M29F 200FT, 400FT, 800FT, 160FT M29F 200FB, 400FB, 800FB, 160FB Top / Bottom Boot Block 5 V Supply Flash Memory Features Supply voltage – VCC = 5 V Access time: 55 ns Program / Erase controller – Embedded byte/word program algorithms TSOP48 (N) 12 x 20 mm Erase Suspend and Resume modes Low power consumption – Standby and Automatic Standby 100,000 Program/Erase cycles per block Electronic signature – Manufacturer code: 0x01 – Top Device codes: – M29F200FT: 0x2251 – M29F400FT: 0x2223 – M29F800FT: 0x22D6 SO44 (M) – M29F160FT: 0x22D2 – Bottom Device codes: – M29F200FB: 0x2257 – M29F400FB: 0x22AB – M29F800FB: 0x2258 – M29F160FB: 0x22D8 RoHS packages available – SO44 – TSOP48 – TFBGA FBGA TFBGA48 (ZA) 6 x 8 mm Automotive device grade 3: – Temperature: –40 to 125 °C Automotive device grade 6: – Temperature: –40 to 85 °C Automotive grade certified (AEC-Q100) July 2010 Rev 9 1/67 www.numonyx.com 1 Contents M29FxxxFT, M29FxxxFB Contents 1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2 Signal Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3 4 2/67 2.1 Address Inputs (A0-A19) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2 Data Inputs/Outputs (DQ0-DQ7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Data Inputs/Outputs (DQ8-DQ14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4 Data Input/Output or Address Input (DQ15A-1) . . . . . . . . . . . . . . . . . . . . 20 2.5 Chip Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.6 Output Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.7 Write Enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.8 Reset/Block Temporary Unprotect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.9 Ready/Busy Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.10 Byte/Word Organization Select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.11 VCC Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.12 VSS Ground . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1 Bus Read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2 Bus Write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.3 Output Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.4 Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.5 Automatic Standby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.6 Special Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.7 Electronic Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.8 Block Protection and Block Unprotection . . . . . . . . . . . . . . . . . . . . . . . . . 24 Command Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.1 Read/Reset Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.2 Auto Select Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.3 Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.4 Unlock Bypass Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.5 Unlock Bypass Program Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 M29FxxxFT, M29FxxxFB 5 Contents 4.6 Unlock Bypass Reset Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.7 Chip Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4.8 Block Erase Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.9 Erase Suspend Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.10 Erase Resume Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.11 Read CFI Query Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.1 Data Polling Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.2 Toggle Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.3 Error Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.4 Erase Timer Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.5 Alternative Toggle Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 6 Maximum Rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 7 DC and AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 8 Package Mechanical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 9 Part Numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Appendix A Block Address Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Appendix B Common Flash Interface (CFI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Appendix C Block protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 C.1 Programmer Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 C.2 In-System Technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Appendix D Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3/67 List of tables M29FxxxFT, M29FxxxFB List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. 4/67 Signal Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Bus Operations, BYTE = VIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Bus Operations, BYTE = VIH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Commands, 16-bit mode, BYTE = VIH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Commands, 8-bit mode, BYTE = VIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Program/Erase Times and Program/Erase Endurance Cycles, M29F160F . . . . . . . . . . . . 32 Program/Erase Times and Program/Erase Endurance Cycles, M29F800F . . . . . . . . . . . . 32 Program/Erase Times and Program/Erase Endurance Cycles, M29F400F . . . . . . . . . . . . 33 Program/Erase Times and Program/Erase Endurance Cycles, M29F200F . . . . . . . . . . . . 33 Status Register Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Operating and AC Measurement Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Device Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Read AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Write AC Characteristics, Write Enable Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Write AC Characteristics, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Reset/Block Temporary Unprotect AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data. . . 45 SO44 - 44 lead Plastic Small Outline, 500 mils body width, package mechanical data . . . 46 TFBGA48 6 x 8 mm - 6 x 8 ball array, 0.80 mm pitch, package mechanical data . . . . . . . 47 Information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Top Boot Block Addresses, M29F160FT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Bottom Boot Block Addresses, M29F160FB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Top Boot Block Addresses, M29F800FT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Bottom Boot Block Addresses, M29F800FB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Top Boot Block Addresses, M29F400FT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Bottom Boot Block Addresses, M29F400FB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Top Boot Block Addresses, M29F200FT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Bottom Boot Block Addresses, M29F200FB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Query Structure Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 CFI Query Identification String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 CFI Query System Interface Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Device Geometry Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Primary Algorithm-Specific Extended Query Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Security Code Area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Programmer Technique Bus Operations, BYTE = VIH or VIL . . . . . . . . . . . . . . . . . . . . . . . 61 Document Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 M29FxxxFT, M29FxxxFB List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Logic Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 TSOP Connections, M29F160F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 TSOP Connections, M29F800F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 TSOP Connections, M29F400F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 TSOP Connections, M29F200F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 SO Connections, M29F800 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 SO Connections, M29F400 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 SO Connections, M29F200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 TFBGA connections (top view through package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Block Addresses, M29F160 (x8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Block Addresses, M29F160 (x16). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Block Addresses, M29F800 (x8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Block Addresses, M29F800 (x16). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Block Addresses, M29F400 (x8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Block Addresses, M29F400 (x16). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Block Addresses, M29F200 (x8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Block Addresses, M29F200 (x16). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 AC Measurement I/O Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 AC Measurement Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Read Mode AC Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Write AC Waveforms, Write Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Write AC Waveforms, Chip Enable Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Reset/Block Temporary Unprotect AC Waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Outline, top view . . . 45 SO44 – 44 lead plastic small outline, 500 mils body width, package outline . . . . . . . . . . . 46 TFBGA48 6 x 8 mm - 6 x 8 ball array, 0.80 mm pitch, package outline . . . . . . . . . . . . . . . 47 Programmer Equipment Block Protect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Programmer Equipment Chip Unprotect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 In-System Equipment Block Protect Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 In-System Equipment Chip Unprotect Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5/67 Description 1 M29FxxxFT, M29FxxxFB Description The following overview of the Numonyx® Axcell™ M29F 5 V Flash Memory device (M29W160F) refers to the 16-Mbit device. However, the information can also apply to lower densities of the M29F device. The M29F160F is a 16 Mbit (2 Mbit x8 or 1 Mbit x16) non-volatile memory that can be read, erased and reprogrammed. These operations can be performed using a single low voltage (4.5 to 5.5 V) supply. On power-up the memory defaults to its Read mode where it can be read in the same way as a ROM or EPROM. The memory is divided into blocks that can be erased independently so it is possible to preserve valid data while old data is erased. Each block can be protected independently to prevent accidental Program or Erase commands from modifying the memory. Program and Erase commands are written to the Command Interface of the memory. An on-chip Program/Erase Controller simplifies the process of programming or erasing the memory by taking care of all of the special operations that are required to update the memory contents. The end of a program or erase operation can be detected and any error conditions identified. The command set required to control the memory is consistent with JEDEC standards. The blocks in the memory are asymmetrically arranged, as shown in Figure 10.: Block Addresses, M29F160 (x8) and Figure 11.: Block Addresses, M29F160 (x16). The first or last 64 KBytes have been divided into four additional blocks. The 16 KByte Boot Block can be used for small initialization code to start the microprocessor, the two 8 KByte Parameter Blocks can be used for parameter storage and the remaining 32K is a small Main Block where the application may be stored. Chip Enable, Output Enable and Write Enable signals control the bus operation of the memory. They allow simple connection to most microprocessors, often without additional logic. The memory is offered in TSOP48 (12 x 20mm), SO44 , and TFBGA48 (0.8 mm pitch) packages. The memory is supplied with all the bits erased (set to ’1’). 6/67 M29FxxxFT, M29FxxxFB Figure 1. Description Logic Diagram VCC 20 15 DQ0-DQ07 DQ8-DQ15 A0-A19 W DQ15A–1 E G RB RP BYTE VSS AI06849B Table 1. Signal Names A0-A19 Address Inputs DQ0-DQ7 Data Inputs/Outputs DQ8-DQ14 Data Inputs/Outputs DQ15A–1 Data Input/Output or Address Input E Chip Enable G Output Enable W Write Enable RP Reset/Block Temporary Unprotect RB Ready/Busy Output BYTE Byte/Word Organization Select VCC Supply Voltage VSS Ground NC Not Connected Internally 7/67 Description M29FxxxFT, M29FxxxFB Figure 2. TSOP Connections, M29F160F A15 A14 A13 A12 A11 A10 A9 A8 A19 NC W RP NC NC RB A18 A17 A7 A6 A5 A4 A3 A2 A1 1 48 12 13 37 36 24 25 A16 BYTE VSS DQ15A–1 DQ7 DQ14 DQ6 DQ13 DQ5 DQ12 DQ4 VCC DQ11 DQ3 DQ10 DQ2 DQ9 DQ1 DQ8 DQ0 G VSS E A0 AI06850_160 8/67 M29FxxxFT, M29FxxxFB Figure 3. Description TSOP Connections, M29F800F A15 A14 A13 A12 A11 A10 A9 A8 NC NC W RP NC NC RB A18 A17 A7 A6 A5 A4 A3 A2 A1 1 48 12 13 37 36 24 25 A16 BYTE VSS DQ15A–1 DQ7 DQ14 DQ6 DQ13 DQ5 DQ12 DQ4 VCC DQ11 DQ3 DQ10 DQ2 DQ9 DQ1 DQ8 DQ0 G VSS E A0 AI06850_800 9/67 Description M29FxxxFT, M29FxxxFB Figure 4. TSOP Connections, M29F400F A15 A14 A13 A12 A11 A10 A9 A8 NC NC W RP NC NC RB NC A17 A7 A6 A5 A4 A3 A2 A1 1 48 12 13 37 36 24 25 A16 BYTE VSS DQ15A–1 DQ7 DQ14 DQ6 DQ13 DQ5 DQ12 DQ4 VCC DQ11 DQ3 DQ10 DQ2 DQ9 DQ1 DQ8 DQ0 G VSS E A0 AI06850_400 10/67 M29FxxxFT, M29FxxxFB Figure 5. Description TSOP Connections, M29F200F A15 A14 A13 A12 A11 A10 A9 A8 NC NC W RP NC NC RB NC NC A7 A6 A5 A4 A3 A2 A1 1 48 12 13 37 36 24 25 A16 BYTE VSS DQ15A–1 DQ7 DQ14 DQ6 DQ13 DQ5 DQ12 DQ4 VCC DQ11 DQ3 DQ10 DQ2 DQ9 DQ1 DQ8 DQ0 G VSS E A0 AI06850_400 11/67 Description M29FxxxFT, M29FxxxFB Figure 6. SO Connections, M29F800 RB A18 A17 A7 A6 A5 A4 A3 A2 A1 A0 E VSS G DQ0 DQ8 DQ1 DQ9 DQ2 DQ10 DQ3 DQ11 1 44 11 12 34 33 RP W A8 A9 A10 A11 A12 A13 A14 A15 A16 BYTE VSS DQ15A–1 DQ7 DQ14 DQ6 DQ13 22 23 DQ5 DQ12 DQ4 VCC AI02906_400 12/67 M29FxxxFT, M29FxxxFB Figure 7. Description SO Connections, M29F400 NC RB A17 A7 A6 A5 A4 A3 A2 A1 A0 E VSS G DQ0 DQ8 DQ1 DQ9 DQ2 DQ10 DQ3 DQ11 1 44 11 12 34 33 RP W A8 A9 A10 A11 A12 A13 A14 A15 A16 BYTE VSS DQ15A–1 DQ7 DQ14 DQ6 DQ13 22 23 DQ5 DQ12 DQ4 VCC AI02906_400 13/67 Description M29FxxxFT, M29FxxxFB Figure 8. SO Connections, M29F200 NC RB NC A7 A6 A5 A4 A3 A2 A1 A0 E VSS G DQ0 DQ8 DQ1 DQ9 DQ2 DQ10 DQ3 DQ11 1 44 11 12 34 33 RP W A8 A9 A10 A11 A12 A13 A14 A15 A16 BYTE VSS DQ15A–1 DQ7 DQ14 DQ6 DQ13 22 23 DQ5 DQ12 DQ4 VCC AI02906_400 14/67 M29FxxxFT, M29FxxxFB Figure 9. Description TFBGA connections (top view through package) 1 2 3 4 5 6 A A3 A7 RB W A9 A13 B A4 A17 / NC NC RP A8 A12 C A2 A6 A18 / NC NC A10 A14 D A1 A5 NC A19 / NC A11 A15 E A0 DQ0 DQ2 DQ5 DQ7 A16 F E DQ8 DQ10 DQ12 DQ14 BYTE G G DQ9 DQ11 VCC DQ13 DQ15 A–1 H VSS DQ1 DQ3 DQ4 DQ6 VSS AI02985c 1. On the M29F800FT/B, A19 is NC (no connect); on the M29F400FT/B, A19-A18 are NC; on M29F200FT/B, A19-A18-A17 are NC. 15/67 Description M29FxxxFT, M29FxxxFB Figure 10. Block Addresses, M29F160 (x8) Top Boot Block Addresses (x8) Bottom Boot Block Addresses (x8) 1FFFFFh 1FFFFFh 16 KByte 64 KByte 1FC000h 1FBFFFh 1F0000h 1EFFFFh 8 KByte 64 KByte 1FA000h 1F9FFFh 1E0000h Total of 31 64 KByte Blocks 8 KByte 1F8000h 1F7FFFh 32 KByte 1F0000h 1EFFFFh 01FFFFh 64 KByte 64 KByte 1E0000h 010000h 00FFFFh 32 KByte Total of 31 64 KByte Blocks 01FFFFh 008000h 007FFFh 8 KByte 006000h 005FFFh 64 KByte 8 KByte 004000h 003FFFh 010000h 00FFFFh 64 KByte 16 KByte 000000h 000000h AI06851_x8_160 Also see Appendix Appendix A: Block Address Table for a full listing of the Block Addresses. Figure 11. Block Addresses, M29F160 (x16) Top Boot Block Addresses (x16) Bottom Boot Block Addresses (x16) FFFFFh FFFFFh 8 KWord 32 KWord FE000h FDFFFh F8000h F7FFFh 4 KWord 32 KWord FD000h FCFFFh F0000h Total of 31 32 KWord Blocks 4 KWord FC000h FBFFFh 16 KWord F8000h F7FFFh 0FFFFh 32 KWord 32 KWord F0000h 08000h 07FFFh 16 KWord Total of 31 32 KWord Blocks 0FFFFh 04000h 03FFFh 4 KWord 03000h 02FFFh 32 KWord 08000h 07FFFh 4 KWord 02000h 01FFFh 32 KWord 00000h 8 KWord 00000h AI06852_x16_160 Also see Appendix Appendix A: Block Address Table for a full listing of the Block Addresses. 16/67 M29FxxxFT, M29FxxxFB Description Figure 12. Block Addresses, M29F800 (x8) Top Boot Block Addresses (x8) Bottom Boot Block Addresses (x8) FFFFFh FFFFFh 16 KByte 64 KByte FC000h FBFFFh F0000h EFFFFh 8 KByte 64 KByte FA000h F9FFFh E0000h Total of 15 64 KByte Blocks 8 KByte F8000h F7FFFh 32 KByte F0000h EFFFFh 1FFFFh 64 KByte 64 KByte E0000h 10000h 0FFFFh 32 KByte Total of 15 64 KByte Blocks 1FFFFh 08000h 07FFFh 8 KByte 06000h 05FFFh 64 KByte 8 KByte 04000h 03FFFh 10000h 0FFFFh 64 KByte 16 KByte 00000h 00000h AI05463_x8_800 Also see Appendix Appendix A: Block Address Table for a full listing of the Block Addresses. Figure 13. Block Addresses, M29F800 (x16) Top Boot Block Addresses (x16) Bottom Boot Block Addresses (x16) 7FFFFh 7FFFFh 8 KWord 32 KWord 7E000h 7DFFFh 78000h 77FFFh 4 KWord 32 KWord 7D000h 7CFFFh 70000h Total of 15 32 KWord Blocks 4 KWord 7C000h 7BFFFh 16 KWord 78000h 77FFFh 0FFFFh 32 KWord 32 KWord 70000h 08000h 07FFFh 16 KWord Total of 15 32 KWord Blocks 0FFFFh 04000h 03FFFh 4 KWord 03000h 02FFFh 32 KWord 08000h 07FFFh 4 KWord 02000h 01FFFh 32 KWord 00000h 8 KWord 00000h AI05464_x16_800 Also see Appendix Appendix A: Block Address Table for a full listing of the Block Addresses. 17/67 Description M29FxxxFT, M29FxxxFB Figure 14. Block Addresses, M29F400 (x8) Top Boot Block Addresses (x8) Bottom Boot Block Addresses (x8) 7FFFFh 7FFFFh 16 KByte 64 KByte 7C000h FBFFFh 70000h 6FFFFh 8 KByte 64 KByte 7A000h 79FFFh 60000h Total of 7 64 KByte Blocks 8 KByte 78000h 77FFFh 32 KByte 70000h 6FFFFh 1FFFFh 64 KByte 64 KByte 60000h 10000h 0FFFFh 32 KByte Total of 7 64 KByte Blocks 1FFFFh 08000h 07FFFh 8 KByte 06000h 05FFFh 64 KByte 8 KByte 04000h 03FFFh 10000h 0FFFFh 64 KByte 16 KByte 00000h 00000h AI05463_x8_400 Also see Appendix Appendix A: Block Address Table for a full listing of the Block Addresses. Figure 15. Block Addresses, M29F400 (x16) Top Boot Block Addresses (x16) Bottom Boot Block Addresses (x16) 3FFFFh 3FFFFh 8 KWord 32 KWord 3E000h 3DFFFh 38000h 37FFFh 4 KWord 32 KWord 3D000h 3CFFFh 30000h Total of 7 32 KWord Blocks 4 KWord 3C000h 3BFFFh 16 KWord 38000h 37FFFh 0FFFFh 32 KWord 32 KWord 30000h 08000h 07FFFh 16 KWord Total of 7 32 KWord Blocks 0FFFFh 04000h 03FFFh 4 KWord 03000h 02FFFh 32 KWord 08000h 07FFFh 4 KWord 02000h 01FFFh 32 KWord 00000h 8 KWord 00000h AI5464_x16_400 Also see Appendix Appendix A: Block Address Table for a full listing of the Block Addresses. 18/67 M29FxxxFT, M29FxxxFB Description Figure 16. Block Addresses, M29F200 (x8) Top Boot Block Addresses (x8) Bottom Boot Block Addresses (x8) 3FFFFh 2FFFFh 16 KByte 64 KByte 3C000h 3BFFFh 20000h 2FFFFh 8 KByte 64 KByte 3A000h 39FFFh 20000h Total of 3 64 KByte Blocks 8 KByte 38000h 37FFFh 32 KByte 30000h 3FFFFh 1FFFFh 64 KByte 64 KByte 20000h 10000h 0FFFFh 32 KByte Total of 3 64 KByte Blocks 1FFFFh 08000h 07FFFh 8 KByte 06000h 05FFFh 64 KByte 8 KByte 10000h 0FFFFh 04000h 03FFFh 64 KByte 16 KByte 00000h 00000h AI05463_x8_200 Also see Appendix Appendix A: Block Address Table for a full listing of the Block Addresses. Figure 17. Block Addresses, M29F200 (x16) Top Boot Block Addresses (x16) Bottom Boot Block Addresses (x16) 1FFFFh 1FFFFh 8 KWord 32 KWord 1E000h 1DFFFh 18000h 17FFFh 4 KWord 32 KWord 1D000h 3CFFFh 10000h Total of 3 32 KWord Blocks 4 KWord 1C000h 3BFFFh 16 KWord 18000h 17FFFh 0FFFFh 32 KWord 32 KWord 10000h 08000h 07FFFh 16 KWord Total of 3 32 KWord Blocks 0FFFFh 04000h 03FFFh 4 KWord 03000h 02FFFh 32 KWord 4 KWord 02000h 01FFFh 08000h 07FFFh 32 KWord 00000h 8 KWord 00000h AI05464_x16_200 Also see Appendix Appendix A: Block Address Table for a full listing of the Block Addresses. 19/67 Signal Descriptions 2 M29FxxxFT, M29FxxxFB Signal Descriptions See Figure 1.: Logic Diagram and Table 1.: Signal Names, for a brief overview of the signals connected to this device. 2.1 Address Inputs (A0-A19) The Address Inputs select the cells in the memory array to access during Bus Read operations. During Bus Write operations they control the commands sent to the Command Interface of the Program/Erase Controller. 2.2 Data Inputs/Outputs (DQ0-DQ7) The Data Inputs/Outputs output the data stored at the selected address during a Bus Read operation. During Bus Write operations they represent the commands sent to the Command Interface of the Program/Erase Controller. 2.3 Data Inputs/Outputs (DQ8-DQ14) The Data Inputs/Outputs output the data stored at the selected address during a Bus Read operation when BYTE is High, VIH. When BYTE is Low, VIL, these pins are not used and are high impedance. During Bus Write operations the Command Register does not use these bits. When reading the Status Register these bits should be ignored. 2.4 Data Input/Output or Address Input (DQ15A-1) When BYTE is High, VIH, this pin behaves as a Data Input/Output pin (as DQ8-DQ14). When BYTE is Low, VIL, this pin behaves as an address pin; DQ15A–1 Low will select the LSB of the Word on the other addresses, DQ15A–1 High will select the MSB. Throughout the text consider references to the Data Input/Output to include this pin when BYTE is High and references to the Address Inputs to include this pin when BYTE is Low except when stated explicitly otherwise. 2.5 Chip Enable The Chip Enable, E, activates the memory, allowing Bus Read and Bus Write operations to be performed. When Chip Enable is High, VIH, all other pins are ignored. 2.6 Output Enable The Output Enable, G, controls the Bus Read operation of the memory. 20/67 M29FxxxFT, M29FxxxFB 2.7 Signal Descriptions Write Enable The Write Enable, W, controls the Bus Write operation of the memory’s Command Interface. 2.8 Reset/Block Temporary Unprotect The Reset/Block Temporary Unprotect pin can be used to apply a Hardware Reset to the memory or to temporarily unprotect all Blocks that have been protected. A Hardware Reset is achieved by holding Reset/Block Temporary Unprotect Low, VIL, for at least tPLPX. After Reset/Block Temporary Unprotect goes High, VIH, the memory will be ready for Bus Read and Bus Write operations after tPHEL or tRHEL, whichever occurs last. See the Ready/Busy Output section, Table 18.: Reset/Block Temporary Unprotect AC Characteristics and Figure 23.: Reset/Block Temporary Unprotect AC Waveforms. Holding RP at VID will temporarily unprotect the protected Blocks in the memory. Program and Erase operations on all blocks will be possible. The transition from VIH to VID must be slower than tPHPHH. 2.9 Ready/Busy Output The Ready/Busy pin is an open-drain output that can be used to identify when the device is performing a Program or Erase operation. During Program or Erase operations Ready/Busy is Low, VOL. Ready/Busy is high-impedance during Read mode, Auto Select mode and Erase Suspend mode. After a Hardware Reset, Bus Read and Bus Write operations cannot begin until Ready/Busy becomes high-impedance. See Table 18.: Reset/Block Temporary Unprotect AC Characteristics and Figure 23.: Reset/Block Temporary Unprotect AC Waveforms. The use of an open-drain output allows the Ready/Busy pins from several memories to be connected to a single pull-up resistor. A Low will then indicate that one, or more, of the memories is busy. 2.10 Byte/Word Organization Select The Byte/Word Organization Select pin is used to switch between the 8-bit and 16-bit Bus modes of the memory. When Byte/Word Organization Select is Low, VIL, the memory is in 8bit mode, when it is High, VIH, the memory is in 16-bit mode. 2.11 VCC Supply Voltage The VCC Supply Voltage supplies the power for all operations (Read, Program, Erase etc.). The Command Interface is disabled when the VCC Supply Voltage is less than the Lockout Voltage, VLKO. This prevents Bus Write operations from accidentally damaging the data during power up, power down and power surges. If the Program/Erase Controller is programming or erasing during this time then the operation aborts and the memory contents being altered will be invalid. 21/67 Signal Descriptions M29FxxxFT, M29FxxxFB A 0.1µF capacitor should be connected between the VCC Supply Voltage pin and the VSS Ground pin to decouple the current surges from the power supply. The PCB track widths must be sufficient to carry the currents required during program and erase operations, ICC3. 2.12 VSS Ground The VSS Ground is the reference for all voltage measurements. The two VSS pins of the device must be connected to the system ground. 22/67 M29FxxxFT, M29FxxxFB 3 Bus Operations Bus Operations There are five standard bus operations that control the device. These are Bus Read, Bus Write, Output Disable, Standby and Automatic Standby. See Table 2.: Bus Operations, BYTE = VIL and Table 3.: Bus Operations, BYTE = VIH for a summary. Typically glitches of less than 5ns on Chip Enable or Write Enable are ignored by the memory and do not affect bus operations. 3.1 Bus Read Bus Read operations read from the memory cells, or specific registers in the Command Interface. A valid Bus Read operation involves setting the desired address on the Address Inputs, applying a Low signal, VIL, to Chip Enable and Output Enable and keeping Write Enable High, VIH. The Data Inputs/Outputs will output the value, see Figure 20.: Read Mode AC Waveforms and Table 15.: Read AC Characteristics, for details of when the output becomes valid. 3.2 Bus Write Bus Write operations write to the Command Interface. A valid Bus Write operation begins by setting the desired address on the Address Inputs. The Address Inputs are latched by the Command Interface on the falling edge of Chip Enable or Write Enable, whichever occurs last. The Data Inputs/Outputs are latched by the Command Interface on the rising edge of Chip Enable or Write Enable, whichever occurs first. Output Enable must remain High, VIH, during the whole Bus Write operation. See the following figures and tables: 3.3 Figure 21.: Write AC Waveforms, Write Enable Controlled Figure 22.: Write AC Waveforms, Chip Enable Controlled, Table 16.: Write AC Characteristics, Write Enable Controlled Table 17.: Write AC Characteristics, Chip Enable Controlled. Output Disable The Data Inputs/Outputs are in the high impedance state when Output Enable is High, VIH. 3.4 Standby When Chip Enable is High, VIH, the memory enters Standby mode and the Data Inputs/Outputs pins are placed in the high-impedance state. To reduce the Supply Current to the Standby Supply Current, ICC2, Chip Enable should be held within VCC ± 0.2V. For the Standby current level see Table 14.: DC Characteristics. During program or erase operations the memory will continue to use the Program/Erase Supply Current, ICC3, for Program or Erase operations until the operation completes. 23/67 Bus Operations 3.5 M29FxxxFT, M29FxxxFB Automatic Standby If CMOS levels (VCC ± 0.2V) are used to drive the bus and the bus is inactive for 150ns or more the memory enters Automatic Standby where the internal Supply Current is reduced to the Standby Supply Current, ICC2. The Data Inputs/Outputs will still output data if a Bus Read operation is in progress. 3.6 Special Bus Operations Additional bus operations can be performed to read the Electronic Signature and also to apply and remove Block Protection. These bus operations are intended for use by programming equipment and are not usually used in applications. They require VID to be applied to some pins. 3.7 Electronic Signature The memory has two codes, the manufacturer code and the device code, that can be read to identify the memory. These codes can be read by applying the signals listed in Table 2.: Bus Operations, BYTE = VIL and Table 3.: Bus Operations, BYTE = VIH. 3.8 Block Protection and Block Unprotection Each block can be separately protected against accidental Program or Erase. Protected blocks can be unprotected to allow data to be changed. There are two methods available for protecting and unprotecting the blocks, one for use on programming equipment and the other for in-system use. Block Protect and Blocks Unprotect operations are described in Appendix C: Block protection. 24/67 M29FxxxFT, M29FxxxFB Table 2. Bus Operations Bus Operations, BYTE = VIL Operation E G Address Inputs DQ15A–1, A0-A19 W Data Inputs/Outputs DQ14-DQ8 DQ7-DQ0 Bus Read VIL VIL VIH Cell Address Hi-Z Data Output Bus Write VIL VIH VIL Command Address Hi-Z Data Input VIH VIH X Hi-Z Hi-Z X X Hi-Z Hi-Z VIH A0 = VIL, A1 = VIL, A9 = VID, Hi-Z Others VIL or VIH 0x01 A0 = VIH, A1 = VIL, A9 = VID, Hi-Z Others VIL or VIH 0x51 (M29F200FT) 0x57 (M29F200FB) 0x23 (M29F400FT) 0xAB (M29F400FB) 0xD6 (M29F800FT) 0x58 (M29F800FB) 0xD2 (M29F160FT) 0xD8 (M29F160FB) Output Disable X Standby VIH X Read Manufacturer Code VIL Read Device Code VIL VIL VIL VIH X = VIL or VIH. Table 3. Bus Operations, BYTE = VIH Operation Bus Read G E VIL Address Inputs A0-A19 W VIL VIH Cell Address Data Inputs/Outputs DQ15A–1, DQ14-DQ0 Data Output Bus Write VIL VIH VIL Command Address Data Input Output Disable X VIH VIH X Hi-Z Standby VIH X X X Hi-Z Read Manufacturer Code VIL VIL VIH A0 = VIL, A1 = VIL, A9 = 0x01 VID, Others VIL or VIH VIH 0x2251 (M29F200FT) 0x2257 (M29F200FB) 0x2223 (M29F400FT) A0 = VIH, A1 = VIL, A9 = 0x22AB (M29F400FB) VID, Others VIL or VIH 0x22D6 (M29F800FT) 0x2258 (M29F800FB) 0x22D2 (M29F160FT) 0x22D8 (M29F160FB) Read Device Code VIL VIL X = VIL or VIH. 25/67 Command Interface 4 M29FxxxFT, M29FxxxFB Command Interface All Bus Write operations to the memory are interpreted by the Command Interface. Commands consist of one or more sequential Bus Write operations. Failure to observe a valid sequence of Bus Write operations will result in the memory returning to Read mode. The long command sequences are imposed to maximize data security. The address used for the commands changes depending on whether the memory is in 16bit or 8-bit mode. See either Table 4.: Commands, 16-bit mode, BYTE = VIH, or Table 5.: Commands, 8-bit mode, BYTE = VIL, depending on the configuration that is being used, for a summary of the commands. 4.1 Read/Reset Command The Read/Reset command returns the memory to its Read mode where it behaves like a ROM or EPROM, unless otherwise stated. It also resets the errors in the Status Register. Either one or three Bus Write operations can be used to issue the Read/Reset command. The Read/Reset Command can be issued, between Bus Write cycles before the start of a program or erase operation, to return the device to read mode. Once the program or erase operation has started the Read/Reset command is no longer accepted. The Read/Reset command will not abort an Erase operation when issued while in Erase Suspend. 4.2 Auto Select Command The Auto Select command is used to read the Manufacturer Code, the Device Code and the Block Protection Status. Three consecutive Bus Write operations are required to issue the Auto Select command. Once the Auto Select command is issued the memory remains in Auto Select mode until a Read/Reset command is issued. Read CFI Query and Read/Reset commands are accepted in Auto Select mode, all other commands are ignored. From the Auto Select mode the Manufacturer Code can be read using a Bus Read operation with A0 = VIL and A1 = VIL. The other address bits may be set to either VIL or VIH. The Manufacturer Code for Numonyx is 0001h. The Device Code can be read using a Bus Read operation with A0 = VIH and A1 = VIL. The other address bits may be set to either VIL or VIH. The Block Protection Status of each block can be read using a Bus Read operation with A0 = VIL, A1 = VIH, and A12-A19 specifying the address of the block. The other address bits may be set to either VIL or VIH. If the addressed block is protected then 01h is output on Data Inputs/Outputs DQ0-DQ7, otherwise 00h is output. 4.3 Program Command The Program command can be used to program a value to one address in the memory array at a time. The command requires four Bus Write operations, the final write operation latches the address and data, and starts the Program/Erase Controller. If the address falls in a protected block then the Program command is ignored, the data remains unchanged. The Status Register is never read and no error condition is given. 26/67 M29FxxxFT, M29FxxxFB Command Interface During the program operation the memory will ignore all commands. It is not possible to issue any command to abort or pause the operation. Typical program times are given in Table 6.: Program/Erase Times and Program/Erase Endurance Cycles, M29F160F. Bus Read operations during the program operation will output the Status Register on the Data Inputs/Outputs. See the section on the Status Register for more details. After the program operation has completed the memory returns to the Read mode, unless an error has occurred. When an error occurs the memory continues to output the Status Register. A Read/Reset command must be issued to reset the error condition and return to Read mode. Note that the Program command cannot change a bit set at ’0’ back to ’1’. One of the Erase Commands must be used to set all the bits in a block or in the whole memory from ’0’ to ’1’. 4.4 Unlock Bypass Command The Unlock Bypass command is used in conjunction with the Unlock Bypass Program command to program the memory. When the access time to the device is long (as with some EPROM programmers) considerable time saving can be made by using these commands. Three Bus Write operations are required to issue the Unlock Bypass command. Once the Unlock Bypass command has been issued the memory will only accept the Unlock Bypass Program command and the Unlock Bypass Reset command. The memory can be read as if in Read mode. 4.5 Unlock Bypass Program Command The Unlock Bypass Program command can be used to program one address in memory at a time. The command requires two Bus Write operations, the final write operation latches the address and data, and starts the Program/Erase Controller. The Program operation using the Unlock Bypass Program command behaves identically to the Program operation using the Program command. A protected block cannot be programmed; the operation cannot be aborted and the Status Register is read. Errors must be reset using the Read/Reset command, which leaves the device in Unlock Bypass Mode. See the Program command for details on the behavior. 4.6 Unlock Bypass Reset Command The Unlock Bypass Reset command can be used to return to Read/Reset mode from Unlock Bypass Mode. Two Bus Write operations are required to issue the Unlock Bypass Reset command. Read/Reset command does not exit from Unlock Bypass Mode. 4.7 Chip Erase Command The Chip Erase command can be used to erase the entire chip. Six Bus Write operations are required to issue the Chip Erase Command and start the Program/Erase Controller. If any blocks are protected then these are ignored and all the other blocks are erased. If all of the blocks are protected the Chip Erase operation appears to start but will terminate 27/67 Command Interface M29FxxxFT, M29FxxxFB within about 100µs, leaving the data unchanged. No error condition is given when protected blocks are ignored. During the erase operation the memory will ignore all commands. It is not possible to issue any command to abort the operation. Typical chip erase times are given in Table 6.: Program/Erase Times and Program/Erase Endurance Cycles, M29F160F. All Bus Read operations during the Chip Erase operation will output the Status Register on the Data Inputs/Outputs. See the section on the Status Register for more details. After the Chip Erase operation has completed the memory will return to the Read Mode, unless an error has occurred. When an error occurs the memory will continue to output the Status Register. A Read/Reset command must be issued to reset the error condition and return to Read Mode. The Chip Erase Command sets all of the bits in unprotected blocks of the memory to ’1’. All previous data is lost. 4.8 Block Erase Command The Block Erase command can be used to erase a list of one or more blocks. Six Bus Write operations are required to select the first block in the list. Each additional block in the list can be selected by repeating the sixth Bus Write operation using the address of the additional block. The Block Erase operation starts the Program/Erase Controller about 50µs after the last Bus Write operation. Once the Program/Erase Controller starts it is not possible to select any more blocks. Each additional block must therefore be selected within 50µs of the last block. The 50µs timer restarts when an additional block is selected. The Status Register can be read after the sixth Bus Write operation. See the Status Register section for details on how to identify if the Program/Erase Controller has started the Block Erase operation. If any selected blocks are protected then these are ignored and all the other selected blocks are erased. If all of the selected blocks are protected the Block Erase operation appears to start but will terminate within about 100µs, leaving the data unchanged. No error condition is given when protected blocks are ignored. During the Block Erase operation the memory will ignore all commands except the Erase Suspend command. Typical block erase times are given in Table 6.: Program/Erase Times and Program/Erase Endurance Cycles, M29F160F. All Bus Read operations during the Block Erase operation will output the Status Register on the Data Inputs/Outputs. See the section on the Status Register for more details. After the Block Erase operation has completed the memory will return to the Read Mode, unless an error has occurred. When an error occurs the memory will continue to output the Status Register. A Read/Reset command must be issued to reset the error condition and return to Read mode. The Block Erase Command sets all of the bits in the unprotected selected blocks to ’1’. All previous data in the selected blocks is lost. 4.9 Erase Suspend Command The Erase Suspend Command may be used to temporarily suspend a Block Erase operation and return the memory to Read mode. The command requires one Bus Write operation. 28/67 M29FxxxFT, M29FxxxFB Command Interface The Program/Erase Controller will suspend within the Erase Suspend Latency Time (refer to Table 6.: Program/Erase Times and Program/Erase Endurance Cycles, M29F160F for value) of the Erase Suspend Command being issued. Once the Program/Erase Controller has stopped the memory will be set to Read mode and the Erase will be suspended. If the Erase Suspend command is issued during the period when the memory is waiting for an additional block (before the Program/Erase Controller starts) then the Erase is suspended immediately and will start immediately when the Erase Resume Command is issued. It is not possible to select any further blocks to erase after the Erase Resume. During Erase Suspend it is possible to Read and Program cells in blocks that are not being erased; both Read and Program operations behave as normal on these blocks. If any attempt is made to program in a protected block or in the suspended block then the Program command is ignored and the data remains unchanged. The Status Register is not read and no error condition is given. Reading from blocks that are being erased will output the Status Register. It is also possible to issue the Auto Select, Read CFI Query and Unlock Bypass commands during an Erase Suspend. The Read/Reset command must be issued to return the device to Read Array mode before the Resume command will be accepted. 4.10 Erase Resume Command The Erase Resume command must be used to restart the Program/Erase Controller from Erase Suspend. An erase can be suspended and resumed more than once. 4.11 Read CFI Query Command The Read CFI Query Command is used to read data from the Common Flash Interface (CFI) Memory Area. This command is valid when the device is in the Read Array mode, or when the device is in Auto Select mode. One Bus Write cycle is required to issue the Read CFI Query Command. Once the command is issued subsequent Bus Read operations read from the Common Flash Interface Memory Area. The Read/Reset command must be issued to return the device to the previous mode (the Read Array mode or Auto Select mode). A second Read/Reset command would be needed if the device is to be put in the Read Array mode from Auto Select mode. See Appendix B: Common Flash Interface (CFI) and the following tables for details on the information contained in the Common Flash Interface (CFI) memory area. Table 31.: Query Structure Overview, Table 32.: CFI Query Identification String, Table 33.: CFI Query System Interface Information, Table 34.: Device Geometry Definition, Table 35.: Primary Algorithm-Specific Extended Query Table Table 36.: Security Code Area 29/67 Command Interface Table 4. M29FxxxFT, M29FxxxFB Commands, 16-bit mode, BYTE = VIH Command Length Bus Write Operations 1st 2nd 3rd 4th 5th 6th Addr Addr Addr Addr Addr Addr Addr Addr Addr Addr Addr Addr 1 X F0 3 555 AA 2AA 55 X F0 Auto Select 3 555 AA 2AA 55 555 90 Program 4 555 AA 2AA 55 555 A0 Unlock Bypass 3 555 AA 2AA 55 555 20 Unlock Bypass Program 2 X A0 PA PD Unlock Bypass Reset 2 X 90 X 00 Chip Erase 6 555 AA 2AA 55 555 Block Erase 6+ 555 AA 2AA 55 555 Erase Suspend 1 X B0 Erase Resume 1 X 30 Read CFI Query 1 55 98 Read/Reset PA PD 80 555 AA 2AA 55 555 10 80 555 AA 2AA 55 BA 30 X Don’t Care, PA Program Address, PD Program Data, BA Any address in the Block. All values in the table are in hexadecimal. Command Interface: only uses A–1, A0-A10 and DQ0-DQ7 to verify the commands; A11-A19, DQ8-DQ14 and DQ15 are Don’t Care. DQ15A–1 is A–1 when BYTE is VIL or DQ15 when BYTE is VIH. Read/Reset: After a Read/Reset command, read the memory as normal until another command is issued. Auto Select: After an Auto Select command, read Manufacturer ID, Device ID or Block Protection Status. Program, Unlock Bypass Program, Chip Erase, Block Erase: After these commands read the Status Register until the Program/Erase Controller completes and the memory returns to Read Mode. Add additional Blocks during Block Erase Command with additional Bus Write Operations until Timeout Bit is set. Unlock Bypass: After the Unlock Bypass command issue Unlock Bypass Program or Unlock Bypass Reset commands. Unlock Bypass Reset: After the Unlock Bypass Reset command read the memory as normal until another command is issued. Erase Suspend: After the Erase Suspend command read non-erasing memory blocks as normal, issue Auto Select and Program commands on non-erasing blocks as normal. Erase Resume: After the Erase Resume command the suspended Erase operation resumes, read the Status Register until the Program/Erase Controller completes and the memory returns to Read Mode. CFI Query: Command is valid when device is ready to read array data or when device is in Auto Select mode. 30/67 M29FxxxFT, M29FxxxFB Table 5. Command Interface Commands, 8-bit mode, BYTE = VIL Command Length Bus Write Operations 1st 2nd 3rd 4th 5th 6th Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data 1 X F0 3 AAA AA 555 55 X F0 Auto Select 3 AAA AA 555 55 AAA 90 Program 4 AAA AA 555 55 AAA A0 Unlock Bypass 3 AAA AA 555 55 AAA 20 Unlock Bypass Program 2 X A0 PA PD Unlock Bypass Reset 2 X 90 X 00 Chip Erase 6 AAA AA 555 55 AAA Block Erase 6+ AAA AA 555 55 AAA Erase Suspend 1 X B0 Erase Resume 1 X 30 Read CFI Query 1 AA 98 Read/Reset PA PD 80 AAA AA 555 55 AAA 10 80 AAA AA 555 55 BA 30 X Don’t Care, PA Program Address, PD Program Data, BA Any address in the Block. All values in the table are in hexadecimal. Command Interface: only uses A–1, A0-A10 and DQ0-DQ7 to verify the commands; A11-A19, DQ8-DQ14 and DQ15 are Don’t Care. DQ15A–1 is A–1 when BYTE is VIL or DQ15 when BYTE is VIH. Read/Reset: After a Read/Reset command, read the memory as normal until another command is issued. Auto Select: After an Auto Select command, read Manufacturer ID, Device ID or Block Protection Status. Program, Unlock Bypass Program, Chip Erase, Block Erase: After these commands read the Status Register until the Program/Erase Controller completes and the memory returns to Read Mode. Add additional Blocks during Block Erase Command with additional Bus Write Operations until Timeout Bit is set. Unlock Bypass: After the Unlock Bypass command issue Unlock Bypass Program or Unlock Bypass Reset commands. Unlock Bypass Reset: After the Unlock Bypass Reset command read the memory as normal until another command is issued. Erase Suspend: After the Erase Suspend command read non-erasing memory blocks as normal, issue Auto Select and Program commands on non-erasing blocks as normal. Erase Resume: After the Erase Resume command the suspended Erase operation resumes, read the Status Register until the Program/Erase Controller completes and the memory returns to Read Mode. CFI Query: Command is valid when device is ready to read array data or when device is in Auto Select mode. 31/67 Command Interface Table 6. M29FxxxFT, M29FxxxFB Program/Erase Times and Program/Erase Endurance Cycles, M29F160F Parameter Min Typical Max Unit Chip Erase — 25 120 s Block Erase (64 KBytes) — 0.8 6 s Erase Suspend Latency Time — 20 25 µs Program (Byte or Word) — 11 200 µs Chip Program (Byte by Byte) — 24 120 s Chip Program (Word by Word) — 12 60 s Program/Erase Cycles (per Block) 100,000 — — cycles Data Retention 20 — — years Typical values are measured at room temperature and nominal voltages; typical and maximum values are samples, not 100% tested. Chip Erase, Program, and Chip Program parameters: Maximum value measured at worst case conditions for both temperature and VCC after 100,000 program/erase cycles. Block Erase and Erase Suspend Latency parameters: Maximum value measured at worst case conditions for both temperature and VCC. Table 7. Program/Erase Times and Program/Erase Endurance Cycles, M29F800F Parameter Min Typical Max Unit Chip Erase — 12 60 s Block Erase (64 KBytes) — 0.8 6 s Erase Suspend Latency Time — 20 25 µs Program (Byte or Word) — 11 200 µs Chip Program (Byte by Byte) — 12 — s Chip Program (Word by Word) — 6 30 s Program/Erase Cycles (per Block) 100,000 — — cycles Data Retention 20 — — years Typical values are measured at room temperature and nominal voltages; typical and maximum values are samples, not 100% tested. Chip Erase, Program, and Chip Program parameters: Maximum value measured at worst case conditions for both temperature and VCC after 100,000 program/erase cycles. Block Erase and Erase Suspend Latency parameter: Maximum value measured at worst case conditions for both temperature and VCC. 32/67 M29FxxxFT, M29FxxxFB Table 8. Command Interface Program/Erase Times and Program/Erase Endurance Cycles, M29F400F Parameter Min Typical Max Unit Chip Erase — 6 30 s Block Erase (64 KBytes) — 0.8 6 s Erase Suspend Latency Time — 20 25 µs Program (Byte or Word) — 11 200 µs Chip Program (Byte by Byte) — 6 — s Chip Program (Word by Word) — 3 15 s Program/Erase Cycles (per Block) 100,000 — — cycles Data Retention 20 — — years Typical values are measured at room temperature and nominal voltages; typical and maximum values are samples, not 100% tested. Chip Erase, Program, and Chip Program parameters: Maximum value measured at worst case conditions for both temperature and VCC after 100,000 program/erase cycles. Block Erase and Erase Suspend Latency parameter: Maximum value measured at worst case conditions for both temperature and VCC. Table 9. Program/Erase Times and Program/Erase Endurance Cycles, M29F200F Parameter Min Typical Max Unit Chip Erase — 3 15 s Block Erase (64 KBytes) — 0.8 6 s Erase Suspend Latency Time — 20 25 µs Program (Byte or Word) — 11 200 µs Chip Program (Byte by Byte) — 4 — s Chip Program (Word by Word) — 2 8 s Program/Erase Cycles (per Block) 100,000 — — cycles Data Retention 20 — — years Typical values are measured at room temperature and nominal voltages; typical and maximum values are samples, not 100% tested. Chip Erase, Program, and Chip Program parameters: Maximum value measured at worst case conditions for both temperature and VCC after 100,000 program/erase cycles. Block Erase and Erase Suspend Latency parameter: Maximum value measured at worst case conditions for both temperature and VCC. 33/67 Status Register 5 M29FxxxFT, M29FxxxFB Status Register Bus Read operations from any address always read the Status Register during Program and Erase operations. It is also read during Erase Suspend when an address within a block being erased is accessed. The bits in the Status Register are summarized in Table 10.: Status Register Bits. 5.1 Data Polling Bit The Data Polling Bit (DQ7) can be used to identify whether the Program/Erase Controller has successfully completed its operation or if it has responded to an Erase Suspend. The Data Polling Bit is output on DQ7 when the Status Register is read. During Program operations the Data Polling Bit outputs the complement of the bit being programmed to DQ7. After successful completion of the Program operation the memory returns to Read mode and Bus Read operations from the address just programmed output DQ7, not its complement. During Erase operations the Data Polling Bit outputs ’0’, the complement of the erased state of DQ7. After successful completion of the Erase operation the memory returns to Read Mode. In Erase Suspend mode the Data Polling Bit will output a ’1’ during a Bus Read operation within a block being erased. The Data Polling Bit will change from a ’0’ to a ’1’ when the Program/Erase Controller has suspended the Erase operation. Figure 1. Data Polling Flowchart, gives an example of how to use the Data Polling Bit. A Valid Address is the address being programmed or an address within the block being erased. 5.2 Toggle Bit The Toggle Bit (DQ6) can be used to identify whether the Program/Erase Controller has successfully completed its operation or if it has responded to an Erase Suspend. The Toggle Bit is output on DQ6 when the Status Register is read. During Program and Erase operations the Toggle Bit changes from ’0’ to ’1’ to ’0’, etc., with successive Bus Read operations at any address. After successful completion of the operation the memory returns to Read mode. During Erase Suspend mode the Toggle Bit will output when addressing a cell within a block being erased. The Toggle Bit will stop toggling when the Program/Erase Controller has suspended the Erase operation. If any attempt is made to erase a protected block, the operation is aborted, no error is signalled and DQ6 toggles for approximately 100µs. If any attempt is made to program a protected block or a suspended block, the operation is aborted, no error is signalled and DQ6 toggles for approximately 1µs. Figure 2. Data Toggle Flowchart, gives an example of how to use the Data Toggle Bit. 34/67 M29FxxxFT, M29FxxxFB 5.3 Status Register Error Bit The Error Bit (DQ5) can be used to identify errors detected by the Program/Erase Controller. The Error Bit is set to ’1’ when a Program, Block Erase or Chip Erase operation fails to write the correct data to the memory. If the Error Bit is set a Read/Reset command must be issued before other commands are issued. The Error bit is output on DQ5 when the Status Register is read. Note that the Program command cannot change a bit set to ’0’ back to ’1’ and attempting to do so will set DQ5 to ‘1’. A Bus Read operation to that address will show the bit is still ‘0’. One of the Erase commands must be used to set all the bits in a block or in the whole memory from ’0’ to ’1’ 5.4 Erase Timer Bit The Erase Timer Bit (DQ3) can be used to identify the start of Program/Erase Controller operation during a Block Erase command. Once the Program/Erase Controller starts erasing the Erase Timer Bit is set to ’1’. Before the Program/Erase Controller starts the Erase Timer Bit is set to ’0’ and additional blocks to be erased may be written to the Command Interface. The Erase Timer Bit is output on DQ3 when the Status Register is read. 5.5 Alternative Toggle Bit The Alternative Toggle Bit (DQ2) can be used to monitor the Program/Erase controller during Erase operations. The Alternative Toggle Bit is output on DQ2 when the Status Register is read. During Chip Erase and Block Erase operations the Toggle Bit changes from ’0’ to ’1’ to ’0’, etc., with successive Bus Read operations from addresses within the blocks being erased. A protected block is treated the same as a block not being erased. Once the operation completes the memory returns to Read mode. During Erase Suspend the Alternative Toggle Bit changes from ’0’ to ’1’ to ’0’, etc. with successive Bus Read operations from addresses within the blocks being erased. Bus Read operations to addresses within blocks not being erased will output the memory cell data as if in Read mode. After an Erase operation that causes the Error Bit to be set the Alternative Toggle Bit can be used to identify which block or blocks have caused the error. The Alternative Toggle Bit changes from ’0’ to ’1’ to ’0’, etc. with successive Bus Read Operations from addresses within blocks that have not erased correctly. The Alternative Toggle Bit does not change if the addressed block has erased correctly. 35/67 Status Register M29FxxxFT, M29FxxxFB Table 10. Status Register Bits Operation Address DQ7 DQ6 DQ5 DQ3 DQ2 Program Any Address DQ7 Toggle 0 – – 0 Program During Erase Suspend Any Address DQ7 Toggle 0 – – 0 Program Error Any Address DQ7 Toggle 1 – – 0 Chip Erase Any Address 0 Toggle 0 1 Toggle 0 Erasing Block 0 Toggle 0 0 Toggle 0 Non-Erasing Block 0 Toggle 0 0 No Toggle 0 Erasing Block 0 Toggle 0 1 Toggle 0 Non-Erasing Block 0 Toggle 0 1 No Toggle 0 Erasing Block No Toggle 0 – Toggle 1 Block Erase before timeout Block Erase Erase Suspend 1 Non-Erasing Block Data read as normal Erase Error 1 Good Block Address 0 Toggle 1 1 No Toggle 0 Faulty Block Address 0 Toggle 1 1 Toggle 0 Unspecified data bits should be ignored. Figure 1. Data Polling Flowchart START READ DQ5 & DQ7 at VALID ADDRESS DQ7 = DATA YES NO NO DQ5 =1 YES READ DQ7 at VALID ADDRESS DQ7 = DATA YES NO FAIL PASS AI03598 36/67 RB M29FxxxFT, M29FxxxFB Status Register Figure 2. Data Toggle Flowchart START READ DQ6 READ DQ5 & DQ6 DQ6 = TOGGLE NO YES NO DQ5 =1 YES READ DQ6 TWICE DQ6 = TOGGLE NO YES FAIL PASS AI01370C 37/67 Maximum Rating 6 M29FxxxFT, M29FxxxFB Maximum Rating Stressing the device above the rating listed in the Absolute Maximum Ratings table may cause permanent damage to the device. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Refer also to the Numonyx SURE Program and other relevant quality documents. Table 11. Absolute Maximum Ratings Symbol Parameter Min Max Unit TBIAS Temperature Under Bias –50 125 °C TSTG Storage Temperature –65 150 °C VIO Input or Output Voltage –0.6 VCC +0.6 V VCC Supply Voltage –0.6 6 V VID Identification Voltage –0.6 13.5 V Input or Output Voltage parameter: Minimum voltage may undershoot to –2V during transition and for less than 20ns during transitions. Input or Output Voltage parameter: Maximum voltage may overshoot to VCC +2V during transition and for less than 20ns during transitions. 38/67 M29FxxxFT, M29FxxxFB 7 DC and AC Parameters DC and AC Parameters This section summarizes the operating measurement conditions, and the DC and AC characteristics of the device. The parameters in the DC and AC characteristics Tables that follow, are derived from tests performed under the Measurement Conditions shown here. Designers should check that the operating conditions in their circuit match the operating conditions when relying on the quoted parameters. Table 12. Operating and AC Measurement Conditions Parameter Min Max Unit VCC Supply Voltage 4.5 5.5 V Ambient Operating Temperature –40 125 °C Load Capacitance (CL) 30 30 pF Input Rise and Fall Times — 5 ns Input Pulse Voltages 0 to VCC Input and Output Timing Ref. Voltages VCC/2 0 to VCC V VCC/2 V Figure 18. AC Measurement I/O Waveform VCC VCC/2 0V AI04498 Figure 19. AC Measurement Load Circuit VCC VCC 25kΩ DEVICE UNDER TEST 0.1µF CL includes JIG capacitance CL 25kΩ AI04499 39/67 DC and AC Parameters Table 13. M29FxxxFT, M29FxxxFB Device Capacitance Symbol Parameter Test Condition Min Max Unit CIN Input Capacitance VIN = 0V 6 pF COUT Output Capacitance VOUT = 0V 12 pF Sampled only, not 100% tested. Table 14. DC Characteristics Symbol Parameter Test Condition Min Typ Max Unit ILI Input Leakage Current 0V ≤ VIN ≤ VCC — — ±1 µA ILO Output Leakage Current 0V ≤ VOUT ≤ VCC — — ±1 µA ICC1 Supply Current (Read) E = VIL, G = VIH, f = 6MHz — 7 20 mA ICC2 Supply Current (Standby) E = VCC ±0.2V, RP = VCC ±0.2V — 60 120 µA ICC3 Supply Current (Program/Erase) Program/Erase Controller active — — 30 mA VIL Input Low Voltage — –0.5 — 0.8 V VIH Input High Voltage — 0.7VCC — VCC +0.3 V VOL Output Low Voltage IOL = 1.8mA — — 0.45 V VOH Output High Voltage IOH = –100µA VCC –0.4 — — V VID Identification Voltage 11.5 — 12.5 V IID Identification Current A9 = VID — — 100 µA VLKO Program/Erase Lockout Supply Voltage — 1.8 — 2.3 V Supply Current (Program/Erase) parameter: Sampled only, not 100% tested. Figure 20. Read Mode AC Waveforms tAVAV A0-A19/ A–1 VALID tAVQV tAXQX E tELQV tEHQX tELQX tEHQZ G tGLQX tGHQX tGHQZ tGLQV DQ0-DQ7/ DQ8-DQ15 VALID tBHQV BYTE tELBL/tELBH 40/67 tBLQZ AI02922 M29FxxxFT, M29FxxxFB Table 15. DC and AC Parameters Read AC Characteristics M29F160F Symbol Alt Parameter Test Condition Unit 55/5A tAVAV tRC Address Valid to Next Address Valid E = VIL, G = VIL Min 55 ns tAVQV tACC Address Valid to Output Valid E = VIL, G = VIL Max 55 ns tELQX tLZ Chip Enable Low to Output Transition G = VIL Min 0 ns tELQV tCE Chip Enable Low to Output Valid G = VIL Max 55 ns tGLQX tOLZ Output Enable Low to Output Transition E = VIL Min 0 ns tGLQV tOE Output Enable Low to Output Valid E = VIL Max 20 ns tEHQZ tHZ Chip Enable High to Output Hi-Z G = VIL Max 15 ns tGHQZ tDF Output Enable High to Output Hi-Z E = VIL Max 15 ns tEHQX tGHQX tAXQX tOH Chip Enable, Output Enable or Address Transition to Output Transition — Min 0 ns tELBL tELBH tELFL tELFH Chip Enable to BYTE Low or High — Max 3 ns tBLQZ tFLQZ BYTE Low to Output Hi-Z — Max 15 ns tBHQV tFHQV BYTE High to Output Valid — Max 20 ns tELQX tGLQX tEHQZ and tGHQZ parameters: Sampled only, not 100% tested. Figure 21. Write AC Waveforms, Write Enable Controlled tAVAV A0-A19/ A–1 VALID tWLAX tAVWL tWHEH E tELWL tWHGL G tGHWL tWLWH W tWHWL tDVWH DQ0-DQ7/ DQ8-DQ15 tWHDX VALID VCC tVCHEL RB tWHRL AI02923 41/67 DC and AC Parameters Table 16. M29FxxxFT, M29FxxxFB Write AC Characteristics, Write Enable Controlled M29F160F Symbol Alt Parameter Unit 55/5A tAVAV tWC Address Valid to Next Address Valid Min 55 ns tELWL tCS Chip Enable Low to Write Enable Low Min 0 ns tWLWH tWP Write Enable Low to Write Enable High Min 30 ns tDVWH tDS Input Valid to Write Enable High Min 20 ns tWHDX tDH Write Enable High to Input Transition Min 0 ns tWHEH tCH Write Enable High to Chip Enable High Min 0 ns tWHWL tWPH Write Enable High to Write Enable Low Min 15 ns tAVWL tAS Address Valid to Write Enable Low Min 0 ns tWLAX tAH Write Enable Low to Address Transition Min 30 ns Output Enable High to Write Enable Low Min 0 ns tGHWL tWHGL tOEH Write Enable High to Output Enable Low Min 0 ns tWHRL tBUSY Program/Erase Valid to RB Low Max 20 ns tVCHEL tVCS VCC High to Chip Enable Low Min 50 µs tWHRL parameter: Sampled only, not 100% tested. Figure 22. Write AC Waveforms, Chip Enable Controlled tAVAV A0-A19/ A–1 VALID tELAX tAVEL tEHWH W tWLEL tEHGL G tGHEL tELEH E tEHEL tDVEH DQ0-DQ7/ DQ8-DQ15 tEHDX VALID VCC tVCHWL RB tEHRL 42/67 AI02924 M29FxxxFT, M29FxxxFB Table 17. DC and AC Parameters Write AC Characteristics, Chip Enable Controlled M29F160F Symbol Alt Parameter Unit 55/5A tAVAV tWC Address Valid to Next Address Valid Min 55 ns tWLEL tWS Write Enable Low to Chip Enable Low Min 0 ns tELEH tCP Chip Enable Low to Chip Enable High Min 30 ns tDVEH tDS Input Valid to Chip Enable High Min 20 ns tEHDX tDH Chip Enable High to Input Transition Min 0 ns tEHWH tWH Chip Enable High to Write Enable High Min 0 ns tEHEL tCPH Chip Enable High to Chip Enable Low Min 15 ns tAVEL tAS Address Valid to Chip Enable Low Min 0 ns tELAX tAH Chip Enable Low to Address Transition Min 30 ns Output Enable High Chip Enable Low Min 0 ns tGHEL tEHGL tOEH Chip Enable High to Output Enable Low Min 0 ns tEHRL tBUSY Program/Erase Valid to RB Low Max 20 ns tVCHWL tVCS VCC High to Write Enable Low Min 50 µs tEHRL parameter: Sampled only, not 100% tested. Figure 23. Reset/Block Temporary Unprotect AC Waveforms W, E, G tPHWL, tPHEL, tPHGL RB tRHWL, tRHEL, tRHGL RP tPLPX tPHPHH tPLYH AI02931B 43/67 DC and AC Parameters Table 18. M29FxxxFT, M29FxxxFB Reset/Block Temporary Unprotect AC Characteristics M29F160F Symbol Alt Parameter Unit 55/5A tPHWL tPHEL tPHGL tRH RP High to Write Enable Low, Chip Enable Low, Output Enable Low Min 50 ns tRHWL tRHEL tRHGL tRB RB High to Write Enable Low, Chip Enable Low, Output Enable Low Min 0 ns tPLPX tRP RP Pulse Width Min 500 ns tPLYH tREADY RP Low to Read Mode Max 10 µs tPHPHH tVIDR RP Rise Time to VID Min 500 ns tPHWL tPHGL tRHWL tRHEL tRHGL tPLYH and tPHPHH parameters: Sampled only, not 100% tested. 44/67 M29FxxxFT, M29FxxxFB 8 Package Mechanical Package Mechanical Figure 24. TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Outline, top view 1 48 e D1 B 24 L1 25 A2 E1 E A A1 DIE α L C CP TSOP-G Drawing is not to scale. Table 19. TSOP48 – 48 lead Plastic Thin Small Outline, 12 x 20mm, Package Mechanical Data millimeters Symbol Typ Min A Max 1.200 A1 0.100 0.050 0.150 A2 1.000 0.950 1.050 B 0.220 0.170 0.270 0.100 0.210 C CP 0.080 D1 12.000 11.900 12.100 E 20.000 19.800 20.200 E1 18.400 18.300 18.500 e 0.500 – – L 0.600 0.500 0.700 L1 0.800 a 3 0 5 45/67 Package Mechanical M29FxxxFT, M29FxxxFB Figure 25. SO44 – 44 lead plastic small outline, 500 mils body width, package outline D 44 23 c E1 E θ 1 22 A1 A2 b A L L1 ddd e SO-F Table 20. SO44 - 44 lead Plastic Small Outline, 500 mils body width, package mechanical data millimeters Symbol Typ Min A 3.00 A1 0.10 A2 2.69 2.56 2.79 b 0.35 0.50 c 0.18 0.28 28.37 28.63 D 28.50 ddd 0.10 E 16.03 15.77 16.28 E1 12.60 12.47 12.73 e 1.27 – – L 0.79 L1 1.73 Θ N 46/67 Max 8° 44 M29FxxxFT, M29FxxxFB Package Mechanical Figure 26. TFBGA48 6 x 8 mm - 6 x 8 ball array, 0.80 mm pitch, package outline D D1 FD FE SD SE E E1 BALL "A1" ddd e e b A A2 A1 BGA-Z32 Table 21. TFBGA48 6 x 8 mm - 6 x 8 ball array, 0.80 mm pitch, package mechanical data millimeters inches Symbol Typ Min A Max Typ Min 1.200 A1 0.0472 0.260 A2 0.0102 0.900 b Max 0.350 0.450 0.0354 0.0138 0.0177 D 6.000 5.900 6.100 0.2362 0.2323 0.2402 D1 4.000 – – 0.1575 – – ddd 0.100 0.0039 E 8.000 7.900 8.100 0.3150 0.3110 0.3189 E1 5.600 – – 0.2205 – – e 0.800 – – 0.0315 – – FD 1.000 – – 0.0394 – – FE 1.200 – – 0.0472 – – SD 0.400 – – 0.0157 – – SE 0.400 – – 0.0157 – – 47/67 Part Numbering 9 M29FxxxFT, M29FxxxFB Part Numbering Table 22. Information scheme Example: M29F200F T 5A M 6 - 2 Device type M29F = 5 V Density 200 = 2-Mbit 400 = 4-Mbit 800 = 8-Mbit 160 = 16-Mbit (not available in SO44 package) Technology F = 110 nm Configuration T = Top Boot B = Bottom Boot Speed 55 = 55 ns device speed in conjunction with temperature range = 3 denotes Auto Grade –40 to 125 °C parts 5A = 55 ns Access time (Auto Grade) only in conjunction with the Grade 6 option Package M = SO 44.525 INCH CU N = TSOP-1 48 12 x 20 AL 4 ZA(1) = TFBGA48, 6 x 8 mm, 0.80 mm pitch Temperature range 6 = –40 to 85 °C 3 = –40 to 125 °C Packing option <blank> = standard packing (Tray) T = Tape & Reel 24 mm packing E = RoHS package, standard packing (Tray) F = RoHS package, Tape & Reel 24 mm packing Fab location 2 = Numonyx Fab.2 (Singapore) 1. THis package is available only in the 8-Mbit, bottom boot configuration. Devices are shipped from the factory with the memory content bits erased to ’1’. For a list of available options (Speed, Package, etc.) or for further information on any aspect of this device, please contact the Numonyx Sales Office nearest to you. 48/67 M29FxxxFT, M29FxxxFB Appendix A Block Address Table Block Address Table Table 23. Top Boot Block Addresses, M29F160FT Size (KBytes) # Address Range (x8) Address Range (x16) 34 16 1FC000h-1FFFFFh FE000h-FFFFFh 33 8 1FA000h-1FBFFFh FD000h-FDFFFh 32 8 1F8000h-1F9FFFh FC000h-FCFFFh 31 32 1F0000h-1F7FFFh F8000h-FBFFFh 30 64 1E0000h-1EFFFFh F0000h-F7FFFh 29 64 1D0000h-1DFFFFh E8000h-EFFFFh 28 64 1C0000h-1CFFFFh E0000h-E7FFFh 27 64 1B0000h-1BFFFFh D8000h-DFFFFh 26 64 1A0000h-1AFFFFh D0000h-D7FFFh 25 64 190000h-19FFFFh C8000h-CFFFFh 24 64 180000h-18FFFFh C0000h-C7FFFh 23 64 170000h-17FFFFh B8000h-BFFFFh 22 64 160000h-16FFFFh B0000h-B7FFFh 21 64 150000h-15FFFFh A8000h-AFFFFh 20 64 140000h-14FFFFh A0000h-A7FFFh 19 64 130000h-13FFFFh 98000h-9FFFFh 18 64 120000h-12FFFFh 90000h-97FFFh 17 64 110000h-11FFFFh 88000h-8FFFFh 16 64 100000h-10FFFFh 80000h-87FFFh 15 64 0F0000h-0FFFFFh 78000h-7FFFFh 14 64 0E0000h-0EFFFFh 70000h-77FFFh 13 64 0D0000h-0DFFFFh 68000h-6FFFFh 12 64 0C0000h-0CFFFFh 60000h-67FFFh 11 64 0B0000h-0BFFFFh 58000h-5FFFFh 10 64 0A0000h-0AFFFFh 50000h-57FFFh 9 64 090000h-09FFFFh 48000h-4FFFFh 8 64 080000h-08FFFFh 40000h-47FFFh 7 64 070000h-07FFFFh 38000h-3FFFFh 6 64 060000h-06FFFFh 30000h-37FFFh 5 64 050000h-05FFFFh 28000h-2FFFFh 4 64 040000h-04FFFFh 20000h-27FFFh 3 64 030000h-03FFFFh 18000h-1FFFFh 2 64 020000h-02FFFFh 10000h-17FFFh 1 64 010000h-01FFFFh 08000h-0FFFFh 0 64 000000h-00FFFFh 00000h-07FFFh 49/67 Block Address Table Table 24. Bottom Boot Block Addresses, M29F160FB Size (KBytes) # 50/67 M29FxxxFT, M29FxxxFB Address Range (x8) Address Range (x16) 34 64 1F0000h-1FFFFFh F8000h-FFFFFh 33 64 1E0000h-1EFFFFh F0000h-F7FFFh 32 64 1D0000h-1DFFFFh E8000h-EFFFFh 31 64 1C0000h-1CFFFFh E0000h-E7FFFh 30 64 1B0000h-1BFFFFh D8000h-DFFFFh 29 64 1A0000h-1AFFFFh D0000h-D7FFFh 28 64 190000h-19FFFFh C8000h-CFFFFh 27 64 180000h-18FFFFh C0000h-C7FFFh 26 64 170000h-17FFFFh B8000h-BFFFFh 25 64 160000h-16FFFFh B0000h-B7FFFh 24 64 150000h-15FFFFh A8000h-AFFFFh 23 64 140000h-14FFFFh A0000h-A7FFFh 22 64 130000h-13FFFFh 98000h-9FFFFh 21 64 120000h-12FFFFh 90000h-97FFFh 20 64 110000h-11FFFFh 88000h-8FFFFh 19 64 100000h-10FFFFh 80000h-87FFFh 18 64 0F0000h-0FFFFFh 78000h-7FFFFh 17 64 0E0000h-0EFFFFh 70000h-77FFFh 16 64 0D0000h-0DFFFFh 68000h-6FFFFh 15 64 0C0000h-0CFFFFh 60000h-67FFFh 14 64 0B0000h-0BFFFFh 58000h-5FFFFh 13 64 0A0000h-0AFFFFh 50000h-57FFFh 12 64 090000h-09FFFFh 48000h-4FFFFh 11 64 080000h-08FFFFh 40000h-47FFFh 10 64 070000h-07FFFFh 38000h-3FFFFh 9 64 060000h-06FFFFh 30000h-37FFFh 8 64 050000h-05FFFFh 28000h-2FFFFh 7 64 040000h-04FFFFh 20000h-27FFFh 6 64 030000h-03FFFFh 18000h-1FFFFh 5 64 020000h-02FFFFh 10000h-17FFFh 4 64 010000h-01FFFFh 08000h-0FFFFh 3 32 008000h-00FFFFh 04000h-07FFFh 2 8 006000h-007FFFh 03000h-03FFFh 1 8 004000h-005FFFh 02000h-02FFFh 0 16 000000h-003FFFh 00000h-01FFFh M29FxxxFT, M29FxxxFB Table 25. 18 Top Boot Block Addresses, M29F800FT Size (KBytes) # 16 Block Address Table Address Range (x8) Address Range (x16) FC000h-FFFFFh 7E000h-7FFFFh 17 8 FA000h-FBFFFh 7D000h-7DFFFh 16 8 F8000h-F9FFFh 7C000h-7CFFFh 15 32 F0000h-F7FFFh 78000h-7BFFFh 14 64 E0000h-EFFFFh 70000h-77FFFh 13 64 D0000h-DFFFFh 68000h-6FFFFh 12 64 C0000h-CFFFFh 60000h-67FFFh 11 64 B0000h-BFFFFh 58000h-5FFFFh 10 64 A0000h-AFFFFh 50000h-57FFFh 9 64 90000h-9FFFFh 48000h-4FFFFh 8 64 80000h-8FFFFh 40000h-47FFFh 7 64 70000h-7FFFFh 38000h-3FFFFh 6 64 60000h-6FFFFh 30000h-37FFFh 5 64 50000h-5FFFFh 28000h-2FFFFh 4 64 40000h-4FFFFh 20000h-27FFFh 3 64 30000h-3FFFFh 18000h-1FFFFh 2 64 20000h-2FFFFh 10000h-17FFFh 1 64 10000h-1FFFFh 08000h-0FFFFh 0 64 00000h-0FFFFh 00000h-07FFFh 51/67 Block Address Table Table 26. 52/67 Bottom Boot Block Addresses, M29F800FB Size (KBytes) # 18 M29FxxxFT, M29FxxxFB 64 Address Range (x8) Address Range (x16) F0000h-FFFFFh 78000h-7FFFFh 17 64 E0000h-EFFFFh 70000h-77FFFh 16 64 D0000h-DFFFFh 68000h-6FFFFh 15 64 C0000h-CFFFFh 60000h-67FFFh 14 64 B0000h-BFFFFh 58000h-5FFFFh 13 64 A0000h-AFFFFh 50000h-57FFFh 12 64 90000h-9FFFFh 48000h-4FFFFh 11 64 80000h-8FFFFh 40000h-47FFFh 10 64 70000h-7FFFFh 38000h-3FFFFh 9 64 60000h-6FFFFh 30000h-37FFFh 8 64 50000h-5FFFFh 28000h-2FFFFh 7 64 40000h-4FFFFh 20000h-27FFFh 6 64 30000h-3FFFFh 18000h-1FFFFh 5 64 20000h-2FFFFh 10000h-17FFFh 4 64 10000h-1FFFFh 08000h-0FFFFh 3 32 08000h-0FFFFh 04000h-07FFFh 2 8 06000h-07FFFh 03000h-03FFFh 1 8 04000h-05FFFh 02000h-02FFFh 0 16 00000h-03FFFh 00000h-01FFFh M29FxxxFT, M29FxxxFB Table 27. Top Boot Block Addresses, M29F400FT Size (KBytes) # Block Address Table Address Range (x8) Address Range (x16) 10 16 7C000h-7FFFFh 3E000h-3FFFFh 9 8 7A000h-7BFFFh 3D000h-3DFFFh 8 8 78000h-79FFFh 3C000h-3CFFFh 7 32 70000h-77FFFh 38000h-3BFFFh 6 64 60000h-6FFFFh 30000h-37FFFh 5 64 50000h-5FFFFh 28000h-2FFFFh 4 64 40000h-4FFFFh 20000h-27FFFh 3 64 30000h-3FFFFh 18000h-1FFFFh 2 64 20000h-2FFFFh 10000h-17FFFh 1 64 10000h-1FFFFh 08000h-0FFFFh 0 64 00000h-0FFFFh 00000h-07FFFh 53/67 Block Address Table Table 28. Bottom Boot Block Addresses, M29F400FB Size (KBytes) # 54/67 M29FxxxFT, M29FxxxFB Address Range (x8) Address Range (x16) 10 64 70000h-7FFFFh 38000h-3FFFFh 9 64 70000h-6FFFFh 30000h-37FFFh 8 64 50000h-5FFFFh 28000h-2FFFFh 7 64 40000h-4FFFFh 20000h-27FFFh 6 64 30000h-3FFFFh 18000h-1FFFFh 5 64 20000h-2FFFFh 10000h-17FFFh 4 64 10000h-1FFFFh 08000h-0FFFFh 3 32 08000h-0FFFFh 04000h-07FFFh 2 8 06000h-07FFFh 03000h-03FFFh 1 8 04000h-05FFFh 02000h-02FFFh 0 16 00000h-03FFFh 00000h-01FFFh M29FxxxFT, M29FxxxFB Table 29. Top Boot Block Addresses, M29F200FT Size (KBytes) # Block Address Table Address Range (x8) Address Range (x16) 6 16 3C000h-3FFFFh 1E000h-1FFFFh 5 8 3A000h-3BFFFh 1D000h-1DFFFh 4 8 38000h-39FFFh 1C000h-1CFFFh 3 32 30000h-37FFFh 18000h-1BFFFh 2 64 20000h-2FFFFh 10000h-17FFFh 1 64 10000h-1FFFFh 08000h-0FFFFh 0 64 00000h-0FFFFh 00000h-07FFFh Table 30. Bottom Boot Block Addresses, M29F200FB Size (KBytes) # Address Range (x8) Address Range (x16) 6 64 30000h-3FFFFh 18000h-1FFFFh 5 64 20000h-2FFFFh 10000h-17FFFh 4 64 10000h-1FFFFh 08000h-0FFFFh 3 32 08000h-0FFFFh 04000h-07FFFh 2 8 06000h-07FFFh 03000h-03FFFh 1 8 04000h-05FFFh 02000h-02FFFh 0 16 10000h-1FFFFh 00000h-01FFFh 55/67 Common Flash Interface (CFI) Appendix B M29FxxxFT, M29FxxxFB Common Flash Interface (CFI) The Common Flash Interface is a JEDEC approved, standardized data structure that can be read from the Flash memory device. It allows a system software to query the device to determine various electrical and timing parameters, density information and functions supported by the memory. The system can interface easily with the device, enabling the software to upgrade itself when necessary. When the CFI Query Command is issued the device enters CFI Query mode and the data structure is read from the memory. Addresses used to retrieve the data are shown in the following tables: Table 31.: Query Structure Overview, Table 32.: CFI Query Identification String, Table 33.: CFI Query System Interface Information, Table 34.: Device Geometry Definition, Table 35.: Primary Algorithm-Specific Extended Query Table Table 36.: Security Code Area The CFI data structure also contains a security area where a 64-bit unique security number is written (see Table 36.: Security Code Area). This area can be accessed only in Read mode by the final user. It is impossible to change the security number after it has been written by Numonyx. Issue a Read command to return to Read mode. Table 31. Query Structure Overview Address Sub-section Name x16 Description x8 10h 20h CFI Query Identification String Command set ID and algorithm data offset 1Bh 36h System Interface Information Device timing & voltage information 27h 4Eh Device Geometry Definition Flash device layout 40h 80h Primary Algorithm-specific Extended Additional information specific to the Primary Algorithm Query table (optional) 61h C2h Security Code Area 64 bit unique device number Query data are always presented on the lowest order data outputs. Table 32. CFI Query Identification String Address Data x16 10h 20h 0051h 11h 22h 0052h 12h 24h 0059h 13h 26h 0002h 14h 28h 0000h 15h 2Ah 0040h 16h 2Ch 0000h 56/67 Description Value x8 "Q" Query Unique ASCII String "QRY" "R" "Y" Primary Algorithm Command Set and Control Interface ID code 16 bit AMD ID code defining a specific algorithm Compatible Address for Primary Algorithm extended Query table (see Table 34.) P = 40h M29FxxxFT, M29FxxxFB Common Flash Interface (CFI) Address Data x16 Description Value x8 17h 2Eh 0000h 18h 30h 0000h 19h 32h 0000h 1Ah 34h 0000h Alternate Vendor Command Set and Control Interface ID Code second vendor - specified algorithm supported NA Address for Alternate Algorithm extended Query table NA Query data are always presented on the lowest order data outputs (DQ7-DQ0) only. DQ8-DQ15 are ‘0’. Table 33. CFI Query System Interface Information Address Data x16 Description Value x8 1Bh 36h 0045h VCC Logic Supply Minimum Program/Erase voltage bit 7 to 4BCD value in volts bit 3 to 0BCD value in 100 mV 4.5 V 1Ch 38h 0055h VCC Logic Supply Maximum Program/Erase voltage bit 7 to 4BCD value in volts bit 3 to 0BCD value in 100 mV 5.5 V 1Dh 3Ah 0000h VPP [Programming] Supply Minimum Program/Erase voltage NA 1Eh 3Ch 0000h VPP [Programming] Supply Maximum Program/Erase voltage NA 1Fh 3Eh 20h 40h 21h 42h 22h 44h 23h 46h 24h 48h 0003h 0000h 000Ah 0000h 0004h 0000h n Typical timeout per single Byte/Word program = 2 µs Typical timeout for minimum size write buffer program = Typical timeout per individual block erase = 2n 8 µs 2n µs ms n Typical timeout for full chip erase = 2 ms NA 1s NA Maximum timeout for Byte/Word program = 2n times typical 256 µs Maximum timeout for write buffer program = 2n times typical NA n 25h 4Ah 0003h Maximum timeout per individual block erase = 2 times typical 8s 26h 4Ch 0000h Maximum timeout for chip erase = 2n times typical NA Table 34. Device Geometry Definition Address Data x16 Description 2 MByte 0015h 27h Value x8 4Eh 0014h 0013h Device Size = 2n in number of Bytes 0012h 1 MByte 512 KByte 256 KByte 28h 29h 50h 52h 0002h 0000h Flash Device Interface Code description x8, x16 Async. 2Ah 2Bh 54h 56h 0000h 0000h Maximum number of Bytes in multi-Byte program or page = 2n NA 57/67 Common Flash Interface (CFI) M29FxxxFT, M29FxxxFB Address Data x16 Description Value x8 2Ch 58h 0004h Number of Erase Block Regions within the device. It specifies the number of regions within the device containing contiguous Erase Blocks of the same size. 4 2Dh 2Eh 5Ah 5Ch 0000h 0000h Region 1 Information Number of identical size erase block = 0000h+1 1 2Fh 30h 5Eh 60h 0040h 0000h Region 1 Information Block size in Region 1 = 0040h * 256 Byte 16 KByte 31h 32h 62h 64h 0001h 0000h Region 2 Information Number of identical size erase block = 0001h+1 2 33h 34h 66h 68h 0020h 0000h Region 2 Information Block size in Region 2 = 0020h * 256 Byte 8 KByte 35h 36h 6Ah 6Ch 0000h 0000h Region 3 Information Number of identical size erase block = 0000h+1 1 37h 38h 6Eh 70h 0080h 0000h Region 3 Information Block size in Region 3 = 0080h * 256 Byte 32 KByte 39h 3Ah 72h 74h 001Eh 0000h Region 4 Information (2 MByte) Number of identical-size erase block = 001Eh+1 31 39h 3Ah 72h 74h 000Eh 0000h Region 4 Information (1 MByte) Number of identical-size erase block = 000Eh+1 15 39h 3Ah 72h 74h 0006h 0000h Region 4 Information (512 KByte) Number of identical-size erase block = 0006h+1 7 39h 3Ah 72h 74h 0002h 0000h Region 4 Information (256 KByte) Number of identical-size erase block = 0002h+1 3 3Bh 3Ch 76h 78h 0000h 0001h Region 4 Information Block size in Region 4 = 0100h * 256 Byte 64 KByte Table 35. Primary Algorithm-Specific Extended Query Table Address Data x16 Description Value x8 40h 80h 0050h 41h 82h 0052h 42h 84h 0049h 43h 86h 0031h Major version number, ASCII "1" 44h 88h 0030h Minor version number, ASCII "0" 45h 8Ah 0000h Address Sensitive Unlock (bits 1 to 0) 00 = required, 01= not required Silicon Revision Number (bits 7 to 2) Yes 46h 8Ch 0002h Erase Suspend 00 = not supported, 01 = Read only, 02 = Read and Write 2 58/67 "P" Primary Algorithm extended Query table unique ASCII string “PRI” "R" "I" M29FxxxFT, M29FxxxFB Common Flash Interface (CFI) Address Data x16 Description Value x8 47h 8Eh 0001h Block Protection 00 = not supported, x = number of blocks in per group 1 48h 90h 0001h Temporary Block Unprotect 00 = not supported, 01 = supported Yes 49h 92h 0002h 0004h 0008h 0160h Block Protect /Unprotect 02 = M29F200 04 = M29F400 08 = M29F800 10 = M29F160 2 4 8 16 4Ah 94h 0000h Simultaneous Operations, 00 = not supported No 4Bh 96h 0000h Burst Mode, 00 = not supported, 01 = supported No 4Ch 98h 0000h Page Mode, 00 = not supported, 01 = 4 page Word, 02 = 8 page Word No Table 36. Security Code Area Address Data x16 61h 62h 63h 64h Description x8 C3h, C2h C5h, C4h C7h, C6h C9h, C8h XXXX XXXX XXXX XXXX 64 bit: unique device number 59/67 Block protection Appendix C M29FxxxFT, M29FxxxFB Block protection Block protection can be used to prevent any operation from modifying the data stored in the Flash memory. Each Block can be protected individually. Once protected, Program and Erase operations on the block fail to change the data. There are three techniques that can be used to control Block Protection, these are the Programmer technique, the In-System technique and Temporary Unprotection. Temporary Unprotection is controlled by the Reset/Block Temporary Unprotection pin, RP; this is described in the Signal Descriptions section. Unlike the Command Interface of the Program/Erase Controller, the techniques for protecting and unprotecting blocks could change between different Flash memory suppliers. C.1 Programmer Technique The Programmer technique uses high (VID) voltage levels on some of the bus pins. These cannot be achieved using a standard microprocessor bus, therefore the technique is recommended only for use in Programming Equipment. To protect a block follow the flowchart in Figure 27.: Programmer Equipment Block Protect Flowchart. During the Block Protect algorithm, the A19-A12 Address Inputs indicate the address of the block to be protected. The block will be correctly protected only if A19-A12 remain valid and stable, and if Chip Enable is kept Low, VIL, all along the Protect and Verify phases. The Chip Unprotect algorithm is used to unprotect all the memory blocks at the same time. This algorithm can only be used if all of the blocks are protected first. To unprotect the chip follow Figure 28.: Programmer Equipment Chip Unprotect Flowchart and Table 37.: Programmer Technique Bus Operations, BYTE = VIH or VIL, which give a summary of each operation. The timing on these flowcharts is critical. Care should be taken to ensure that, where a pause is specified, it is followed as closely as possible. Do not abort the procedure before reaching the end. Chip Unprotect can take several seconds and a user message should be provided to show that the operation is progressing. C.2 In-System Technique The In-System technique requires a high voltage level on the Reset/Blocks Temporary Unprotect pin, RP. This can be achieved without violating the maximum ratings of the components on the microprocessor bus, therefore this technique is suitable for use after the Flash memory has been fitted to the system. To protect a block follow the flowchart in Figure 29.: In-System Equipment Block Protect Flowchart. To unprotect the whole chip it is necessary to protect all of the blocks first, then all the blocks can be unprotected at the same time. To unprotect the chip follow Figure 30.: In-System Equipment Chip Unprotect Flowchart. The timing on these flowcharts is critical. Care should be taken to ensure that, where a pause is specified, it is followed as closely as possible. Do not allow the microprocessor to service interrupts that will upset the timing and do not abort the procedure before reaching 60/67 M29FxxxFT, M29FxxxFB Block protection the end. Chip Unprotect can take several seconds and a user message should be provided to show that the operation is progressing. Table 37. Operation Programmer Technique Bus Operations, BYTE = VIH or VIL W Address Inputs A0-A19 Data Inputs/Outputs DQ15A–1, DQ14-DQ0 E G Block Protect VIL VID VIL Pulse A9 = VID, A12-A19 Block Address Others = X X Chip Unprotect VID VID VIL Pulse A9 = VID, A12 = VIH, A15 = VIH Others = X X Block Protection Verify VIL VIL VIH A0 = VIL, A1 = VIH, A6 = VIL, A9 = VID, A12-A19 Block Address Others = X Pass = XX01h Retry = XX00h Block Unprotection Verify VIL VIL VIH A0 = VIL, A1 = VIH, A6 = VIH, A9 = VID, A12-A19 Block Address Others = X Retry = XX01h Pass = XX00h 61/67 Block protection M29FxxxFT, M29FxxxFB Figure 27. Programmer Equipment Block Protect Flowchart START Set-up ADDRESS = BLOCK ADDRESS W = VIH n=0 G, A9 = VID, E = VIL Protect Wait 4µs W = VIL Wait 100µs W = VIH E, G = VIH, A0, A6 = VIL, A1 = VIH E = VIL Verify Wait 4µs G = VIL Wait 60ns Read DATA DATA NO = 01h YES A9 = VIH E, G = VIH ++n = 25 NO End YES PASS A9 = VIH E, G = VIH FAIL AI03469b Address Inputs A19-A12 give the address of the block that is to be protected. It is imperative that they remain stable during the operation. During the Protect and Verify phases of the algorithm, Chip Enable E must be kept Low, VIL. 62/67 M29FxxxFT, M29FxxxFB Block protection Figure 28. Programmer Equipment Chip Unprotect Flowchart START Set-up PROTECT ALL BLOCKS n=0 CURRENT BLOCK = 0 A6, A12, A15 = VIH E, G, A9 = VID Unprotect Wait 4µs W = VIL Wait 10ms W = VIH E, G = VIH ADDRESS = CURRENT BLOCK ADDRESS A0 = VIL, A1, A6 = VIH E = VIL Wait 4µs G = VIL INCREMENT CURRENT BLOCK Verify Wait 60ns Read DATA NO End NO ++n = 1000 DATA = 00h YES LAST BLOCK YES YES A9 = VIH E, G = VIH A9 = VIH E, G = VIH FAIL PASS NO AI03470 63/67 Block protection M29FxxxFT, M29FxxxFB Figure 29. In-System Equipment Block Protect Flowchart Set-up START n=0 RP = VID Protect WRITE 60h ADDRESS = BLOCK ADDRESS A0 = VIL, A1 = VIH, A6 = VIL WRITE 60h ADDRESS = BLOCK ADDRESS A0 = VIL, A1 = VIH, A6 = VIL Wait 100µs Verify WRITE 40h ADDRESS = BLOCK ADDRESS A0 = VIL, A1 = VIH, A6 = VIL Wait 4µs READ DATA ADDRESS = BLOCK ADDRESS A0 = VIL, A1 = VIH, A6 = VIL DATA NO = 01h YES End RP = VIH ISSUE READ/RESET COMMAND PASS ++n = 25 NO YES RP = VIH ISSUE READ/RESET COMMAND FAIL AI03471 64/67 M29FxxxFT, M29FxxxFB Block protection Figure 30. In-System Equipment Chip Unprotect Flowchart START Set-up PROTECT ALL BLOCKS n=0 CURRENT BLOCK = 0 RP = VID WRITE 60h ANY ADDRESS WITH A0 = VIL, A1 = VIH, A6 = VIH Unprotect WRITE 60h ANY ADDRESS WITH A0 = VIL, A1 = VIH, A6 = VIH Wait 10ms Verify WRITE 40h ADDRESS = CURRENT BLOCK ADDRESS A0 = VIL, A1 = VIH, A6 = VIH Wait 4µs READ DATA ADDRESS = CURRENT BLOCK ADDRESS A0 = VIL, A1 = VIH, A6 = VIH NO End NO ++n = 1000 YES DATA = 00h INCREMENT CURRENT BLOCK YES LAST BLOCK NO YES RP = VIH RP = VIH ISSUE READ/RESET COMMAND ISSUE READ/RESET COMMAND FAIL PASS AI03472 65/67 Revision History Appendix D Table 38. Date M29FxxxFT, M29FxxxFB Revision History Document Revision History Version Revision Details 30-March-2009 1 Initial release. 1-April-2009 2 Corrected block diagram errors; Changed read manufacturer code and read device code to TBD. Added 55 ns option to speed option in Ordering Information table. 3 Updated manufacturer code and device ID codes in the following locations: – cover page, – Table 2.: Bus Operations, BYTE = VIL – Table 3.: Bus Operations, BYTE = VIH – Table 34.: Device Geometry Definition – Table 35.: Primary Algorithm-Specific Extended Query Table Removed the following: – “preliminary” and delivery date from cover page; – 70 ns columns from all AC characteristics tables; – “inches” from package manufacturing tables. 27-May-2009 4 Removed the Note in the introduction to the Appendix B: Common Flash Interface (CFI). Corrected the Description and Value informaiton for Address 49h (x16) and 92h (x8) Table 35.: Primary Algorithm-Specific Extended Query Table; Added additional speed and packing information to Ordering Information. 13-Aug-2009 5 TFBGA48 6 x 8 mm package added. 14-Oct-2009 6 Revised as follows: – Added / revised details in Order Information table. – Removed device code detail in 4.2: Auto Select Command – In Table 14.: DC Characteristics, changed ICC1 Max value from 10 to 20; changed ICC3 Max value from 20 to 30; changed VIL value from 0.5 °C to –0.5 °C – Removed “preliminary data” statement throughout the document. – In Figure 9.: TFBGA connections (top view through package), changed VPP/WP to NC. 21-Oct-2009 7 Revised the following: In Table 14.: DC Characteristics, changed VIH from 0.8 V to 0.7 V. 8-Feb-2010 8 Minor text edits. 9 Made minor text edits, and changed manufacturer code from 0020h to 0001h in Section 4.2: Auto Select Command on page 26. 22-April-2009 19-July-2010 Devices are shipped from the factory with the memory content bits erased to ’1’. For a list of available options (Speed, Package, etc.) or for further information on any aspect of this device, please contact the Numonyx Sales Office nearest to you. 66/67 M29FxxxFT, M29FxxxFB Please Read Carefully: INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH NUMONYX™ PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN NUMONYX'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NUMONYX ASSUMES NO LIABILITY WHATSOEVER, AND NUMONYX DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF NUMONYX PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Numonyx products are not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility applications. Numonyx may make changes to specifications and product descriptions at any time, without notice. Numonyx, B.V. may have patents or pending patent applications, trademarks, copyrights, or other intellectual property rights that relate to the presented subject matter. The furnishing of documents and other materials and information does not provide any license, express or implied, by estoppel or otherwise, to any such patents, trademarks, copyrights, or other intellectual property rights. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Numonyx reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. Contact your local Numonyx sales office or your distributor to obtain the latest specifications and before placing your product order. Copies of documents which have an order number and are referenced in this document, or other Numonyx literature may be obtained by visiting Numonyx's website at http://www.numonyx.com. Numonyx StrataFlash is a trademark or registered trademark of Numonyx or its subsidiaries in the United States and other countries. *Other names and brands may be claimed as the property of others. Copyright © 2010, Numonyx, B.V., All Rights Reserved. 67/67