VISHAY ILD620/ 620GB / ILQ620/ 620GB Vishay Semiconductors Optocoupler, Phototransistor Output, AC Input (Dual, Quad Channel) Features • • • • • Identical Channel to Channel Footprint ILD620 Crosses to TLP620-2 ILQ620 Crosses to TLP620-4 High Collector-Emitter Voltage, BVCEO = 70 V Dual and Quad Packages Feature: - Reduced Board Space - Lower Pin and Parts Count - Better Channel to Channel CTR Match - Improved Common Mode Rejection • Isolation Test Voltage 5300 VRMS Agency Approvals Dual Channel Quad Channel 8 C A/C 2 7 E A/C 3 6 C A/C 4 5 E 16 C A/C 1 • UL File #E52744 System Code H or J • CSA 93751 • DIN EN 60747-5-2(VDE0884) DIN EN 60747-5-5 pending Available with Option 1 • BSI IEC60950 IEC60965 Description A/C 1 A/C 2 15 E A/C 3 14 C A/C 4 13 E A/C 5 12 C A/C 6 11 E A/C 7 10 C A/C 8 9 E i179053 The ILD620/ ILQ620 and ILD620GB/ ILQ620GB are multi-channel input phototransistor optocouplers that use inverse parallel GaAs IRLED emitter and high gain NPN silicon phototransistors per channel. These devices are constructed using over/under leadframe optical coupling and double molded insulation resulting in a withstand test voltage of 5300 VRMS. The LED parameters and the linear CTR characteristics make these devices well suited for AC voltage detection. the ILD/Q620GB with its low IF quaranteed CTRCEsat minimizes power dissipation of the AC voltage detection network that is placed in series with the LEDs. Eliminating the phototransistor base connection provides added electrical noise immunity from the transients found in many industrial control environments. Order Information Part Remarks ILD620 CTR > 50 %, DIP-8 ILD620GB CTR > 100 %, DIP-8 ILQ620 CTR > 50 %, DIP-16 ILQ620GB CTR > 100 %, DIP-16 ILD620-X007 CTR > 50 %, SMD-8 (option 7) ILD620-X009 CTR > 50 %, SMD-8 (option 9) ILD620GB-X009 CTR > 100 %, SMD-8 (option 9) ILQ620-X009 CTR > 50 %, SMD-16 (option 9) ILQ620GB-X009 CTR > 100 %, SMD-16 (option 9) For additional information on the available options refer to Option Information. Document Number 83653 Rev. 1.3, 26-Apr-04 www.vishay.com 1 ILD620/ 620GB / ILQ620/ 620GB VISHAY Vishay Semiconductors Absolute Maximum Ratings Tamb = 25 °C, unless otherwise specified Stresses in excess of the absolute Maximum Ratings can cause permanent damage to the device. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of this document. Exposure to absolute Maximum Rating for extended periods of the time can adversely affect reliability. Input Parameter Test condition Symbol Value Unit IF ± 60 mA Surge current IFSM ± 1.5 A Power dissipation Pdiss 100 mW 1.3 mW/°C Symbol Value Unit BVCEO 70 V IC 50 mA IC 100 mA Pdiss 150 mW 2.0 mW/°C Forward current Derate linearly from 25 °C Output Parameter Test condition Collector-emitter breakdown voltage Collector current t < 1.0 sec: Power dissipation Derate from 25 °C Coupler Parameter Isolation test voltage Test condition Part t = 1.0 sec. Package dissipation Symbol Value Unit VISO 5300 VRMS ILD620 400 mW ILD620GB 400 mW Derate from 25 °C 5.33 mW/°C ILQ620 500 mW ILQ620GB 500 mW Derate from 25 °C 6.67 mW/°C Creepage ≥ 7.0 mm Clearance ≥ 7.0 mm Package dissipation Isolation resistance VIO = 500 V, Tamb = 25 °C RIO ≥ 1012 Ω VIO = 500 V, Tamb = 100 °C RIO 11 Ω ≥ 10 Storage temperature Tstg - 55 to + 150 °C Operating temperature Tamb - 55 to + 100 °C Tj 100 °C Tsld 260 °C Junction temperature Soldering temperature www.vishay.com 2 2.0 mm from case bottom Document Number 83653 Rev. 1.3, 26-Apr-04 ILD620/ 620GB / ILQ620/ 620GB VISHAY Vishay Semiconductors Electrical Characteristics Tamb = 25 °C, unless otherwise specified Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluation. Typical values are for information only and are not part of the testing requirements. Input Symbol Min Typ. Max Forward voltage Parameter IF = ± 10 mA Test condition VF 1.0 1.15 1.3 V Forward current VR = ± 0.7 V IF 2.5 20 µA Capacitance VF = 0 V, f = 1.0 MHz Thermal resistance, junction to lead Unit CO 25 pF RTHJL 750 K/W Output Parameter Test condition Symbol Min Typ. Max Unit 10 100 nA ICEO 2.0 50 RTHJL 500 Collector-emitter capacitance VCE = 5.0 V, f = 1.0 MHz CCE 6.8 Collector-emitter leakage current VCE = 24 V ICEO TA = 85 °C, VCE = 24 V Thermal resistance, junction to lead pF µA K/W Coupler Parameter Test condition Off-state collector current VF = ± 0.7 V, VCE = 24 V Collector-emitter saturation voltage IF = ± 8.0 mA, ICE = 2.4 mA IF = ± 1.0 mA, ICE = 0.2 mA Part Symbol Min ICE(OFF) Typ. Max Unit 1.0 10 µA ILD620 VCEsat 0.4 V ILQ620 VCEsat 0.4 V ILD620GB VCEsat 0.4 V ILQ620GB VCEsat 0.4 V Current Transfer Ratio Parameter Test condition Channel/Channel CTR match IF = ± 5.0 mA, VCE = 5.0 V CTR symmetry ICE(IF = - 5.0 mA)/ ICE(IF = + 5.0 mA) Current Transfer Ratio (collector-emitter saturated) IF = ± 1.0 mA, VCE = 0.4 V Current Transfer Ratio (collector-emitter) Current Transfer Ratio (collector-emitter saturated) Current Transfer Ratio (collector-emitter) Document Number 83653 Rev. 1.3, 26-Apr-04 IF = ± 5.0 mA, VCE = 5.0 V IF = ± 1.0 mA, VCE = 0.4 V IF = ± 5.0 mA, VCE = 5.0 V Part Symbol Min CTRX/CTRY 1 to 1 Typ. 3 to 1 Max ICE(RATIO) 0.5 2.0 Unit ILD620 CTRCEsat 60 % ILQ620 CTRCEsat 60 % ILD620 CTRCE 50 80 600 % ILQ620 CTRCE 50 80 600 % ILD620GB CTRCEsat 30 % ILQ620GB CTRCEsat 30 % ILD620GB CTRCE 100 200 600 % ILQ620GB CTRCE 100 200 600 % www.vishay.com 3 ILD620/ 620GB / ILQ620/ 620GB VISHAY Vishay Semiconductors Switching Characteristics Non-saturated Parameter Test condition Symbol Min Typ. Max Unit On time IF = ± 10 mA, VCC = 5.0 V, RL = 75 Ω, 50 % of VPP ton 3.0 µs Rise time IF = ± 10 mA, VCC = 5.0 V, RL = 75 Ω, 50 % of VPP tr 20 µs Off time IF = ± 10 mA, VCC = 5.0 V, RL = 75 Ω, 50 % of VPP toff 2.3 µs Fall time IF = ± 10 mA, VCC = 5.0 V, RL = 75 Ω, 50 % of VPP tf 2.0 µs Propagation H-L IF = ± 10 mA, VCC = 5.0 V, RL = 75 Ω, 50 % of VPP tPHL 1.1 µs Propagation L-H IF = ± 10 mA, VCC = 5.0 V, RL = 75 Ω, 50 % of VPP tPLH 2.5 µs Saturated Parameter Test condition Symbol Min Typ. Max Unit On time IF = ± 10 mA, VCC = 5.0 V, RL = 1.0 KΩ, VTH = 1.5 V ton 4.3 µs Rise time IF = ± 10 mA, VCC = 5.0 V, RL = 1.0 KΩ, VTH = 1.5 V tr 2.8 µs Off time IF = ± 10 mA, VCC = 5.0 V, RL = 1.0 KΩ, VTH = 1.5 V toff 2.5 µs Fall time IF = ± 10 mA, VCC = 5.0 V, RL = 1.0 KΩ, VTH = 1.5 V tf 11 µs Propagation H-L IF = ± 10 mA, VCC = 5.0 V, RL = 1.0 KΩ, VTH = 1.5 V tPHL 2.6 µs Propagation L-H IF = ± 10 mA, VCC = 5.0 V, RL = 1.0 KΩ, VTH = 1.5 V tPLH 7.2 µs Typical Characteristics (Tamb = 25 °C unless otherwise specified) IF = 10 mA F = 10 KHz, DF = 50% VCC = 5 V VCC = 5 V RL = 1 kΩ VO F = 10 KHz, DF = 50% iild620_01 Fig. 1 Non-saturated Switching Timing www.vishay.com 4 VO RL = 75 Ω IF = 10 mA iild620_02 Fig. 2 Saturated Switching Timing Document Number 83653 Rev. 1.3, 26-Apr-04 ILD620/ 620GB / ILQ620/ 620GB VISHAY Vishay Semiconductors 10 5 ICEO - Collector-Emitter - nA IF tPLH tPLH VO tS 50% tD 10 2 Vce = 10 V 10 1 Typical 10 0 10 -1 0 20 40 60 80 100 TA - Ambient Temperature - °C toff ton iild620_03 10 3 10 -2 -20 tF tR 10 4 iild620_06 Fig. 6 Collector-Emitter Leakage vs. Temperature Fig. 3 Non-saturated Switching Timing tD tR VO t PLH VTH = 1.5 V tF tS t PHL IF - Maximum LED Current - mA 120 IF iild620 _04 100 80 60 TJ (MAX) = 100 °C 40 20 0 -60 -40 -20 0 20 40 60 80 100 Ta - Ambient Temperature - °C iild620_07 Fig. 7 Maximum LED Current vs. Ambient Temperature Fig. 4 Saturated Switching Timing 200 40 85 °C 20 25 °C 0 –55 °C -20 -40 PLED - LED Power - mW I F - LED Forward Current - mA 60 150 100 50 -60 -1.5 iild620_05 -1.0 -0.5 0.0 0.5 1.0 V F - LED Forward Voltage - V Fig. 5 LED Forward Current vs.Forward Voltage Document Number 83653 Rev. 1.3, 26-Apr-04 1.5 0 -60 -40 iild620_08 -20 0 20 40 60 Ta - Ambient Temperature - °C 80 100 Fig. 8 Maximum LED Power Dissipation www.vishay.com 5 ILD620/ 620GB / ILQ620/ 620GB VISHAY 100 50 Normalized to IF = 10 mA VCE = 5 V 10 5.0 2.5 CTRNF - Normalized CTR Factor IC- Normalized Collector Current Vishay Semiconductors ILD/Q620GB ILD/Q620 1.0 0.5 0.1 1 5 10 2.0 Normalized to: VCE = 10 V, IF = 5 mA, CTRce(sat) VCE = 0.4 V 1.5 1.0 NCTRce 0.5 NCTRce(sat) TA = 100 °C 0.0 .1 20 1 10 IF - LED Current - mA Forward Current - IF mA iild620_09 iild620_12 Fig. 9 Collector Current vs. Diode Forward Current Fig. 12 Normalization Factor for Non-saturated and Saturated CTR vs. IF 10000 2.0 Normalized to: VCE = 10 V, IF = 5 mA, CTRce(sat) VCE = 0.4 V 1.5 NCTRce 1.0 NCTRce(sat) 0.5 TA = 50 °C 0.0 .1 1 10 IF - LED Current - mA 100 If(pk) - Peak LED Current - mA CTRNF - Normalized CTR Factor 100 τˇ Duty Factor 1000 100 .005 .01 .02 .05 .1 .2 .5 t τ DF = /t 10 10 -6 10 -5 10 -4 10 -3 10 -2 10 -1 10 0 10 1 t - LED Pulse Duration - s iild620_10 iild620_13 Fig. 13 Peak LED Current vs. Pulse Duration, Tau 200 2.0 Normalized to: VCE = 10 V, IF = 5 mA, CTRce(sat) VCE = 0.4 V 1.5 NCTRce 1.0 NCTRce(sat) 0.5 TA = 70 °C 0.0 .1 1 10 IF - LED Current - mA 100 PDET - Detector Power - mW CTRNF - Normalized CTR Factor Fig. 10 Normalization Factor for Non-saturated and Saturated CTR vs. IF 150 100 50 0 -60 -40 -20 0 20 40 60 80 100 Ta - Ambient Temperature - °C iild620_11 Fig. 11 Normalization Factor for Non-saturated and Saturated CTR vs. IF www.vishay.com 6 iild620_14 Fig. 14 Maximum Detector Power Dissipation Document Number 83653 Rev. 1.3, 26-Apr-04 ILD620/ 620GB / ILQ620/ 620GB VISHAY Vishay Semiconductors ICE - Collector Current - mA 1000 Rth = 500 °C/W 100 10 25 °C 50 °C 75 °C 90 °C 1 .1 .1 10 1 VCE - Collector-Emitter Voltage - V 100 iild620_15 Fig. 15 Maximum Collector Current vs. Collector Voltage Package Dimensions in Inches (mm) pin one ID 4 3 2 1 5 6 7 8 .255 (6.48) .268 (6.81) ISO Method A .379 (9.63) .390 (9.91) .030 (0.76) .045 (1.14) 4° typ. .031 (0.79) .300 (7.62) typ. .130 (3.30) .150 (3.81) .050 (1.27) .018 (.46) .022 (.56) i178006 Document Number 83653 Rev. 1.3, 26-Apr-04 .020 (.51 ) .035 (.89 ) .100 (2.54) typ. 10° 3°–9° .008 (.20) .012 (.30) .230(5.84) .110 (2.79) .250(6.35) .130 (3.30) www.vishay.com 7 ILD620/ 620GB / ILQ620/ 620GB VISHAY Vishay Semiconductors Package Dimensions in Inches (mm) pin one ID 8 7 6 5 4 3 2 1 .255 (6.48) .265 (6.81) 9 10 11 12 13 14 15 16 ISO Method A .779 (19.77 ) .790 (20.07) .030 (.76) .045 (1.14) .300 (7.62) typ. .031(.79) .130 (3.30) .150 (3.81) 4° .020(.51) .035 (.89) .018 (.46) .022 (.56) .100 (2.54)typ. .050 (1.27) 10° typ. 3°–9° .008 (.20) .012 (.30) .110 (2.79) .130 (3.30) .230 (5.84) .250 (6.35) i178007 Option 7 Option 9 .375 (9.53) .395 (10.03) .300 (7.62) TYP. .300 (7.62) ref. .028 (0.7) MIN. .180 (4.6) .160 (4.1) .0040 (.102) .315 (8.0) MIN. .331 (8.4) MIN. .406 (10.3) MAX. www.vishay.com 8 .0098 (.249) .012 (.30) typ. .020 (.51) .040 (1.02) .315 (8.00) min. 15° max. 18494 Document Number 83653 Rev. 1.3, 26-Apr-04 ILD620/ 620GB / ILQ620/ 620GB VISHAY Vishay Semiconductors Ozone Depleting Substances Policy Statement It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operatingsystems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs). The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423 Document Number 83653 Rev. 1.3, 26-Apr-04 www.vishay.com 9