Infineon IGCM10F60HA Control integrated power system Datasheet

Control Integrated POwer
System (CIPOS™)
IGCM10F60HA
Datasheet
For Power Management Application
1
Ver. 1.6, 2014-06-01
CIPOS™ IGCM10F60HA
Table of Contents
CIPOS™ Control Integrated POwer System ........................................................................................................ 3
Features .............................................................................................................................................................. 3
Target Applications ........................................................................................................................................... 3
Description ......................................................................................................................................................... 3
System Configuration ....................................................................................................................................... 3
Pin Configuration .................................................................................................................................................... 4
Internal Electrical Schematic ................................................................................................................................. 4
Pin Assignment ....................................................................................................................................................... 5
Pin Description .................................................................................................................................................. 5
HIN(U,V,W) and LIN(U,V,W) (Low side and high side control pins, Pin 7 - 12) ................................................ 5
VFO (Fault-output, Pin 14) ................................................................................................................................ 6
ITRIP (Over current detection function, Pin 15) ................................................................................................ 6
VDD, VSS (Low side control supply and reference, Pin 13, 16) ....................................................................... 6
VB(U,V,W) and VS(U,V,W) (High side supplies, Pin 1 - 6) ............................................................................... 6
NW, NV, NU (Low side emitter, Pin 17 - 19) ..................................................................................................... 6
W, V, U (High side emitter and low side collector, Pin 20 - 22) ........................................................................ 6
P (Positive bus input voltage, Pin 23)................................................................................................................ 6
Absolute Maximum Ratings................................................................................................................................... 7
Module Section .................................................................................................................................................. 7
Inverter Section.................................................................................................................................................. 7
Control Section .................................................................................................................................................. 7
Recommended Operation Conditions .................................................................................................................. 8
Static Parameters ................................................................................................................................................... 9
Dynamic Parameters ............................................................................................................................................ 10
Bootstrap Parameters .......................................................................................................................................... 10
Mechanical Characteristics and Ratings............................................................................................................ 11
Circuit of a Typical Application ........................................................................................................................... 12
Switching Times Definition .................................................................................................................................. 12
Electrical characteristic ....................................................................................................................................... 13
Package Outline .................................................................................................................................................... 14
Datasheet
2
Ver. 1.6, 2014-06-01
CIPOS™ IGCM10F60HA
CIPOS™
Control Integrated POwer System
Dual In-Line Intelligent Power Module
3Φ-bridge 600V / 10A
Features
Description
Fully isolated Dual In-Line molded module
 Infineon reverse conducting IGBTs with
monolithic body diode
 Rugged SOI gate driver technology with stability
against transient and negative voltage
 Allowable negative VS potential up to -11V for
signal transmission at VBS=15V
 Integrated bootstrap functionality
 Over current shutdown
 Under-voltage lockout at all channels
 Low side emitter pins accessible for all phase
current monitoring (open emitter)
 Cross-conduction prevention
 All of 6 switches turn off during protection
 Lead-free terminal plating; RoHS compliant
The CIPOS™ module family offers the chance for
integrating various power and control components
to increase reliability, optimize PCB size and system
costs.
It is designed to control three phase AC motors and
permanent magnet motors in variable speed drives
for applications like an air conditioning, a
refrigerator and a washing machine. The package
concept is specially adapted to power applications,
which need good thermal conduction and electrical
isolation, but also EMI-save control and overload
protection.
The features of Infineon reverse conducting IGBT
are combined with an optimized SOI gate driver for
excellent electrical performance.
System Configuration
 3 half bridges with reverse conducting IGBT
Target Applications
 3Φ SOI gate driver
 Dish washers
 Pin-to-heasink creepage distance typ. 1.6mm
 Refrigerators
 Washing machines
 Air-conditioners
 Fans
 Low power motor drives
Datasheet
3
Ver. 1.6, 2014-06-01
CIPOS™ IGCM10F60HA
Pin Configuration
Bottom View
Figure 1: Pin configuration
Internal Electrical Schematic
Figure 2: Internal schematic
Datasheet
4
Ver. 1.6, 2014-06-01
CIPOS™ IGCM10F60HA
Pin Assignment
Pin Number
Pin Name
Pin Description
1
VS(U)
U-phase high side floating IC supply offset voltage
2
VB(U)
U-phase high side floating IC supply voltage
3
VS(V)
V-phase high side floating IC supply offset voltage
4
VB(V)
V-phase high side floating IC supply voltage
5
VS(W)
W-phase high side floating IC supply offset voltage
6
VB(W)
W-phase high side floating IC supply voltage
7
HIN(U)
U-phase high side gate driver input
8
HIN(V)
V-phase high side gate driver input
9
HIN(W)
W-phase high side gate driver input
10
LIN(U)
U-phase low side gate driver input
11
LIN(V)
V-phase low side gate driver input
12
LIN(W)
W-phase low side gate driver input
13
VDD
Low side control supply
14
VFO
Fault output
15
ITRIP
Over current shutdown input
16
VSS
Low side control negative supply
17
NW
W-phase low side emitter
18
NV
V-phase low side emitter
19
NU
U-phase low side emitter
20
W
Motor W-phase output
21
V
Motor V-phase output
22
U
Motor U-phase output
23
P
Positive bus input voltage
24
NC
No Connection
Pin Description
HIN(U,V,W) and LIN(U,V,W) (Low side and high
side control pins, Pin 7 - 12)
These pins are positive logic and they are
responsible for the control of the integrated IGBT.
The Schmitt-trigger input thresholds of them are
such to guarantee LSTTL and CMOS compatibility
down to 3.3V controller outputs. Pull-down resistor
of about 5k is internally provided to pre-bias inputs
during supply start-up and a zener clamp is
provided for pin protection purposes. Input Schmitttrigger and noise filter provide beneficial noise
rejection to short input pulses.
 5k
Figure 3: Input pin structure
The noise filter suppresses control pulses which are
below the filter time tFILIN. The filter acts according to
Figure 4.
Datasheet
Figure 4: Input filter timing diagram
5
Ver. 1.6, 2014-06-01
CIPOS™ IGCM10F60HA
It is recommended for proper work of CIPOS™ not
to provide input pulse-width lower than 1us.
The under-voltage circuit enables the device to
operate at power on when a supply voltage of at
least a typical voltage of VDDUV+ = 12.1V is present.
The integrated gate drive provides additionally a
shoot through prevention capability which avoids
the simultaneous on-state of two gate drivers of the
same leg (i.e. HO1 and LO1, HO2 and LO2, HO3
and LO3). When two inputs of a same leg are
activated, only former activated one is activated so
that the leg is kept steadily in a safe state.
The IC shuts down all the gate drivers’
outputs, when the VDD supply voltage is
VDDUV- = 10.4V. This prevents the external
switches from critically low gate voltage
during on-state and therefore from excessive
dissipation.
A minimum deadtime insertion of typically 380ns is
also provided by driver IC, in order to reduce crossconduction of the external power switches.
VB(U,V,W) and VS(U,V,W) (High side supplies,
Pin 1 - 6)
VB to VS is the high side supply voltage. The high
side circuit can float with respect to VSS following
the external high side power device emitter voltage.
VFO (Fault-output, Pin 14)
The VFO pin indicates a module failure in case of
under voltage at pin VDD or in case of triggered
over current detection at ITRIP.
Due to the low power consumption, the floating
driver stage is supplied by integrated bootstrap
circuit.
The under-voltage detection operates with a rising
supply threshold of typical VBSUV+ = 12.1V and a
falling threshold of VBSUV- = 10.4V.
VDD
VFO
RON,FLT
from ITRIP -Latch
>1
VSS
power
below
power
levels
power
VS(U,V,W) provide a high robustness against
negative voltage in respect of VSS of -50V
transiently. This ensures very stable designs even
under rough conditions.
from uv -detection
CIPOS™
Figure 5: Internal circuit at pin VFO
NW, NV, NU (Low side emitter, Pin 17 - 19)
The low side emitters are available for current
measurements of each phase leg. It is
recommended to keep the connection to pin VSS as
short as possible in order to avoid unnecessary
inductive voltage drops.
ITRIP (Over current detection function, Pin 15)
CIPOS™ provides an over current detection
function by connecting the ITRIP input with the
motor current feedback. The ITRIP comparator
threshold (typ. 0.47V) is referenced to VSS ground.
An input noise filter (typ: tITRIPMIN = 530ns) prevents
the driver to detect false over-current events.
W, V, U (High side emitter and low side collector,
Pin 20 - 22)
These pins are motor U, V, W input pins
Over current detection generates a shut down of all
outputs of the gate driver after the shutdown
propagation delay of typically 1000ns.
P (Positive bus input voltage, Pin 23)
The high side IGBT are connected to the bus
voltage. It is noted that the bus voltage does not
exceed 450 V.
The fault-clear time is set to typical 65us.
VDD, VSS (Low side control supply and
reference, Pin 13, 16)
VDD is the low side supply and it provides power
both to input logic and to low side output power
stage. Input logic is referenced to VSS ground.
Datasheet
6
Ver. 1.6, 2014-06-01
CIPOS™ IGCM10F60HA
Absolute Maximum Ratings
(VDD = 15V and TJ = 25°C, if not stated otherwise)
Module Section
Description
Condition
Storage temperature range
Insulation test voltage
RMS, f = 60Hz, t =1min
Operating case temperature range
Refer to Figure 6
Symbol
Value
Unit
min
max
Tstg
-40
125
°C
VISOL
2000
-
V
TC
-40
100
°C
Inverter Section
Description
Condition
Symbol
Value
min
max
Unit
Max. blocking voltage
IC = 250µA
VCES
600
-
V
DC link supply voltage of P-N
Applied between P-N
VPN
-
450
V
DC link supply voltage (surge) of P-N
Applied between P-N
VPN(surge)
-
500
V
Output current
TC = 25°C, TJ < 150°C
TC = 100°C, TJ < 150°C
IC
-10
-6
10
6
A
Maximum peak output current
less than 1ms
IC
-20
20
A
Short circuit withstand time1
VDC ≤400V, TJ = 150°C
tSC
-
5
µs
Power dissipation per IGBT
Ptot
-
26.1
W
Operating junction temperature range
TJ
-40
150
°C
RthJC
-
4.79
K/W
Single IGBT thermal resistance,
junction-case
Control Section
Description
Condition
Value
min
max
Unit
Module supply voltage
VDD
-1
20
V
High side floating supply voltage
(VB vs. VS)
VBS
-1
20
V
VIN
VITRIP
-1
-1
10
10
V
fPWM
-
20
kHz
Input voltage
LIN, HIN, ITRIP
Switching frequency
1
Symbol
Allowed number of short circuits: <1000; time between short circuits: >1s.
Datasheet
7
Ver. 1.6, 2014-06-01
CIPOS™ IGCM10F60HA
Recommended Operation Conditions
All voltages are absolute voltages referenced to VSS -potential unless otherwise specified.
Description
Symbol
min
DC link supply voltage of P-N
VPN
0
High side floating supply voltage (VB vs. VS)
VBS
Low side supply voltage
Value
typ
max
Unit
-
400
V
13.5
-
18.5
V
VDD
14.0
16
18.5
V
Control supply variation
ΔVBS,
ΔVDD
-1
-1
-
1
1
V/µs
Logic input voltages LIN,HIN,ITRIP
VIN
VITRIP
0
0
-
5
5
V
Between VSS - N (including surge)
VSS
-5
-
5
V
Figure 6: TC measurement point2
2
Any measurement except for the specified point in figure 6 is not relevant for the temperature verification and
brings wrong or different information.
Datasheet
8
Ver. 1.6, 2014-06-01
CIPOS™ IGCM10F60HA
Static Parameters
(VDD = 15V and TJ = 25°C, if not stated otherwise)
Description
Condition
Symbol
min
typ
max
VCE(sat)
-
1.6
1.8
2.0
-
Iout = 6A
Collector-Emitter saturation voltage
TJ = 25°C
150°C
Value
Iout = -6A
Unit
V
Emitter-Collector forward voltage
TJ = 25°C
150°C
VF
-
1.75
1.8
2.2
Collector-Emitter leakage current
VCE = 600V
ICES
-
-
1
mA
Logic "1" input voltage (LIN,HIN)
VIH
-
2.1
2.5
V
Logic "0" input voltage (LIN,HIN)
VIL
0.7
0.9
-
V
ITRIP positive going threshold
VIT,TH+
400
470
540
mV
ITRIP input hysteresis
VIT,HYS
40
70
-
mV
VDD and VBS supply under voltage
positive going threshold
VDDUV+
VBSUV+
10.8
12.1
13.0
V
VDD and VBS supply under voltage
negative going threshold
VDDUVVBSUV-
9.5
10.4
11.2
V
VDD and VBS supply under voltage
lockout hysteresis
VDDUVH
VBSUVH
1.0
1.7
-
V
VINCLAMP
9.0
10.1
12.5
V
V
Input clamp voltage
(HIN, LIN, ITRIP)
Iin = 4mA
Quiescent VBx supply current
(VBx only)
HIN = 0V
IQBS
-
300
500
µA
Quiescent VDD supply current
(VDD only)
LIN = 0V, HINX = 5V
IQDD
-
370
900
µA
Input bias current
VIN = 5V
IIN+
-
1
1.5
mA
Input bias current
VIN = 0V
IIN-
-
2
-
µA
ITRIP input bias current
VITRIP = 5V
IITRIP+
-
65
150
µA
VFO input bias current
VFO = 5V, VITRIP = 0V
IFO
-
2
-
nA
VFO output voltage
IFO = 10mA, VITRIP = 1V
VFO
-
0.5
-
V
Datasheet
9
Ver. 1.6, 2014-06-01
CIPOS™ IGCM10F60HA
Dynamic Parameters
(VDD = 15V and TJ = 25°C, if not stated otherwise)
Description
Condition
Turn-on propagation delay time
Turn-on rise time
VLIN,HIN = 5V; Iout = 6A,
VDC = 300V
Turn-on switching time
Turn-off propagation delay time
typ
max
ton
-
670
-
ns
tr
-
20
-
ns
tc(on)
80
ns
trr
110
ns
toff
-
820
-
ns
tf
-
170
-
ns
VLIN,HIN = 0V; Iout = 6A,
VDC = 300V
Turn-off switching time
tc(off)
Short circuit propagation delay time
From VIT,TH+ to 10% ISC
Input filter time ITRIP
VITRIP = 1V
Input filter time at LIN, HIN for turn
on and off
VLIN,HIN = 0V & 5V
Fault clear time after ITRIP-fault
VITRIP = 1V
Deadtime between low side and high
side
Unit
min
Reverse recovery time
Turn-off fall time
Value
Symbol
180
ns
tSCP
-
1250
-
ns
tITRIPmin
-
530
-
ns
tFILIN
-
290
-
ns
tFLTCLR
40
65
200
µs
DTPWM
1.0
-
-
µs
Deadtime of gate drive circuit
DTIC
380
ns
IGBT turn-on energy (includes
reverse recovery of diode)
VDC = 300V, IC = 6A,
TJ = 25°C
150°C
Eon
-
110
155
-
µJ
IGBT turn-off energy
VDC = 300V, IC = 6A,
TJ = 25°C
150°C
Eoff
-
155
220
-
µJ
Diode recovery energy
VDC = 300V, IC = 6A,
TJ = 25°C
150°C
Erec
-
45
75
-
µJ
Bootstrap Parameters
(TJ = 25°C, if not stated otherwise)
Description
Condition
Symbol
Repetitive peak reverse
voltage
1
VRRM
Bootstrap resistance of
U-phase1
VS2 or VS3 = 300V, TJ = 25°C
VS2 and VS3 = 0V, TJ = 25°C
VS2 or VS3 = 300V, TJ = 125°C
VS2 and VS3 = 0V, TJ = 125°C
Reverse recovery time
Forward voltage drop
Value
min
typ
600
max
Unit
V
RBS1
35
40
50
65

IF = 0.6A, di/dt = 80A/µs
trr_BS
50
ns
IF = 20mA, VS2 and VS3 = 0V
VF_BS
2.6
V
RBS2 and RBS3 have same values to RBS1.
Datasheet
10
Ver. 1.6, 2014-06-01
CIPOS™ IGCM10F60HA
Mechanical Characteristics and Ratings
Description
Condition
Value
Unit
min
typ
max
Mounting torque
M3 screw and washer
0.59
0.69
0.78
Nm
Flatness
Refer to Figure 7
-50
-
100
µm
-
6.15
-
g
Weight
Figure 7: Flatness measurement position
Datasheet
11
Ver. 1.6, 2014-06-01
CIPOS™ IGCM10F60HA
Circuit of a Typical Application
Figure 8: Application circuit
Switching Times Definition
Figure 9: Switching times definition
Datasheet
12
Ver. 1.6, 2014-06-01
CIPOS™ IGCM10F60HA
Electrical characteristic
20
14
12
10
8
VDD=13V
VDD=15V
VDD=20V
6
4
2
0.5
1.0
1.5
2.0
2.5
3.0
3.5
VCE(sat), Collector - Emitter voltage [V]
12
10
8
6
TJ=25℃
4
TJ=150℃
2
0.5
1.0
High side @ T J=25 ℃
1.2
High side @ T J=150 ℃
Low side @ T J =25 ℃
1.0
Low side @ T J =150 ℃
0.8
0.6
0.4
0.2
0
2
4
6
8
10
12
14
16
18
20
3.5
4.0
12
10
8
High side @ T J =25 ℃
High side @ T J =150 ℃
Low side @ T J =25 ℃
Low side @ T J =150 ℃
700
600
High side @ T J =150 ℃
Low side @ T J =25 ℃
Low side @ T J =150 ℃
0.4
0.3
0.2
0.1
V D C =300V
V D D =15V
0
2
4
6
8
10
12
14
16
18
6
8
10
12
14
16
18
20
High side @ T J=150 ℃
Low side @ T J=25 ℃
250
Low side @ T J=150 ℃
200
150
100
50
0
2
4
6
8
10
12
14
16
18
trr, Reverse recovery time [ns]
High side @ T J=25 ℃
High side @ T J=150 ℃
Low side @ T J=25 ℃
300
Low side @ T J=150 ℃
200
100
2
4
6
8
10
12
14
16
Ic, C ollector current [A]
Typ. Turn off switching time
Datasheet
Low side @ T J =25 ℃
Low side @ T J =150 ℃
150
120
90
60
30
0
2
4
18
20
6
8
10
12
14
16
18
20
V D C =300V
V D D =15V
1500
1400
High side @ T J =25 ℃
1300
High side @ T J =150 ℃
1200
Low side @ T J =25 ℃
Low side @ T J =150 ℃
1100
1000
900
800
700
0
2
300
High side @ T J =25 ℃
High side @ T J =150 ℃
250
6
8
10
12
14
16
18
20
Typ. Turn off propagation delay time
V DC =300V
V DD =15V
350
4
Ic, C ollector current [A]
Low side @ T J =25 ℃
Low side @ T J =150 ℃
200
10
1
D : d u ty ratio
0 .1
D =50%
D =20%
D =10%
D =5%
D =2%
Single pulse
0 .0 1
150
100
1 E -3
50
0
3.5
High side @ T J =150 ℃
180
1600
20
400
500
3.0
High side @ T J =25 ℃
210
Typ. Turn on switching time
V DC =300V
V DD =15V
2.5
Typ. Reverse recovery energy loss
High side @ T J=25 ℃
Typ. Turn on propagation delay time
400
240
Ic, C ollector current [A]
700
2.0
1700
300
0
1.5
Ic, C ollector current [A]
V DC =300V
V DD =15V
350
Ic, C ollector current [A]
600
1.0
VF, Emitter - Collector voltage [V]
V DC =300V
V DD =15V
270
0
20
ZthJC, RC-IGBT transient thermal resistance [K/W]
4
0.5
Typ. Emitter – Collector forward voltage
toff, Turn off propagation delay time [ns]
tc(on), Turn on switching time [ns]
900
2
TJ=150℃
0
0.0
4.5
400
0
TJ=25℃
4
2
Typ. Turn off switching energy loss
V DC =300V
V DD =15V
800
6
Ic, C ollector current [A]
1000
ton, Turn on propagation delay time [ns]
3.0
14
300
0.5
0.0
Typ. Turn on switching energy loss
tc(off), Turn off switching time [ns]
2.5
High side @ T J =25 ℃
Ic, C ollector current [A]
0
2.0
V CE(sat), Collector - Emitter voltage [V]
16
Erec, Reverse recovery energy loss [uJ]
1.4
500
1.5
18
0.6
V D C =300V
V D D =15V
1.6
Eoff, Turn off switching energy loss [mJ]
Eon, Turn on switching energy loss [mJ]
14
Typ. Collector – Emitter saturation voltage
1.8
0.0
16
0
0.0
4.0
Typ. Collector – Emitter saturation voltage
18
IF, Emitter - Collector current [A]
16
0
0.0
20
V DD=15V
TJ=25℃
18
Ic, Collector - Emitter current [A]
Ic, Collector - Emitter current [A]
20
0
0
2
4
6
8
10
12
14
16
Ic, C ollector current [A]
Typ. Reverse recovery time
13
18
20
1 E -4
1 E -7
1 E -6
1 E -5
1 E -4
1 E -3
0 .0 1
0 .1
t P , P u lse w id th [se c.]
1
10
100
IGBT transient thermal resistance at all six
IGBTs operation
Ver. 1.6, 2014-06-01
CIPOS™ IGCM10F60HA
Package Outline
Datasheet
14
Ver. 1.6, 2014-06-01
CIPOS™ IGCM10F60HA
Revision History
Previous Version:
Datasheet Ver. 1.5
Major changes since the last revision
Page or Reference
8
14
Datasheet
Description of change
Figure 6 updated
Package Outline updated
15
Ver. 1.6, 2014-06-01
Trademarks of Infineon Technologies AG
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolGaN™, CoolMOS™, CoolSET™, CoolSiC™, CORECONTROL™, CROSSAVE™, DAVE™,
DI-POL™, DrBLADE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™,
HybridPACK™, ISOFACE™, IsoPACK™, i-Wafer™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OPTIGA™, OptiMOS™, ORIGA™,
POWERCODE™, PRIMARION™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, ReverSave™, SatRIC™, SIEGET™,
SIPMOS™, SmartLEWIS™, SOLID FLASH™, SPOC™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.
Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™
of ARM Limited, UK. ANSI™ of American National Standards Institute. AUTOSAR™ of AUTOSAR development partnership. Bluetooth™ of Bluetooth
SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of
Epcos AG. FLEXGO™ of Microsoft Corporation. HYPERTERMINAL™ of Hilgraeve Incorporated. MCS™ of Intel Corp. IEC™ of Commission
Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR
STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics
Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE
OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ of Openwave Systems Inc. RED HAT™
of Red Hat, Inc. RFMD™ of RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of
Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of
Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design
Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex.
Last Trademarks Update 2014-07-17
www.Infineon.com
Edition 2014-06-01
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2015.
All Rights Reserved.
IMPORTANT NOTICE
The information given in this document shall in no event be
regarded as a guarantee of conditions or characteristics
(“Beschaffenheitsgarantie”). With respect to any examples, hints
or any typical values stated herein and/or any information
regarding the application of the product, Infineon Technologies
hereby disclaims any and all warranties and liabilities of any kind,
including without limitation warranties of non-infringement of
intellectual property rights of any third party.
In addition, any information given in this document is subject to
customer’s compliance with its obligations stated in this document
and any applicable legal requirements, norms and standards
concerning customer’s products and any use of the product of
Infineon Technologies in customer’s applications.
The data contained in this document is exclusively intended for
technically trained staff. It is the responsibility of customer’s
technical departments to evaluate the suitability of the product for
the intended application and the completeness of the product
information given in this document with respect to such
application.
For further information on the product, technology, delivery terms
and conditions and prices please contact your nearest Infineon
Technologies office (www.infineon.com).
WARNINGS
Due to technical requirements products may contain dangerous
substances. For information on the types in question please
contact your nearest Infineon Technologies office.
Except as otherwise explicitly approved by Infineon Technologies
in a written document signed by authorized representatives of
Infineon Technologies, Infineon Technologies’ products may not be
used in any applications where a failure of the product or any
consequences of the use thereof can reasonably be expected to
result in personal injury.
Similar pages