APT40GP90JDQ2 900V TYPICAL PERFORMANCE CURVES APT40GP90JDQ2 ® ® C G The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs. Using Punch Through Technology this IGBT is ideal for many high frequency, high voltage switching applications and has been optimized for high frequency switchmode power supplies. • Low Conduction Loss E E POWER MOS 7 IGBT ISOTOP ® • SSOA Rated • Low Gate Charge S OT 22 7 "UL Recognized" file # E145592 C • Ultrafast Tail Current shutoff G E MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter APT40GP90JDQ2 VCES Collector-Emitter Voltage 900 VGE Gate-Emitter Voltage ±30 I C1 Continuous Collector Current I C2 Continuous Collector Current @ TC = 110°C I CM SSOA PD TJ,TSTG TL Pulsed Collector Current 7 @ TC = 25°C UNIT Volts 64 27 1 Amps 160 Switching Safe Operating Area @ TJ = 150°C 160A @ 900V Total Power Dissipation Watts 284 Operating and Storage Junction Temperature Range -55 to 150 Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS V(BR)CES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 350µA) 900 VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES TYP MAX 4.5 6 Collector-Emitter On Voltage (VGE = 15V, I C = 40A, Tj = 25°C) 3.2 3.9 Collector-Emitter On Voltage (VGE = 15V, I C = 40A, Tj = 125°C) 2.7 (VCE = VGE, I C = 1mA, Tj = 25°C) Collector Cut-off Current (VCE = 900V, VGE = 0V, Tj = 25°C) 3 2 Collector Cut-off Current (VCE = 900V, VGE = 0V, Tj = 125°C) 350 2 Gate-Emitter Leakage Current (VGE = ±20V) Volts µA 1500 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com Units nA 9-2005 MIN Rev A Characteristic / Test Conditions 050-7491 Symbol DYNAMIC CHARACTERISTICS Symbol APT40GP90JDQ2 Test Conditions Characteristic Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage 3 Qg Total Gate Charge Qge Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge SSOA Switching Safe Operating Area td(on) tr td(off) tf Eon1 tf f = 1 MHz 35 Gate Charge 7.5 VGE = 15V 145 15V, L = 100µH,VCE = 900V TBD 795 Inductive Switching (125°C) 14 VCC = 600V 23 VGE = 15V 130 RG = 4.3Ω 90 TBD I C = 40A Eon1 Turn-on Switching Energy Eon2 Turn-on Switching Energy (Diode) Eoff Turn-off Switching Energy 44 55 µJ 1350 6 Current Fall Time ns 60 TJ = +25°C Turn-off Delay Time nC 90 I C = 40A Current Rise Time V A 23 RG = 4.3Ω Turn-on Delay Time pF 160 14 5 UNIT 55 VCC = 600V 4 MAX 22 Inductive Switching (25°C) Current Fall Time Turn-off Switching Energy td(off) 325 TJ = 150°C, R G = 4.3Ω, VGE = Turn-off Delay Time Eoff tr VGE = 0V, VCE = 25V VGE = 15V Turn-on Switching Energy (Diode) td(on) 3300 I C = 40A Current Rise Time Eon2 TYP Capacitance VCE = 450V Turn-on Delay Time Turn-on Switching Energy MIN TJ = +125°C ns µJ 2280 6 1245 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic MIN TYP MAX RθJC Junction to Case (IGBT) .44 RθJC Junction to Case (DIODE) 1.1 WT VIsolation Package Weight 29.2 RMS Voltage (50-60hHz Sinusoidal Wavefomr Ffrom Terminals to Mounting Base for 1 Min.) 2500 UNIT °C/W gm Volts 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode. 050-7491 Rev A 9-2005 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) 7 Continuous current limited by package lead temperature. APT Reserves the right to change, without notice, the specifications and information contained h TYPICAL PERFORMANCE CURVES 140 TJ = 25°C 80 TJ = 125°C 60 40 20 0 1 2 3 4 5 6 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) 140 120 100 TJ = -55°C 60 TJ = 25°C 40 TJ = 125°C 20 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE IC = 80A 4 IC = 40A 3 IC = 20A 2 1 0 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 1.00 0.95 0.90 -50 -25 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Breakdown Voltage vs. Junction Temperature J VCE = 180V 12 VCE = 450V 10 8 VCE = 720V 6 4 2 0 20 40 60 80 100 120 140 160 GATE CHARGE (nC) FIGURE 4, Gate Charge 5.0 IC = 80A 4.0 IC = 40A 3.0 IC = 20A 2.0 1.0 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 0 -50 -25 0 25 50 75 100 125 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 90 1.10 1.05 I = 40A C T = 25°C 14 0 2 4 6 8 10 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 5 BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VOLTAGE (NORMALIZED) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 0 VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) 80 20 FIGURE 2, Output Characteristics (TJ = 125°C) IC, DC COLLECTOR CURRENT(A) IC, COLLECTOR CURRENT (A) 160 40 16 VGE, GATE-TO-EMITTER VOLTAGE (V) 250µs PULSE TEST<0.5 % DUTY CYCLE TJ = 125°C 60 0 1 2 3 4 5 6 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics(TJ = 25°C) 180 TJ = 25°C 80 0 0 200 TJ = -55°C 100 80 70 60 50 40 30 20 10 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 9-2005 100 120 Rev A 120 050-7491 TJ = -55°C IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) 140 0 APT40GP90JDQ2 160 160 VGE = 15V 15 10 5 0 VCE = 600V TJ = 25°C or 125°C RG = 4.3Ω L = 100µH tf, FALL TIME (ns) tr, RISE TIME (ns) 50 40 30 20 20 VCE = 600V RG = 4.3Ω L = 100µH 0 RG = 4.3Ω, L = 100µH, VCE = 600V TJ = 125°C, VGE = 15V 80 60 40 TJ = 25°C, VGE = 15V TJ = 25 or 125°C,VGE = 15V 0 100 80 60 40 20 0 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 100 80 60 40 20 0 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 6000 3500 V = 600V CE V = +15V GE R = 4.3Ω EOFF, TURN OFF ENERGY LOSS (µJ) EON2, TURN ON ENERGY LOSS (µJ) 40 20 0 G 5000 4000 TJ = 125°C 3000 2000 1000 TJ = 25°C 0 = 600V V CE = +15V V GE R = 4.3Ω 3000 G 2500 TJ = 125°C 2000 1500 1000 500 TJ = 25°C 0 100 80 60 40 20 0 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 100 80 60 40 20 0 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 8000 6000 = 600V V CE = +15V V GE T = 125°C 7000 Eon2,80A J 6000 5000 Eoff,80A 4000 Eon2,40A 3000 2000 Eoff,40A Eon2,20A 1000 0 Eoff,20A 50 40 30 20 10 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance 0 SWITCHING ENERGY LOSSES (µJ) SWITCHING ENERGY LOSSES (µJ) VGE =15V,TJ=25°C 60 100 10 9-2005 80 120 RG = 4.3Ω, L = 100µH, VCE = 600V 60 Rev A VGE =15V,TJ=125°C 100 100 80 60 40 20 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 0 70 120 0 100 80 60 40 20 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 050-7491 APT40GP90JDQ2 140 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 20 = 600V V CE = +15V V GE R = 4.3Ω G 5000 4000 Eon2,80A Eoff,80A 3000 2000 Eon2,40A Eoff,40A 1000 Eon2,20A 0 Eoff,20A 125 100 75 50 25 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature 0 TYPICAL PERFORMANCE CURVES 7,000 IC, COLLECTOR CURRENT (A) P C, CAPACITANCE ( F) Cies 1,000 500 Coes 100 50 APT40GP90JDQ2 180 160 140 120 100 80 60 40 Cres 20 10 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 0 200 400 600 800 1000 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18,Minimim Switching Safe Operating Area D = 0.9 0.40 0.7 0.30 0.5 Note: 0.20 PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.50 0.3 t2 0.10 0.1 0 t1 t Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC SINGLE PULSE 0.05 10-5 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 10 Power (Watts) 0.204 0.142 0.0117 0.136 1.07 Case temperature. (°C) FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL F = min (fmax, fmax2) 0.05 fmax1 = td(on) + tr + td(off) + tf 10 max 5 1 T = 125°C J T = 75°C C D = 50 % V = 600V CE R = 4.3Ω fmax2 = Pdiss - Pcond Eon2 + Eoff Pdiss = TJ - TC RθJC G 10 20 30 40 50 60 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 9-2005 0.0940 50 Rev A RC MODEL 050-7491 Junction temp. (°C) FMAX, OPERATING FREQUENCY (kHz) 140 100 APT40GP90JDQ2 APT30DQ100 Gate Voltage 10% TJ = 125°C td(on) IC V CC V CE tr Collector Current 90% 5% 10% 5% CollectorVoltage A D.U.T. Switching Energy Figure 21, Inductive Switching Test Circuit Figure 22, Turn-on Switching Waveforms and Definitions Gate Voltage 90% TJ = 125°C td(off) CollectorVoltage 90% tf 10% 0 Collector Current Switching Energy 050-7491 Rev A 9-2005 Figure 23, Turn-off Switching Waveforms and Definitions TYPICAL PERFORMANCE CURVES APT40GP90JDQ2 ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE MAXIMUM RATINGS Symbol IF(AV) IF(RMS) IFSM All Ratings: TC = 25°C unless otherwise specified. APT40GP90JDQ2 Characteristic / Test Conditions Maximum Average Forward Current (TC = 92°C, Duty Cycle = 0.5) 30 RMS Forward Current (Square wave, 50% duty) 39 Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms) UNIT Amps 210 STATIC ELECTRICAL CHARACTERISTICS Symbol VF Characteristic / Test Conditions MIN Forward Voltage TYP IF = 30A 2.3 IF = 60A 2.8 IF = 30A, TJ = 125°C 1.7 MAX UNIT Volts DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions MIN TYP MAX UNIT trr Reverse Recovery Time I = 1A, di /dt = -100A/µs, V = 30V, T = 25°C F F R J - 25 trr Reverse Recovery Time - 240 Qrr Reverse Recovery Charge - 355 - 4 - 305 ns - 1575 nC - 9 - 135 ns - 2270 nC - 27 Amps IRRM Reverse Recovery Time Qrr Reverse Recovery Charge IF = 30A, diF/dt = -200A/µs VR = 667V, TC = 125°C Maximum Reverse Recovery Current trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM VR = 667V, TC = 25°C Maximum Reverse Recovery Current trr IRRM IF = 30A, diF/dt = -200A/µs IF = 30A, diF/dt = -1000A/µs VR = 667V, TC = 125°C Maximum Reverse Recovery Current ns nC - - Amps Amps 1.00 D = 0.9 0.80 0.7 0.60 0.5 0.40 Note: PDM 0.3 t1 t2 0.20 t Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 0.1 0 10-5 SINGLE PULSE 0.05 10-4 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (seconds) FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION Power (watts) 0.291 0.00306 0.461 0.0463 0.341 0.267 Case temperature. (°C) FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL 9-2005 RC MODEL Rev A Junction temp. (°C) 050-7491 ZθJC, THERMAL IMPEDANCE (°C/W) 1.20 100 TJ = 175°C 70 60 TJ = 125°C 50 40 30 TJ = 25°C 20 TJ = -55°C 10 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 VF, ANODE-TO-CATHODE VOLTAGE (V) Figure 25. Forward Current vs. Forward Voltage Qrr, REVERSE RECOVERY CHARGE (nC) 3500 T = 125°C J V = 667V R 3000 60A 2500 2000 30A 1500 15A 1000 500 0 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 27. Reverse Recovery Charge vs. Current Rate of Change trr 1.0 0.8 T = 125°C J V = 667V 60A 350 R 300 30A 250 15A 200 150 100 50 0 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE(A/µs) Figure 26. Reverse Recovery Time vs. Current Rate of Change 30 60A T = 125°C J V = 667V R 25 20 30A 15 10 15A 5 0 0 200 400 600 800 1000 1200 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 28. Reverse Recovery Current vs. Current Rate of Change 50 Qrr Duty cycle = 0.5 T = 175°C 45 J 40 trr 35 IRRM IF(AV) (A) Kf, DYNAMIC PARAMETERS (Normalized to 1000A/µs) 1.2 trr, REVERSE RECOVERY TIME (ns) 80 IRRM, REVERSE RECOVERY CURRENT (A) IF, FORWARD CURRENT (A) 90 0 APT40GP90JDQ2 400 0.6 30 25 20 0.4 Qrr 0.2 15 10 5 0.0 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) Figure 29. Dynamic Parameters vs. Junction Temperature 050-7491 Rev A CJ, JUNCTION CAPACITANCE (pF) 9-2005 160 140 120 100 80 60 40 20 0 1 10 100 200 VR, REVERSE VOLTAGE (V) Figure 31. Junction Capacitance vs. Reverse Voltage 0 25 50 75 100 125 150 175 Case Temperature (°C) Figure 30. Maximum Average Forward Current vs. CaseTemperature TYPICAL PERFORMANCE CURVES APT40GP90JDQ2 Vr diF /dt Adjust +18V APT10035LLL 0V D.U.T. 30µH trr/Qrr Waveform PEARSON 2878 CURRENT TRANSFORMER Figure 32. Diode Test Circuit 1 IF - Forward Conduction Current 2 diF /dt - Rate of Diode Current Change Through Zero Crossing. 3 IRRM - Maximum Reverse Recovery Current. 4 trr - Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through IRRM and 0.25 IRRM passes through zero. 5 1 4 Zero 5 3 0.25 IRRM 2 Qrr - Area Under the Curve Defined by IRRM and trr. Figure 33, Diode Reverse Recovery Waveform and Definitions SOT-227 (ISOTOP®) Package Outline 11.8 (.463) 12.2 (.480) 31.5 (1.240) 31.7 (1.248) 25.2 (0.992) 0.75 (.030) 12.6 (.496) 25.4 (1.000) 0.85 (.033) 12.8 (.504) 4.0 (.157) 4.2 (.165) (2 places) 14.9 (.587) 15.1 (.594) 1.95 (.077) 2.14 (.084) * Emitter/Anode 30.1 (1.185) 30.3 (1.193) * Emitter/Anode terminals are shorted internally. Current handling capability is equal for either Emitter/Anode terminal. 38.0 (1.496) 38.2 (1.504) * Emitter/Anode ISOTOP® is a Registered Trademark of SGS Thomson. Collector/Cathode Gate Dimensions in Millimeters and (Inches) APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. 9-2005 3.3 (.129) 3.6 (.143) Rev A r = 4.0 (.157) (2 places) 8.9 (.350) 9.6 (.378) Hex Nut M4 (4 places) W=4.1 (.161) W=4.3 (.169) H=4.8 (.187) H=4.9 (.193) (4 places) 050-7491 7.8 (.307) 8.2 (.322)