 GPIO Port C (APB) base: 0x4000.6000 GPIO Port C (AHB) base: 0x4005.A000 GPIO Port D (APB) base: 0x4000.7000 GPIO Port D (AHB) base: 0x4005.B000 GPIO Port E (APB) base: 0x4002.4000 GPIO Port E (AHB) base: 0x4005.C000 GPIO Port F (APB) base: 0x4002.5000 GPIO Port F (AHB) base: 0x4005.D000 GPIO Port G (APB) base: 0x4002.6000 GPIO Port G (AHB) base: 0x4005.E000 GPIO Port H (APB) base: 0x4002.7000 GPIO Port H (AHB) base: 0x4005.F000 GPIO Port J (APB) base: 0x4003.D000 GPIO Port J (AHB) base: 0x4006.0000 Offset 0x504 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 3 2 1 0 R/W 0 R/W 0 R/W 0 R/W 0 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 reserved Type Reset RO 0 RO 0 RO 0 RO 0 DRV4 RO 0 RO 0 RO 0 Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 7:0 DRV4 R/W 0x00 RO 0 R/W 0 R/W 0 R/W 0 R/W 0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. Output Pad 4-mA Drive Enable Value Description 1 The corresponding GPIO pin has 4-mA drive. 0 The drive for the corresponding GPIO pin is controlled by the GPIODR2R or GPIODR8R register. Setting a bit in either the GPIODR2 register or the GPIODR8 register clears the corresponding 4-mA enable bit. The change is effective on the second clock cycle after the write if accessing GPIO via the APB memory aperture. If using AHB access, the change is effective on the next clock cycle. 424 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 13: GPIO 8-mA Drive Select (GPIODR8R), offset 0x508 The GPIODR8R register is the 8-mA drive control register. Each GPIO signal in the port can be individually configured without affecting the other pads. When setting the DRV8 bit for a GPIO signal, the corresponding DRV2 bit in the GPIODR2R register and DRV4 bit in the GPIODR4R register are automatically cleared by hardware. The 8-mA setting is also used for high-current operation. Note: There is no configuration difference between 8-mA and high-current operation. The additional current capacity results from a shift in the VOH/VOL levels. See “Recommended DC Operating Conditions” on page 1294 for further information. GPIO 8-mA Drive Select (GPIODR8R) GPIO Port A (APB) base: 0x4000.4000 GPIO Port A (AHB) base: 0x4005.8000 GPIO Port B (APB) base: 0x4000.5000 GPIO Port B (AHB) base: 0x4005.9000 GPIO Port C (APB) base: 0x4000.6000 GPIO Port C (AHB) base: 0x4005.A000 GPIO Port D (APB) base: 0x4000.7000 GPIO Port D (AHB) base: 0x4005.B000 GPIO Port E (APB) base: 0x4002.4000 GPIO Port E (AHB) base: 0x4005.C000 GPIO Port F (APB) base: 0x4002.5000 GPIO Port F (AHB) base: 0x4005.D000 GPIO Port G (APB) base: 0x4002.6000 GPIO Port G (AHB) base: 0x4005.E000 GPIO Port H (APB) base: 0x4002.7000 GPIO Port H (AHB) base: 0x4005.F000 GPIO Port J (APB) base: 0x4003.D000 GPIO Port J (AHB) base: 0x4006.0000 Offset 0x508 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 3 2 1 0 R/W 0 R/W 0 R/W 0 R/W 0 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 reserved Type Reset RO 0 RO 0 RO 0 RO 0 DRV8 RO 0 RO 0 RO 0 Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 7:0 DRV8 R/W 0x00 RO 0 R/W 0 R/W 0 R/W 0 R/W 0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. Output Pad 8-mA Drive Enable Value Description 1 The corresponding GPIO pin has 8-mA drive. 0 The drive for the corresponding GPIO pin is controlled by the GPIODR2R or GPIODR4R register. Setting a bit in either the GPIODR2 register or the GPIODR4 register clears the corresponding 8-mA enable bit. The change is effective on the second clock cycle after the write if accessing GPIO via the APB memory aperture. If using AHB access, the change is effective on the next clock cycle. March 19, 2011 425 Texas Instruments-Advance Information General-Purpose Input/Outputs (GPIOs) Register 14: GPIO Open Drain Select (GPIOODR), offset 0x50C The GPIOODR register is the open drain control register. Setting a bit in this register enables the open-drain configuration of the corresponding GPIO pad. When open-drain mode is enabled, the corresponding bit should also be set in the GPIO Digital Enable (GPIODEN) register (see page 432). Corresponding bits in the drive strength and slew rate control registers (GPIODR2R, GPIODR4R, GPIODR8R, and GPIOSLR) can be set to achieve the desired rise and fall times. The GPIO acts as an open-drain input if the corresponding bit in the GPIODIR register is cleared. If open drain is selected while the GPIO is configured as an input, the GPIO will remain an input and the open-drain selection has no effect until the GPIO is changed to an output. When using the I2C module, in addition to configuring the pin to open drain, the GPIO Alternate Function Select (GPIOAFSEL) register bits for the I2C clock and data pins should be set (see examples in “Initialization and Configuration” on page 406). GPIO Open Drain Select (GPIOODR) GPIO Port A (APB) base: 0x4000.4000 GPIO Port A (AHB) base: 0x4005.8000 GPIO Port B (APB) base: 0x4000.5000 GPIO Port B (AHB) base: 0x4005.9000 GPIO Port C (APB) base: 0x4000.6000 GPIO Port C (AHB) base: 0x4005.A000 GPIO Port D (APB) base: 0x4000.7000 GPIO Port D (AHB) base: 0x4005.B000 GPIO Port E (APB) base: 0x4002.4000 GPIO Port E (AHB) base: 0x4005.C000 GPIO Port F (APB) base: 0x4002.5000 GPIO Port F (AHB) base: 0x4005.D000 GPIO Port G (APB) base: 0x4002.6000 GPIO Port G (AHB) base: 0x4005.E000 GPIO Port H (APB) base: 0x4002.7000 GPIO Port H (AHB) base: 0x4005.F000 GPIO Port J (APB) base: 0x4003.D000 GPIO Port J (AHB) base: 0x4006.0000 Offset 0x50C Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 3 2 1 0 R/W 0 R/W 0 R/W 0 R/W 0 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 reserved Type Reset RO 0 RO 0 RO 0 RO 0 ODE RO 0 RO 0 RO 0 Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 7:0 ODE R/W 0x00 RO 0 R/W 0 R/W 0 R/W 0 R/W 0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. Output Pad Open Drain Enable Value Description 1 The corresponding pin is configured as open drain. 0 The corresponding pin is not configured as open drain. 426 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 15: GPIO Pull-Up Select (GPIOPUR), offset 0x510 The GPIOPUR register is the pull-up control register. When a bit is set, a weak pull-up resistor on the corresponding GPIO signal is enabled. Setting a bit in GPIOPUR automatically clears the corresponding bit in the GPIO Pull-Down Select (GPIOPDR) register (see page 429). Write access to this register is protected with the GPIOCR register. Bits in GPIOCR that are cleared prevent writes to the equivalent bit in this register. Important: All GPIO pins are configured as GPIOs and tri-stated by default (GPIOAFSEL=0, GPIODEN=0, GPIOPDR=0, GPIOPUR=0, and GPIOPCTL=0, with the exception of the four JTAG/SWD pins (shown in the table below). A Power-On-Reset (POR) or asserting RST puts the pins back to their default state. Table 8-9. GPIO Pins With Non-Zero Reset Values Note: GPIO Pins Default State PA[1:0] UART0 GPIOAFSEL GPIODEN GPIOPDR GPIOPUR 0 1 0 GPIOPCTL 0 0x1 PA[5:2] SSI0 0 1 0 0 0x1 PB[3:2] I2C0 0 1 0 0 0x1 PC[3:0] JTAG/SWD 1 1 0 1 0x3 The GPIO commit control registers provide a layer of protection against accidental programming of critical hardware peripherals. Protection is provided for the NMI pin (PB7) and the four JTAG/SWD pins (PC[3:0]). Writes to protected bits of the GPIO Alternate Function Select (GPIOAFSEL) register (see page 421), GPIO Pull Up Select (GPIOPUR) register (see page 427), GPIO Pull-Down Select (GPIOPDR) register (see page 429), and GPIO Digital Enable (GPIODEN) register (see page 432) are not committed to storage unless the GPIO Lock (GPIOLOCK) register (see page 434) has been unlocked and the appropriate bits of the GPIO Commit (GPIOCR) register (see page 435) have been set. GPIO Pull-Up Select (GPIOPUR) GPIO Port A (APB) base: 0x4000.4000 GPIO Port A (AHB) base: 0x4005.8000 GPIO Port B (APB) base: 0x4000.5000 GPIO Port B (AHB) base: 0x4005.9000 GPIO Port C (APB) base: 0x4000.6000 GPIO Port C (AHB) base: 0x4005.A000 GPIO Port D (APB) base: 0x4000.7000 GPIO Port D (AHB) base: 0x4005.B000 GPIO Port E (APB) base: 0x4002.4000 GPIO Port E (AHB) base: 0x4005.C000 GPIO Port F (APB) base: 0x4002.5000 GPIO Port F (AHB) base: 0x4005.D000 GPIO Port G (APB) base: 0x4002.6000 GPIO Port G (AHB) base: 0x4005.E000 GPIO Port H (APB) base: 0x4002.7000 GPIO Port H (AHB) base: 0x4005.F000 GPIO Port J (APB) base: 0x4003.D000 GPIO Port J (AHB) base: 0x4006.0000 Offset 0x510 Type R/W, reset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 3 2 1 0 R/W - R/W - R/W - R/W - reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 PUE RO 0 RO 0 RO 0 R/W - R/W - R/W - March 19, 2011 R/W - 427 Texas Instruments-Advance Information General-Purpose Input/Outputs (GPIOs) Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 7:0 PUE R/W - Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. Pad Weak Pull-Up Enable Value Description 1 The corresponding pin has a weak pull-up resistor. 0 The corresponding pin is not affected. Setting a bit in the GPIOPDR register clears the corresponding bit in the GPIOPUR register. The change is effective on the second clock cycle after the write if accessing GPIO via the APB memory aperture. If using AHB access, the change is effective on the next clock cycle. The reset value for this register is 0x0000.0000 for GPIO ports that are not listed in Table 8-1 on page 398. 428 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 16: GPIO Pull-Down Select (GPIOPDR), offset 0x514 The GPIOPDR register is the pull-down control register. When a bit is set, a weak pull-down resistor on the corresponding GPIO signal is enabled. Setting a bit in GPIOPDR automatically clears the corresponding bit in the GPIO Pull-Up Select (GPIOPUR) register (see page 427). Important: All GPIO pins are configured as GPIOs and tri-stated by default (GPIOAFSEL=0, GPIODEN=0, GPIOPDR=0, GPIOPUR=0, and GPIOPCTL=0, with the exception of the four JTAG/SWD pins (shown in the table below). A Power-On-Reset (POR) or asserting RST puts the pins back to their default state. Table 8-10. GPIO Pins With Non-Zero Reset Values Note: GPIO Pins Default State PA[1:0] UART0 GPIOAFSEL GPIODEN GPIOPDR GPIOPUR 0 1 0 GPIOPCTL 0 0x1 PA[5:2] SSI0 0 1 0 0 0x1 PB[3:2] I2C0 0 1 0 0 0x1 PC[3:0] JTAG/SWD 1 1 0 1 0x3 The GPIO commit control registers provide a layer of protection against accidental programming of critical hardware peripherals. Protection is provided for the NMI pin (PB7) and the four JTAG/SWD pins (PC[3:0]). Writes to protected bits of the GPIO Alternate Function Select (GPIOAFSEL) register (see page 421), GPIO Pull Up Select (GPIOPUR) register (see page 427), GPIO Pull-Down Select (GPIOPDR) register (see page 429), and GPIO Digital Enable (GPIODEN) register (see page 432) are not committed to storage unless the GPIO Lock (GPIOLOCK) register (see page 434) has been unlocked and the appropriate bits of the GPIO Commit (GPIOCR) register (see page 435) have been set. GPIO Pull-Down Select (GPIOPDR) GPIO Port A (APB) base: 0x4000.4000 GPIO Port A (AHB) base: 0x4005.8000 GPIO Port B (APB) base: 0x4000.5000 GPIO Port B (AHB) base: 0x4005.9000 GPIO Port C (APB) base: 0x4000.6000 GPIO Port C (AHB) base: 0x4005.A000 GPIO Port D (APB) base: 0x4000.7000 GPIO Port D (AHB) base: 0x4005.B000 GPIO Port E (APB) base: 0x4002.4000 GPIO Port E (AHB) base: 0x4005.C000 GPIO Port F (APB) base: 0x4002.5000 GPIO Port F (AHB) base: 0x4005.D000 GPIO Port G (APB) base: 0x4002.6000 GPIO Port G (AHB) base: 0x4005.E000 GPIO Port H (APB) base: 0x4002.7000 GPIO Port H (AHB) base: 0x4005.F000 GPIO Port J (APB) base: 0x4003.D000 GPIO Port J (AHB) base: 0x4006.0000 Offset 0x514 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 3 2 1 0 R/W 0 R/W 0 R/W 0 R/W 0 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 PDE RO 0 RO 0 RO 0 R/W 0 R/W 0 R/W 0 March 19, 2011 R/W 0 429 Texas Instruments-Advance Information General-Purpose Input/Outputs (GPIOs) Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 7:0 PDE R/W 0x00 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. Pad Weak Pull-Down Enable Value Description 1 The corresponding pin has a weak pull-down resistor. 0 The corresponding pin is not affected. Setting a bit in the GPIOPUR register clears the corresponding bit in the GPIOPDR register. The change is effective on the second clock cycle after the write if accessing GPIO via the APB memory aperture. If using AHB access, the change is effective on the next clock cycle. 430 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 17: GPIO Slew Rate Control Select (GPIOSLR), offset 0x518 The GPIOSLR register is the slew rate control register. Slew rate control is only available when using the 8-mA drive strength option via the GPIO 8-mA Drive Select (GPIODR8R) register (see page 425). GPIO Slew Rate Control Select (GPIOSLR) GPIO Port A (APB) base: 0x4000.4000 GPIO Port A (AHB) base: 0x4005.8000 GPIO Port B (APB) base: 0x4000.5000 GPIO Port B (AHB) base: 0x4005.9000 GPIO Port C (APB) base: 0x4000.6000 GPIO Port C (AHB) base: 0x4005.A000 GPIO Port D (APB) base: 0x4000.7000 GPIO Port D (AHB) base: 0x4005.B000 GPIO Port E (APB) base: 0x4002.4000 GPIO Port E (AHB) base: 0x4005.C000 GPIO Port F (APB) base: 0x4002.5000 GPIO Port F (AHB) base: 0x4005.D000 GPIO Port G (APB) base: 0x4002.6000 GPIO Port G (AHB) base: 0x4005.E000 GPIO Port H (APB) base: 0x4002.7000 GPIO Port H (AHB) base: 0x4005.F000 GPIO Port J (APB) base: 0x4003.D000 GPIO Port J (AHB) base: 0x4006.0000 Offset 0x518 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 3 2 1 0 R/W 0 R/W 0 R/W 0 R/W 0 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 reserved Type Reset RO 0 RO 0 RO 0 RO 0 SRL RO 0 RO 0 RO 0 Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 7:0 SRL R/W 0x00 RO 0 R/W 0 R/W 0 R/W 0 R/W 0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. Slew Rate Limit Enable (8-mA drive only) Value Description 1 Slew rate control is enabled for the corresponding pin. 0 Slew rate control is disabled for the corresponding pin. March 19, 2011 431 Texas Instruments-Advance Information General-Purpose Input/Outputs (GPIOs) Register 18: GPIO Digital Enable (GPIODEN), offset 0x51C Note: Pins configured as digital inputs are Schmitt-triggered. The GPIODEN register is the digital enable register. By default, all GPIO signals except those listed below are configured out of reset to be undriven (tristate). Their digital function is disabled; they do not drive a logic value on the pin and they do not allow the pin voltage into the GPIO receiver. To use the pin as a digital input or output (either GPIO or alternate function), the corresponding GPIODEN bit must be set. Important: All GPIO pins are configured as GPIOs and tri-stated by default (GPIOAFSEL=0, GPIODEN=0, GPIOPDR=0, GPIOPUR=0, and GPIOPCTL=0, with the exception of the four JTAG/SWD pins (shown in the table below). A Power-On-Reset (POR) or asserting RST puts the pins back to their default state. Table 8-11. GPIO Pins With Non-Zero Reset Values Note: GPIO Pins Default State GPIOAFSEL GPIODEN GPIOPDR GPIOPUR GPIOPCTL PA[1:0] UART0 0 1 0 0 0x1 PA[5:2] SSI0 0 1 0 0 0x1 PB[3:2] I2C0 0 1 0 0 0x1 PC[3:0] JTAG/SWD 1 1 0 1 0x3 The GPIO commit control registers provide a layer of protection against accidental programming of critical hardware peripherals. Protection is provided for the NMI pin (PB7) and the four JTAG/SWD pins (PC[3:0]). Writes to protected bits of the GPIO Alternate Function Select (GPIOAFSEL) register (see page 421), GPIO Pull Up Select (GPIOPUR) register (see page 427), GPIO Pull-Down Select (GPIOPDR) register (see page 429), and GPIO Digital Enable (GPIODEN) register (see page 432) are not committed to storage unless the GPIO Lock (GPIOLOCK) register (see page 434) has been unlocked and the appropriate bits of the GPIO Commit (GPIOCR) register (see page 435) have been set. 432 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller GPIO Digital Enable (GPIODEN) GPIO Port A (APB) base: 0x4000.4000 GPIO Port A (AHB) base: 0x4005.8000 GPIO Port B (APB) base: 0x4000.5000 GPIO Port B (AHB) base: 0x4005.9000 GPIO Port C (APB) base: 0x4000.6000 GPIO Port C (AHB) base: 0x4005.A000 GPIO Port D (APB) base: 0x4000.7000 GPIO Port D (AHB) base: 0x4005.B000 GPIO Port E (APB) base: 0x4002.4000 GPIO Port E (AHB) base: 0x4005.C000 GPIO Port F (APB) base: 0x4002.5000 GPIO Port F (AHB) base: 0x4005.D000 GPIO Port G (APB) base: 0x4002.6000 GPIO Port G (AHB) base: 0x4005.E000 GPIO Port H (APB) base: 0x4002.7000 GPIO Port H (AHB) base: 0x4005.F000 GPIO Port J (APB) base: 0x4003.D000 GPIO Port J (AHB) base: 0x4006.0000 Offset 0x51C Type R/W, reset 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 3 2 1 0 R/W - R/W - R/W - R/W - reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 reserved Type Reset RO 0 RO 0 RO 0 RO 0 DEN RO 0 RO 0 RO 0 Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 7:0 DEN R/W - RO 0 R/W - R/W - R/W - R/W - Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. Digital Enable Value Description 0 The digital functions for the corresponding pin are disabled. 1 The digital functions for the corresponding pin are enabled. The reset value for this register is 0x0000.0000 for GPIO ports that are not listed in Table 8-1 on page 398. March 19, 2011 433 Texas Instruments-Advance Information General-Purpose Input/Outputs (GPIOs) Register 19: GPIO Lock (GPIOLOCK), offset 0x520 The GPIOLOCK register enables write access to the GPIOCR register (see page 435). Writing 0x4C4F.434B to the GPIOLOCK register unlocks the GPIOCR register. Writing any other value to the GPIOLOCK register re-enables the locked state. Reading the GPIOLOCK register returns the lock status rather than the 32-bit value that was previously written. Therefore, when write accesses are disabled, or locked, reading the GPIOLOCK register returns 0x0000.0001. When write accesses are enabled, or unlocked, reading the GPIOLOCK register returns 0x0000.0000. GPIO Lock (GPIOLOCK) GPIO Port A (APB) base: 0x4000.4000 GPIO Port A (AHB) base: 0x4005.8000 GPIO Port B (APB) base: 0x4000.5000 GPIO Port B (AHB) base: 0x4005.9000 GPIO Port C (APB) base: 0x4000.6000 GPIO Port C (AHB) base: 0x4005.A000 GPIO Port D (APB) base: 0x4000.7000 GPIO Port D (AHB) base: 0x4005.B000 GPIO Port E (APB) base: 0x4002.4000 GPIO Port E (AHB) base: 0x4005.C000 GPIO Port F (APB) base: 0x4002.5000 GPIO Port F (AHB) base: 0x4005.D000 GPIO Port G (APB) base: 0x4002.6000 GPIO Port G (AHB) base: 0x4005.E000 GPIO Port H (APB) base: 0x4002.7000 GPIO Port H (AHB) base: 0x4005.F000 GPIO Port J (APB) base: 0x4003.D000 GPIO Port J (AHB) base: 0x4006.0000 Offset 0x520 Type R/W, reset 0x0000.0001 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 7 6 5 4 3 2 1 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 1 LOCK Type Reset R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 15 14 13 12 11 10 9 8 LOCK Type Reset R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 Bit/Field Name Type 31:0 LOCK R/W R/W 0 Reset R/W 0 Description 0x0000.0001 GPIO Lock A write of the value 0x4C4F.434B unlocks the GPIO Commit (GPIOCR) register for write access.A write of any other value or a write to the GPIOCR register reapplies the lock, preventing any register updates. A read of this register returns the following values: Value Description 0x1 The GPIOCR register is locked and may not be modified. 0x0 The GPIOCR register is unlocked and may be modified. 434 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 20: GPIO Commit (GPIOCR), offset 0x524 The GPIOCR register is the commit register. The value of the GPIOCR register determines which bits of the GPIOAFSEL, GPIOPUR, GPIOPDR, and GPIODEN registers are committed when a write to these registers is performed. If a bit in the GPIOCR register is cleared, the data being written to the corresponding bit in the GPIOAFSEL, GPIOPUR, GPIOPDR, or GPIODEN registers cannot be committed and retains its previous value. If a bit in the GPIOCR register is set, the data being written to the corresponding bit of the GPIOAFSEL, GPIOPUR, GPIOPDR, or GPIODEN registers is committed to the register and reflects the new value. The contents of the GPIOCR register can only be modified if the status in the GPIOLOCK register is unlocked. Writes to the GPIOCR register are ignored if the status in the GPIOLOCK register is locked. Important: This register is designed to prevent accidental programming of the registers that control connectivity to the NMI and JTAG/SWD debug hardware. By initializing the bits of the GPIOCR register to 0 for PB7 and PC[3:0], the NMI and JTAG/SWD debug port can only be converted to GPIOs through a deliberate set of writes to the GPIOLOCK, GPIOCR, and the corresponding registers. Because this protection is currently only implemented on the NMI and JTAG/SWD pins on PB7 and PC[3:0], all of the other bits in the GPIOCR registers cannot be written with 0x0. These bits are hardwired to 0x1, ensuring that it is always possible to commit new values to the GPIOAFSEL, GPIOPUR, GPIOPDR, or GPIODEN register bits of these other pins. GPIO Commit (GPIOCR) GPIO Port A (APB) base: 0x4000.4000 GPIO Port A (AHB) base: 0x4005.8000 GPIO Port B (APB) base: 0x4000.5000 GPIO Port B (AHB) base: 0x4005.9000 GPIO Port C (APB) base: 0x4000.6000 GPIO Port C (AHB) base: 0x4005.A000 GPIO Port D (APB) base: 0x4000.7000 GPIO Port D (AHB) base: 0x4005.B000 GPIO Port E (APB) base: 0x4002.4000 GPIO Port E (AHB) base: 0x4005.C000 GPIO Port F (APB) base: 0x4002.5000 GPIO Port F (AHB) base: 0x4005.D000 GPIO Port G (APB) base: 0x4002.6000 GPIO Port G (AHB) base: 0x4005.E000 GPIO Port H (APB) base: 0x4002.7000 GPIO Port H (AHB) base: 0x4005.F000 GPIO Port J (APB) base: 0x4003.D000 GPIO Port J (AHB) base: 0x4006.0000 Offset 0x524 Type -, reset 31 30 29 28 27 26 25 24 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 8 7 6 5 4 3 2 1 0 RO 0 - - - - - - - - reserved Type Reset reserved Type Reset RO 0 CR March 19, 2011 435 Texas Instruments-Advance Information General-Purpose Input/Outputs (GPIOs) Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 7:0 CR - - Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. GPIO Commit Value Description 1 The corresponding GPIOAFSEL, GPIOPUR, GPIOPDR, or GPIODEN bits can be written. 0 The corresponding GPIOAFSEL, GPIOPUR, GPIOPDR, or GPIODEN bits cannot be written. Note: The default register type for the GPIOCR register is RO for all GPIO pins with the exception of the NMI pin and the four JTAG/SWD pins (PB7 and PC[3:0]). These five pins are the only GPIOs that are protected by the GPIOCR register. Because of this, the register type for GPIO Port B7 and GPIO Port C[3:0] is R/W. The default reset value for the GPIOCR register is 0x0000.00FF for all GPIO pins, with the exception of the NMI pin and the four JTAG/SWD pins (PB7 and PC[3:0]). To ensure that the JTAG port is not accidentally programmed as GPIO pins, the PC[3:0] pins default to non-committable. Similarly, to ensure that the NMI pin is not accidentally programmed as a GPIO pin, the PB7 pin defaults to non-committable. Because of this, the default reset value of GPIOCR for GPIO Port B is 0x0000.007F while the default reset value of GPIOCR for Port C is 0x0000.00F0. 436 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 21: GPIO Analog Mode Select (GPIOAMSEL), offset 0x528 Important: This register is only valid for ports D and E; the corresponding base addresses for the remaining ports are not valid. If any pin is to be used as an ADC input, the appropriate bit in GPIOAMSEL must be set to disable the analog isolation circuit. The GPIOAMSEL register controls isolation circuits to the analog side of a unified I/O pad. Because the GPIOs may be driven by a 5-V source and affect analog operation, analog circuitry requires isolation from the pins when they are not used in their analog function. Each bit of this register controls the isolation circuitry for the corresponding GPIO signal. For information on which GPIO pins can be used for ADC functions, refer to Table 24-5 on page 1247. GPIO Analog Mode Select (GPIOAMSEL) GPIO Port A (APB) base: 0x4000.4000 GPIO Port A (AHB) base: 0x4005.8000 GPIO Port B (APB) base: 0x4000.5000 GPIO Port B (AHB) base: 0x4005.9000 GPIO Port C (APB) base: 0x4000.6000 GPIO Port C (AHB) base: 0x4005.A000 GPIO Port D (APB) base: 0x4000.7000 GPIO Port D (AHB) base: 0x4005.B000 GPIO Port E (APB) base: 0x4002.4000 GPIO Port E (AHB) base: 0x4005.C000 GPIO Port F (APB) base: 0x4002.5000 GPIO Port F (AHB) base: 0x4005.D000 GPIO Port G (APB) base: 0x4002.6000 GPIO Port G (AHB) base: 0x4005.E000 GPIO Port H (APB) base: 0x4002.7000 GPIO Port H (AHB) base: 0x4005.F000 GPIO Port J (APB) base: 0x4003.D000 GPIO Port J (AHB) base: 0x4006.0000 Offset 0x528 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 8 7 6 5 4 3 2 1 0 RO 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 R/W 0 reserved Type Reset reserved Type Reset GPIOAMSEL RO 0 Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 R/W 0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. March 19, 2011 437 Texas Instruments-Advance Information General-Purpose Input/Outputs (GPIOs) Bit/Field Name Type Reset Description 7:0 GPIOAMSEL R/W 0x00 GPIO Analog Mode Select Value Description 1 The analog function of the pin is enabled, the isolation is disabled, and the pin is capable of analog functions. 0 The analog function of the pin is disabled, the isolation is enabled, and the pin is capable of digital functions as specified by the other GPIO configuration registers. Note: This register and bits are only valid for GPIO signals that share analog function through a unified I/O pad. The reset state of this register is 0 for all signals. 438 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 22: GPIO Port Control (GPIOPCTL), offset 0x52C The GPIOPCTL register is used in conjunction with the GPIOAFSEL register and selects the specific peripheral signal for each GPIO pin when using the alternate function mode. Most bits in the GPIOAFSEL register are cleared on reset, therefore most GPIO pins are configured as GPIOs by default. When a bit is set in the GPIOAFSEL register, the corresponding GPIO signal is controlled by an associated peripheral. The GPIOPCTL register selects one out of a set of peripheral functions for each GPIO, providing additional flexibility in signal definition. For information on the defined encodings for the bit fields in this register, refer to Table 24-5 on page 1247. The reset value for this register is 0x0000.0000 for GPIO ports that are not listed in the table below. Important: All GPIO pins are configured as GPIOs and tri-stated by default (GPIOAFSEL=0, GPIODEN=0, GPIOPDR=0, GPIOPUR=0, and GPIOPCTL=0, with the exception of the four JTAG/SWD pins (shown in the table below). A Power-On-Reset (POR) or asserting RST puts the pins back to their default state. Table 8-12. GPIO Pins With Non-Zero Reset Values GPIO Pins Default State PA[1:0] UART0 GPIOAFSEL GPIODEN GPIOPDR GPIOPUR 0 1 0 GPIOPCTL 0 0x1 PA[5:2] SSI0 0 1 0 0 0x1 PB[3:2] I2C0 0 1 0 0 0x1 PC[3:0] JTAG/SWD 1 1 0 1 0x3 GPIO Port Control (GPIOPCTL) GPIO Port A (APB) base: 0x4000.4000 GPIO Port A (AHB) base: 0x4005.8000 GPIO Port B (APB) base: 0x4000.5000 GPIO Port B (AHB) base: 0x4005.9000 GPIO Port C (APB) base: 0x4000.6000 GPIO Port C (AHB) base: 0x4005.A000 GPIO Port D (APB) base: 0x4000.7000 GPIO Port D (AHB) base: 0x4005.B000 GPIO Port E (APB) base: 0x4002.4000 GPIO Port E (AHB) base: 0x4005.C000 GPIO Port F (APB) base: 0x4002.5000 GPIO Port F (AHB) base: 0x4005.D000 GPIO Port G (APB) base: 0x4002.6000 GPIO Port G (AHB) base: 0x4005.E000 GPIO Port H (APB) base: 0x4002.7000 GPIO Port H (AHB) base: 0x4005.F000 GPIO Port J (APB) base: 0x4003.D000 GPIO Port J (AHB) base: 0x4006.0000 Offset 0x52C Type R/W, reset 31 30 29 28 27 26 PMC7 Type Reset R/W - R/W - 15 14 R/W - R/W - R/W - R/W - 13 12 11 10 PMC3 Type Reset R/W - R/W - 25 24 23 22 PMC6 R/W - R/W - R/W - R/W - 9 8 7 6 PMC2 R/W - R/W - R/W - R/W - 21 20 19 18 PMC5 R/W - R/W - R/W - R/W - 5 4 3 2 PMC1 R/W - Bit/Field Name Type Reset 31:28 PMC7 R/W - R/W - R/W - R/W - 17 16 R/W - R/W - 1 0 R/W - R/W - PMC4 PMC0 R/W - R/W - R/W - R/W - Description Port Mux Control 7 This field controls the configuration for GPIO pin 7. March 19, 2011 439 Texas Instruments-Advance Information General-Purpose Input/Outputs (GPIOs) Bit/Field Name Type Reset Description 27:24 PMC6 R/W - Port Mux Control 6 This field controls the configuration for GPIO pin 6. 23:20 PMC5 R/W - Port Mux Control 5 This field controls the configuration for GPIO pin 5. 19:16 PMC4 R/W - Port Mux Control 4 This field controls the configuration for GPIO pin 4. 15:12 PMC3 R/W - Port Mux Control 3 This field controls the configuration for GPIO pin 3. 11:8 PMC2 R/W - Port Mux Control 2 This field controls the configuration for GPIO pin 2. 7:4 PMC1 R/W - Port Mux Control 1 This field controls the configuration for GPIO pin 1. 3:0 PMC0 R/W - Port Mux Control 0 This field controls the configuration for GPIO pin 0. 440 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 23: GPIO Peripheral Identification 4 (GPIOPeriphID4), offset 0xFD0 The GPIOPeriphID4, GPIOPeriphID5, GPIOPeriphID6, and GPIOPeriphID7 registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral. GPIO Peripheral Identification 4 (GPIOPeriphID4) GPIO Port A (APB) base: 0x4000.4000 GPIO Port A (AHB) base: 0x4005.8000 GPIO Port B (APB) base: 0x4000.5000 GPIO Port B (AHB) base: 0x4005.9000 GPIO Port C (APB) base: 0x4000.6000 GPIO Port C (AHB) base: 0x4005.A000 GPIO Port D (APB) base: 0x4000.7000 GPIO Port D (AHB) base: 0x4005.B000 GPIO Port E (APB) base: 0x4002.4000 GPIO Port E (AHB) base: 0x4005.C000 GPIO Port F (APB) base: 0x4002.5000 GPIO Port F (AHB) base: 0x4005.D000 GPIO Port G (APB) base: 0x4002.6000 GPIO Port G (AHB) base: 0x4005.E000 GPIO Port H (APB) base: 0x4002.7000 GPIO Port H (AHB) base: 0x4005.F000 GPIO Port J (APB) base: 0x4003.D000 GPIO Port J (AHB) base: 0x4006.0000 Offset 0xFD0 Type RO, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 3 2 1 0 RO 0 RO 0 RO 0 RO 0 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 reserved Type Reset RO 0 RO 0 RO 0 RO 0 PID4 RO 0 RO 0 RO 0 Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 7:0 PID4 RO 0x00 RO 0 RO 0 RO 0 RO 0 RO 0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. GPIO Peripheral ID Register [7:0] March 19, 2011 441 Texas Instruments-Advance Information General-Purpose Input/Outputs (GPIOs) Register 24: GPIO Peripheral Identification 5 (GPIOPeriphID5), offset 0xFD4 The GPIOPeriphID4, GPIOPeriphID5, GPIOPeriphID6, and GPIOPeriphID7 registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral. GPIO Peripheral Identification 5 (GPIOPeriphID5) GPIO Port A (APB) base: 0x4000.4000 GPIO Port A (AHB) base: 0x4005.8000 GPIO Port B (APB) base: 0x4000.5000 GPIO Port B (AHB) base: 0x4005.9000 GPIO Port C (APB) base: 0x4000.6000 GPIO Port C (AHB) base: 0x4005.A000 GPIO Port D (APB) base: 0x4000.7000 GPIO Port D (AHB) base: 0x4005.B000 GPIO Port E (APB) base: 0x4002.4000 GPIO Port E (AHB) base: 0x4005.C000 GPIO Port F (APB) base: 0x4002.5000 GPIO Port F (AHB) base: 0x4005.D000 GPIO Port G (APB) base: 0x4002.6000 GPIO Port G (AHB) base: 0x4005.E000 GPIO Port H (APB) base: 0x4002.7000 GPIO Port H (AHB) base: 0x4005.F000 GPIO Port J (APB) base: 0x4003.D000 GPIO Port J (AHB) base: 0x4006.0000 Offset 0xFD4 Type RO, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 3 2 1 0 RO 0 RO 0 RO 0 RO 0 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 reserved Type Reset RO 0 RO 0 RO 0 RO 0 PID5 RO 0 RO 0 RO 0 Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 7:0 PID5 RO 0x00 RO 0 RO 0 RO 0 RO 0 RO 0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. GPIO Peripheral ID Register [15:8] 442 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 25: GPIO Peripheral Identification 6 (GPIOPeriphID6), offset 0xFD8 The GPIOPeriphID4, GPIOPeriphID5, GPIOPeriphID6, and GPIOPeriphID7 registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral. GPIO Peripheral Identification 6 (GPIOPeriphID6) GPIO Port A (APB) base: 0x4000.4000 GPIO Port A (AHB) base: 0x4005.8000 GPIO Port B (APB) base: 0x4000.5000 GPIO Port B (AHB) base: 0x4005.9000 GPIO Port C (APB) base: 0x4000.6000 GPIO Port C (AHB) base: 0x4005.A000 GPIO Port D (APB) base: 0x4000.7000 GPIO Port D (AHB) base: 0x4005.B000 GPIO Port E (APB) base: 0x4002.4000 GPIO Port E (AHB) base: 0x4005.C000 GPIO Port F (APB) base: 0x4002.5000 GPIO Port F (AHB) base: 0x4005.D000 GPIO Port G (APB) base: 0x4002.6000 GPIO Port G (AHB) base: 0x4005.E000 GPIO Port H (APB) base: 0x4002.7000 GPIO Port H (AHB) base: 0x4005.F000 GPIO Port J (APB) base: 0x4003.D000 GPIO Port J (AHB) base: 0x4006.0000 Offset 0xFD8 Type RO, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 3 2 1 0 RO 0 RO 0 RO 0 RO 0 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 reserved Type Reset RO 0 RO 0 RO 0 RO 0 PID6 RO 0 RO 0 RO 0 Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 7:0 PID6 RO 0x00 RO 0 RO 0 RO 0 RO 0 RO 0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. GPIO Peripheral ID Register [23:16] March 19, 2011 443 Texas Instruments-Advance Information General-Purpose Input/Outputs (GPIOs) Register 26: GPIO Peripheral Identification 7 (GPIOPeriphID7), offset 0xFDC The GPIOPeriphID4, GPIOPeriphID5, GPIOPeriphID6, and GPIOPeriphID7 registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral. GPIO Peripheral Identification 7 (GPIOPeriphID7) GPIO Port A (APB) base: 0x4000.4000 GPIO Port A (AHB) base: 0x4005.8000 GPIO Port B (APB) base: 0x4000.5000 GPIO Port B (AHB) base: 0x4005.9000 GPIO Port C (APB) base: 0x4000.6000 GPIO Port C (AHB) base: 0x4005.A000 GPIO Port D (APB) base: 0x4000.7000 GPIO Port D (AHB) base: 0x4005.B000 GPIO Port E (APB) base: 0x4002.4000 GPIO Port E (AHB) base: 0x4005.C000 GPIO Port F (APB) base: 0x4002.5000 GPIO Port F (AHB) base: 0x4005.D000 GPIO Port G (APB) base: 0x4002.6000 GPIO Port G (AHB) base: 0x4005.E000 GPIO Port H (APB) base: 0x4002.7000 GPIO Port H (AHB) base: 0x4005.F000 GPIO Port J (APB) base: 0x4003.D000 GPIO Port J (AHB) base: 0x4006.0000 Offset 0xFDC Type RO, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 3 2 1 0 RO 0 RO 0 RO 0 RO 0 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 reserved Type Reset RO 0 RO 0 RO 0 RO 0 PID7 RO 0 RO 0 RO 0 Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 7:0 PID7 RO 0x00 RO 0 RO 0 RO 0 RO 0 RO 0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. GPIO Peripheral ID Register [31:24] 444 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 27: GPIO Peripheral Identification 0 (GPIOPeriphID0), offset 0xFE0 The GPIOPeriphID0, GPIOPeriphID1, GPIOPeriphID2, and GPIOPeriphID3 registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral. GPIO Peripheral Identification 0 (GPIOPeriphID0) GPIO Port A (APB) base: 0x4000.4000 GPIO Port A (AHB) base: 0x4005.8000 GPIO Port B (APB) base: 0x4000.5000 GPIO Port B (AHB) base: 0x4005.9000 GPIO Port C (APB) base: 0x4000.6000 GPIO Port C (AHB) base: 0x4005.A000 GPIO Port D (APB) base: 0x4000.7000 GPIO Port D (AHB) base: 0x4005.B000 GPIO Port E (APB) base: 0x4002.4000 GPIO Port E (AHB) base: 0x4005.C000 GPIO Port F (APB) base: 0x4002.5000 GPIO Port F (AHB) base: 0x4005.D000 GPIO Port G (APB) base: 0x4002.6000 GPIO Port G (AHB) base: 0x4005.E000 GPIO Port H (APB) base: 0x4002.7000 GPIO Port H (AHB) base: 0x4005.F000 GPIO Port J (APB) base: 0x4003.D000 GPIO Port J (AHB) base: 0x4006.0000 Offset 0xFE0 Type RO, reset 0x0000.0061 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 3 2 1 0 RO 0 RO 0 RO 0 RO 1 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 reserved Type Reset RO 0 RO 0 RO 0 RO 0 PID0 RO 0 RO 0 RO 0 Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 7:0 PID0 RO 0x61 RO 0 RO 0 RO 1 RO 1 RO 0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. GPIO Peripheral ID Register [7:0] Can be used by software to identify the presence of this peripheral. March 19, 2011 445 Texas Instruments-Advance Information General-Purpose Input/Outputs (GPIOs) Register 28: GPIO Peripheral Identification 1 (GPIOPeriphID1), offset 0xFE4 The GPIOPeriphID0, GPIOPeriphID1, GPIOPeriphID2, and GPIOPeriphID3 registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral. GPIO Peripheral Identification 1 (GPIOPeriphID1) GPIO Port A (APB) base: 0x4000.4000 GPIO Port A (AHB) base: 0x4005.8000 GPIO Port B (APB) base: 0x4000.5000 GPIO Port B (AHB) base: 0x4005.9000 GPIO Port C (APB) base: 0x4000.6000 GPIO Port C (AHB) base: 0x4005.A000 GPIO Port D (APB) base: 0x4000.7000 GPIO Port D (AHB) base: 0x4005.B000 GPIO Port E (APB) base: 0x4002.4000 GPIO Port E (AHB) base: 0x4005.C000 GPIO Port F (APB) base: 0x4002.5000 GPIO Port F (AHB) base: 0x4005.D000 GPIO Port G (APB) base: 0x4002.6000 GPIO Port G (AHB) base: 0x4005.E000 GPIO Port H (APB) base: 0x4002.7000 GPIO Port H (AHB) base: 0x4005.F000 GPIO Port J (APB) base: 0x4003.D000 GPIO Port J (AHB) base: 0x4006.0000 Offset 0xFE4 Type RO, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 3 2 1 0 RO 0 RO 0 RO 0 RO 0 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 reserved Type Reset RO 0 RO 0 RO 0 RO 0 PID1 RO 0 RO 0 RO 0 Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 7:0 PID1 RO 0x00 RO 0 RO 0 RO 0 RO 0 RO 0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. GPIO Peripheral ID Register [15:8] Can be used by software to identify the presence of this peripheral. 446 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 29: GPIO Peripheral Identification 2 (GPIOPeriphID2), offset 0xFE8 The GPIOPeriphID0, GPIOPeriphID1, GPIOPeriphID2, and GPIOPeriphID3 registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral. GPIO Peripheral Identification 2 (GPIOPeriphID2) GPIO Port A (APB) base: 0x4000.4000 GPIO Port A (AHB) base: 0x4005.8000 GPIO Port B (APB) base: 0x4000.5000 GPIO Port B (AHB) base: 0x4005.9000 GPIO Port C (APB) base: 0x4000.6000 GPIO Port C (AHB) base: 0x4005.A000 GPIO Port D (APB) base: 0x4000.7000 GPIO Port D (AHB) base: 0x4005.B000 GPIO Port E (APB) base: 0x4002.4000 GPIO Port E (AHB) base: 0x4005.C000 GPIO Port F (APB) base: 0x4002.5000 GPIO Port F (AHB) base: 0x4005.D000 GPIO Port G (APB) base: 0x4002.6000 GPIO Port G (AHB) base: 0x4005.E000 GPIO Port H (APB) base: 0x4002.7000 GPIO Port H (AHB) base: 0x4005.F000 GPIO Port J (APB) base: 0x4003.D000 GPIO Port J (AHB) base: 0x4006.0000 Offset 0xFE8 Type RO, reset 0x0000.0018 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 3 2 1 0 RO 1 RO 0 RO 0 RO 0 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 reserved Type Reset RO 0 RO 0 RO 0 RO 0 PID2 RO 0 RO 0 RO 0 Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 7:0 PID2 RO 0x18 RO 0 RO 0 RO 0 RO 0 RO 1 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. GPIO Peripheral ID Register [23:16] Can be used by software to identify the presence of this peripheral. March 19, 2011 447 Texas Instruments-Advance Information General-Purpose Input/Outputs (GPIOs) Register 30: GPIO Peripheral Identification 3 (GPIOPeriphID3), offset 0xFEC The GPIOPeriphID0, GPIOPeriphID1, GPIOPeriphID2, and GPIOPeriphID3 registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral. GPIO Peripheral Identification 3 (GPIOPeriphID3) GPIO Port A (APB) base: 0x4000.4000 GPIO Port A (AHB) base: 0x4005.8000 GPIO Port B (APB) base: 0x4000.5000 GPIO Port B (AHB) base: 0x4005.9000 GPIO Port C (APB) base: 0x4000.6000 GPIO Port C (AHB) base: 0x4005.A000 GPIO Port D (APB) base: 0x4000.7000 GPIO Port D (AHB) base: 0x4005.B000 GPIO Port E (APB) base: 0x4002.4000 GPIO Port E (AHB) base: 0x4005.C000 GPIO Port F (APB) base: 0x4002.5000 GPIO Port F (AHB) base: 0x4005.D000 GPIO Port G (APB) base: 0x4002.6000 GPIO Port G (AHB) base: 0x4005.E000 GPIO Port H (APB) base: 0x4002.7000 GPIO Port H (AHB) base: 0x4005.F000 GPIO Port J (APB) base: 0x4003.D000 GPIO Port J (AHB) base: 0x4006.0000 Offset 0xFEC Type RO, reset 0x0000.0001 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 3 2 1 0 RO 0 RO 0 RO 0 RO 1 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 reserved Type Reset RO 0 RO 0 RO 0 RO 0 PID3 RO 0 RO 0 RO 0 Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 7:0 PID3 RO 0x01 RO 0 RO 0 RO 0 RO 0 RO 0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. GPIO Peripheral ID Register [31:24] Can be used by software to identify the presence of this peripheral. 448 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 31: GPIO PrimeCell Identification 0 (GPIOPCellID0), offset 0xFF0 The GPIOPCellID0, GPIOPCellID1, GPIOPCellID2, and GPIOPCellID3 registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system. GPIO PrimeCell Identification 0 (GPIOPCellID0) GPIO Port A (APB) base: 0x4000.4000 GPIO Port A (AHB) base: 0x4005.8000 GPIO Port B (APB) base: 0x4000.5000 GPIO Port B (AHB) base: 0x4005.9000 GPIO Port C (APB) base: 0x4000.6000 GPIO Port C (AHB) base: 0x4005.A000 GPIO Port D (APB) base: 0x4000.7000 GPIO Port D (AHB) base: 0x4005.B000 GPIO Port E (APB) base: 0x4002.4000 GPIO Port E (AHB) base: 0x4005.C000 GPIO Port F (APB) base: 0x4002.5000 GPIO Port F (AHB) base: 0x4005.D000 GPIO Port G (APB) base: 0x4002.6000 GPIO Port G (AHB) base: 0x4005.E000 GPIO Port H (APB) base: 0x4002.7000 GPIO Port H (AHB) base: 0x4005.F000 GPIO Port J (APB) base: 0x4003.D000 GPIO Port J (AHB) base: 0x4006.0000 Offset 0xFF0 Type RO, reset 0x0000.000D 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 3 2 1 0 RO 1 RO 1 RO 0 RO 1 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 reserved Type Reset RO 0 RO 0 RO 0 RO 0 CID0 RO 0 RO 0 RO 0 Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 7:0 CID0 RO 0x0D RO 0 RO 0 RO 0 RO 0 RO 0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. GPIO PrimeCell ID Register [7:0] Provides software a standard cross-peripheral identification system. March 19, 2011 449 Texas Instruments-Advance Information General-Purpose Input/Outputs (GPIOs) Register 32: GPIO PrimeCell Identification 1 (GPIOPCellID1), offset 0xFF4 The GPIOPCellID0, GPIOPCellID1, GPIOPCellID2, and GPIOPCellID3 registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system. GPIO PrimeCell Identification 1 (GPIOPCellID1) GPIO Port A (APB) base: 0x4000.4000 GPIO Port A (AHB) base: 0x4005.8000 GPIO Port B (APB) base: 0x4000.5000 GPIO Port B (AHB) base: 0x4005.9000 GPIO Port C (APB) base: 0x4000.6000 GPIO Port C (AHB) base: 0x4005.A000 GPIO Port D (APB) base: 0x4000.7000 GPIO Port D (AHB) base: 0x4005.B000 GPIO Port E (APB) base: 0x4002.4000 GPIO Port E (AHB) base: 0x4005.C000 GPIO Port F (APB) base: 0x4002.5000 GPIO Port F (AHB) base: 0x4005.D000 GPIO Port G (APB) base: 0x4002.6000 GPIO Port G (AHB) base: 0x4005.E000 GPIO Port H (APB) base: 0x4002.7000 GPIO Port H (AHB) base: 0x4005.F000 GPIO Port J (APB) base: 0x4003.D000 GPIO Port J (AHB) base: 0x4006.0000 Offset 0xFF4 Type RO, reset 0x0000.00F0 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 3 2 1 0 RO 0 RO 0 RO 0 RO 0 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 reserved Type Reset RO 0 RO 0 RO 0 RO 0 CID1 RO 0 RO 0 RO 0 Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 7:0 CID1 RO 0xF0 RO 0 RO 1 RO 1 RO 1 RO 1 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. GPIO PrimeCell ID Register [15:8] Provides software a standard cross-peripheral identification system. 450 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Register 33: GPIO PrimeCell Identification 2 (GPIOPCellID2), offset 0xFF8 The GPIOPCellID0, GPIOPCellID1, GPIOPCellID2, and GPIOPCellID3 registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system. GPIO PrimeCell Identification 2 (GPIOPCellID2) GPIO Port A (APB) base: 0x4000.4000 GPIO Port A (AHB) base: 0x4005.8000 GPIO Port B (APB) base: 0x4000.5000 GPIO Port B (AHB) base: 0x4005.9000 GPIO Port C (APB) base: 0x4000.6000 GPIO Port C (AHB) base: 0x4005.A000 GPIO Port D (APB) base: 0x4000.7000 GPIO Port D (AHB) base: 0x4005.B000 GPIO Port E (APB) base: 0x4002.4000 GPIO Port E (AHB) base: 0x4005.C000 GPIO Port F (APB) base: 0x4002.5000 GPIO Port F (AHB) base: 0x4005.D000 GPIO Port G (APB) base: 0x4002.6000 GPIO Port G (AHB) base: 0x4005.E000 GPIO Port H (APB) base: 0x4002.7000 GPIO Port H (AHB) base: 0x4005.F000 GPIO Port J (APB) base: 0x4003.D000 GPIO Port J (AHB) base: 0x4006.0000 Offset 0xFF8 Type RO, reset 0x0000.0005 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 3 2 1 0 RO 0 RO 1 RO 0 RO 1 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 reserved Type Reset RO 0 RO 0 RO 0 RO 0 CID2 RO 0 RO 0 RO 0 Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 7:0 CID2 RO 0x05 RO 0 RO 0 RO 0 RO 0 RO 0 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. GPIO PrimeCell ID Register [23:16] Provides software a standard cross-peripheral identification system. March 19, 2011 451 Texas Instruments-Advance Information General-Purpose Input/Outputs (GPIOs) Register 34: GPIO PrimeCell Identification 3 (GPIOPCellID3), offset 0xFFC The GPIOPCellID0, GPIOPCellID1, GPIOPCellID2, and GPIOPCellID3 registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system. GPIO PrimeCell Identification 3 (GPIOPCellID3) GPIO Port A (APB) base: 0x4000.4000 GPIO Port A (AHB) base: 0x4005.8000 GPIO Port B (APB) base: 0x4000.5000 GPIO Port B (AHB) base: 0x4005.9000 GPIO Port C (APB) base: 0x4000.6000 GPIO Port C (AHB) base: 0x4005.A000 GPIO Port D (APB) base: 0x4000.7000 GPIO Port D (AHB) base: 0x4005.B000 GPIO Port E (APB) base: 0x4002.4000 GPIO Port E (AHB) base: 0x4005.C000 GPIO Port F (APB) base: 0x4002.5000 GPIO Port F (AHB) base: 0x4005.D000 GPIO Port G (APB) base: 0x4002.6000 GPIO Port G (AHB) base: 0x4005.E000 GPIO Port H (APB) base: 0x4002.7000 GPIO Port H (AHB) base: 0x4005.F000 GPIO Port J (APB) base: 0x4003.D000 GPIO Port J (AHB) base: 0x4006.0000 Offset 0xFFC Type RO, reset 0x0000.00B1 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 RO 0 RO 0 RO 0 RO 0 3 2 1 0 RO 0 RO 0 RO 0 RO 1 reserved Type Reset RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 RO 0 15 14 13 12 11 10 9 8 7 6 5 4 reserved Type Reset RO 0 RO 0 RO 0 RO 0 CID3 RO 0 RO 0 RO 0 Bit/Field Name Type Reset 31:8 reserved RO 0x0000.00 7:0 CID3 RO 0xB1 RO 0 RO 1 RO 0 RO 1 RO 1 Description Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. GPIO PrimeCell ID Register [31:24] Provides software a standard cross-peripheral identification system. 452 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller 9 External Peripheral Interface (EPI) The External Peripheral Interface is a high-speed parallel bus for external peripherals or memory. It has several modes of operation to interface gluelessly to many types of external devices. The External Peripheral Interface is similar to a standard microprocessor address/data bus, except that it must typically be connected to just one type of external device. Enhanced capabilities include µDMA support, clocking control and support for external FIFO buffers. The EPI has the following features: ■ 8/16/32-bit dedicated parallel bus for external peripherals and memory ■ Memory interface supports contiguous memory access independent of data bus width, thus enabling code execution directly from SDRAM, SRAM and Flash memory ■ Blocking and non-blocking reads ■ Separates processor from timing details through use of an internal write FIFO ■ Efficient transfers using Micro Direct Memory Access Controller (µDMA) – Separate channels for read and write – Read channel request asserted by programmable levels on the internal non-blocking read FIFO (NBRFIFO) – Write channel request asserted by empty on the internal write FIFO (WFIFO) The EPI supports three primary functional modes: Synchronous Dynamic Random Access Memory (SDRAM) mode, Traditional Host-Bus mode, and General-Purpose mode. The EPI module also provides custom GPIOs; however, unlike regular GPIOs, the EPI module uses a FIFO in the same way as a communication mechanism and is speed-controlled using clocking. ■ Synchronous Dynamic Random Access Memory (SDRAM) mode – Supports x16 (single data rate) SDRAM at up to 50 MHz – Supports low-cost SDRAMs up to 64 MB (512 megabits) – Includes automatic refresh and access to all banks/rows – Includes a Sleep/Standby mode to keep contents active with minimal power draw – Multiplexed address/data interface for reduced pin count ■ Host-Bus mode – Traditional x8 and x16 MCU bus interface capabilities – Similar device compatibility options as PIC, ATmega, 8051, and others – Access to SRAM, NOR Flash memory, and other devices, with up to 1 MB of addressing in unmultiplexed mode and 256 MB in multiplexed mode (512 MB in Host-Bus 16 mode with no byte selects) March 19, 2011 453 Texas Instruments-Advance Information External Peripheral Interface (EPI) – Support of both muxed and de-muxed address and data – Access to a range of devices supporting the non-address FIFO x8 and x16 interface variant, with support for external FIFO (XFIFO) EMPTY and FULL signals – Speed controlled, with read and write data wait-state counters – Chip select modes include ALE, CSn, Dual CSn and ALE with dual CSn – Manual chip-enable (or use extra address pins) ■ General-Purpose mode – Wide parallel interfaces for fast communications with CPLDs and FPGAs – Data widths up to 32 bits – Data rates up to 150 MB/second – Optional "address" sizes from 4 bits to 20 bits – Optional clock output, read/write strobes, framing (with counter-based size), and clock-enable input ■ General parallel GPIO – 1 to 32 bits, FIFOed with speed control – Useful for custom peripherals or for digital data acquisition and actuator controls 9.1 EPI Block Diagram ® Figure 9-1 on page 455 provides a block diagram of a Stellaris EPI module. 454 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Figure 9-1. EPI Block Diagram General Parallel GPIO NBRFIFO 8 x 32 bits WFIFO SDRAM 4 x 32 bits AHB Bus Interface With DMA AHB EPI 31:0 Host Bus Baud Rate Control (Clock) Wide Parallel Interface 9.2 Signal Description Table 9-1 on page 455 and Table 9-2 on page 456 list the external signals of the EPI controller and describe the function of each. The EPI controller signals are alternate functions for GPIO signals and default to be GPIO signals at reset. The column in the table below titled "Pin Mux/Pin Assignment" lists the GPIO pin placement for the EPI signals. The AFSEL bit in the GPIO Alternate Function Select (GPIOAFSEL) register (page 421) should be set to choose the EPI controller function. The number in parentheses is the encoding that must be programmed into the PMCn field in the GPIO Port Control (GPIOPCTL) register (page 439) to assign the EPI signals to the specified GPIO port pins. For more information on configuring GPIOs, see “General-Purpose Input/Outputs (GPIOs)” on page 397. Table 9-1. Signals for External Peripheral Interface (100LQFP) Pin Name Pin Number Pin Mux / Pin Assignment Pin Type a Buffer Type Description EPI0S0 83 PH3 (8) I/O TTL EPI module 0 signal 0. EPI0S1 84 PH2 (8) I/O TTL EPI module 0 signal 1. EPI0S2 25 PC4 (8) I/O TTL EPI module 0 signal 2. EPI0S3 24 PC5 (8) I/O TTL EPI module 0 signal 3. EPI0S4 23 PC6 (8) I/O TTL EPI module 0 signal 4. EPI0S5 22 PC7 (8) I/O TTL EPI module 0 signal 5. EPI0S6 86 PH0 (8) I/O TTL EPI module 0 signal 6. EPI0S7 85 PH1 (8) I/O TTL EPI module 0 signal 7. EPI0S8 74 PE0 (8) I/O TTL EPI module 0 signal 8. EPI0S9 75 PE1 (8) I/O TTL EPI module 0 signal 9. March 19, 2011 455 Texas Instruments-Advance Information External Peripheral Interface (EPI) Table 9-1. Signals for External Peripheral Interface (100LQFP) (continued) Pin Name EPI0S10 Pin Number Pin Mux / Pin Assignment 76 PH4 (8) a Pin Type Buffer Type I/O TTL Description EPI module 0 signal 10. EPI0S11 63 PH5 (8) I/O TTL EPI module 0 signal 11. EPI0S12 42 PF4 (8) I/O TTL EPI module 0 signal 12. EPI0S13 19 PG0 (8) I/O TTL EPI module 0 signal 13. EPI0S14 18 PG1 (8) I/O TTL EPI module 0 signal 14. EPI0S15 41 PF5 (8) I/O TTL EPI module 0 signal 15. EPI0S16 14 PJ0 (8) I/O TTL EPI module 0 signal 16. EPI0S17 87 PJ1 (8) I/O TTL EPI module 0 signal 17. EPI0S18 39 PJ2 (8) I/O TTL EPI module 0 signal 18. EPI0S19 50 97 PJ3 (8) PD4 (10) I/O TTL EPI module 0 signal 19. EPI0S20 12 PD2 (8) I/O TTL EPI module 0 signal 20. EPI0S21 13 PD3 (8) I/O TTL EPI module 0 signal 21. EPI0S22 91 PB5 (8) I/O TTL EPI module 0 signal 22. EPI0S23 92 PB4 (8) I/O TTL EPI module 0 signal 23. EPI0S24 95 PE2 (8) I/O TTL EPI module 0 signal 24. EPI0S25 96 PE3 (8) I/O TTL EPI module 0 signal 25. EPI0S26 62 PH6 (8) I/O TTL EPI module 0 signal 26. EPI0S27 15 PH7 (8) I/O TTL EPI module 0 signal 27. EPI0S28 52 98 PJ4 (8) PD5 (10) I/O TTL EPI module 0 signal 28. EPI0S29 53 99 PJ5 (8) PD6 (10) I/O TTL EPI module 0 signal 29. EPI0S30 54 100 PJ6 (8) PD7 (10) I/O TTL EPI module 0 signal 30. EPI0S31 36 PG7 (9) I/O TTL EPI module 0 signal 31. a. The TTL designation indicates the pin has TTL-compatible voltage levels. Table 9-2. Signals for External Peripheral Interface (108BGA) Pin Name Pin Number Pin Mux / Pin Assignment Pin Type a Buffer Type Description EPI0S0 D10 PH3 (8) I/O TTL EPI module 0 signal 0. EPI0S1 D11 PH2 (8) I/O TTL EPI module 0 signal 1. EPI0S2 L1 PC4 (8) I/O TTL EPI module 0 signal 2. EPI0S3 M1 PC5 (8) I/O TTL EPI module 0 signal 3. EPI0S4 M2 PC6 (8) I/O TTL EPI module 0 signal 4. EPI0S5 L2 PC7 (8) I/O TTL EPI module 0 signal 5. EPI0S6 C9 PH0 (8) I/O TTL EPI module 0 signal 6. EPI0S7 C8 PH1 (8) I/O TTL EPI module 0 signal 7. EPI0S8 B11 PE0 (8) I/O TTL EPI module 0 signal 8. EPI0S9 A12 PE1 (8) I/O TTL EPI module 0 signal 9. EPI0S10 B10 PH4 (8) I/O TTL EPI module 0 signal 10. 456 March 19, 2011 Texas Instruments-Advance Information Stellaris® LM3S9B92 Microcontroller Table 9-2. Signals for External Peripheral Interface (108BGA) (continued) Pin Name EPI0S11 Pin Number Pin Mux / Pin Assignment F10 PH5 (8) a Pin Type Buffer Type