Hynix HMT112U6AFP8C-G8 240pin ddr3 sdram unbuffered dimm Datasheet

240pin DDR3 SDRAM Unbuffered DIMMs
DDR3 SDRAM Unbuffered DIMMs
Based on 1Gb A version
HMT164U6AFP(R)6C
HMT112U6AFP(R)8C
HMT112U7AFP(R)8C
HMT125U6AFP(R)8C
HMT125U7AFP(R)8C
** Contents are subject to change without prior notice.
Rev. 0.1 / Dec 2008
1
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
Revision History
Revision No.
History
Draft Date
Remark
0.01
Initial draft for internal review
Nov. 2007
Preliminary
0.02
Added IDD & Halogen-free products
Mar. 2008
Preliminary
0.1
Initial Specification Release.
Corrected typo on package ball feature.
Dec 2008
Rev. 0.1 / Dec 2008
2
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
Table of Contents
1. Description
1.1 Device Features and Ordering Information
1.1.1 Features
1.1.2 Ordering Information
1.2 Speed Grade & Key Parameters
1.3 Address Table
2. Pin Architecture
2.1 Pin Definition
2.2 Input/Output Functional Description
2.3 Pin Assignment
3. Functional Block Diagram
3.1 512MB, 64Mx64 Module(1Rank of x16)
3.2 1GB, 128Mx64 Module(1Rank of x8)
3.3 1GB, 128Mx72 ECC Module(1Rank of x8)
3.4 2GB, 256Mx64 Module(2Rank of x8)
3.5 2GB, 256Mx72 ECC Module(2Rank of x8)
4. Address Mirroring Feature
4.1 DRAM Pin Wiring for Mirroring
5. Absolute Maximum Ratings
5.1 Absolute Maximum DC Ratings
5.2 Operating Temperature Range
6. AC & DC Operating Conditions
6.1 Recommended DC Operating Conditions
6.2 DC & AC Logic Input Levels
6.2.1 For Single-ended Signals
6.2.2 For Differential Signals
6.2.3 Differential Input Cross Point
6.3 Slew Rate Definition
6.3.1 For Ended Input Signals
6.3.2 For Differential Input Signals
6.4 DC & AC Output Buffer Levels
6.4.1 Single Ended DC & AC Output Levels
6.4.2 Differential DC & AC Output Levels
6.4.3 Single Ended Output Slew Rate
6.4.4 Differential Ended Output Slew Rate
6.5 Overshoot/Undershoot Specification
6.6 Input/Output Capacitance & AC Parametrics
6.7 IDD Specifications & Measurement Conditions
7. Electrical Characteristics and AC Timing
7.1 Refresh Parameters by Device Density
7.2 DDR3 Standard speed bins and AC para
8. DIMM Outline Diagram
8.1 512MB, 64Mx64 Module(1Rankx16)
8.2 1GB, 128Mx64 Module(1Rank of x8)
8.3 1GB, 128Mx72 ECC Module(1Rank of x8)
8.4 2GB, 256Mx64 Module(2Rank of x8)
8.5 2GB, 256Mx72 ECC Module(2Rank of x8)
Rev. 0.1 / Dec 2008
3
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
1. Description
This Hynix unbuffered Dual In-Line Memory Module(DIMM) series consists of 1Gb A version. DDR3 SDRAMs in Fine
Ball Grid Array(FBGA) packages on a 240 pin glass-epoxy substrate. This DDR3 Unbuffered DIMM series based on 1Gb
A ver. provide a high performance 8 byte interface in 133.35mm width form factor of industry standard. It is suitable
for easy interchange and addition.
1.1 Device Features & Ordering Information
1.1.1 Features
• VDD=VDDQ=1.5V
• VDDSPD=3.3V to 3.6V
• Fully differential clock inputs (CK, /CK) operation
• Differential Data Strobe (DQS, /DQS)
• On chip DLL align DQ, DQS and /DQS transition with
CK transition
• DM masks write data-in at the both rising and falling
edges of the data strobe
• All addresses and control inputs except data, data
strobes and data masks latched on the rising edges of
the clock
• Programmable CAS latency 5, 6, 7, 8, 9, 10, and (11)
supported
• Programmable burst length 4/8 with both nibble
sequential and interleave mode
• BL switch on the fly
• 8banks
• 8K refresh cycles /64ms
• DDR3 SDRAM Package: JEDEC standard 78ball
FBGA(x4/x8), 96ball FBGA(x16) with support balls
• Driver strength selected by EMRS
• Dynamic On Die Termination supported
• Asynchronous RESET pin supported
• ZQ calibration supported
• TDQS (Termination Data Strobe) supported (x8 only)
• Programmable additive latency 0, CL-1, and CL-2 sup
ported
• Write Levelization supported
• Programmable CAS Write latency (CWL) = 5, 6, 7, 8
• On Die Thermal Sensor supported (JEDEC optional)
Rev. 0.1 / Dec 2008
• Auto Self Refresh supported
4
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
1.1.2 Ordering Information
Part Name
# of
# of
DRAMs ranks
Density
Org.
HMT164U6AFP6C-S6/S5/G8/G7/H9/H8
512MB
64Mx64
4
1
HMT164U6AFR6C-S6/S5/G8/G7/H9/H8
512MB
64Mx64
4
1
HMT112U6AFP8C-S6/S5/G8/G7/H9/H8
1GB
128Mx64
8
1
HMT112U6AFR8C-S6/S5/G8/G7/H9/H8
1GB
128Mx64
8
1
HMT112U7AFP8C-S6/S5/G8/G7/H9/H8
1GB
128Mx72
9
1
Lead free
ECC
Yes
HMT112U7AFR8C-S6/S5/G8/G7/H9/H8
1GB
128Mx72
9
1
Halogen-free
ECC
Yes
HMT125U6AFP8C-S6/S5/G8/G7/H9/H8
2GB
256Mx64
16
2
Lead free
None
No
HMT125U6AFR8C-S6/S5/G8/G7/H9/H8
2GB
256Mx64
16
2
Halogen-free None
No
HMT125U7AFP8C-S6/S5/G8/G7/H9/H8
2GB
256Mx72
18
2
Lead free
ECC
Yes
HMT125U7AFR8C-S6/S5/G8/G7/H9/H8
2GB
256Mx72
18
2
Halogen-free
ECC
Yes
Rev. 0.1 / Dec 2008
Materials
ECC
TS
Lead-free
None
No
Halogen-free None
No
Lead free
None
No
Halogen-free None
No
5
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
1.2 Speed Grade & Key Parameters
MT/S
DDR3-800
DDR3-1066
DDR3-1333
DDR3-1600
Unit
Grade
-S6
tCK(min)
-S5
-G8
-G7
2.5
-H9
1.875
-H8
-P1
1.5
-P9
1.25
ns
CAS Latency
6
5
8
7
9
8
10
9
tCK
tRCD(min)
15
12.5
15
13.125
13.5
12
12.5
11.25
ns
tRP(min)
15
12.5
15
13.125
13.5
12
12.5
11.25
ns
tRAS(min)
37.5
37.5
37.5
37.5
36
36
35
35
ns
tRC(min)
52.5
50
52.5
50.625
49.5
48
47.25
46.25
ns
CL-tRCD-tRP
6-6-6
5-5-5
8-8-8
7-7-7
9-9-9
8-8-8
10-10-10
9-9-9
tCK
1.3 Address Table
512MB
1GB
1GB
2GB
2GB
Organization
64M x 64
128M x 64
128M x 72
256M x 64
256M x 72
Refresh Method
8K/64ms
8K/64ms
8K/64ms
8K/64ms
8K/64ms
Row Address
A0-A12
A0-A13
A0-A13
A0-A13
A0-A13
Column Address
A0-A9
A0-A9
A0-A9
A0-A9
A0-A9
Bank Address
BA0-BA2
BA0-BA2
BA0-BA2
BA0-BA2
BA0-BA2
Page Size
2KB
1KB
1KB
1KB
1KB
# of Rank
1
1
1
2
2
# of Device
4
8
9
16
18
Rev. 0.1 / Dec 2008
6
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
2. Pin Architecture
2.1 Pin Definition
Pin Name
Description
Pin Name
Description
I2C serial bus clock for EEPROM
A0–A13
SDRAM address bus
SCL
BA0–BA2
SDRAM bank select
SDA
I2C serial bus data line for EEPROM
SA0–SA2
I2C slave address select for EEPROM
RAS
SDRAM row address strobe
CAS
SDRAM column address strobe
WE
SDRAM write enable
VDDQ*
DIMM Rank Select Lines
VREFDQ
SDRAM I/O reference supply
VREFCA
SDRAM command/address reference
supply
S0–S1
CKE0–CKE1
SDRAM clock enable lines
ODT0–ODT1
On-die termination control lines
DQ0–DQ63
CB0–CB7
DIMM memory data bus
DIMM ECC check bits
VDD*
VSS
VDDSPD
NC
SDRAM core power supply
SDRAM I/O Driver power supply
Power supply return (ground)
Serial EEPROM positive power supply
Spare pins (no connect)
DQS0–DQS8
SDRAM data strobes
(positive line of differential pair)
TEST
Memory bus analysis tools
(unused on memory DIMMS)
DQS0–DQS8
SDRAM data strobes
(negative line of differential pair)
RESET
Set DRAMs to Known State
DM0–DM8
SDRAM data masks/high data strobes
(x8-based x72 DIMMs)
VTT
SDRAM I/O termination supply
CK0–CK1
SDRAM clocks
(positive line of differential pair)
RFU
Reserved for future use
CK0–CK1
SDRAM clocks
(negative line of differential pair)
-
-
*The VDD and VDDQ pins are tied common to a single power-plane on these designs
Rev. 0.1 / Dec 2008
7
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
2.2 Input/Output Functional Description
Symbol
Type
Polarity
Function
CK0–CK1
CK0–CK1
SSTL
Differential
crossing
CK and CK are differential clock inputs. All the DDR3 SDRAM addr/cntl
inputs are sampled on the crossing of positive edge of CK and negative
edge of CK. Output (read) data is reference to the crossing of CK and CK
(Both directions of crossing).
CKE0–CKE1
SSTL
Active High
Activates the SDRAM CK signal when high and deactivates the CK signal
when low. By deactivating the clocks, CKE low initiates the Power Down
mode, or the Self Refresh mode.
S0–S1
SSTL
Active Low
Enables the associated SDRAM command decoder when low and disables
the command decoder when high. When the command decoder is disabled, new commands are ignored but previous operations continue. This
signal provides for external rank selection on systems with multiple ranks.
RAS, CAS, WE
SSTL
Active Low
RAS, CAS, and WE (ALONG WITH S) define the command being entered.
ODT0–ODT1
SSTL
Active High
When high, termination resistance is enabled for all DQ, DQS, DQS and DM
pins, assuming this function is enabled in the Mode Register 1 (MR1).
VREFDQ
Supply
Reference voltage for SSTL15 I/O inputs.
VREFCA
Supply
Reference voltage for SSTL 15 command/address inputs.
VDDQ
Supply
Power supply for the DDR3 SDRAM output buffers to provide improved
noise immunity. For all current DDR3 unbuffered DIMM designs, VDDQ
shares the same power plane as VDD pins.
BA0–BA2
SSTL
—
Selects which SDRAM bank of eight is activated.
During a Bank Activate command cycle, Address input defines the row
address (RA0–RA15).
A0–A13
SSTL
—
DQ0–DQ63,
CB0–CB7
SSTL
—
DM0–DM8
SSTL
VDD, VSS
Supply
Rev. 0.1 / Dec 2008
Active High
During a Read or Write command cycle, Address input defines the column
address. In addition to the column address, AP is used to invoke autoprecharge operation at the end of the burst read or write cycle. If AP is high,
autoprecharge is selected and BA0, BA1, BA2 defines the bank to be precharged. If AP is low, autoprecharge is disabled. During a Precharge command cycle, AP is used in conjunction with BA0, BA1, BA2 to control which
bank(s) to precharge. If AP is high, all banks will be precharged regardless
of the state of BA0, BA1 or BA2. If AP is low, BA0, BA1 and BA2 are used to
define which bank to precharge. A12(BC) is sampled during READ and
WRITE commands to determine if burst chop (on-the-fly) will be performed (HIGH, no burst chop; LOW, burst chopped).
Data and Check Bit Input/Output pins.
DM is an input mask signal for write data. Input data is masked when DM
is sampled High coincident with that input data during a write access. DM
is sampled on both edges of DQS. Although DM pins are input only, the DM
loading matches the DQ and DQS loading.
Power and ground for the DDR3 SDRAM input buffers, and core logic. VDD
and VDDQ pins are tied to VDD/VDDQ planes on these modules.
8
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
Symbol
Type
Polarity
DQS0–DQS8
DQS0–DQS8
SSTL
Differential
crossing
Function
Data strobe for input and output data.
SA0–SA2
—
These signals are tied at the system planar to either VSS or VDDSPD to configure the serial SPD EEPROM address range.
SDA
—
This bidirectional pin is used to transfer data into or out of the SPD
EEPROM. An external resistor may be connected from the SDA bus line to
VDDSPD to act as a pullup on the system board.
SCL
—
This signal is used to clock data into and out of the SPD EEPROM. An
external resistor may be connected from the SCL bus time to VDDSPD to act
as a pullup on the system board.
VDDSPD
Power supply for SPD EEPROM. This supply is separate from the VDD/VDDQ
power plane. EEPROM supply is operable from 3.0V to 3.6V.
Supply
2.3 Pin Assignment
Front Side(left 1–60)
Pin
x64
# Non-ECC
x72
ECC
Back Side(right 121–180)
Front Side(left 61–120) Back Side(right 181–240)
Pin
x64
# Non-ECC
x72
ECC
Pin
#
x64
Non-ECC
x72
ECC
Pin
#
x64
Non-ECC
x72
ECC
VSS
VSS
61
A2
A2
181
A1
A1
1
VREFDQ
2
VSS
VSS
122
DQ4
DQ4
62
VDD
VDD
182
VDD
VDD
3
DQ0
DQ0
123
DQ5
DQ5
63
CK1
CK1
183
VDD
VDD
4
DQ1
DQ1
124
VSS
VSS
64
CK1
CK1
184
CK0
CK0
5
VSS
VSS
125
DM0
DM0
65
VDD
VDD
185
CK0
CK0
6
DQS0
DQS0
126
NC
NC
66
VDD
VDD
186
VDD
VDD
7
DQS0
DQS0
127
VSS
VSS
67
VREFCA
VREFCA
187
NC
NC
8
VSS
VSS
128
DQ6
DQ6
68
NC
NC
188
A0
A0
9
DQ2
DQ2
129
DQ7
DQ7
69
VDD
VDD
189
VDD
VDD
BA12
VREFDQ 121
10
DQ3
DQ3
130
VSS
VSS
70
A10
A10
190
BA12
11
VSS
VSS
131
DQ12
DQ12
71
BA02
BA02
191
VDD
VDD
12
DQ8
DQ8
132
DQ13
DQ13
72
VDD
VDD
192
RAS
RAS
13
DQ9
DQ9
133
VSS
VSS
73
WE
WE
193
S0
S0
14
VSS
VSS
134
DM1
DM1
74
CAS
CAS
194
VDD
VDD
15
DQS1
DQS1
135
NC
NC
75
VDD
VDD
195
ODT0
ODT0
16
DQS1
DQS1
136
VSS
VSS
76
S1
S1
196
A13
A13
NC = No Connect; RFU = Reserved Future Use
1. NC pins should not be connected to anything on the DIMM, including bussing within the NC group.
2. Address pins A3–A8 and BA0 and BA1 can be mirrored or not mirrored. Please refer to Section 4.1 for more
information on mirrored addresses.
Rev. 0.1 / Dec 2008
9
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
Front Side(left 1–60)
Back Side(right 121–180)
Front Side(left 61–120) Back Side(right 181–240)
Pin
x64
# Non-ECC
x72
ECC
Pin
x64
# Non-ECC
x72
ECC
Pin
#
x64
Non-ECC
x72
ECC
Pin
#
x64
Non-ECC
x72
ECC
17
VSS
VSS
137
DQ14
DQ14
77
ODT1
ODT1
197
VDD
VDD
18
DQ10
DQ10
138
DQ15
DQ15
78
VDD
VDD
198
NC
NC
19
DQ11
DQ11
139
VSS
VSS
79
NC
NC
199
VSS
VSS
20
VSS
VSS
140
DQ20
DQ20
80
VSS
VSS
200
DQ36
DQ36
21
DQ16
DQ16
141
DQ21
DQ21
81
DQ32
DQ32
201
DQ37
DQ37
22
DQ17
DQ17
142
VSS
VSS
82
DQ33
DQ33
202
VSS
VSS
23
VSS
VSS
143
DM2
DM2
83
VSS
VSS
203
DM4
DM4
24
DQS2
DQS2
144
NC
NC
84
DQS4
DQS4
204
NC
NC
25
DQS2
DQS2
145
VSS
VSS
85
DQS4
DQS4
205
VSS
VSS
26
VSS
VSS
146
DQ22
DQ22
86
VSS
VSS
206
DQ38
DQ38
27
DQ18
DQ18
147
DQ23
DQ23
87
DQ34
DQ34
207
DQ39
DQ39
28
DQ19
DQ19
148
VSS
VSS
88
DQ35
DQ35
208
VSS
VSS
29
VSS
VSS
149
DQ28
DQ28
89
VSS
VSS
209
DQ44
DQ44
30
DQ24
DQ24
150
DQ29
DQ29
90
DQ40
DQ40
210
DQ45
DQ45
31
DQ25
DQ25
151
VSS
VSS
91
DQ41
DQ41
211
VSS
VSS
32
VSS
VSS
152
DM3
DM3
92
VSS
VSS
212
DM5
DM5
33
DQS3
DQS3
153
NC
NC
93
DQS5
DQS5
213
NC
NC
34
DQS3
DQS3
154
VSS
VSS
94
DQS5
DQS5
214
VSS
VSS
35
VSS
VSS
155
DQ30
DQ30
95
VSS
VSS
215
DQ46
DQ46
36
DQ26
DQ26
156
DQ31
DQ31
96
DQ42
DQ42
216
DQ47
DQ47
37
DQ27
DQ27
157
VSS
VSS
97
DQ43
DQ43
217
VSS
VSS
38
VSS
VSS
158
NC
CB4
98
VSS
VSS
218
DQ52
DQ52
39
NC
CB0
159
NC
CB5
99
DQ48
DQ48
219
DQ53
DQ53
40
NC
CB1
160
VSS
VSS
100
DQ49
DQ49
220
VSS
VSS
41
VSS
VSS
161
DM8
DM8
101
VSS
VSS
221
DM6
DM6
42
NC
DQS8
162
NC
NC
102
DQS6
DQS6
222
NC
NC
43
NC
DQS8
163
VSS
VSS
103
DQS6
DQS6
223
VSS
VSS
44
VSS
VSS
164
NC
CB6
104
VSS
VSS
224
DQ54
DQ54
45
NC
CB2
165
NC
CB7
105
DQ50
DQ50
225
DQ55
DQ55
46
NC
CB3
166
VSS
VSS
106
DQ51
DQ51
226
VSS
VSS
47
VSS
VSS
167
NC
NC
107
VSS
VSS
227
DQ60
DQ60
NC = No Connect; RFU = Reserved Future Use
1. NC pins should not be connected to anything on the DIMM, including bussing within the NC group.
2. Address pins A3–A8 and BA0 and BA1 can be mirrored or not mirrored. Please refer to Section 4.1 for more
information on mirrored addresses.
Rev. 0.1 / Dec 2008
10
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
Front Side(left 1–60)
Pin
x64
# Non-ECC
48
x72
ECC
NC
NC
Back Side(right 121–180)
Front Side(left 61–120) Back Side(right 181–240)
Pin
x64
# Non-ECC
x72
ECC
Pin
#
x64
Non-ECC
x72
ECC
Pin
#
x64
Non-ECC
x72
ECC
168
Reset
108
DQ56
DQ56
228
DQ61
DQ61
109
DQ57
DQ57
229
VSS
VSS
Reset
KEY
KEY
49
NC
NC
169
CKE1/NC
CKE1/NC
110
VSS
VSS
230
DM7
DM7
50
CKE0
CKE0
170
VDD
VDD
111
DQS7
DQS7
231
NC
NC
51
VDD
VDD
171
NC
NC
112
DQS7
DQS7
232
VSS
VSS
52
BA2
BA2
172
NC
NC
113
VSS
VSS
233
DQ62
DQ62
53
NC
NC
173
VDD
VDD
114
DQ58
DQ58
234
DQ63
DQ63
54
VDD
VDD
174
A12
A12
115
DQ59
DQ59
235
VSS
VSS
55
All
All
175
A9
A9
116
VSS
VSS
236
VDDSPD
VDDSPD
56
A72
A72
176
VDD
VDD
117
SA0
SA0
237
SA1
SA1
57
VDD
VDD
177
A82
A82
118
SCL
SCL
238
SDA
SDA
58
A52
A52
178
A62
A62
119
SA2
SA2
239
VSS
VSS
59
A42
A42
179
VDD
VDD
120
VTT
VTT
240
VTT
VTT
60
VDD
VDD
180
A32
A32
NC = No Connect; RFU = Reserved Future Use
1. NC pins should not be connected to anything on the DIMM, including bussing within the NC group.
2. Address pins A3–A8 and BA0 and BA1 can be mirrored or not mirrored. Please refer to Section 4.1 for more
information on mirrored addresses.
Rev. 0.1 / Dec 2008
11
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
3. Functional Block Diagram
3.1 512MB, 64Mx64 Module(1Rank of x16)
S0
DQS0
DQS0
DM0
DQS1
DQS1
DM1
DQS2
DQS2
DM2
DQS3
DQS3
DM3
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
LDQS
LDQS
LDM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
UDQS
UDQS
UDM
I/O 8
I/O 9
I/O 10
I/O 11
I/O 12
I/O 13
I/O 14
I/O 15
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
LDQS
LDQS
LDM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
UDQS
UDQS
UDM
I/O 8
I/O 9
I/O 10
I/O 11
I/O 12
I/O 13
I/O 14
I/O 15
DQS4
DQS4
DM4
CS
D0
DQS5
DQS5
DM5
ZQ
DQS6
DQS6
DM6
CS
CSD1
DQS7
DQS7
DM7
CS
ZQ
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
LDQS
LDQS
LDM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
UDQS
UDQS
UDM
I/O 8
I/O 9
I/O 10
I/O 11
I/O 12
I/O 13
I/O 14
I/O 15
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
LDQS
LDQS
LDM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
UDQS
UDQS
UDM
I/O 8
I/O 9
I/O 10
I/O 11
I/O 12
I/O 13
I/O 14
I/O 15
Serial PD
SCL
BA0–BA2
A0–A14
BA0–BA2: SDRAMs D0–D3
A0–A14: SDRAMs D0–D3
RAS
RAS: SDRAMs D0–D3
CAS
CAS: SDRAMs D0–D3
CKE0
CKE: SDRAMs D0–D3
WE
ODT0
WE: SDRAMs D0–D3
CK0
CK0
RESET
ODT: SDRAMs D0–D3
CK: SDRAMs D0–D3
CK: SDRAMs D0–D3
RESET:SDRAMs D0-D3
Rev. 0.1 / Dec 2008
VDDSPD
VDD/VDDQ
SDA
WP
A0
A1
A2
SA0
SA1
SA2
SPD
D0–D3
VREFDQ
D0–D3
VSS
D0–D3
VREFCA
D0–D3
CS
D2
ZQ
CS
CSD3
CS
ZQ
Notes:
1. DQ-to-I/O wiring is shown as recommended but may be changed.
2. DQ/DQS/DQS/ODT/DM/CKE/S relationships must be maintained as shown.
3. DQ,DM,DQS,DQS resistors;Refer to associated topology diagram.
4. Refer to the appropriate clock wiring
topology under the DIMM wiring details
section of this document.
5. The pair CK1 and CK1# is terminated in
75ohm but is not used on the module.
6. A15 is not routed on the module.
7. For each DRAM, a unique ZQ resistor is
connected to ground.The ZQ resistor is
240ohm+-1%
8. One SPD exists per module.
12
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
3.2 1GB, 128Mx64 Module(1Rank of x8)
S0
DQS0
DQS0
DM0
DQS1
DQS1
DM1
DQS2
DQS2
DM2
DQS3
DQS3
DM3
DQS4
DQS4
DM4
DM CS DQS DQS
0
1
D0
2
3
4
5
6
ZQ
7
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
DM CS DQS DQS
I/O 0
I/O 1
D1
I/O 2
I/O 3
I/O 4
I/O 5
ZQ
I/O 6
I/O 7
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
DM CS DQS DQS
I/O 0
I/O 1
D3
I/O 2
I/O 3
I/O 4
I/O 5
ZQ
I/O 6
I/O 7
DQS5
DQS5
DM5
DQS6
DQS6
DM6
DM CS DQS DQS
0
1
D2
2
3
4
5
6
7
ZQ
DQS7
DQS7
DM7
A0–A15
BA0–BA2: SDRAMs D0–D7
A0–A15: SDRAMs D0–D7
RAS
RAS: SDRAMs D0–D7
CAS
CAS: SDRAMs D0–D7
CKE0
CKE: SDRAMs D0–D7
WE
ODT0
WE: SDRAMs D0–D7
CK0
CK0
CK: SDRAMs D0–D7
CK: SDRAMs D0–D7
RESET
ODT: SDRAMs D0–D7
RESET:SDRAMs D0-D7
Rev. 0.1 / Dec 2008
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS DQS DQS
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS DQS DQS
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS DQS DQS
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS DQS DQS
Serial PD
SCL
BA0–BA2
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
VDDSPD
VDD/VDDQ
SDA
WP
A0
A1
A2
SA0
SA1
SA2
SPD
D0–D7
VREFDQ
D0–D7
VSS
D0–D7
VREFCA
D0–D7
D4
ZQ
D5
ZQ
D6
ZQ
D7
ZQ
Notes:
1. DQ-to-I/O wiring is shown as recommended but may be changed.
2. DQ/DQS/DQS/ODT/DM/CKE/S relationships must be maintained as shown.
3. DQ,DM,DQS/DQS resistors;Refer to
associated topology diagram.
4. Refer to the appropriate clock wiring
topology under the DIMM wiring details
section of this document.
5. Refer to Section 3.1 of this document for
details on address mirroring.
6. For each DRAM, a unique ZQ resistor is
connected to ground.The ZQ resistor is
240ohm+-1%
7. One SPD exists per module.
13
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
3.3 1GB, 128Mx72 Module(1Rank of x8)
S0
DQS0
DQS0
DM0
DQS1
DQS1
DM1
DQS2
DQS2
DM2
DQS3
DQS3
DM3
DQS8
DQS8
DM8
BA0–BA2
A0–A15
RAS
CAS
CKE0
WE
ODT0
CK0
CK0
RESET
DQS4
DQS4
DM4
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS DQS DQS
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
CB0
CB1
CB2
CB3
CB4
CB5
CB6
CB7
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS DQS DQS
D0
ZQ
DQS5
DQS5
DM5
DQS DQS
D1
ZQ
DQS6
DQS6
DM6
DQS DQS
D2
ZQ
DQS7
DQS7
DM7
DQS DQS
D3
ZQ
D8
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS DQS DQS
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS
SPD(TS integrated)
SCL
EVENT
ZQ
BA0–BA2: SDRAMs D0–D8
A0–A15: SDRAMs D0–D8 VDDSPD
RAS: SDRAMs D0–D8
VDD/VDDQ
CAS: SDRAMs D0–D8
CKE: SDRAMs D0–D8
VREFDQ
WE: SDRAMs D0–D8
VSS
ODT: SDRAMs D0–D8
CK: SDRAMs D0–D8
V
REFCA
CK: SDRAMs D0–D8
RESET:SDRAMs D0-D8
Rev. 0.1 / Dec 2008
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
EVENT
SDA
A0
A1
A2
SA0
SA1
SA2
SPD
D0–D8
D0–D8
D0–D8
D0–D8
DQS DQS
D4
ZQ
D5
ZQ
DQS DQS
D6
ZQ
DQS DQS
D7
ZQ
Notes:
1. DQ-to-I/O wiring is shown as recommended but may be changed.
2. DQ/DQS/DQS/ODT/DM/CKE/S relationships must be maintained as
shown.
3. DQ,CB,DM,DQS/DQS resistors;Refer
to associated topology diagram.
4. Refer to the appropriate clock wiring
topology under the DIMM wiring
details section of this document.
5. For each DRAM, a unique ZQ resistor
is connected to ground.The ZQ resistor is 240ohm+-1%
6. One SPD exists per module.
14
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
3.4 2GB, 256Mx64 Module(2Rank of x8)
S1
S0
DQS0
DQS0
DM0
DQS4
DQS4
DM4
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
CS DQS DQS
D0
ZQ
DQS1
DQS1
DM1
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS DQS DQS
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS DQS DQS
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
D1
ZQ
DQS2
DQS2
DM2
DQS3
DQS3
DM3
DM
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
D2
ZQ
CS DQS DQS
D3
ZQ
DM CS DQS DQS
I/O 0
I/O 1
D8
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
ZQ
I/O 7
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
DM CS DQS DQS
I/O 0
I/O 1
D4
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
DM CS DQS DQS
I/O 0
I/O 1
D12
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
DM CS DQS DQS
I/O 0
I/O 1
D5
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
DM CS DQS DQS
I/O 0
I/O 1
D13
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
ZQ
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
DM CS DQS DQS
I/O 0
I/O 1
D6
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
DM CS DQS DQS
I/O 0
I/O 1
D14
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
ZQ
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
DM CS DQS DQS
I/O 0
I/O 1
D7
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
DM CS DQS DQS
I/O 0
I/O 1
D15
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
DQS5
DQS5
DM5
DM CS DQS DQS
I/O 0
I/O 1
D9
I/O 2
I/O 3
I/O 4
I/O 5
ZQ
I/O 6
I/O 7
DQS6
DQS6
DM6
DM CS DQS DQS
I/O 0
I/O 1
D10
I/O 2
I/O 3
I/O 4
I/O 5
ZQ
I/O 6
I/O 7
RESET
ZQ
ZQ
ZQ
DQS7
DQS7
DM7
DM CS DQS DQS
I/O 0
I/O 1
D11
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
ZQ
I/O 7
Serial PD
BA0–BA2
A0–A15
CKE1
CKE0
RAS
CAS
WE
ODT0
ODT1
CK0
CK0
CK1
CK1
ZQ
BA0–BA2: SDRAMs D0–D15 SCL
A0-A15: SDRAMs D0–D15
WP
CKE: SDRAMs D8–D15
A0
CKE: SDRAMs D0–D7
SA0
RAS: SDRAMs D0–D15
CAS: SDRAMs D0–D15
VDDSPD
WE: SDRAMs D0–D15
VDD/VDDQ
ODT: SDRAMs D0–D7
VREFDQ
ODT: SDRAMs D8–D15
CK: SDRAMs D0–D7
VSS
CK: SDRAMs D0–D7
VREFCA
CK: SDRAMs D8–D15
CK: SDRAMs D8–D15
SDA
A1
A2
SA1
SA2
SPD
D0–D15
D0–D15
D0–D15
D0–D15
ZQ
ZQ
Notes:
1. DQ-to-I/O wiring is shown as recommended but may be changed.
2. DQ/DQS/DQS/ODT/DM/CKE/S relationships must be maintained as shown.
3. DQ,DM,DQS,DQS resistors;Refer to
associated topology diagram.
4. Refer to Section 3.1 of this document for
details on address mirroring.
5. For each DRAM, a unique ZQ resistor is
connected to ground.The ZQ resistor is
240ohm+-1%
6. One SPD exists per module.
RESET:SDRAMs D0-D3
Rev. 0.1 / Dec 2008
15
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
3.5 2GB, 256Mx72 Module(2Rank of x8)
DQS1
DQS1
DM1
S1
S0
DQS0
DQS0
DM0
DQS4
DQS4
DM4
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DM CS DQS DQS
I/O 0
I/O 1
D0
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
ZQ
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS DQS DQS
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS DQS DQS
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
DM CS DQS DQS
I/O 0
I/O 1
D2
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
ZQ
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS DQS DQS
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
DM CS DQS DQS
I/O 0
I/O 1
D3
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
DM
DQS2
DQS2
DM2
DQS3
DQS3
DM3
D1
ZQ
ZQ
DQS5
DQS5
DM5
D10
ZQ
DQS6
DQS6
DM6
D11
ZQ
DQS7
DQS7
DM7
ZQ
DQS8
DQS8
DM8
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
DM CS DQS DQS
I/O 0
I/O 1
D5
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS DQS DQS
DM CS DQS DQS
I/O 0
I/O 1
D6
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
ZQ
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS DQS DQS
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
DM CS DQS DQS
I/O 0
I/O 1
D7
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
ZQ
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS DQS DQS
CS DQS DQS
D12
ZQ
ZQ
ZQ
VDDSPD
SPD(TS integrated)
DM
I/O 0
I/O 1
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
ZQ
BA0-BA2: SDRAMs D0–D17
A0-A15: SDRAMs D0–D17
CKE: SDRAMs D0–D8
CKE: SDRAMs D9–D17
RAS: SDRAMs D0–D17
CAS: SDRAMs D0–D17
WE: SDRAMs D0–D17
Rev. 0.1 / Dec 2008
CS DQS DQS
ODT0
ODT1
CK0
CK0
CK1
CK1
RESET
D17
EVENT
EVENT
A0
SA0
SA1
A2
SA2
ZQ
ODT: SDRAMs D0–D8
ODT: SDRAMs D9–D17
CK: SDRAMs D0–D8
CK: SDRAMs D0–D8
CK: SDRAMs D9–D17
CK: SDRAMs D9–D17
RESET:SDRAMs D0-D17
ZQ
D14
ZQ
D15
ZQ
D16
ZQ
SPD
D0–D17
VREFDQ
D0–D17
Vss
D0–D17
VREFCA
D0–D17
SDA
A1
D13
VDD/VDDQ
SCL
DM CS DQS DQS
I/O 0
I/O 1
D8
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CB0
CB1
CB2
CB3
CB4
CB5
CB6
CB7
BA0–BA2
A0–A15
CKE0
CKE1
RAS
CAS
WE
CS DQS DQS
D9
DM CS DQS DQS
I/O 0
I/O 1
D4
I/O 2
I/O 3
I/O 4
I/O 5
I/O 6
I/O 7
CS DQS DQS
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
Notes:
1. DQ-to-I/O wiring is shown as recommended but may be changed.
2. DQ/DQS/DQS/ODT/DM/CKE/S relationships must be maintained as shown.
3. DQ,CB,DM/DQS/DQS resistors;Refer to
associated topology diagram.
4. Refer to Section 3.1 of this document for
details on address mirroring.
5. For each DRAM, a unique ZQ resistor is
connected to ground.The ZQ resistor is
240ohm+-1%
6. One SPD exists per module.
16
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
4. Address Mirroring Feature
There is a via grid located under the SDRAMs for wiring the CA signals (address, bank address, command, and control
lines) to the SDRAM pins. The length of the traces from the via to the SDRAMs places limitations on the bandwidth of
the module. The shorter these traces, the higher the bandwidth. To extend the bandwidth of the CA bus for DDR3
modules, a scheme was defined to reduce the length of these traces.The pins on the SDRAM are defined in a manner
that allows for these short trace lengths. The CA bus pins in Columns 2 and 8, ignoring the mechanical support pins,
do not have any special functions (secondary functions). This allows the most flexibility with these pins. These are
address pins A3, A4, A5, A6, A7, A8 and bank address pins BA0 and BA1. Refer to Table . Rank 0 SDRAM pins are
wired straight, with no mismatch between the connector pin assignment and the SDRAM pin assignment. Some of the
Rank 1 SDRAM pins are cross wired as defined in the table. Pins not listed in the table are wired straight.
4.1 DRAM Pin Wiring for Mirroring
Connector Pin
SDRAM Pin
Rank 0
Rank 1
A3
A3
A4
A4
A4
A3
A5
A5
A6
A6
A6
A5
A7
A7
A8
A8
A8
A7
BA0
BA0
BA1
BA1
BA1
BA0
<Table 4.1: SDRAM Pin Wiring for Mirroring >
The table 4.1 illustrates the wiring in both the mirrored and non-mirrored case.
The lengths of the traces to the SDRAM pins, is obviously shorter. The via grid is smaller as well.
Rev. 0.1 / Dec 2008
17
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
No Mirroring
Mirroring
< Figure 4.1: Wiring Differences for Mirrored and Non-Mirrored Addresses >
Since the cross-wired pins have no secondary functions, there is no problem in normal operation. Any data written is
read the same way. There are limitations however. When writing to the internal registers with a "load mode" operation, the specific address is required. This requires the controller to know if the rank is mirrored or not. This requires a
few rules. Mirroring is done on 2 rank modules and can only be done on the second rank. There is not a requirement
that the second rank be mirrored. There is a bit assignment in the SPD that indicates whether the module has been
designed with the mirrored feature or not. See the DDR3 UDIMM SPD specification for these details. The controller
must read the SPD and have the capability of de-mirroring the address when accessing the second rank.
Rev. 0.1 / Dec 2008
18
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
5. ABSOLUTE MAXIMUM RATINGS
5.1 Absolute Maximum DC Ratings
Symbol
Parameter
VDD
VDDQ
VIN, VOUT
TSTG
Rating
Units
Notes
Voltage on VDD pin relative to Vss
- 0.4 V ~ 1.975 V
V
,3
Voltage on VDDQ pin relative to Vss
- 0.4 V ~ 1.975 V
V
,3
Voltage on any pin relative to Vss
- 0.4 V ~ 1.975 V
V
-55 to +100 ℃
℃
Storage Temperature
,2
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to
the device. This is a stress rating only and functional operation of the device at these or any other conditions
above those indicated in the operational sections of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect reliability.
2. Storage Temperature is the case surface temperature on the center/top side of the DRAM. For the measurement
conditions, please refer to JESD51-2 standard.
3. VDD and VDDQ must be within 300mV of each other at all times;and VREF must be not greater than
0.6XVDDQ,When VDD and VDDQ are less than 500mV; VREF may be equal to or less than 300mV.
5.2 DRAM Component Operating Temperature Range
Symbol
TOPER
Parameter
Rating
Units
Notes
Normal Temperature Range
0 to 85
℃
,2
Extended Temperature Range
85 to 95
℃
1,3
1. Operating Temperature TOPER is the case surface temperature on the center / top side of the DRAM.
For measurement conditions, please refer to the JEDEC document JESD51-2.
2. The Normal Temperature Range specifies the temperatures where all DRAM specifications will be supported.
During operation, the DRAM case temperature must be maintained between 0 - 85oC under all operating
conditions
3. Some applications require operation of the DRAM in the Extended Temperature Range between 85°… and
95°… case temperature.
Full specifications are guaranteed in this range, but the following additional conditions apply:
a) Refresh commands must be doubled in frequency, therefore reducing the Refresh interval tREFI to 3.9 µs.
(This double refresh requirement may not apply for some devices.) It is also possible to specify a component
with 1X refresh (tREFI to 7.8µs) in the Extended Temperature Range. Please refer to supplier data sheet and/
or the DIMM SPD for option avail ability.
b) If Self-Refresh operation is required in the Extended Temperature Range, than it is mandatory to either use the
Manual Self-Refresh mode with Extended Temperature Range capability (MR2 A6 = 0band MR2 A7 = 1b) or
enable the optional Auto Self-Refresh mode (MR2 A6 = 1b and MR2 A7 = 0b).
Rev. 0.1 / Dec 2008
19
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
6. AC & DC Operating Conditions
6.1 Recommended DC Operating Conditions
Symbol
Parameter
VDD
VDDQ
Rating
Units
Notes
1.575
V
1,2
1.575
V
1,2
Min.
Typ.
Max.
Supply Voltage
1.425
1.500
Supply Voltage for Output
1.425
1.500
1. Under all conditions, VDDQ must be less than or equal to VDD.
2. VDDQ tracks with VDD. AC parameters are measured with VDD abd VDDQ tied together.
6.2 DC & AC Logic Input Levels
6.2.1 DC & AC Logic Input Levels for Single-Ended Signals
DDR3-800, DDR3-1066, DDR3-1333, DDR3-1600
Symbol
Parameter
Unit
Notes
-
V
1, 2
Vref - 0.100
V
1, 2
-
V
1, 2
Vref - 0.175
V
1, 2
Min
Max
Vref + 0.100
VIH(DC)
DC input logic high
VIL(DC)
DC input logic low
VIH(AC)
AC input logic high
VIL(AC)
AC input logic low
VRefDQ(DC)
Reference Voltage for
DQ, DM inputs
0.49 * VDD
0.51 * VDD
V
3, 4
VRefCA(DC)
Reference Voltage for
ADD, CMD inputs
0.49 * VDD
0.51 * VDD
V
3, 4
VTT
Termination voltage for
DQ, DQS outputs
VDDQ/2 - TBD
VDDQ/2 + TBD
V
Vref + 0.175
1. For DQ and DM, Vref = VrefDQ. For input ony pins except RESET#, Vref = VrefCA.
2. The “t.b.d.” entries might change based on overshoot and undershoot specification.
3. The ac peak noise on VRef may not allow VRef to deviate from VRef(DC) by more than +/-1% VDD
(for reference: approx. +/- 15 mV).
For reference: approx. VDD/2 +/- 15 mV.
The dc-tolerance limits and ac-noise limits for the reference voltages VRefCA and VRefDQ are illustrated in figure
6.2.1. It shows a valid reference voltage VRef(t) as a function of time. (VRef stands for VRefCA and VRefDQ likewise).VRef(DC) is the linear average of VRef(t) over a very long period of time (e.g. 1 sec). This average has to meet
the min/max requirements in Table 1. Furthermore VRef(t) may temporarily deviate from VRef(DC) by no more than
+/- 1% VDD.
Rev. 0.1 / Dec 2008
20
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
voltage
VDD
VRef(t)
VRef ac-noise
VRef(DC)max
VRef(DC)
VDD/2
VRef(DC)min
VSS
time
< Figure 6.2.1: Illustration of Vref(DC) tolerance and Vref AC-noise limits >
The voltage levels for setup and hold time measurements VIH(AC), VIH(DC), VIL(AC) and VIL(DC) are dependent on
VRef. "VRef " shall be understood as VRef(DC), as defined in Figure 6.2.1
This clarifies, that dc-variations of VRef affect the absolute voltage a signal has to reach to achieve a valid high or low
level and therefore the time to which setup and hold is measured. System timing and voltage budgets need to account
for VRef(DC) deviations from the optimum position within the data-eye of the input signals.
This also clarifies that the DRAM setup/hold specification and derating values need to include time and voltage associated with VRef ac-noise. Timing and voltage effects due to ac-noise on VRef up to the specified limit (+/-1% of VDD)
are included in DRAM timings and their associated deratings.
6.2.2 DC & AC Logic Input Levels for Differential Signals
Symbol
Parameter
VIHdiff
Differential input logic high
VILdiff
Differential input logic low
DDR3-800, DDR3-1066, DDR3-1333, DDR3-1600
Unit
Notes
-
V
1
- 0.200
V
1
Min
Max
+ 0.200
Note1:
Refer to “Overshoot and Undershoot Specification section 6.5 on 26 page
Rev. 0.1 / Dec 2008
21
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
6.2.3 Differential Input Cross Point Voltage
To guarantee tight setup and hold times as well as output skew parameters with respect to clock and strobe, each
cross point voltage of differential input signals (CK, CK# and DQS, DQS#) must meet the requirements in Table 6.2.3
The differential input cross point voltage VIX is measured from the actual cross point of true and complement signal to
the midlevel between of VDD and VSS.
VDD
CK#, DQS#
VIX
VDD/2
VIX
VIX
CK, DQS
VSS
< Figure 6.2.3 Vix Definition >
DDR3-800, DDR3-1066, DDR3-1333, DDR3-1600
Symbol
VIX
Parameter
Differential Input Cross Point
Voltage relative to VDD/2
Unit
Min
Max
- 150
+ 150
Notes
mV
< Table 6.2.3: Cross point voltage for differential input signals (CK, DQS) >
Rev. 0.1 / Dec 2008
22
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
6.3 Slew Rate Definitions
6.3.1 For Single Ended Input Signals
- Input Slew Rate for Input Setup Time (tIS) and Data Setup Time (tDS)
Setup (tIS and tDS) nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VRef
and the first crossing of VIH(AC)min. Setup (tIS and tDS) nominal slew rate for a falling signal is defined as the slew
rate between the last crossing of VRef and the first crossing of VIL(AC)max.
- Input Slew Rate for Input Hold Time (tIH) and Data Hold Time (tDH)
Hold nominal slew rate for a rising signal is defined as the slew rate between the last crossing of VIL(DC)max and
the first crossing of VRef. Hold (tIH and tDH) nominal slew rate for a falling signal is defined as the slew rate
between the last crossing of VIH(DC)min and the first crossing of VRef.
Measured
Description
Input slew rate for rising edge
Min
Max
Vref
VIH(AC)min
Input slew rate for falling edge
Vref
VIL(AC)max
Input slew rate for rising edge
VIL(DC)max
Vref
Input slew rate for falling edge
VIH(DC)min
Vref
Defined by
Applicable for
VIH(AC)min-Vref
Delta TRS
Vref-VIL(AC)max
Setup
(tIS, tDS)
Delta TFS
Vref-VIL(DC)max
Delta TFH
VIH(DC)min-Vref
Hold
(tIH, tDH)
Delta TRH
< Table 6.3.1: Single-Ended Input Slew Rate Definition >
Part A: Set up
Single Ended input Voltage(DQ,ADD, CMD)
Delta TRS
vIH(AC)min
vIH(DC)min
vRefDQ or
vRefCA
vIL(DC)max
vIL(AC)max
Delta TFS
Rev. 0.1 / Dec 2008
23
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
P a rt B : H o ld
Single Ended input Voltage(DQ,ADD, CMD)
D e lta T R H
v IH (A C )m in
v IH (D C )m in
v R e fD Q o r
v R e fC A
v IL (D C )m a x
v IL (A C )m a x
D e lta T F H
< Figure 6.3.1: Input Nominal Slew Rate Definition for Single-Ended Signals >
6.3.2 Differential Input Signals
Input slew rate for differential signals (CK, CK# and DQS, DQS#) are defined and measured as shown in below Table
and Figure .
Description
Differential input slew rate for rising edge
(CK-CK and DQS-DQS)
Differential input slew rate for falling edge
(CK-CK and DQS-DQS)
Measured
Min
Max
VILdiffmax
VIHdiffmin
VIHdiffmin
VILdiffmax
Defined by
VIHdiffmin-VILdiffmax
DeltaTRdiff
VIHdiffmin-VILdiffmax
DeltaTFdiff
Note:
The differential signal (i.e. CK-CK and DQS-DQS) must be linear between these thresholds.
Rev. 0.1 / Dec 2008
24
Differential Input Voltage (i.e. DQS-DQS; CK-CK)
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
D e lta
T R d iff
vIH d iffm in
0
vILd iffm a x
D e lta
T F d iff
< Figure 6.3.2: Differential Input Slew Rate Definition for DQS,DQS# and CK,CK# >
6.4 DC & AC Output Buffer Levels
6.4.1 Single Ended DC & AC Output Levels
Below table shows the output levels used for measurements of single ended signals.
Symbol
VOH(DC)
VOM(DC)
VOL(DC)
VOH(AC)
VOL(AC)
Parameter
DC output high measurement level
(for IV curve linearity)
DC output mid measurement level
(for IV curve linearity)
DC output low measurement level
(for IV curve linearity)
AC output high measurement level
(for output SR)
DDR3-800, 1066, 1333 and 1600
Unit
0.8 x VDDQ
V
0.5 x VDDQ
V
0.2 x VDDQ
V
VTT + 0.1 x VDDQ
V
Notes
1
AC output low measurement level
VTT - 0.1 x VDDQ
V
1
(for output SR)
1. The swing of ± 0.1 x VDDQ is based on approximately 50% of the static single ended output high or low swing
with a driver impedance of 40Ω and an effective test load of 25Ω to VTT = VDDQ / 2.
Rev. 0.1 / Dec 2008
25
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
6.4.2 Differential DC & AC Output Levels
Below table shows the output levels used for measurements of differential signals.
Symbol
VOHdiff
(AC)
Parameter
DDR3-800, 1066, 1333 and 1600
Unit
Notes
+ 0.2 x VDDQ
V
1
AC differential output high
measurement level (for output SR)
VOLdiff
(AC)
AC differential output low
- 0.2 x VDDQ
V
1
measurement level (for output SR)
1. The swing of °æ 0.2 x VDDQ is based on approximately 50% of the static differential output high
or low swingwith a driver impedance of 40ߟ and an effective test load of 25ߟ to VTT = VDDQ/2 at each of
the differential output
6.4.3 Single Ended Output Slew Rate
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and
measured between VOL(AC) and VOH(AC) for single ended signals as shown in below Table and Figure 6.4.3.
Description
Measured
From
To
Single ended output slew rate for rising edge
VOL(AC)
VOH(AC)
Single ended output slew rate for falling edge
VOH(AC)
VOL(AC)
Defined by
VOH(AC)-VOL(AC)
DeltaTRse
VOH(AC)-VOL(AC)
DeltaTFse
Note:
Output slew rate is verified by design and characterization, and may not be subject to production test.
Single Ended Output Voltage(l.e.DQ)
D e lt a T R s e
vO H (A C )
V∏
vO L(A C )
D e lt a T F s e
< Figure 6.4.3: Single Ended Output Slew Rate Definition >
Rev. 0.1 / Dec 2008
26
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
Parameter
Symbol
Single-ended Output Slew Rate
SRQse
DDR3-800
DDR3-1066
DDR3-1333
DDR3-1600
Min
Max
Min
Max
Min
Max
Min
Max
2.5
5
2.5
5
2.5
5
TBD
5
Units
V/ns
*** Description:
SR: Slew Rate
Q: Query Output (like in DQ, which stands for Data-in, Query-Output)
For Ron = RZQ/7 setting
< Table 6.4.3: Output Slew Rate (single-ended) >
6.4.4 Differential Output Slew Rate
With the reference load for timing measurements, output slew rate for falling and rising edges is defined and measured between VOLdiff(AC) and VOHdiff(AC) for differential signals as shown in below Table and Figure 6.4.4
Description
Measured
Defined by
From
To
Differential output slew rate for rising edge
VOLdiff(AC)
VOHdiff(AC)
Differential output slew rate for falling edge
VOHdiff(AC)
VOLdiff(AC)
VOHdiff(AC)-VOLdiff(AC)
DeltaTRdiff
VOHdiff(AC)-VOLdiff(AC)
DeltaTFdiff
Note: Output slew rate is verified by design and characterization, and may not be subject to production test.
Differential Output Voltage(i.e. DQS-DQS)
D e lta
T R d iff
v O H d iff(A C )
O
v O L d iff(A C )
D e lta
T F d iff
< Figure 6.4.4: Differential Output Slew Rate Definition >
Rev. 0.1 / Dec 2008
27
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
DDR3-800
Parameter
Differential Output Slew Rate
Symbol
SRQdiff
DDR3-1066
DDR3-1333
DDR3-1600
Min
Max
Min
Max
Min
Max
Min
Max
5
10
5
10
5
10
TBD
10
Units
V/ns
***Description:
SR: Slew Rate
Q: Query Output (like in DQ, which stands for Data-in, Query-Output)
diff: Differential Signals
For Ron = RZQ/7 setting
< Table 6.6.4: Differential Output Slew Rate >
6.5 Overshoot and Undershoot Specifications
6.5.1 Address and Control Overshoot and Undershoot Specifications
Description
Maximum peak amplitude allowed for
overshoot area (see Figure)
Maximum peak amplitude allowed for
undershoot area (see Figure)
Maximum overshoot area above VDD
(See Figure)
Maximum undershoot area below VSS
(See Figure)
Specification
DDR3-800
DDR3-1066
DDR3-1333
DDR3-1600
0.4V
0.4V
0.4V
0.4V
0.4V
0.4V
0.4V
0.4V
0.67 V-ns
0.5 V-ns
0.4 V-ns
0.33 V-ns
0.67 V-ns
0.5 V-ns
0.4 V-ns
0.33 V-ns
< Table 6.5.1: AC Overshoot/Undershoot Specification for Address and Control Pins >
< Figure 6.5.1: Address and Control Overshoot and Undershoot Definition >
Maximum Amplitude
Overshoot Area
Volts
(V)
VDD
VSS
Undershoot Area
Maximum Amplitude
Time (ns)
Rev. 0.1 / Dec 2008
28
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
6.5.2 Clock,Data,Strobe and Mask Overshoot and Undershoot Specifications
Specification
Description
Maximum peak amplitude allowed for
overshoot area (see Figure)
Maximum peak amplitude allowed for
undershoot area (see Figure)
Maximum overshoot area above VDDQ
(See Figure)
Maximum undershoot area below VSSQ
(See Figure)
DDR3-800
DDR3-1066
DDR3-1333
DDR3-1600
0.4V
0.4V
0.4V
0.4V
0.4V
0.4V
0.4V
0.4V
0.25 V-ns
0.19 V-ns
0.15 V-ns
0.13 V-ns
0.25 V-ns
0.19 V-ns
0.15 V-ns
0.13 V-ns
< Table 6.5.2: AC Overshoot/Undershoot Specification for Clock, Data, Strobe and Mask >
M a x im u m A m p litu d e
O v e rsh o o t A re a
V o lts
(V )
VDDQ
VSSQ
U n d e rsh o o t A re a
M a x im u m A m p litu d e
T im e (n s)
C lo c k , D a ta S tro b e a n d M a sk O v e rsh o o t a n d U n d e rsh o o t D e fin itio n
< Figure 6.5.2: Clock, Data, Strobe and Mask Overshoot and Undershoot Definition >
Rev. 0.1 / Dec 2008
29
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
6.6 Pin Capacitance
DDR3-800
DDR3-1066 DDR3-1333 DDR3-1600
Min
Max
Min
Max
Min
Max
Min
Max
CIO
1.5
3.0
1.5
3.0
1.5
2.5
TBD
TBD
pF
1,2,3
Input capacitance, CK and
CK#
CCK
TBD
1.6
TBD
1.6
TBD
TBD
TBD
TBD
pF
2,3,5
Input capacitance delta
CK and CK#
CDCK
0
0.15
0
0.15
TBD
TBD
TBD
TBD
pF
2,3,4
CI
TBD
1.5
TBD
1.5
TBD
TBD
TBD
TBD
pF
2,3,6
CDDQS
0
0.20
0
0.20
TBD
TBD
TBD
TBD
pF
2,3,12
CDI_CTRL
-0.5
0.3
-0.5
0.3
TBD
TBD
TBD
TBD
pF
2,3,7,8
Input capacitance delta
CDI_ADD_
(All ADD/CMD input-only pins)
CMD
-0.5
0.5
-0.5
0.5
TBD
TBD
TBD
TBD
pF
2,3,9,
10
Input/output capacitance delta
(DQ, DM, DQS, DQS#)
-0.5
0.3
-0.5
0.3
TBD
TBD
TBD
TBD
pF
2,3,11
Parameter
Symbol
Input/output capacitance
(DQ, DM, DQS, DQS#, TDQS,
TDQS#)
Input capacitance
(All other input-only pins)
Input capacitance delta, DQS
and DQS#
Input capacitance delta
(All CTRL input-only pins)
CDIO
Units Notes
Notes:
1. TDQS/TDQS# are not necessarily input function but since TDQS is sharing DM pin and the parasitic
characterization of TDQS/TDQS# should be close as much as possible, Cio&Cdio requirement is applied
(recommend deleting note or changing to “Although the DM, TDQS and TDQS# pins have different functions,
the loading matches DQ and DQS.”)
2. This parameter is not subject to production test. It is verified by design and characterization. Input capacitance is
measured according to JEP147(“PROCEDURE FOR MEASURING INPUT CAPACITANCE USING A VECTOR NETWORK
ANALYZER(VNA)”) with VDD, VDDQ, VSS,VSSQ applied and all other pins floating (except the pin under test, CKE,
RESET# and ODT as necessary). VDD=VDDQ=1.5V, VBIAS=VDD/2 and on-die termination off.
3. This parameter applies to monolithic devices only; stacked/dual-die devices are not covered here
4. Absolute value of CCK-CCK#.
5. The minimum CCK will be equal to the minimum CI.
6. Input only pins include: ODT, CS, CKE, A0-A15, BA0-BA2, RAS#, CAS#, WE#.
7. CTRL pins defined as ODT, CS and CKE.
8. CDI_CTRL=CI(CNTL) - 0.5 * CI(CLK) + CI(CLK#))
9. ADD pins defined as A0-A15, BA0-BA2 and CMD pins are defined as RAS#, CAS# and WE#.
10. CDI_ADD_CMD=CI(ADD_CMD) - 0.5*(CI(CLK)+CI(CLK#))
11. CDIO=CIO(DQ) - 0.5*(CIO(DQS)+CIO(DQS#))
12. Absolute value of CIO(DQS) - CIO(DQS#)
Rev. 0.1 / Dec 2008
30
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
6.7 IDD Specifications(TCASE: 0 to 95oC)
512MB, 64M x 64 U-DIMM: HMT164U6AFP6C
Symbol
DDR3 800
DDR3 1066
DDR3 1333
Unit
note
IDD0
360
420
480
mA
IDD1
480
540
580
mA
IDD2P(F)
100
120
140
mA
IDD2P(S)
40
40
40
mA
IDD2Q
180
240
280
mA
IDD2N
200
240
300
mA
IDD3P
140
180
200
mA
IDD3N
220
280
340
mA
IDD4W
700
880
1060
mA
IDD4R
700
860
1020
mA
IDD5B
740
780
840
mA
IDD6(D)
40
40
40
mA
1
IDD6(S)
24
24
24
mA
1
IDD7
1300
1420
1720
mA
1GB, 128M x 64 U-DIMM: HMT112U6AFP8C
Symbol
DDR3 800
DDR3 1066
DDR3 1333
Unit
IDD0
640
760
840
mA
IDD1
760
880
960
mA
IDD2P(F)
200
240
280
mA
IDD2P(S)
80
80
80
mA
IDD2Q
360
480
560
mA
IDD2N
400
480
600
mA
IDD3P
280
360
400
mA
IDD3N
440
560
680
mA
IDD4W
1120
1440
1560
mA
IDD4R
1040
1320
1680
mA
IDD5B
1480
1560
1720
mA
IDD6(D)
80
80
80
mA
1
IDD6(S)
48
48
48
mA
1
IDD7
1800
2000
2440
mA
Rev. 0.1 / Dec 2008
note
31
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
1GB, 128M x 72 U-DIMM: HMT112U7AFP8C
Symbol
DDR3 800
DDR3 1066
DDR3 1333
Unit
note
IDD0
720
855
945
mA
IDD1
855
990
1080
mA
IDD2P(F)
225
270
315
mA
IDD2P(S)
90
90
90
mA
IDD2Q
405
540
630
mA
IDD2N
450
540
675
mA
IDD3P
315
405
450
mA
IDD3N
495
630
765
mA
IDD4W
1260
1620
1755
mA
IDD4R
1170
1485
1890
mA
IDD5B
1665
1755
1935
mA
IDD6(D)
90
90
90
mA
1
IDD6(S)
54
54
54
mA
1
IDD7
2025
2250
2745
mA
2GB, 256M x 64 U-DIMM: HMT125U6AFP8C
Symbol
DDR3 800
DDR3 1066
DDR3 1333
Unit
IDD0
1040
1240
1440
mA
IDD1
1160
1360
1560
mA
IDD2P(F)
400
480
560
mA
IDD2P(S)
160
160
160
mA
IDD2Q
720
960
1120
mA
IDD2N
800
960
1200
mA
IDD3P
560
720
800
mA
IDD3N
880
1120
1360
mA
IDD4W
1520
1920
2160
mA
IDD4R
1440
1800
2280
mA
IDD5B
1880
2040
2320
mA
IDD6(D)
160
160
160
mA
1
IDD6(S)
96
96
96
mA
1
IDD7
2200
2480
3040
mA
Rev. 0.1 / Dec 2008
note
32
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
2GB, 256M x 72 U-DIMM: HMT125U7AFP8C
Symbol
DDR3 800
DDR3 1066
DDR3 1333
Unit
note
IDD0
1170
1395
1620
mA
IDD1
1305
1530
1755
mA
IDD2P(F)
450
540
630
mA
IDD2P(S)
180
180
180
mA
IDD2Q
810
1080
1260
mA
IDD2N
900
1080
1350
mA
IDD3P
630
810
900
mA
IDD3N
990
1260
1530
mA
IDD4W
1710
2160
2430
mA
IDD4R
1620
2025
2565
mA
IDD5B
2115
2295
2610
mA
IDD6(D)
180
180
180
mA
1
IDD6(S)
108
108
108
mA
1
IDD7
2475
2790
3420
mA
6.7 IDD Measurement Conditions
Within the tables provided further down, an overview about the IDD measurement conditions is
provided as follows:
Table 1 —
Overview of Tables providing IDD Measurement Conditions and DRAM Behavior
Table number
Measurement Conditions
Table 5 on page 33
IDD0 and IDD1
Table 6 on page 36
IDD2N, IDD2Q, IDD2P(0), IDD2P(1)
Table 7 on page 38
IDD3N and IDD3P
Table 8 on page 39
IDD4R, IDD4W, IDD7
Table 9 on page 42
IDD7 for different Speed Grades and different tRRD, tFAW conditions
Table 10 on page 43
IDD5B
Table 11 on page 44
IDD6, IDD6ET
Within the tables about IDD measurement conditions, the following definitions are used:
- LOW is defined as VIN <= VILAC(max.); HIGH is defined as VIN >= VIHAC(min.).
- STABLE is defined as inputs are stable at a HIGH or LOW level.
- FLOATING is defined as inputs are VREF = VDDQ / 2.
- SWITCHING is defined as described in the following 2 tables.
Rev. 0.1 / Dec 2008
33
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
Table 2 —
Definition of SWITCHING for Address and Command Input Signals
SWITCHING for Address (row, column) and Command Signals (CS, RAS, CAS, WE) is defined as:
If not otherwise mentioned the inputs are stable at HIGH or LOW during 4 clocks and change
Address
(row, column):
then to the opposite value
(e.g. Ax Ax Ax Ax Ax Ax Ax Ax Ax Ax Ax Ax.....
please see each IDDx definition for details
Bank address:
If not otherwise mentioned the bank addresses should be switched like the row/column
addresses - please see each IDDx definition for details
Define D = {CS, RAS, CAS, WE}:= {HIGH, LOW, LOW, LOW}
Define D = {CS, RAS, CAS, WE}:= {HIGH, HIGH,HIGH,HIGH}
Command
(CS, RAS, CAS, WE):
Define Command Background Pattern = D D D D D D D D D D D D...
If other commands are necessary (e.g. ACT for IDD0 or Read for IDD4R), the Background
Pattern Command is substituted by the respective CS, RAS, CAS, WE levels of the necessary
command.
See each IDDx definition for details and figures 1,2,3 as examples.
Table 3 —
Definition of SWITCHING for Data (DQ)
SWITCHING for Data (DQ) is defined as
Data (DQ)
Data Masking (DM)
Rev. 0.1 / Dec 2008
Data DQ is changing between HIGH and LOW every other data transfer (once per clock)
for DQ signals, which means that data DQ is stable during one clock; see each IDDx
definition for exceptions from this rule and for further details.
See figures 1,2,3 as examples.
NO Switching; DM must be driven LOW all the time
34
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
Timing parameters are listed in the following table:
Table 4 —
For IDD testing the following parameters are utilized.
Parameter
Bin
DDR3-800
5-5-5
tCKmin(IDD)
6-6-6
DDR3-1066
6-6-6
2.5
CL(IDD)
7-7-7
DDR3-1333
8-8-8
7-7-7
8-8-8
1.875
DDR3-1600
9-9-9
8-8-8
1.5
9-9-9
101010
1.25
Unit
ns
5
6
6
7
8
7
8
9
8
9
10
clk
tRCDmin(IDD)
12.5
15
11.25
13.13
15
10.5
12
13.5
10
11.25
12.5
ns
tRCmin(IDD)
50
52.5
48.75
50.63
52.50
46.5
48
49.5
tbd
tbd
tbd
ns
tRASmin(IDD)
37.5
37.5
37.5
37.5
37.5
36
36
36
tbd
tbd
tbd
ns
tRPmin(IDD)
12.5
15
11.25
13.13
15
10.5
12
13.5
10
11.25
12.5
ns
x4/
x8
40
40
37.5
37.5
37.5
30
30
30
30
30
30
ns
x16
50
50
50
50
50
45
45
45
40
40
40
ns
x4/
x8
10
10
7.5
7.5
7.5
6.0
6.0
6.0
6.0
6.0
6.0
ns
x16
10
10
10
10
10
7.5
7.5
7.5
7.5
7.5
7.5
ns
tRFC(IDD) -
90
90
90
90
90
90
90
90
90
90
90
ns
tRFC(IDD) - 1
110
110
110
110
110
110
110
110
110
110
110
ns
tRFC(IDD) - 2
160
160
160
160
160
160
160
160
160
160
160
ns
tRFC(IDD) - 4
tbd
tbd
tbd
tbd
tbd
tbd
tbd
tbd
tbd
tbd
tbd
ns
tFAW(IDD)
tRRD(IDD)
512Mb
Gb
Gb
Gb
The following conditions apply:
- IDD specifications are tested after the device is properly initialized.
- Input slew rate is specified by AC Parametric test conditions.
- IDD parameters are specified with ODT and output buffer disabled (MR1 Bit A12).
Rev. 0.1 / Dec 2008
35
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
Table 5 —
IDD Measurement Conditions for IDD0 and IDD1
IDD0
Current
Operating Current 0
Name
-> One Bank Activate
-> Precharge
IDD1
Operating Current 1
-> One Bank Activate
-> Read
-> Precharge
Measurement Condition
Timing Diagram Example
Figure 1
CKE
HIGH
HIGH
External Clock
on
on
tCK
tCKmin(IDD)
tCKmin(IDD)
tRC
tRCmin(IDD)
tRCmin(IDD)
tRAS
tRASmin(IDD)
tRASmin(IDD)
tRCD
n.a.
tRCDmin(IDD)
tRRD
n.a.
n.a.
CL
n.a.
CL(IDD)
AL
n.a.
0
CS
HIGH between. Activate and Precharge
HIGH between Activate, Read and
Commands
Precharge
Command Inputs
SWITCHING as described in Table 2
SWITCHING as described in Table 2; only
(CS,RAS, CAS, WE)
only exceptions are Activate and
exceptions are Activate, Read and
Precharge commands; example of IDD0
Precharge commands; example of IDD1
pattern:
pattern:
A0DDDDDDDDDDDDDD P0
A0DDDDR0DDDDDDDDD P0
(DDR3-800: tRAS = 37.5ns between
(DDR3-800 -555: tRCD = 12.5ns between
(A)ctivate and (P)recharge to bank 0;
(A)ctivate and (R)ead to bank 0;
Definition of D and D: see Table 2
Definition of D and D: see Table 2)
Rev. 0.1 / Dec 2008
36
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
Table 5 —
IDD Measurement Conditions for IDD0 and IDD1
IDD0
Current
Operating Current 0
Name
-> One Bank Activate
-> Precharge
Row, Column Addresses
IDD1
Operating Current 1
-> One Bank Activate
-> Read
-> Precharge
Row addresses SWITCHING as described Row addresses SWITCHING as described
in Table 2;
in Table 2;
Address Input A10 must be LOW all the
Address Input A10 must be LOW all the
time!
time!
Bank Addresses
bank address is fixed (bank 0)
bank address is fixed (bank 0)
Data I/O
SWITCHING as described in Table 3
Read Data: output data switches every
clock, which means that Read data is
stable during one clock cycle.
To achieve Iout = 0mA, the output buffer
should be switched off by MR1 Bit A12 set
to “1”.
When there is no read data burst from
DRAM, the DQ I/O should be FLOATING.
Output Buffer DQ,DQS
off / 1
off / 1
ODT
disabled
disabled
/ MR1 bits [A6, A2]
/ [0,0]
/ [0,0]
Burst length
n.a.
8 fixed / MR0 Bits [A1, A0] = {0,0}
Active banks
one
one
ACT-PRE loop
ACT-RD-PRE loop
all other
all other
/ MR1 bit A12
Idle banks
Precharge Power Down Mode / n.a.
n.a.
Mode Register Bit 12
Rev. 0.1 / Dec 2008
37
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
T0
T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T12
T14
T16
T18
CK
000
BA[2:0]
ADDR_a[9:0]
000
3FF
000
3FF
000
00
11
00
11
00
3F
ADDR_b[10]
ADDR_c[12:11]
CS
RAS
CAS
WE
CMD
ACT
DQ
DM
D
D#
D#
D
RD
D#
D#
D
D
D#
D#
D
D
D#
PRE
D
D
D#
0 0 1 1 0 0 1 1
IDD1 Measurment Loop
< Figure 1. IDD1 Example > (DDR3-800-555, 512Mb x8): Data DQ is shown but the output buffer
should be switched off (per MR1 Bit A12 =”1”) to achieve Iout = 0mA. Address inputs are split into 3
parts.
a. In DDR3, the MRS Bit 12 defines DLL on/off behaviour ONLY for precharge power down. There are 2 different
Precharge Power Down states possible: one with DLL on (fast exit, bit 12 = 1) and one with DLL off
(slow exit, bit 12 = 0).
b. Because it is an exit after precharge power down, the valid commands are: Activate, Refresh, Mode-Register Set,
Enter - Self Refresh
Rev. 0.1 / Dec 2008
38
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
Table 6 —
IDD Measurement Conditions for IDD2N, IDD2P(1), IDD2P(0) and IDD2Q
Name
IDD2P(1) a
IDD2N
Current
Precharge Power
Precharge Standby Down Current
Current
Fast Exit MRS A12 Bit = 1
IDD2P(0)
IDD2Q
Precharge Power
Down Current
Slow Exit MRS A12 Bit = 0
Precharge Quiet
Standby Current
Measurement Condition
Timing Diagram
Example
Figure 2
CKE
HIGH
LOW
LOW
HIGH
External Clock
on
on
on
on
tCK
tCKmin(IDD)
tCKmin(IDD)
tCKmin(IDD)
tCKmin(IDD)
tRC
n.a.
n.a.
n.a.
n.a.
tRAS
n.a.
n.a.
n.a.
n.a.
tRCD
n.a.
n.a.
n.a.
n.a.
tRRD
n.a.
n.a.
n.a.
n.a.
CL
n.a.
n.a.
n.a.
n.a.
AL
n.a.
n.a.
n.a.
n.a.
CS
HIGH
STABLE
STABLE
HIGH
Bank Address, Row
Addr. and Command
Inputs
SWITCHING as
described in
Table 2
STABLE
STABLE
STABLE
Data inputs
SWITCHING
FLOATING
FLOATING
FLOATING
Output Buffer
DQ,DQS
/ MR1 bit A12
off / 1
off / 1
off / 1
off / 1
ODT
/ MR1 bits [A6, A2]
disabled
/ [0,0]
disabled
/ [0,0]
disabled
/ [0,0]
disabled
/ [0,0]
Burst length
n.a.
n.a.
n.a.
n.a.
Active banks
none
none
none
none
Idle banks
all
all
all
all
Fast Exit / 1
(any valid command
after tXPb)
Slow Exit / 0
Slow exit (RD and
n.a.
ODT commands must
satisfy tXPDLL-AL)
Precharge Power
Down Mode /
Mode Register Bit a
n.a.
a.
b.
Rev. 0.1 / Dec 2008
39
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
T0
T1
T2
T3
T4
T5
T6
T7
T8
T9
CK
BA[2:0]
ADDR[12:0]
0
7
0
0
7
0
CS
RAS
CAS
WE
D#
CMD
DQ[7:0]
FF
00
D#
00
FF
D
FF
00
D
00
FF
D#
FF
00
D#
00
FF
D
FF
00
D
00
FF
D#
FF
00
D#
00
FF
FF
DM
<Figure 2. IDD2N / IDD3N Example > (DDR3-800-555, 512Mb x8)
Rev. 0.1 / Dec 2008
40
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
Table 7 —
IDD Measurement Conditions for IDD3N and IDD3P(fast exit)
Current
IDD3N
Name
Active Standby Current
IDD3P
Active Power-Down Currenta
Always Fast Exit
Measurement Condition
Timing Diagram Example
Figure 2
CKE
HIGH
LOW
External Clock
on
on
tCK
tCKmin(IDD)
tCKmin(IDD)
tRC
n.a.
n.a.
tRAS
n.a.
n.a.
tRCD
n.a.
n.a.
tRRD
n.a.
n.a.
CL
n.a.
n.a.
AL
n.a.
n.a.
CS
HIGH
STABLE
Addr. and cmd Inputs
SWITCHING as described in Table 2
STABLE
Data inputs
SWITCHING as described in Table 3
FLOATING
off / 1
off / 1
ODT
disabled
disabled
/ MR1 bits [A6, A2]
/ [0,0]
/ [0,0]
Burst length
n.a.
n.a.
Active banks
all
all
Idle banks
none
none
Output Buffer DQ,DQS
/ MR1 bit A12
Precharge Power Down Mode /
Mode Register Bit
a
n.a.
n.a. (Active Power Down Mode is always
“Fast Exit” with DLL on
a. DDR3 will offer only ONE active power down mode with DLL on (-> fast exit). MRS bit 12 will not be used for active
power down. Instead bit 12 will be used to switch between two different precharge power down modes.
Rev. 0.1 / Dec 2008
41
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
Table 8 —
IDD Measurement Conditions for IDD4R, IDD4W and IDD7
Current
IDD4R
IDD4W
IDD7
Name
Operating Current
Burst Read
Operating Current
Burst Write
All Bank Interleave Read
Current
Measurement Condition
Timing Diagram
Example
Figure 3
CKE
HIGH
HIGH
HIGH
External Clock
on
on
on
tCK
tCKmin(IDD)
tCKmin(IDD)
tCKmin(IDD)
tRC
n.a.
n.a.
tRCmin(IDD)
tRAS
n.a.
n.a.
tRASmin(IDD)
tRCD
n.a.
n.a.
tRCDmin(IDD)
tRRD
n.a.
n.a.
tRRDmin(IDD)
CL
CL(IDD)
CL(IDD)
CL(IDD)
AL
0
0
tRCDmin - 1 tCK
CS
HIGH btw. valid cmds
HIGH btw. valid cmds
HIGH btw. valid cmds
Command Inputs (CS,
RAS, CAS, WE)
SWITCHING as described in
Table 2; exceptions are Read
commands => IDD4R
Pattern:
SWITCHING as described in
Table 2; exceptions are Write
commands => IDD4W
Pattern:
For patterns see Table 9
R0DDDR1DDDR2DDDR3.DD W0DDDW1DDDW2DDDW3
DDD W4...
D R4.....
Rx = Read from bank x;
Wx = Write to bank x;
Definition of D and D: see
Definition of D and D: see
Table 2
Table 2
Rev. 0.1 / Dec 2008
42
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
Table 8 —
IDD Measurement Conditions for IDD4R, IDD4W and IDD7
Current
IDD4R
IDD4W
IDD7
Name
Operating Current
Burst Read
Operating Current
Burst Write
All Bank Interleave Read
Current
column addresses
column addresses
SWITCHING as described in
SWITCHING as described in
Table 2;
Table 2;
Address Input A10 must be
Address Input A10 must be
LOW all the time!
LOW all the time!
Row, Column
Addresses
Bank Addresses
bank address cycling (0 -> 1 - bank address cycling (0 -> 1 > 2 -> 3...)
Seamless Read Data Burst
(BL8): output data switches
every clock, which means that
Read data is stable during one
DQ I/O
clock cycle.
To achieve Iout = 0mA the
output buffer should be
> 2 -> 3...)
STABLE during DESELECTs
bank address cycling (0 -> 1 > 2 -> 3...), see pattern in
Table 9
Seamless Write Data Burst
Read Data (BL8): output data
(BL8): input data switches
switches every clock, which
every clock, which means that
means that Read data is
Write data is stable during one
stable during one clock cycle.
clock cycle.
To achieve Iout = 0mA the
DM is low all the time.
output buffer should be
switched off by MR1 Bit A12
switched off by MR1 Bit A12
set to “1”.
set to “1”.
Output Buffer
DQ,DQS
off / 1
off / 1
off / 1
ODT
disabled
disabled
disabled
/ MR1 bits [A6, A2]
/ [0,0]
/ [0,0]
/ [0,0]
8 fixed / MR0 Bits [A1, A0] =
8 fixed / MR0 Bits [A1, A0] =
8 fixed / MR0 Bits [A1, A0] =
{0,0}
{0,0}
{0,0}
Active banks
all
all
all, rotational
Idle banks
none
none
none
n.a.
n.a.
n.a.
/ MR1 bit A12
Burst length
Precharge Power
Down Mode /
Mode Register Bit
Rev. 0.1 / Dec 2008
43
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
CK
BA[2:0]
ADDR[12:0]
000
001
010
011
000
3FF
000
3FF
00
11
00
11
ADDR_b[10]
ADDR_c[12:11]
CS
RAS
CAS
WE
CMD[2:0]
DQ[7:0]
DM
RD
D
D#
D#
RD
D
D#
00
00
FF
D#
FF
00
RD
00
FF
D
FF
D#
00
00
FF
D#
FF
00
RD
00
FF
FF
-> Start of Measurement Loop
< Figure 3. IDD4R Example > (DDR3-800-555, 512Mb x8): data DQ is shown but the output buffer
should be switched off (per MR1 Bit A12=”1”) to achieve Iout = 0mA. Address inputs are split into 3
parts.
Rev. 0.1 / Dec 2008
44
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
Table 9 —
Speed
IDD7 Pattern for different Speed Grades and different tRRD, tFAW conditions
Bin
Org.
Mb/s
IDD7 Patterna
tFAW
tFAW
tRRD
tRRD
[ns]
[CLK]
[ns]
[CLK] (Note this entire sequence is repeated.)
all
x4/x8
40
16
10
4
A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D A4
RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7 D D
all
x16
50
20
10
4
A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D
D D A4 RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7 D D
DDDD
all
x4/x8
37.5
20
7.5
4
A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D
D D A4 RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7 D D
DDDD
all
x16
50
27
10
6
A0 RA0 D D D D A1 RA1 D D D D A2 RA2 D D D D A3
RA3 D D D D D D D A4 RA4 D D D D A5 RA5 D D D D
A6 RA6 D D D D A7 RA7 D D D D D D D
all
x4/x8
30
20
6
4
A0 RA0 D D A1 RA1 D D A2 RA2 D D A3 RA3 D D D D
D D A4 RA4 D D A5 RA5 D D A6 RA6 D D A7 RA7 D D
DDDD
all
x16
45
30
7.5
5
A0 RA0 D D D A1 RA1 D D D A2 RA2 D D D A3 RA3 D
D D D D D D D D D D D D A4 RA4 D D D A5 RA5 D D
D A6 RA6 D D D A7 RA7 D D D D D D D D D D D D D
all
x4/x8
30
24
6
5
A0 RA0 D D D A1 RA1 D D D A2 RA2 D D D A3 RA3 D
D D D D D D A4 RA4 D D D A5 RA5 D D D A6 RA6 D D
D A7 RA7 D D D D D D D
6
A0 RA0 D D D D A1 RA1 D D D D A2 RA2 D D D D A3
RA3 D D D D D D D D D D D D A4 RA4 D D D D A5 RA5
D D D D A6 RA6 D D D D A7 RA7 D D D D D D D D D
DDD
800
1066
1333
1600
all
x16
40
32
7.5
a. A0 = Activation of Bank 0; RA0 = Read with Auto-Precharge of Bank 0; D = Deselect
Rev. 0.1 / Dec 2008
45
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
Table 10 —
IDD Measurement Conditions for IDD5B
IDD5B
Current
Name
Burst Refresh Current
Measurement Condition
CKE
HIGH
External Clock
on
tCK
tCKmin(IDD)
tRC
n.a.
tRAS
n.a.
tRCD
n.a.
tRRD
n.a.
tRFC
tRFCmin(IDD)
CL
n.a.
AL
n.a.
CS
HIGH btw. valid cmds
Addr. and cmd Inputs
SWITCHING
Data inputs
SWITCHING
Output Buffer DQ,DQS / MR1 bit A12
off / 1
ODT / MR1 bits [A6, A2]
disabled / [0,0]
Burst length
n.a.
Active banks
Refresh command every tRFC=tRFCmin
Idle banks
none
Precharge Power Down Mode / Mode Register Bit
n.a.
Rev. 0.1 / Dec 2008
46
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
Table 11 — IDD Measurement Conditions for IDD6 and IDD6ET
Current
IDD6
IDD6ET
Name
Self-Refresh Current
Normal Temperature Range
TCASE = 0. 85 °C
Self-Refresh Current
Extended Temperature Range a
TCASE = 0. 95 °C
Measurement Condition
Temperature
TCASE = 85 °C
TCASE = 95 °C
Auto Self Refresh (ASR) /
MR2 Bit A6
Disabled / “0”
Disabled / “0”
Self Refresh Temperature
Range (SRT) /
MR2 Bit A7
Normal / “0”
Extended / “1”
CKE
LOW
LOW
External Clock
OFF; CK and CK at LOW
OFF; CK and CK at LOW
tCK
n.a.
n.a.
tRC
n.a.
n.a.
tRAS
n.a.
n.a.
tRCD
n.a.
n.a.
tRRD
n.a.
n.a.
CL
n.a.
n.a.
AL
n.a.
n.a.
CS
FLOATING
FLOATING
Command Inputs
(RAS, CAS, WE)
FLOATING
FLOATING
Row, Column Addresses
FLOATING
FLOATING
Bank Addresses
FLOATING
FLOATING
Data I/O
FLOATING
FLOATING
Output Buffer DQ,DQS
/ MR1 bit A12
off / 1
off / 1
ODT
/ MR1 bits [A6, A2]
disabled
/ [0,0]
disabled
/ [0,0]
Burst length
n.a.
n.a.
Active banks
all during self-refresh actions
all during self-refresh actions
Idle banks
all btw. Self-Refresh actions
all btw. Self-Refresh actions
Precharge Power Down Mode
/ MR0 bit A12
n.a.
n.a.
a. Users should refer to the DRAM supplier data sheet and/or the DIMM SPD to determine if DDR3 SDRAM
devices support the following options or requirements referred to in this material.
Rev. 0.1 / Dec 2008
47
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
7. Electrical Characteristics and AC Timing
7.1 Refresh Parameters by Device Density
Parameter
Symbol
512Mb
1Gb
2Gb
4Gb
8Gb
Units
tRFC
90
110
160
300
350
ns
0 ×C < TCASE < 85 ×C
7.8
7.8
7.8
7.8
7.8
ms
85 ×C < TCASE < 95 ×C
3.9
3.9
3.9
3.9
3.9
ms
REF command to
ACT or REF
command time
Average periodic
refresh interval
tREFI
7.2 DDR3 SDRAM Standard Speed Bins include tCK, tRCD, tRP, tRAS and tRC
for each corresponding bin
DDR3 800 Speed Bin
DDR3-800D
DDR3-800E
5-5-5
6-6-6
CL - nRCD - nRP
Unit
Symbol
min
max
min
max
Internal read command to first data
tAA
12.5
20
15
20
ns
ACT to internal read or write delay time
tRCD
12.5
—
15
—
ns
PRE command period
tRP
12.5
—
15
—
ns
ACT to ACT or REF command period
tRC
50
—
52.5
—
ns
ACT to PRE command period
tRAS
37.5
9 * tREFI
37.5
9 * tREFI
ns
Parameter
CL = 5
CWL = 5
tCK(AVG)
2.5
3.3
CL = 6
CWL = 5
tCK(AVG)
2.5
3.3
Supported CL Settings
Supported CWL Settings
Rev. 0.1 / Dec 2008
Reserved
2.5
3.3
Notes
ns
1)2)3)4)
ns
1)2)3)
5, 6
6
nCK
5
5
nCK
48
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
DDR3 1066 Speed Bin
DDR3-1066E
DDR3-1066F
DDR3-1066G
CL - nRCD - nRP
6-6-6
7-7-7
8-8-8
Unit
Parameter
Symbol
min
max
min
max
min
max
Internal read command to
first data
tAA
11.25
20
13.125
20
15
20
ns
ACT to internal read or
write delay time
tRCD
11.25
—
13.125
—
15
—
ns
PRE command period
tRP
11.25
—
13.125
—
15
—
ns
ACT to ACT or REF
command period
tRC
48.75
—
50.625
—
52.5
—
ns
ACT to PRE command
period
tRAS
37.5
9 * tREFI
37.5
9 * tREFI
37.5
9 * tREFI
ns
CWL = 5
tCK(AVG)
2.5
3.3
CWL = 6
tCK(AVG)
CWL = 5
tCK(AVG)
2.5
CWL = 6
tCK(AVG)
1.875
CWL = 5
tCK(AVG)
CWL = 6
tCK(AVG)
CWL = 5
tCK(AVG)
CWL = 6
tCK(AVG)
CL = 5
CL = 6
CL = 7
CL = 8
Reserved
3.3
< 2.5
Reserved
1.875
< 2.5
Reserved
1.875
< 2.5
Reserved
Reserved
ns
1)2)3)4)6)
Reserved
Reserved
ns
4)
ns
1)2)3)6)
2.5
3.3
2.5
3.3
Reserved
Reserved
ns
1)2)3)4)
Reserved
Reserved
ns
4)
Reserved
ns
1)2)3)4)
Reserved
ns
4)
ns
1)2)3)
1.875
< 2.5
Reserved
1.875
< 2.5
1.875
< 2.5
Supported CL Settings
5, 6, 7, 8
6, 7, 8
6, 8
nCK
Supported CWL Settings
5, 6
5, 6
5, 6
nCK
Rev. 0.1 / Dec 2008
Note
49
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
DDR3 1333 Speed Bin
DDR3-1333F
(optional)
CL - nRCD - nRP
7-7-7
DDR3-1333G DDR3-1333H
DDR3-1333J
(optional)
Unit
8-8-8
9-9-9
Parameter
Symbol
min
max
min
max
min
max
min
max
Internal read
command to first
tAA
10.5
20
12
20
13.5
20
15
20
ns
ACT to internal read
or write delay time
tRCD
10.5
—
12
—
13.5
—
15
—
ns
PRE command period
tRP
10.5
—
12
—
13.5
—
15
—
ns
ACT to ACT or REF
command period
tRC
46.5
—
48
—
49.5
—
51
—
ns
ACT to PRE
command period
tRAS
36
9*
tREFI
36
9*
tREFI
36
9*
tREFI
36
9*
tREFI
ns
tCK(AVG)
2.5
3.3
2.5
3.3
CL = 5
CL = 6
CL = 7
CL = 8
CL = 9
CWL = 5
CWL = 6, 7 tCK(AVG)
Reserved
CWL = 5
tCK(AVG)
2.5
3.3
CWL = 6
tCK(AVG)
1.875
< 2.5
CWL = 7
tCK(AVG)
CWL = 5
tCK(AVG)
CWL = 6
tCK(AVG)
1.875
< 2.5
CWL = 7
tCK(AVG)
1.5
<1.875
CWL = 5
tCK(AVG)
CWL = 6
tCK(AVG)
1.875
< 2.5
1.875
< 2.5
CWL = 7
tCK(AVG)
1.5
<1.875
1.5
<1.875
CWL = 5, 6 tCK(AVG)
CWL = 7
tCK(AVG)
CWL = 5, 6 tCK(AVG)
CL = 10
Reserved
CWL = 7
tCK(AVG)
2.5
3.3
Reserved
Reserved
ns
1,2,3,4,7
Reserved
Reserved
ns
4
ns
1,2,3,7
2.5
3.3
2.5
3.3
Reserved
Reserved
Reserved
ns
1,2,3,4,7
Reserved
Reserved
Reserved
Reserved
ns
4
Reserved
Reserved
Reserved
Reserved
ns
4
Reserved
Reserved
ns
1,2,3,4,7
Reserved
Reserved
Reserved
ns
1,2,3,4
Reserved
Reserved
Reserved
ns
4
ns
1,2,3,7
Reserved
Reserved
1.5
<1.875
Reserved
1.5
<1.875
1.875
< 2.5
Reserved
1.5
<1.875
Reserved
1.5
<1.875
1.875
< 2.5
1.875
< 2.5
Reserved
Reserved
ns
1,2,3,4
Reserved
Reserved
ns
4
Reserved
ns
1,2,3,4
Reserved
ns
4
ns
1,2,3
ns
5
1.5
<1.875
Reserved
1.5
<1.875
1.5
<1.875
(Optional)
(Optional)
(Optional)
Supported CL Settings
5, 6, 7, 8, 9
5, 6, 7, 8, 9
6, 8, 9
6, 8, 10
nCK
Supported CWL Settings
5, 6, 7
5, 6, 7
5, 6, 7
5, 6, 7
nCK
Rev. 0.1 / Dec 2008
Note
10-10-10
50
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
DDR3 1600 Speed Bin
CL - nRCD - nRP
DDR3-1600G
DDR3-1600H DDR3-1600J
(optional)
8-8-8
9-9-9
10-10-10
DDR3-1600K
(optional)
Unit
Parameter
Symbol
min
max
min
max
min
max
min
max
Internal read command
to first data
tAA
10
20
11.25
20
12.5
20
13.75
20
ns
ACT to internal read or
write delay time
tRCD
10
—
11.25
—
12.5
—
13.75
—
ns
PRE command period
tRP
10
—
11.25
—
12.5
—
13.75
—
ns
ACT to ACT or REF
command period
tRC
45
—
46.25
—
47.5
—
48.75
—
ns
ACT to PRE command
period
tRAS
35
9*
tREFI
35
9*
tREFI
35
9*
tREFI
35
9*
tREFI
ns
tCK(AVG)
2.5
3.3
2.5
3.3
2.5
3.3
CL = 5
CL = 6
CL = 7
CL = 8
CL = 9
CL = 10
CWL = 5
CWL = 6, 7, 8 tCK(AVG)
Reserved
Reserved
Reserved
CWL = 5
tCK(AVG)
2.5
3.3
2.5
3.3
CWL = 6
tCK(AVG)
1.875
< 2.5
1.875
< 2.5
CWL = 7, 8
tCK(AVG)
Reserved
CWL = 5
tCK(AVG)
Reserved
CWL = 6
tCK(AVG)
1.875
< 2.5
CWL = 7
tCK(AVG)
1.5
<1.875
CWL = 8
tCK(AVG)
CWL = 5
tCK(AVG)
CWL = 6
tCK(AVG)
1.875
< 2.5
1.875
< 2.5
CWL = 7
tCK(AVG)
1.5
<1.875
1.5
<1.875
CWL = 8
tCK(AVG)
1.25
< 1.5
CWL = 5, 6
tCK(AVG)
CWL = 7
tCK(AVG)
1.5
<1.875
1.5
<1.875
CWL = 8
tCK(AVG)
1.25
< 1.5
1.25
< 1.5
CWL = 5, 6
tCK(AVG)
CWL = 7
tCK(AVG)
1.5
<1.875
1.5
<1.875
1.5
<1.875
CWL = 8
tCK(AVG)
1.25
< 1.5
1.25
< 1.5
1.25
< 1.5
Rev. 0.1 / Dec 2008
2.5
3.3
Note
11-11-11
Reserved
ns
1,2,3,4,8
Reserved
ns
4
ns
1,2,3,8
2.5
3.3
Reserved
Reserved
ns
1,2,3,4,8
Reserved
Reserved
Reserved
ns
4
Reserved
Reserved
Reserved
ns
4
Reserved
ns
1,2,3,4,8
1.875
< 2.5
1.875
< 2.5
Reserved
Reserved
Reserved
ns
1,2,3,4,8
Reserved
Reserved
Reserved
Reserved
ns
4
Reserved
Reserved
Reserved
Reserved
ns
4
ns
1,2,3,8
Reserved
Reserved
1.875
< 2.5
1.875
< 2.5
Reserved
Reserved
ns
1,2,3,4,8
Reserved
Reserved
Reserved
ns
1,2,3,4
Reserved
Reserved
Reserved
ns
4
Reserved
ns
1,2,3,4,8
Reserved
Reserved
ns
1,2,3,4
Reserved
Reserved
ns
4
ns
1,2,3,8
ns
1,2,3,4
Reserved
1.5
<1.875
1.5
<1.875
Reserved
51
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
CWL = 5, 6, 7 tCK(AVG)
CL = 11
CWL = 8
tCK(AVG)
Supported CL Settings
Supported CWL Settings
Reserved
1.25
< 1.5
(Optional)
Reserved
1.25
< 1.5
(Optional)
Reserved
1.25
< 1.5
(Optional)
5, 6, 7, 8, 9, 10 5, 6, 7, 8, 9, 10 5, 6, 7, 8, 9, 10
5, 6, 7, 8
5, 6, 7, 8
5, 6, 7, 8
Reserved
1.25
< 1.5
ns
4
ns
1,2,3
ns
5
6, 8, 10, 11
nCK
5, 6, 7, 8
nCK
*Speed Bin Table Notes*
Absolute Specification (TOPER; VDDQ = VDD = 1.5V +/- 0.075 V);
Notes:
1. The CL setting and CWL setting result in tCK(AVG).MIN and tCK(AVG).MAX requirements. When making a selection
of tCK(AVG), both need to be fulfilled: Requirements from CL setting as well as requirements from CWL setting.
2. tCK(AVG).MIN limits: Since CAS Latency is not purely analog - data and strobe output are synchronized by the
DLL - all possible intermediate frequencies may not be guaranteed. An application should use the next smaller JEDEC
standard tCK(AVG) value (2.5, 1.875, 1.5, or 1.25 ns) when calculating CL [nCK] = tAA [ns] / tCK(AVG) [ns],
rounding up to the next ‘Supported CL’.
3. tCK(AVG).MAX limits: Calculate tCK(AVG) = tAA.MAX / CLSELECTED and round the resulting tCK(AVG) down to the
next valid speed bin (i.e. 3.3ns or 2.5ns or 1.875 ns or 1.25 ns). This result is tCK(AVG).MAX corresponding to
CLSELECTED.
4. ‘Reserved’ settings are not allowed. User must program a different value.
5. ‘Optional’ settings allow certain devices in the industry to support this setting, however, it is not a mandatory
feature. Refer to supplier’s data sheet and SPD information if and how this setting is supported.
6. Any DDR3-1066 speed bin also supports functional operation at lower frequencies as shown in the table which are
not subject to Production Tests but verified by Design/Characterization.
7. Any DDR3-1333 speed bin also supports functional operation at lower frequencies as shown in the table which are
not subject to Production Tests but verified by Design/Characterization.
8. Any DDR3-1600 speed bin also supports functional operation at lower frequencies as shown in the table which are
not subject to Production Tests but verified by Design/Characterization.
Rev. 0.1 / Dec 2008
52
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
8. Dimm Outline Diagram
8.1 164Mx64 - HMT164U6AFP(R)6C
Front
2.10 ± 0.15
Max R0.70
Min 1.45
30.00
SPD
4 x 3.00 ± 0.10
17.30
DETAIL-B
DETAIL-A
2 x φ 2.50 ± 0.10
9.50
2 x 2.30 ± 0.10
47.00
5.175
71.00
128.95
133.35
Back
Side
Detail - A
Detail - B
3.18
0.3 ± 0.15
2.50 ± 0.20
3.80
0.35
0.05
1.27 ± 0.10
FULL R
2.50
0.80 ± 0.05
1.00
0.3~1.0
1.50 ± 0.10
5.00
Note) All dimensions are in millimeters unless otherwise stated.
Rev. 0.1 / Dec 2008
53
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
8.2 128Mx64 - HMT112U6AFP(R)8C
Front
2.10 ± 0.15
Min 1.45
Max R0.70
30.00
SPD
4 x 3.00 ± 0.10
17.30
DETAIL-B
DETAIL-A
2 x φ 2.50 ± 0.10
9.50
2 x 2.30 ± 0.10
47.00
5.175
71.00
128.95
133.35
Back
Side
Detail - A
Detail - B
3.18
0.3 ± 0.15
2.50 ± 0.20
3.80
0.35
0.05
1.27 ± 0.10
FULL R
2.50
0.80 ± 0.05
1.00
0.3~1.0
1.50 ±0.10
5.00
Note) All dimensions are in millimeters unless otherwise stated.
Rev. 0.1 / Dec 2008
54
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
8.3 128Mx72 - HMT112U7AFP(R)8C
Front
2.10 ± 0.15
Min 1.45
SPD
Max R0.70
30.00
4 x 3.00 ± 0.10
17.30
DETAIL-B
DETAIL-A
2 x φ 2.50 ± 0.10
9.50
2 x 2.30 ± 0.10
47.00
5.175
71.00
128.95
133.35
Back
Side
Detail - A
Detail - B
3.18
0.3 ± 0.15
2.50 ± 0.20
3.80
0.35
0.05
1.27 ± 0.10
FULL R
2.50
0.80 ± 0.05
1.00
0.3~1.0
1.50 ±0.10
5.00
Note) All dimensions are in millimeters unless otherwise stated.
Rev. 0.1 / Dec 2008
55
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
8.4 256Mx64 - HMT125U6AFP(R)8C
Front
2.10 ± 0.15
Min 1.45
Max R0.70
30.00
SPD
4 x 3.00 ± 0.10
17.30
DETAIL-B
DETAIL-A
2 x φ 2.50 ± 0.10
9.50
2 x 2.30 ± 0.10
47.00
5.175
71.00
128.95
133.35
Back
Detail - A
Detail - B
4.00
2.50 ± 0.20
3.80
0.35
0.05
1.27 ± 0.10
FULL R
2.50
0.80 ± 0.05
0.3 ± 0.15
Side
1.00
0.3~1.0
1.50 ±0.10
5.00
Note) All dimensions are in millimeters unless otherwise stated.
Rev. 0.1 / Dec 2008
56
HMT164U6AFP(R)6C
HMT112U6(7)AFP(R)8C
HMT125U6(7)AFP(R)8C
8.5 256Mx72 - HMT125U7AFP(R)8C
Front
2.10 ± 0.15
Min 1.45
Max R0.70
SPD
30.00
4 x 3.00 ± 0.10
17.30
DETAIL-B
DETAIL-A
2 x φ 2.50 ± 0.10
9.50
2 x 2.30 ± 0.10
47.00
5.175
71.00
128.95
133.35
Back
Detail - A
Detail - B
4.00
2.50 ± 0.20
3.80
0.35
0.05
1.27 ± 0.10
FULL R
2.50
0.80 ± 0.05
0.3 ± 0.15
Side
1.00
0.3~1.0
1.50 ±0.10
5.00
Note) All dimensions are in millimeters unless otherwise stated.
Rev. 0.1 / Dec 2008
57
Similar pages