ON MC14066 Quad analog switch/quad multiplexer Datasheet

MC14066B
Quad Analog Switch/Quad
Multiplexer
The MC14066B consists of four independent switches capable of
controlling either digital or analog signals. This quad bilateral switch
is useful in signal gating, chopper, modulator, demodulator and
CMOS logic implementation.
The MC14066B is designed to be pin–for–pin compatible with the
MC14016B, but has much lower ON resistance. Input voltage swings
as large as the full supply voltage can be controlled via each
independent control input.
•
•
•
•
•
•
http://onsemi.com
MARKING
DIAGRAMS
14
PDIP–14
P SUFFIX
CASE 646
Triple Diode Protection on All Control Inputs
Supply Voltage Range = 3.0 Vdc to 18 Vdc
Linearized Transfer Characteristics
Low Noise — 12 nV/√Cycle, f ≥ 1.0 kHz typical
Pin–for–Pin Replacement for CD4016, CD4016, MC14016B
For Lower RON, Use The HC4066 High–Speed CMOS Device
MC14066BCP
AWLYYWW
1
14
SOIC–14
D SUFFIX
CASE 751A
14066B
AWLYWW
1
14
TSSOP–14
DT SUFFIX
CASE 948G
MAXIMUM RATINGS (Voltages Referenced to VSS) (Note 2.)
Symbol
VDD
Parameter
DC Supply Voltage Range
Value
Unit
– 0.5 to +18.0
V
Vin, Vout
Input or Output Voltage Range
(DC or Transient)
– 0.5 to VDD + 0.5
V
Iin
Input Current (DC or Transient)
per Control Pin
± 10
mA
ISW
Switch Through Current
± 25
mA
PD
Power Dissipation,
per Package (Note 3.)
500
mW
TA
Ambient Temperature Range
– 55 to +125
°C
Tstg
Storage Temperature Range
– 65 to +150
°C
TL
Lead Temperature
(8–Second Soldering)
260
°C
This device contains protection circuitry to guard against damage due to high
static voltages or electric fields. However, precautions must be taken to avoid
applications of any voltage higher than maximum rated voltages to this
high–impedance circuit. For proper operation, Vin and Vout should be constrained
to the range VSS
(Vin or Vout)
VDD.
Unused inputs must always be tied to an appropriate logic voltage level (e.g.,
either VSS or VDD). Unused outputs must be left open.
v
1
14
SOEIAJ–14
F SUFFIX
CASE 965
v
MC14066B
AWLYWW
1
A
= Assembly Location
WL or L = Wafer Lot
YY or Y = Year
WW or W = Work Week
ORDERING INFORMATION
Device
2. Maximum Ratings are those values beyond which damage to the device
may occur.
3. Temperature Derating:
Plastic “P and D/DW” Packages: – 7.0 mW/_C From 65_C To 125_C
14
066B
ALYW
Package
Shipping
MC14066BCP
PDIP–14
2000/Box
MC14066BD
SOIC–14
55/Rail
MC14066BDR2
SOIC–14
2500/Tape & Reel
MC14066BDT
TSSOP–14
96/Rail
MC14066BDTEL
TSSOP–14 2000/Tape & Reel
MC14066BDTR2
TSSOP–14 2500/Tape & Reel
MC14066BF
SOEIAJ–14
See Note 1.
MC14066BFEL
SOEIAJ–14
See Note 1.
1. For ordering information on the EIAJ version of
the SOIC packages, please contact your local
ON Semiconductor representative.
 Semiconductor Components Industries, LLC, 2000
March, 2000 – Rev. 3
1
Publication Order Number:
MC14066B/D
MC14066B
PIN ASSIGNMENT
IN 1
1
14
VDD
OUT 1
2
13
CONTROL 1
OUT 2
3
12
CONTROL 4
IN 2
4
11
IN 4
CONTROL 2
5
10
OUT 4
CONTROL 3
6
9
OUT 3
VSS
7
8
IN 3
LOGIC DIAGRAM AND TRUTH TABLE
(1/4 OF DEVICE SHOWN)
BLOCK DIAGRAM
CONTROL 1
13
2
OUT 1
1
IN/OUT
IN 1
OUT/IN
5
CONTROL 2
IN 2
CONTROL 3
IN 3
CONTROL 4
IN 4
CONTROL
3
OUT 2
4
6
9
8
OUT 3
Control
Switch
0 = VSS
OFF
1 = VDD
ON
12
10
OUT 4
11
VDD = PIN 14
VSS = PIN 7
CIRCUIT SCHEMATIC
(1/4 OF CIRCUIT SHOWN)
VDD VDD
VDD
VSS
VDD
CMOS
INPUT
VDD
VDD
VDD
300 Ω
VSS
VSS
http://onsemi.com
2
Logic Diagram Restrictions
VSS ≤ Vin ≤ VDD
VSS ≤ Vout ≤ VDD
MC14066B
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
v
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎ
v
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎ
v
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
v
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ELECTRICAL CHARACTERISTICS
– 55_C
Characteristic
Symbol
VDD
Test Conditions
25_C
125_C
Min
Max
Min
Typ (4.)
Max
Min
Max
Unit
3.0
18
3.0
—
18
3.0
18
V
—
—
—
0.25
0.5
1.0
—
—
—
0.005
0.010
0.015
0.25
0.5
1.0
—
—
—
7.5
15
30
µA
SUPPLY REQUIREMENTS (Voltages Referenced to VEE)
Power Supply Voltage
Range
VDD
—
Quiescent Current Per
Package
IDD
5.0
10
15
Control Inputs:
Vin = VSS or VDD,
VI/O
Switch I/O: VSS
VDD, and
∆Vswitch
500 mV (5.)
ID(AV)
5.0
10
15
TA = 25_C only The
channel component,
(Vin – Vout)/Ron, is
not included.)
Total Supply Current
(Dynamic Plus Quiescent,
Per Package
Typical
µA
(0.07 µA/kHz) f + IDD
(0.20 µA/kHz) f + IDD
(0.36 µA/kHz) f + IDD
CONTROL INPUTS (Voltages Referenced to VSS)
Low–Level Input Voltage
VIL
5.0
10
15
Ron = per spec,
Ioff = per spec
—
—
—
1.5
3.0
4.0
—
—
—
2.25
4.50
6.75
1.5
3.0
4.0
—
—
—
1.5
3.0
4.0
V
High–Level Input Voltage
VIH
5.0
10
15
Ron = per spec,
Ioff = per spec
3.5
7.0
11
—
—
—
3.5
7.0
11
2.75
5.50
8.25
—
—
—
3.5
7.0
11
—
—
—
V
Input Leakage Current
Iin
15
Vin = 0 or VDD
—
± 0.1
—
±0.00001
± 0.1
—
± 1.0
µA
Input Capacitance
Cin
—
—
—
—
5.0
7.5
—
—
pF
SWITCHES IN AND OUT (Voltages Referenced to VSS)
Recommended Peak–to–
Peak Voltage Into or Out
of the Switch
VI/O
—
Channel On or Off
0
VDD
0
—
VDD
0
VDD
Vp–p
Recommended Static or
Dynamic Voltage Across
the Switch (5.) (Figure 1)
∆Vswitch
—
Channel On
0
600
0
—
600
0
300
mV
VOO
—
Vin = 0 V, No Load
—
—
—
10
—
—
—
µV
Ron
5.0
10
15
∆Vswitch
500 mV
Vin = VIL or VIH
(Control), and Vin =
0 to VDD (Switch)
—
—
—
800
400
220
—
—
—
250
120
80
1050
500
280
—
—
—
1200
520
300
Ω
∆Ron
5.0
10
15
—
—
—
70
50
45
—
—
—
25
10
10
70
50
45
—
—
—
135
95
65
Ω
Ioff
15
Vin = VIL or VIH
(Control) Channel to
Channel or Any One
Channel
—
±100
—
± 0.05
±100
—
± 1000
nA
Capacitance, Switch I/O
CI/O
—
Switch Off
—
—
—
10
15
—
—
pF
Capacitance, Feedthrough
(Switch Off)
CI/O
—
—
—
—
—
0.47
—
—
—
pF
Output Offset Voltage
ON Resistance
∆ON Resistance Between
Any Two Channels
in the Same Package
Off–Channel Leakage
Current (Figure 6)
(5.),
4. Data labeled “Typ” is not to be used for design purposes, but is intended as an indication of the IC’s potential performance.
5. For voltage drops across the switch (∆Vswitch) > 600 mV ( > 300 mV at high temperature), excessive VDD current may be drawn; i.e. the
current out of the switch may contain both VDD and switch input components. The reliability of the device will be unaffected unless the
Maximum Ratings are exceeded. (See first page of this data sheet.)
http://onsemi.com
3
MC14066B
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎ
ELECTRICAL CHARACTERISTICS (6.) (CL = 50 pF, TA = 25_C unless otherwise noted.)
Characteristic
Propagation Delay Times
Input to Output (RL = 10 kΩ)
tPLH, tPHL = (0.17 ns/pF) CL + 15.5 ns
tPLH, tPHL = (0.08 ns/pF) CL + 6.0 ns
tPLH, tPHL = (0.06 ns/pF) CL + 4.0 ns
Symbol
VSS = 0 Vdc
Control to Output (RL = 1 kΩ) (Figure 2)
Output “1” to High Impedance
VDD
Vdc
Min
Typ (7.)
Max
tPLH, tPHL
Unit
ns
5.0
10
15
—
—
—
20
10
7.0
40
20
15
5.0
10
15
—
—
—
40
35
30
80
70
60
tPHZ
ns
Output “0” to High Impedance
tPLZ
5.0
10
15
—
—
—
40
35
30
80
70
60
ns
High Impedance to Output “1”
tPZH
5.0
10
15
—
—
—
60
20
15
120
40
30
ns
High Impedance to Output “0”
tPZL
5.0
10
15
—
—
—
60
20
15
120
40
30
ns
Second Harmonic Distortion
VSS = – 5 Vdc
(Vin = 1.77 Vdc, RMS Centered @ 0.0 Vdc,
RL = 10 kΩ, f = 1.0 kHz)
—
5.0
—
0.1
—
%
Bandwidth (Switch ON) (Figure 3)
VSS = – 5 Vdc
(RL = 1 kΩ, 20 Log (Vout/Vin) = – 3 dB, CL = 50 pF,
Vin = 5 Vp–p)
—
5.0
—
65
—
MHz
Feedthrough Attenuation (Switch OFF)
VSS = – 5 Vdc
(Vin = 5 Vp–p, RL = 1 kΩ, fin = 1.0 MHz) (Figure 3)
—
5.0
—
– 50
—
dB
Channel Separation (Figure 4)
(Vin = 5 Vp–p, RL = 1 kΩ, fin = 8.0 MHz)
(Switch A ON, Switch B OFF)
VSS = – 5 Vdc
—
5.0
—
– 50
—
dB
Crosstalk, Control Input to Signal Output (Figure 5)
VSS = – 5 Vdc
(R1 = 1 kΩ, RL = 10 kΩ, Control tTLH = tTHL = 20 ns)
—
5.0
—
300
—
mVp–p
6. The formulas given are for the typical characteristics only at 25_C.
7. Data labelled “Typ” is not to be used for design purposes but is intended as an indication of the IC’s potential performance.
http://onsemi.com
4
MC14066B
TEST CIRCUITS
Vout
VC
RL
ON SWITCH
CONTROL
SECTION
OF IC
20 ns
Vout
VSS
tPHZ
90%
tPZL
tPLZ
10%
90%
Vout
SOURCE
Figure 1. ∆V Across Switch
VDD
tPZH
LOAD
V
Vx
Vin
90%
50%
10%
VC
CL
Vin = VDD
Vx = VSS
Vin = VSS
Vx = VDD
10%
Figure 2. Turn–On Delay Time Test Circuit
and Waveforms
VDD – VSS
2
VC = VDD FOR BANDWIDTH TEST
VC = VSS FOR FEEDTHROUGH TEST
Vin
VDD – VSS
2
VDD
Vin
CL
RL
CL
Vout
RL
CL
VC
VSS
VDD
RL
VSS
Figure 3. Bandwidth and
Feedthrough Attenuation
Figure 4. Channel Separation
OFF CHANNEL UNDER TEST
VDD
Vin
A
Vout
1k
RL
10 k
CONTROL
SECTION
OF IC
CL = 50 pF
VSS
VSS
VDD
VC = – 5.0 V TO + 5.0 V SWING
Figure 5. Crosstalk,
Control to Output
Figure 6. Off Channel Leakage
http://onsemi.com
5
MC14066B
VDD
KEITHLEY 160
DIGITAL
MULTIMETER
10 k
1 kΩ
RANGE
VDD
X–Y
PLOTTER
VSS
Figure 7. Channel Resistance (RON) Test Circuit
350
300
300
250
200
150
TA = 125°C
100
25°C
– 55°C
50
0
– 10
R ON , “ON” RESISTANCE (OHMS)
R ON , “ON” RESISTANCE (OHMS)
350
– 8.0 – 6.0 – 4.0 – 2.0
0
0.2
4.0
6.0
8.0
250
200
150
25°C
– 55°C
50
– 8.0 – 6.0 – 4.0 – 2.0
0
0.2
4.0
6.0
Vin, INPUT VOLTAGE (VOLTS)
Vin, INPUT VOLTAGE (VOLTS)
Figure 8. VDD = 7.5 V, VSS = – 7.5 V
Figure 9. VDD = 5.0 V, VSS = – 5.0 V
700
350
600
300
500
400
300
TA = 125°C
200
25°C
100
0
– 10
TA = 125°C
100
0
– 10
10
RON , “ON” RESISTANCE (OHMS)
R ON , “ON” RESISTANCE (OHMS)
TYPICAL RESISTANCE CHARACTERISTICS
– 55°C
– 8.0 – 6.0 – 4.0 – 2.0
0
0.2
4.0
6.0
8.0
VDD = 2.5 V
200
150
5.0 V
100
7.5 V
50
– 8.0 – 6.0 – 4.0 – 2.0
0
0.2
4.0
6.0
8.0
Vin, INPUT VOLTAGE (VOLTS)
Vin, INPUT VOLTAGE (VOLTS)
Figure 10. VDD = 2.5 V, VSS = – 2.5 V
Figure 11. Comparison at 25°C, VDD = – VSS
http://onsemi.com
6
10
TA = 25°C
250
0
– 10
10
8.0
10
MC14066B
APPLICATIONS INFORMATION
Figure A illustrates use of the Analog Switch. The 0–
to–5 volt digital control signal is used to directly control a
5 volt peak–to–peak analog signal.
The digital control logic levels are determined by VDD
and VSS. The VDD voltage is the logic high voltage, the VSS
voltage is logic low. For the example, VDD = + 5 V = logic
high at the control inputs; VSS = GND = 0 V = logic low.
The maximum analog signal level is determined by VDD
and VSS. The analog voltage must not swing higher than
VDD or lower than VSS.
The example shows a 5 volt peak–to–peak signal which
allows no margin at either peak. If voltage transients above
VDD and/or below VSS are anticipated on the analog
channels, external diodes (Dx) are recommended as shown
in Figure B. These diodes should be small signal types able
to absorb the maximum anticipated current surges during
clipping.
The absolute maximum potential difference between
VDD and VSS is 18.0 volts. Most parameters are specified up
to 15 volts which is the recommended maximum difference
between VDD and V SS.
+5 V
VDD
VSS
+ 5.0 V
5 Vp–p
SWITCH
IN
ANALOG SIGNAL
SWITCH
OUT
+5 V
5 Vp–p
ANALOG SIGNAL
+ 2.5 V
GND
EXTERNAL
CMOS
DIGITAL
CIRCUITRY
0–TO–5 V DIGITAL
MC14066B
CONTROL SIGNALS
Figure A. Application Example
VDD
VDD
DX
DX
SWITCH
IN
SWITCH
OUT
DX
DX
VSS
VSS
Figure B. External Germanium or Schottky Clipping Diodes
http://onsemi.com
7
MC14066B
PACKAGE DIMENSIONS
P SUFFIX
PLASTIC DIP PACKAGE
CASE 646–06
ISSUE M
14
8
1
7
B
A
F
L
N
C
–T–
SEATING
PLANE
J
K
H
G
D 14 PL
0.13 (0.005)
M
M
http://onsemi.com
8
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.
DIM
A
B
C
D
F
G
H
J
K
L
M
N
INCHES
MIN
MAX
0.715
0.770
0.240
0.260
0.145
0.185
0.015
0.021
0.040
0.070
0.100 BSC
0.052
0.095
0.008
0.015
0.115
0.135
0.290
0.310
–––
10_
0.015
0.039
MILLIMETERS
MIN
MAX
18.16
18.80
6.10
6.60
3.69
4.69
0.38
0.53
1.02
1.78
2.54 BSC
1.32
2.41
0.20
0.38
2.92
3.43
7.37
7.87
–––
10_
0.38
1.01
MC14066B
PACKAGE DIMENSIONS
D SUFFIX
PLASTIC SOIC PACKAGE
CASE 751A–03
ISSUE F
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
–A–
14
8
–B–
1
P 7 PL
0.25 (0.010)
7
G
B
M
M
R X 45 _
C
F
–T–
SEATING
PLANE
0.25 (0.010)
M
K
D 14 PL
M
T B
S
A
S
http://onsemi.com
9
J
DIM
A
B
C
D
F
G
J
K
M
P
R
MILLIMETERS
MIN
MAX
8.55
8.75
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0_
7_
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.337
0.344
0.150
0.157
0.054
0.068
0.014
0.019
0.016
0.049
0.050 BSC
0.008
0.009
0.004
0.009
0_
7_
0.228
0.244
0.010
0.019
MC14066B
PACKAGE DIMENSIONS
DT SUFFIX
PLASTIC TSSOP PACKAGE
CASE 948G–01
ISSUE O
14X K REF
0.10 (0.004)
0.15 (0.006) T U
M
T U
V
S
S
S
N
2X
14
L/2
0.25 (0.010)
8
M
B
–U–
L
PIN 1
IDENT.
F
7
1
0.15 (0.006) T U
N
S
DETAIL E
K
A
–V–
ÇÇÇ
ÉÉ
ÇÇÇ
ÉÉ
K1
J J1
SECTION N–N
–W–
C
0.10 (0.004)
–T– SEATING
PLANE
D
G
H
DETAIL E
http://onsemi.com
10
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION A DOES NOT INCLUDE MOLD
FLASH, PROTRUSIONS OR GATE BURRS. MOLD
FLASH OR GATE BURRS SHALL NOT EXCEED
0.15 (0.006) PER SIDE.
4. DIMENSION B DOES NOT INCLUDE
INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL NOT
EXCEED
0.25 (0.010) PER SIDE.
5. DIMENSION K DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN
EXCESS OF THE K DIMENSION AT MAXIMUM
MATERIAL CONDITION.
6. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
7. DIMENSION A AND B ARE TO BE
DETERMINED AT DATUM PLANE –W–.
MILLIMETERS
INCHES
DIM MIN
MAX
MIN
MAX
A
4.90
5.10
0.193
0.200
B
4.30
4.50
0.169
0.177
C
–––
1.20
–––
0.047
D
0.05
0.15
0.002
0.006
F
0.50
0.75
0.020
0.030
G
0.65 BSC
0.026 BSC
H
0.50
0.60
0.020
0.024
J
0.09
0.20
0.004
0.008
J1
0.09
0.16
0.004
0.006
K
0.19
0.30
0.007
0.012
K1
0.19
0.25
0.007
0.010
L
6.40 BSC
0.252 BSC
M
0_
8_
0_
8_
MC14066B
PACKAGE DIMENSIONS
F SUFFIX
PLASTIC EIAJ SOIC PACKAGE
CASE 965–01
ISSUE O
14
LE
8
Q1
E HE
L
7
1
M_
DETAIL P
Z
D
VIEW P
A
e
c
A1
b
0.13 (0.005)
M
0.10 (0.004)
http://onsemi.com
11
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS D AND E DO NOT INCLUDE
MOLD FLASH OR PROTRUSIONS AND ARE
MEASURED AT THE PARTING LINE. MOLD FLASH
OR PROTRUSIONS SHALL NOT EXCEED 0.15
(0.006) PER SIDE.
4. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
5. THE LEAD WIDTH DIMENSION (b) DOES NOT
INCLUDE DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08 (0.003)
TOTAL IN EXCESS OF THE LEAD WIDTH
DIMENSION AT MAXIMUM MATERIAL CONDITION.
DAMBAR CANNOT BE LOCATED ON THE LOWER
RADIUS OR THE FOOT. MINIMUM SPACE
BETWEEN PROTRUSIONS AND ADJACENT LEAD
TO BE 0.46 ( 0.018).
DIM
A
A1
b
c
D
E
e
HE
0.50
LE
M
Q1
Z
MILLIMETERS
MIN
MAX
–––
2.05
0.05
0.20
0.35
0.50
0.18
0.27
9.90
10.50
5.10
5.45
1.27 BSC
7.40
8.20
0.50
0.85
1.10
1.50
10 _
0_
0.70
0.90
–––
1.42
INCHES
MIN
MAX
–––
0.081
0.002
0.008
0.014
0.020
0.007
0.011
0.390
0.413
0.201
0.215
0.050 BSC
0.291
0.323
0.020
0.033
0.043
0.059
10 _
0_
0.028
0.035
–––
0.056
MC14066B
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
NORTH AMERICA Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: [email protected]
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada
N. American Technical Support: 800–282–9855 Toll Free USA/Canada
EUROPE: LDC for ON Semiconductor – European Support
German Phone: (+1) 303–308–7140 (M–F 1:00pm to 5:00pm Munich Time)
Email: ONlit–[email protected]
French Phone: (+1) 303–308–7141 (M–F 1:00pm to 5:00pm Toulouse Time)
Email: ONlit–[email protected]
English Phone: (+1) 303–308–7142 (M–F 12:00pm to 5:00pm UK Time)
Email: [email protected]
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781
*Available from Germany, France, Italy, England, Ireland
CENTRAL/SOUTH AMERICA:
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)
Email: ONlit–[email protected]
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)
Toll Free from Hong Kong & Singapore:
001–800–4422–3781
Email: ONlit–[email protected]
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549
Phone: 81–3–5740–2745
Email: [email protected]
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local
Sales Representative.
http://onsemi.com
12
MC14066B/D
Similar pages