AMD AM29LV001BT-5JC 1 megabit (128 k x 8-bit) cmos 3.0 volt-only boot sector flash memory Datasheet

Am29LV001B
Data Sheet
RETIRED
PRODUCT
This product has been retired and is not recommended for designs. Please contact your Spansion
representative for alternates. Availability of this document is retained for reference and historical
purposes only.
The following document contains information on Spansion memory products.
Continuity of Specifications
There is no change to this data sheet as a result of offering the device as a Spansion product. Any
changes that have been made are the result of normal data sheet improvement and are noted in the
document revision summary.
For More Information
Please contact your local sales office for additional information about Spansion memory solutions.
Publication Number 21553
Revision F
Amendment 4
Issue Date May 5, 2006
THIS PAGE LEFT INTENTIONALLY BLANK.
DATA SHEET
Am29LV001B
1 Megabit (128 K x 8-Bit)
CMOS 3.0 Volt-only Boot Sector Flash Memory
This product has been retired and is not recommended for designs. Please contact your Spansion representative for alternates. Availability of this document is retained for reference and
historical purposes only.
DISTINCTIVE CHARACTERISTICS
■ Single power supply operation
— Full voltage range: 2.7 to 3.6 volt read and write
operations for battery-powered applications
— Regulated voltage range: 3.0 to 3.6 volt read and
write operations and for compatibility with high
performance 3.3 volt microprocessors
■ Manufactured on 0.32 µm process technology
■ High performance
— Full voltage range: access times as fast as 55 ns
— Regulated voltage range: access times as fast as
45 ns
■ Ultra low power consumption (typical values at 5
MHz)
— 200 nA Automatic Sleep mode current
— 200 nA standby mode current
— 7 mA read current
— 15 mA program/erase current
■ Flexible sector architecture
■ Unlock Bypass Mode Program Command
— Reduces overall programming time when issuing
multiple program command sequences
■ Top or bottom boot block configurations available
■ Embedded Algorithms
— Embedded Erase algorithm automatically
preprograms and erases the entire chip or any
combination of designated sectors
— Embedded Program algorithm automatically
writes and verifies data at specified addresses
■ Minimum 1 million erase cycle guarantee per sector
■ 20 Year data retention at 125°C
— Reliable operation for the life of the system
■ Package option
— 32-pin TSOP
— 32-pin PLCC
■ Compatibility with JEDEC standards
— One 8 Kbyte, two 4 Kbyte, and seven 16 Kbyte
— Pinout and software compatible with singlepower supply Flash
— Supports full chip erase
— Superior inadvertent write protection
— Sector Protection features:
Hardware method of locking a sector to prevent any
program or erase operations within that sector
Sectors can be locked in-system or via
programming equipment
Temporary Sector Unprotect feature allows code
changes in previously locked sectors
■ Data# Polling and toggle bits
— Provides a software method of detecting program
or erase operation completion
■ Erase Suspend/Erase Resume
— Supports reading data from or programming data
to a sector that is not being erased
■ Hardware reset pin (RESET#)
— Hardware method for resetting the device to
reading array data
This Data Sheet states AMD’s current technical specifications regarding the Products described herein. This Data
Sheet may be revised by subsequent versions or modifications due to changes in technical specifications.
Publication# 21557 Rev: F Amendment: 4
Issue Date: May 5, 2006
DATA SHEET
GENERAL DESCRIPTION
The Am29LV001B is a 1 Mbit, 3.0 Volt-only Flash
memory device organized as 131,072 bytes. The
Am29LV001B has a boot sector architecture.
The device is offered in 32-pin PLCC and 32-pin TSOP
packages. The byte-wide (x8) data appears on DQ7-DQ0.
All read, erase, and program operations are accomplished
using only a single power supply. The device can also be
programmed in standard EPROM programmers.
The standard Am29LV001B offers access times of 45,
55, 70, and 90 ns, allowing high speed microprocessors
to operate without wait states. To eliminate bus contention,
the device has separate chip enable (CE#), write enable
(WE#) and output enable (OE#) controls.
The device requires only a single power supply (2.7 V–3.6V)
for both read and write functions. Internally generated and
regulated voltages are provided for the program and
erase operations.
The Am29LV001B is entirely command set compatible
with the JEDEC single-power-supply Flash standard.
Commands are written to the command register using
standard microprocessor write timings. Register contents serve as input to an internal state-machine that
controls the erase and programming circuitry. Write
cycles also internally latch addresses and data needed
for the programming and erase operations. Reading
data out of the device is similar to reading from other
Flash or EPROM devices.
Device programming occurs by executing the program
command sequence. This initiates the Embedded
Program algorithm—an internal algorithm that automatically
times the program pulse widths and verifies proper cell
margin. The Unlock Bypass mode facilitates faster programming times by requiring only two write cycles to
program data instead of four.
Device erasure occurs by executing the erase command
sequence. This initiates the Embedded Erase algorithm—
an internal algorithm that automatically preprograms the
array (if it is not already programmed) before executing the
2
erase operation. During erase, the device automatically
times the erase pulse widths and verifies proper cell margin.
The host system can detect whether a program or
erase operation is complete by reading the DQ7 (Data#
Polling) and DQ6 (toggle) status bits. After a program
or erase cycle has been completed, the device is ready
to read array data or accept another command.
The sector erase architecture allows memory sectors
to be erased and reprogrammed without affecting the
data contents of other sectors. The device is fully
erased when shipped from the factory.
Hardware data protection measures include a low VCC
detector that automatically inhibits write operations during
power transitions. The hardware sector protection feature
disables both program and erase operations in any combination of the sectors of memory. This can be achieved
in-system or via programming equipment.
The Erase Suspend feature enables the user to put
erase on hold for any period of time to read data from,
or program data to, any sector that is not selected for
erasure. True background erase can thus be achieved.
The hardware RESET# pin terminates any operation in
progress and resets the internal state machine to
reading array data. The RESET# pin may be tied to the
system reset circuitry. A system reset would thus also
reset the device, enabling the system microprocessor
to read the boot-up firmware from the Flash memory.
The device offers two power-saving features. When
addresses are stable for a specified amount of time, the
device enters the automatic sleep mode. The system can
also place the device into the standby mode. Power consumption is greatly reduced in both these modes.
AMD’s Flash technology combines years of Flash
memory manufacturing experience to produce the highest
levels of quality, reliability and cost effectiveness. The
device electrically erases all bits within a sector simultaneously via Fowler-Nordheim tunneling. The data is
programmed using hot electron injection.
Am29LV001B
21557F4 May 5, 2006
DATA SHEET
TABLE OF CONTENTS
Product Selector Guide . . . . . . . . . . . . . . . . . . . . . 4
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . 5
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . 6
Device Bus Operations . . . . . . . . . . . . . . . . . . . . . . 7
DQ6: Toggle Bit I .................................................................... 18
DQ2: Toggle Bit II ................................................................... 19
Reading Toggle Bits DQ6/DQ2 ............................................... 19
DQ5: Exceeded Timing Limits ................................................ 19
Table 1. Am29LV001B Device Bus Operations ................................ 7
Absolute Maximum Ratings . . . . . . . . . . . . . . . . 22
Requirements for Reading Array Data ..................................... 7
Writing Commands/Command Sequences .............................. 7
Program and Erase Operation Status ...................................... 8
Standby Mode .......................................................................... 8
Automatic Sleep Mode ............................................................. 8
RESET#: Hardware Reset Pin ................................................. 8
Output Disable Mode ................................................................ 8
Figure 7. Maximum Negative Overshoot Waveform ...................... 22
Figure 8. Maximum Positive Overshoot Waveform ........................ 22
Table 2. Am29LV001B Top Boot Sector Architecture ...................... 9
Table 3. Am29LV001B Bottom Boot Sector Architecture.................. 9
Autoselect Mode ....................................................................... 9
Table 4. Am29LV001B Autoselect Codes....................................... 10
Figure 6. Toggle Bit Algorithm ........................................................ 20
DQ3: Sector Erase Timer ....................................................... 20
Table 6. Write Operation Status..................................................... 21
Operating Ranges . . . . . . . . . . . . . . . . . . . . . . . . . 22
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 9. ICC1 Current vs. Time (Showing Active and Automatic
Sleep Currents) .............................................................................. 24
Figure 10. Typical ICC1 vs. Frequency ........................................... 24
Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 11. Test Setup ..................................................................... 25
Table 7. Test Specifications ........................................................... 25
Key to Switching Waveforms. . . . . . . . . . . . . . . . 25
Figure 12. Input Waveforms and Measurement Levels ................. 25
Sector Protection/Unprotection ............................................... 10
Temporary Sector Unprotect .................................................. 10
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 1. In-System Sector Protect/Unprotect Algorithms ...............11
Figure 2. Temporary Sector Unprotect Operation ...........................12
Hardware Reset (RESET#) .................................................... 27
Hardware Data Protection ...................................................... 12
Low VCC Write Inhibit .............................................................. 12
Write Pulse “Glitch” Protection ............................................... 12
Logical Inhibit .......................................................................... 12
Power-Up Write Inhibit ............................................................ 12
Command Definitions . . . . . . . . . . . . . . . . . . . . . . 13
Reading Array Data ................................................................ 13
Reset Command ..................................................................... 13
Autoselect Command Sequence ............................................ 13
Byte Program Command Sequence ....................................... 13
Unlock Bypass Command Sequence ..................................... 14
Figure 3. Program Operation ..........................................................14
Chip Erase Command Sequence ........................................... 14
Sector Erase Command Sequence ........................................ 15
Erase Suspend/Erase Resume Commands ........................... 15
Figure 4. Erase Operation ...............................................................16
Command Definitions ............................................................. 17
Table 5. Am29LV001B Command Definitions ................................ 17
Write Operation Status . . . . . . . . . . . . . . . . . . . . . 18
DQ7: Data# Polling ................................................................. 18
Figure 13. Read Operations Timings ............................................. 26
Figure 14. RESET# Timings .......................................................... 27
Erase/Program Operations ..................................................... 28
Figure 15. Program Operation Timings .......................................... 29
Figure 16. Chip/Sector Erase Operation Timings .......................... 30
Figure 17. Data# Polling Timings (During Embedded Algorithms) . 31
Figure 18. Toggle Bit Timings (During Embedded Algorithms) ...... 31
Figure 19. DQ2 vs. DQ6 ................................................................. 32
Temporary Sector Unprotect .................................................. 32
Figure 20. Temporary Sector Unprotect Timing Diagram .............. 32
Figure 21. In-System Sector Protect/Unprotect Timing Diagram ... 33
Alternate CE# Controlled Erase/Program Operations ............ 34
Figure 22. Alternate CE# Controlled Write Operation Timings ...... 35
Erase and Programming Performance . . . . . . . 36
Latchup Characteristics . . . . . . . . . . . . . . . . . . . . 36
TSOP Pin Capacitance . . . . . . . . . . . . . . . . . . . . . 36
PLCC Pin Capacitance . . . . . . . . . . . . . . . . . . . . . 36
Data Retention. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Physical Dimensions . . . . . . . . . . . . . . . . . . . . . . 38
PL 032—32-Pin Plastic Leaded Chip Carrier ......................... 38
TS 032—32-Pin Standard Thin Small Outline Package ......... 39
Revision Summary . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 5. Data# Polling Algorithm ...................................................18
May 5, 2006 21557F4
Am29LV001B
3
DATA SHEET
PRODUCT SELECTOR GUIDE
Family Part Number
Am29LV001B
Regulated Voltage Range: VCC = 3.0–3.6 V
Speed
Options
-45R
Full Voltage Range: VCC = 2.7–3.6 V
-55
-70
-90
Max access time, ns (tACC)
45
55
70
90
Max CE# access time, ns (tCE)
45
55
70
90
Max OE# access time, ns (tOE)
25
30
30
35
Note: See “AC Characteristics” for full specifications.
BLOCK DIAGRAM
DQ7–DQ0
VCC
Sector Switches
VSS
Erase Voltage
Generator
RESET#
WE#
Input/Output
Buffers
State
Control
Command
Register
PGM Voltage
Generator
Chip Enable
Output Enable
CE#
OE#
VCC Detec-
Timer
A16–A0
4
Am29LV001B
Address Latch
STB
STB
Data
Y-Decoder
Y-Gating
X-Decoder
Cell Matrix
21557F4 May 5, 2006
DATA SHEET
CONNECTION DIAGRAMS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
OE#
A10
CE#
DQ7
DQ6
DQ5
DQ4
DQ3
VSS
DQ2
DQ1
DQ0
A0
A1
A2
A3
WE#
NC
VCC
RESET#
A16
32-Pin Standard TSOP
A12
A15
A11
A9
A8
A13
A14
NC
WE#
VCC
RESET#
A16
A15
A12
A7
A6
A5
A4
4 3 2 1 32 31 30
A7
5
29
A14
A6
6
28
A13
A5
A4
7
8
27
26
A8
A9
A3
9
25
A11
A2
10
24
OE#
A1
11
23
A10
A0
12
22
DQ0
13
CE#
DQ7
PLCC
Am29LV001
21
=
DQ5
DQ6
DQ4
LOGIC SYMBOL
PIN CONFIGURATION
A0–A16
VSS
DQ3
DQ1
DQ2
14 15 16 17 18 19 20
17 addresses
17
DQ0–DQ7 =
8 data inputs/outputs
CE#
=
Chip enable
OE#
=
Output enable
WE#
=
Write enable
CE#
RESET#
=
Hardware reset pin, active low
OE#
VCC
=
3.0 volt-only single power supply
(see Product Selector Guide for speed
options and voltage supply tolerances)
WE#
VSS
=
Device ground
NC
=
Pin not connected internally
May 5, 2006 21557F4
A0–A16
8
DQ0–DQ7
Am29LV001B
RESET#
5
DATA SHEET
ORDERING INFORMATION
Standard Products
AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is formed by a combination of the elements below.
Am29LV001B
T
-45R
E
C
TEMPERATURE RANGE
C
I
E
D
F
K
=
=
=
=
=
=
Commercial (0°C to +70°C)
Industrial (–40°C to +85°C)
Extended (–55°C to +125°C)
Commercial (0°C to +70°C) for Pb-free Package
Industrial (–40°C to +85°C) for Pb-free Package
Extended (–55°C to +125°C) for Pb-free Package
PACKAGE TYPE
E
=
J
=
32-Pin Thin Small Outline Package (TSOP)
Standard Pinout (TS 032)
32-Pin Rectangular Plastic Leaded Chip
Carrier (PL 032)
SPEED OPTION
See Product Selector Guide and Valid Combinations
BOOT CODE SECTOR ARCHITECTURE
T
B
=
=
Top Sector
Bottom Sector
DEVICE NUMBER/DESCRIPTION
Am29LV001B
1 Megabit (128 K x 8-Bit) CMOS Flash Memory
3.0 Volt-only Read, Program and Erase
Valid Combinations
AM29LV001BT-45R,
AM29LV001BB-45R,
EC, EI, EF,
JC, JI, JD, JF
AM29LV001BT-55,
AM29LV001BB-55,
AM29LV001BT-70,
AM29LV001BB-70,
EC, EI, EE, ED, EF, EK,
JC, JI, JE, JD, JF, JK
AM29LV001BT-90,
AM29LV001BB-90,
Valid Combinations
Valid Combinations list configurations planned to be supported in volume for this device. Consult the local AMD sales
office to confirm availability of specific valid combinations and to check on newly released combinations.
6
Am29LV001B
21557F4 May 5, 2006
DATA SHEET
DEVICE BUS OPERATIONS
This section describes the requirements and use of the
device bus operations, which are initiated through the
internal command register. The command register
itself does not occupy any addressable memory location. The register is composed of latches that store the
commands, along with the address and data information needed to execute the command. The contents of
Table 1.
Operation
CE#
the register serve as inputs to the internal state
machine. The state machine outputs dictate the function of the device. Table 1 lists the device bus
operations, the inputs and control levels they require,
and the resulting output. The following subsections
describe each of these operations in further detail.
Am29LV001B Device Bus Operations
OE#
WE#
RESET#
Addresses (Note 1)
DQ0–DQ7
Read
L
L
H
H
AIN
DOUT
Write
L
H
L
H
AIN
DIN
VCC ± 0.3 V
X
X
VCC ± 0.3 V
X
High-Z
Output Disable
L
H
H
H
X
High-Z
Reset
X
X
X
L
X
High-Z
Sector Protect (Note 2)
L
H
L
VID
Sector Address, A6 =
L, A1 = H, A0 = L
DIN, DOUT
Sector Unprotect (Note 2)
L
H
L
VID
Sector Address, A6 =
H, A1 = H, A0 = L
DIN, DOUT
Temporary Sector
Unprotect
X
X
X
VID
AIN
DIN
Standby
Legend:
L = Logic Low = VIL, H = Logic High = VIH, VID = 12.0 ± 0.5 V, X = Don’t Care, AIN = Address In, DIN = Data In, DOUT = Data Out
Notes:
1. Addresses are A16–A0.
2. The in-system method of sector protection/unprotection is available. Sector protection/unprotection can be implemented by
using programming equipment. See ““Sector Protection/Unprotection” on page 10” .
Requirements for Reading Array Data
Writing Commands/Command Sequences
To read array data from the outputs, the system must
drive the CE# and OE# pins to VIL. CE# is the power
control and selects the device. OE# is the output
control and gates array data to the output pins. WE#
should remain at VIH.
To write a command or command sequence (which
includes programming data to the device and erasing
sectors of memory), the system must drive WE# and
CE# to VIL, and OE# to VIH.
The internal state machine is set for reading array data
upon device power-up, or after a hardware reset. This
ensures that no spurious alteration of the memory
content occurs during the power transition. No
command is necessary in this mode to obtain array
data. Standard microprocessor read cycles that assert
valid addresses on the device address inputs produce
valid data on the device data outputs. The device
remains enabled for read access until the command
register contents are altered.
See “Reading Array Data” on page 13 for more information. Refer to the AC “Read Operations” on page 26
table for timing specifications and to Figure 13, on page
26 for the timing diagram. ICC1 in the DC Characteristics table represents the active current specification for
reading array data.
May 5, 2006 21557F4
The device features an Unlock Bypass mode to facilitate faster programming. Once the device enters the
Unlock Bypass mode, only two write cycles are
required to program a byte, instead of four. The “Byte
Program Command Sequence” on page 13 section
contains details on programming data to the device
using both standard and Unlock Bypass command
sequences.
An erase operation can erase one sector, multiple sectors, or the entire device. Table 2 on page 9 indicate the
address space that each sector occupies. A “sector
address” consists of the address bits required to
uniquely select a sector. The “Command Definitions”
on page 13 section contains details on erasing a sector
or the entire chip, or suspending/resuming the erase
operation.
After the system writes the autoselect command
sequence, the device enters the autoselect mode. The
system can then read autoselect codes from the
Am29LV001B
7
DATA SHEET
internal register (which is separate from the memory
array) on DQ7–DQ0. Standard read cycle timings apply
in this mode. Refer to “Autoselect Mode” on page 9 and
“Autoselect Command Sequence” on page 13 for more
information.
ICC2 in the DC Characteristics table represents the
active current specification for the write mode. The “AC
Characteristics” on page 26 section contains timing
specification tables and timing diagrams for write
operations.
Automatic Sleep Mode
The automatic sleep mode minimizes Flash device
energy consumption. The device automatically enables
this mode when addresses remain stable for tACC + 30
ns. The automatic sleep mode is independent of the
CE#, WE#, and OE# control signals. Standard address
access timings provide new data when addresses are
changed. While in sleep mode, output data is latched
and always available to the system. ICC5 in the DC
Characteristics table represents the automatic sleep
mode current specification.
Program and Erase Operation Status
During an erase or program operation, the system may
check the status of the operation by reading the status
bits on DQ7–DQ0. Standard read cycle timings and ICC
read specifications apply. Refer to “Write Operation
Status” on page 18 for more information, and to “AC
Characteristics” on page 26 for timing diagrams.
Standby Mode
When the system is not reading or writing to the device,
it can place the device in the standby mode. In this
mode, current consumption is greatly reduced, and the
outputs are placed in the high impedance state, independent of the OE# input.
The device enters the CMOS standby mode when the
CE# and RESET# pins are both held at VCC ± 0.3 V.
(Note that this is a more restricted voltage range than
VIH.) If CE# and RESET# are held at VIH, but not within
VCC ± 0.3 V, the device will be in the standby mode, but
the standby current is greater. The device requires
standard access time (tCE) for read access when the
device is in either of these standby modes, before it is
ready to read data.
The device also enters the standby mode when the
RESET# pin is driven low. Refer to the next section,
RESET#: Hardware Reset Pin.
If the device is deselected during erasure or programming, the device draws active current until the
operation is completed.
ICC3 in the DC Characteristics table represents the
standby current specification.
8
RESET#: Hardware Reset Pin
The RESET# pin provides a hardware method of resetting the device to reading array data. When the
RESET# pin is driven low for at least a period of tRP, the
device immediately terminates any operation in
progress, tristates all output pins, and ignores all
read/write commands for the duration of the RESET#
pulse. The device also resets the internal state
machine to reading array data. The operation that was
interrupted should be reinitiated once the device is
ready to accept another command sequence, to
ensure data integrity.
Current is reduced for the duration of the RESET#
pulse. When RESET# is held at VSS±0.3 V, the device
draws CMOS standby current (ICC4). If RESET# is held
at VIL but not within VSS±0.3 V, the standby current is
greater.
The RESET# pin may be tied to the system reset circuitry. A system reset would thus also reset the Flash
memory, enabling the system to read the boot-up firmware from the Flash memory.The system may use the
RESET# pin to force the device into the standby mode.
Refer to “Standby Mode” on page 8 for more
information.
Refer to the AC Characteristics tables for RESET#
parameters and to Figure 14, on page 27 for the timing
diagram.
Output Disable Mode
When the OE# input is at VIH, output from the device is
disabled. The output pins are placed in the high impedance state.
Am29LV001B
21557F4 May 5, 2006
DATA SHEET
Table 2.
Am29LV001B Top Boot Sector Architecture
Sector
A16
A15
A14
A13
A12
Sector Size
(Kbytes)
Address Range
(in hexadecimal)
SA0
0
0
0
X
X
16 Kbytes
00000h–03FFFh
SA1
0
0
1
X
X
16 Kbytes
04000h–07FFFh
SA2
0
1
0
X
X
16 Kbytes
08000h–0BFFFh
SA3
0
1
1
X
X
16 Kbytes
0C000h–0FFFFh
SA4
1
0
0
X
X
16 Kbytes
10000h–13FFFh
SA5
1
0
1
X
X
16 Kbytes
14000h–17FFFh
SA6
1
1
0
X
X
16 Kbytes
18000h–1BFFFh
SA7
1
1
1
0
0
4 Kbytes
1C000h–1CFFFh
SA8
1
1
1
0
1
4 Kbytes
1D000h–1DFFFh
SA9
1
1
1
1
X
8 Kbytes
1E000h–1FFFFh
Table 3.
Am29LV001B Bottom Boot Sector Architecture
Sector
A16
A15
A14
A13
A12
Sector Size
(Kbytes)
Address Range (in
hexadecimal)
SA0
0
0
0
0
X
8 Kbytes
00000h–01FFFh
SA1
0
0
0
1
0
4 Kbytes
02000h–02FFFh
SA2
0
0
0
1
1
4 Kbytes
03000h–03FFFh
SA3
0
0
1
X
X
16 Kbytes
04000h–07FFFh
SA4
0
1
0
X
X
16 Kbytes
08000h–0BFFFh
SA5
0
1
1
X
X
16 Kbytes
0C000h–0FFFFh
SA6
1
0
0
X
X
16 Kbytes
10000h–13FFFh
SA7
1
0
1
X
X
16 Kbytes
14000h–17FFFh
SA8
1
1
0
X
X
16 Kbytes
18000h–1BFFFh
SA9
1
1
1
X
X
16 Kbytes
1C000h–1FFFFh
Autoselect Mode
The autoselect mode provides manufacturer and
device identification, and sector protection verification,
through identifier codes output on DQ7–DQ0. This
mode is primarily intended for programming equipment
to automatically match a device to be programmed with
its corresponding programming algorithm. However,
the autoselect codes can also be accessed in-system
through the command register.
When using programming equipment, the autoselect
mode requires VID (11.5 V to 12.5 V) on address pin
A9. Address pins A6, A1, and A0 must be as shown in
Table 4. In addition, when verifying sector protection,
May 5, 2006 21557F4
the sector address must appear on the appropriate
highest order address bits (see Table 2 on page 9).
Table 4 shows the remaining address bits that are don’t
care. When all necessary bits are set as required, the
programming equipment may then read the corresponding identifier code on DQ7-DQ0.
To access the autoselect codes in-system, the host
system can issue the autoselect command via the
command register, as shown in Table 5 on page 17.
This method does not require VID. See “Command Definitions” on page 13 for details on using the autoselect
mode.
Am29LV001B
9
DATA SHEET
Table 4.
Am29LV001B Autoselect Codes
CE#
OE#
WE#
A16
to
A12
Manufacturer ID: AMD
L
L
H
X
X
VID
X
L
X
L
L
01h
Device ID: Am29LV001BT
(Top Boot Block)
L
L
H
X
X
VID
X
L
X
L
H
EDh
Device ID: Am29LV001BB
(Bottom Boot Block)
L
L
H
X
X
VID
X
L
X
L
H
6Dh
Description
Sector Protection
Verification
A11
to
A10
A9
A8
to
A7
A6
A5
to
A2
A1
A0
DQ7
to
DQ0
01h
(protected)
L
L
H
SA
X
VID
X
L
X
H
L
00h
(unprotected)
L = Logic Low = VIL, H = Logic High = VIH, SA = Sector Address, X = Don’t care.
Sector Protection/Unprotection
The hardware sector protection feature disables both
program and erase operations in any sector. The hardware sector unprotection feature re-enables both
program and erase operations in previously protected
sectors. Sector protection/unprotection can be implemented via two methods.
The primary method requires VID on the RESET# pin
only, and can be implemented either in-system or via
programming equipment. Figure 1, on page 11 shows
the algorithms and Figure 21, on page 33 shows the
timing diagram. This method uses standard microprocessor bus cycle timing. For sector unprotect, all
unprotected sectors must first be protected prior to the
first sector unprotect write cycle.
The alternate method intended only for programming
equipment requires VID on address pin A9, OE#, and
RESET#. This method is compatible with programmer
routines written for earlier 3.0 volt-only AMD flash
devices. Publication number 22134 contains further
10
details; contact an AMD representative to request a
copy.
The device is shipped with all sectors unprotected.
AMD offers the option of programming and protecting
sectors at its factory prior to shipping the device
through AMD’s ExpressFlash™ Service. Contact an
AMD representative for details.
It is possible to determine whether a sector is protected
or unprotected. See “Autoselect Mode” on page 9” for
details.
Temporary Sector Unprotect
This feature allows temporary unprotection of previously protected sectors to change data in-system. The
Sector Unprotect mode is activated by setting the
RESET# pin to VID. During this mode, formerly protected sectors can be programmed or erased by
selecting the sector addresses. Once VID is removed
from the RESET# pin, all the previously protected
sectors are protected again. Figure 2, on page 12
shows the algorithm, and Figure 20, on page 32 shows
the timing diagrams, for this feature.
Am29LV001B
21557F4 May 5, 2006
DATA SHEET
START
START
Protect all sectors:
The indicated portion
of the sector protect
algorithm must be
performed for all
unprotected sectors
prior to issuing the
first sector
unprotect address
PLSCNT = 1
RESET# = VID
Wait 1 μs
Temporary Sector
Unprotect Mode
No
PLSCNT = 1
RESET# = VID
Wait 1 μs
No
First Write
Cycle = 60h?
First Write
Cycle = 60h?
Yes
Yes
Set up sector
address
No
All sectors
protected?
Sector Protect:
Write 60h to sector
address with
A6 = 0, A1 = 1,
A0 = 0
Yes
Set up first sector
address
Sector Unprotect:
Write 60h to sector
address with
A6 = 1, A1 = 1,
A0 = 0
Wait 150 µs
Increment
PLSCNT
Temporary Sector
Unprotect Mode
Verify Sector
Protect: Write 40h
to sector address
with A6 = 0,
A1 = 1, A0 = 0
Reset
PLSCNT = 1
Wait 15 ms
Read from
sector address
with A6 = 0,
A1 = 1, A0 = 0
Verify Sector
Unprotect: Write
40h to sector
address with
A6 = 1, A1 = 1,
A0 = 0
Increment
PLSCNT
No
No
PLSCNT
= 25?
Yes
Yes
No
Yes
Device failed
Read from
sector address
with A6 = 1,
A1 = 1, A0 = 0
Data = 01h?
PLSCNT
= 1000?
Protect another
sector?
No
Data = 00h?
Yes
Yes
Remove VID
from RESET#
Device failed
Last sector
verified?
Write reset
command
Sector Protect
Algorithm
Sector Protect
complete
Set up
next sector
address
No
No
Yes
Sector Unprotect
Algorithm
Remove VID
from RESET#
Write reset
command
Sector Unprotect
complete
Figure 1.
May 5, 2006 21557F4
In-System Sector Protect/Unprotect Algorithms
Am29LV001B
11
DATA SHEET
for command definitions). In addition, the following
hardware data protection measures prevent accidental
erasure or programming, which might otherwise be
caused by spurious system level signals during VCC
power-up and power-down transitions, or from system
noise.
START
RESET# = VID
(Note 1)
Low VCC Write Inhibit
When VCC is less than VLKO, the device does not
accept any write cycles. This protects data during VCC
power-up and power-down. The command register and
all internal program/erase circuits are disabled, and the
device resets. Subsequent writes are ignored until
VCC is greater than VLKO. The system must provide
the proper signals to the control pins to prevent unintentional writes when VCC is greater than VLKO.
Perform Erase or
Program Operations
RESET# = VIH
Temporary Sector
Unprotect Completed
(Note 2)
Write Pulse “Glitch” Protection
Noise pulses of less than 5 ns (typical) on OE#, CE# or
WE# do not initiate a write cycle.
Logical Inhibit
Notes:
1. All protected sectors unprotected.
Write cycles are inhibited by holding any one of OE# =
VIL, CE# = VIH or WE# = VIH. To initiate a write cycle,
CE# and WE# must be a logical zero while OE# is a
logical one.
2. All previously protected sectors are protected once
again.
Figure 2.
Temporary Sector Unprotect Operation
Hardware Data Protection
The command sequence requirement of unlock cycles
for programming or erasing provides data protection
against inadvertent writes (refer to Table 5 on page 17
12
Power-Up Write Inhibit
If WE# = CE# = VIL and OE# = VIH during power up,
the device does not accept commands on the rising
edge of WE#. The internal state machine is automatically reset to reading array data on power-up.
Am29LV001B
21557F4 May 5, 2006
DATA SHEET
COMMAND DEFINITIONS
Writing specific address and data commands or
sequences into the command register initiates device
operations. Table 5 on page 17 defines the valid register command sequences. Note that writing incorrect
address and data values or writing them in the
improper sequence may place the device in an
unknown state. A reset command is required to return
the device to reading array data.
Erase Suspend mode). Once programming begins,
however, the device ignores reset commands until the
operation is complete.
The reset command may be written between the
sequence cycles in an autoselect command sequence.
Once in the autoselect mode, the reset command must
be written to return to reading array data (also applies
to autoselect during Erase Suspend).
All addresses are latched on the falling edge of WE# or
CE#, whichever happens later. All data is latched on
the rising edge of WE# or CE#, whichever happens
first. Refer to the appropriate timing diagrams in “AC
Characteristics” on page 26.
If DQ5 goes high during a program or erase operation,
writing the reset command returns the device to
reading array data (also applies dur ing Erase
Suspend).
Reading Array Data
See “AC Characteristics” on page 26 for parameters,
and Figure 14, on page 27 for the timing diagram.
The device is automatically set to reading array data
after device power-up. No commands are required to
retrieve data. The device is also ready to read array
data after completing an Embedded Program or
Embedded Erase algorithm.
After the device accepts an Erase Suspend command,
the device enters the Erase Suspend mode. The
system can read array data using the standard read
timings, except that if it reads at an address within
erase-suspended sectors, the device outputs status
data. After completing a programming operation in the
Erase Suspend mode, the system may once again
read array data with the same exception. See “Erase
Suspend/Erase Resume Commands” on page 15 for
more information on this mode.
The system must issue the reset command to reenable the device for reading array data if DQ5 goes
high, or while in the autoselect mode. See the “Reset
Command” on page 13 section.
See also “Requirements for Reading Array Data” on
page 7 for more information. The Read Operations
table provides the read parameters, and Figure 13, on
page 26 shows the timing diagram.
The autoselect command sequence allows the host
system to access the manufacturer and devices codes,
and determine whether or not a sector is protected.
Table 5 on page 17 shows the address and data
requirements. This method is an alternative to that
shown in Table 4 on page 10, which is intended for
PROM programmers and requires VID on address bit
A9.
The autoselect command sequence is initiated by
writing two unlock cycles, followed by the autoselect
command. The device then enters the autoselect
mode, and the system may read at any address any
number of times, without initiating another command
sequence. A read cycle at address XX00h retrieves the
manufacturer code. A read cycle at address XX01h
returns the device code. A read cycle containing a
sector address (SA) and the address 02h returns 01h if
that sector is protected, or 00h if it is unprotected. Refer
to Table 2 on page 9 for valid sector addresses.
The system must write the reset command to exit the
autoselect mode and return to reading array data.
Byte Program Command Sequence
Reset Command
Writing the reset command to the device resets the
device to reading array data. Address bits are don’t
care for this command.
The reset command may be written between the
sequence cycles in an erase command sequence
before erasing begins. This resets the device to reading
array data. Once erasure begins, however, the device
ignores reset commands until the operation is
complete.
The reset command may be written between the
sequence cycles in a program command sequence
before programming begins. This resets the device to
reading array data (also applies to programming in
May 5, 2006 21557F4
Autoselect Command Sequence
The device programs one byte of data for each program
operation. The command sequence requires four bus
cycles, and is initiated by writing two unlock write
cycles, followed by the program set-up command. The
program address and data are written next, which in
turn initiate the Embedded Program algorithm. The
system is not required to provide further controls or timings. The device automatically provides internally
generated program pulses and verify the programmed
cell margin. Table 5 on page 17 shows the address and
data requirements for the byte program command
sequence.
When the Embedded Program algorithm is complete,
the device then returns to reading array data and
Am29LV001B
13
DATA SHEET
addresses are no longer latched. The system can
determine the status of the program operation by using
DQ7 or DQ6. See “Write Operation Status” on page 18
for information on these status bits.
START
Any commands written to the device during the
Embedded Program Algorithm are ignored. Note that a
hardware reset immediately terminates the programmin g o peration. Th e B yte Pro gram comma nd
sequence should be reinitiated once the device has
reset to reading array data, to ensure data integrity.
Write Program
Command Sequence
Programming is allowed in any sequence and across
sector boundaries. A bit cannot be programmed from a
“0” back to a “1”. Attempting to do so may halt the operation and set DQ5 to “1,” or cause the Data# Polling
algorithm to indicate the operation was successful.
However, a succeeding read shows that the data is still
“0”. Only erase operations can convert a “0” to a “1”.
Data Poll
from System
Embedded
Program
algorithm
in progress
Verify Data?
Unlock Bypass Command Sequence
The unlock bypass feature allows the system to
program bytes to the device faster than using the standard program command sequence. The unlock bypass
command sequence is initiated by first writing two
unlock cycles. This is followed by a third write cycle
containing the unlock bypass command, 20h. The
device then enters the unlock bypass mode. A twocycle unlock bypass program command sequence is all
that is required to program in this mode. The first cycle
in this sequence contains the unlock bypass program
command, A0h; the second cycle contains the program
address and data. Additional data is programmed in
the same manner. This mode dispenses with the initial
two unlock cycles required in the standard program
command sequence, resulting in faster total programming time. Table 5 on page 17 shows the requirements
for the command sequence.
During the unlock bypass mode, only the Unlock
Bypass Program and Unlock Bypass Reset commands
are valid. To exit the unlock bypass mode, the system
must issue the two-cycle unlock bypass reset
command sequence. The first cycle must contain the
data 90h; the second cycle the data 00h. Addresses
are don’t cares for both cycles. The device then returns
to reading array data.
Figure 3 illustrates the algorithm for the program operation. See the table “Erase/Program Operations” on
page 28 for parameters, and Figure 15, on page 29 for
timing diagrams.
No
Yes
Increment Address
No
Last Address?
Yes
Programming
Completed
Note: See Table 5 on page 17 for program command
sequence.
Figure 3.
Program Operation
Chip Erase Command Sequence
Chip erase is a six bus cycle operation. The chip erase
command sequence is initiated by writing two unlock
cycles, followed by a set-up command. Two additional
unlock write cycles are then followed by the chip erase
command, which in turn invokes the Embedded Erase
algorithm. The device does not require the system to
preprogram prior to erase. The Embedded Erase algorithm automatically preprograms and verifies the entire
memory for an all zero data pattern prior to electrical
erase. The system is not required to provide any controls or timings during these operations. Table 5 on
page 17 shows the address and data requirements for
the chip erase command sequence.
Any commands wr itten to the chip dur ing the
Embedded Erase algorithm are ignored. Note that a
hardware reset during the chip erase operation immediately terminates the operation. The Chip Erase
command sequence should be reinitiated once the
14
Am29LV001B
21557F4 May 5, 2006
DATA SHEET
device has returned to reading array data, to ensure
data integrity.
The system can determine the status of the erase operation by using DQ7, DQ6, or DQ2. See “Write
Operation Status” on page 18 for information on these
status bits. When the Embedded Erase algorithm is
complete, the device returns to reading array data and
addresses are no longer latched.
Figure 4, on page 16 illustrates the algorithm for the
erase operation. See the tables “Erase/Program Operations” on page 28 for parameters, and Figure 16, on
page 30 for timing diagrams.
Sector Erase Command Sequence
Sector erase is a six bus cycle operation. The sector
erase command sequence is initiated by writing two
unlock cycles, followed by a set-up command. Two
additional unlock write cycles are then followed by the
address of the sector to be erased, and the sector
erase command. Table 5 on page 17 shows the
address and data requirements for the sector erase
command sequence.
The device does not require the system to preprogram
the memory prior to erase. The Embedded Erase algorithm automatically programs and verifies the sector for
an all zero data pattern prior to electrical erase. The
system is not required to provide any controls or
timings during these operations.
After the command sequence is written, a sector erase
time-out of 50 µs begins. During the time-out period,
additional sector addresses and sector erase commands may be written. Loading the sector erase buffer
may be done in any sequence, and the number of
sectors may be from one sector to all sectors. The time
between these additional cycles must be less than 50
µs, otherwise the last address and command might not
be accepted, and erasure may begin. It is recommended that processor interrupts be disabled during
this time to ensure all commands are accepted. The
interrupts can be re-enabled after the last Sector Erase
command is written. If the time between additional
sector erase commands can be assumed to be less
than 50 µs, the system need not monitor DQ3. Any
command other than Sector Erase or Erase Suspend
during the time-out period resets the device to reading
array data. The system must rewrite the command
sequence and any additional sector addresses and
commands.
The system can monitor DQ3 to determine if the sector
erase timer has timed out. (See “DQ3: Sector Erase
Timer” on page 20.) The time-out begins from the rising
edge of the final WE# pulse in the command sequence.
Once the sector erase operation has begun, only the
Erase Suspend command is valid. All other commands
are ignored. Note that a hardware reset during the
May 5, 2006 21557F4
sector erase operation immediately terminates the
operation. The Sector Erase command sequence
should be reinitiated once the device has returned to
reading array data, to ensure data integrity.
When the Embedded Erase algorithm is complete, the
device returns to reading array data and addresses are
no longer latched. The system can determine the
status of the erase operation by using DQ7, DQ6, or
DQ2. (Refer to “Write Operation Status” on page 18 for
information on these status bits.)
Figure 4 illustrates the algorithm for the erase operation. Refer to the tables “Erase/Program Operations”
on page 28 for parameters, and Figure 16, on page 30
for timing diagrams.
Erase Suspend/Erase Resume Commands
The Erase Suspend command allows the system to
interrupt a sector erase operation and then read data
from, or program data to, any sector not selected for
erasure. This command is valid only during the sector
erase operation, including the 50 µs time-out period
during the sector erase command sequence. The
Erase Suspend command is ignored if written during
the chip erase operation or Embedded Program algorithm. Writing the Erase Suspend command during the
Sector Erase time-out immediately terminates the
time-out period and suspends the erase operation.
Addresses are “don’t-cares” when writing the Erase
Suspend command.
When the Erase Suspend command is written during a
sector erase operation, the device requires a maximum
of 20 µs to suspend the erase operation. However,
when the Erase Suspend command is written during
the sector erase time-out, the device immediately terminates the time-out period and suspends the erase
operation.
After the erase operation has been suspended, the
system can read array data from or program data to
any sector not selected for erasure. (The device “erase
suspends” all sectors selected for erasure.) Normal
read and write timings and command definitions apply.
Reading at any address within erase-suspended
sectors produces status data on DQ7–DQ0. The
system can use DQ7, or DQ6 and DQ2 together, to
determine if a sector is actively erasing or is erase-suspended. See “Write Operation Status” on page 18 for
information on these status bits.
After an erase-suspended program operation is complete, the system can once again read array data within
non-suspended sectors. The system can determine
the status of the program operation using the DQ7 or
DQ6 status bits, just as in the standard program operation. See “Write Operation Status” on page 18 for
more information.
Am29LV001B
15
DATA SHEET
The system may also write the autoselect command
sequence when the device is in the Erase Suspend
mode. The device allows reading autoselect codes
even at addresses within erasing sectors, since the
codes are not stored in the memory array. When the
device exits the autoselect mode, the device reverts to
the Erase Suspend mode, and is ready for another
valid operation. See “Autoselect Command Sequence”
on page 13 for more information.
START
Write Erase
Command Sequence
The system must write the Erase Resume command
(address bits are “don’t care”) to exit the erase suspend
mode and continue the sector erase operation. Further
writes of the Resume command are ignored. Another
Erase Suspend command can be written after the
device has resumed erasing.
Data Poll
from System
No
Embedded
Erase
algorithm
in progress
Data = FFh?
Yes
Erasure Completed
Notes:
1. See Table 5 on page 17 for erase command sequence.
2. See “DQ3: Sector Erase Timer” on page 20 for more
information.
Figure 4.
16
Am29LV001B
Erase Operation
21557F4 May 5, 2006
DATA SHEET
Command Definitions
Command Sequence
(Note 1)
Cycles
Table 5.
Am29LV001B Command Definitions
Bus Cycles (Notes 2–4)
First
Second
Addr
Data
RD
Third
Fourth
Addr
Data
Addr
Data
Addr
Data
01
Read (Note 5)
1
RA
Reset (Note 6)
1
XXX
F0
4
555
AA
2AA
55
555
90
X00
4
555
AA
2AA
55
555
90
X01
Autoselect (Note 7)
Manufacturer ID
Device ID, Top Boot
Block
Sixth
Data
Addr
Data
ED
Device ID, Bottom
Boot Block
Sector Protect
Verify (Note 8)
Fifth
Addr
6D
4
555
AA
2AA
55
555
90
SA
X02
00
PA
PD
01
Byte Program
4
555
AA
2AA
55
555
A0
Unlock Bypass
3
555
AA
2AA
55
555
20
Unlock Bypass Program
(Note 9)
2
XXX
A0
PA
PD
Unlock Bypass Reset
(Note 10)
2
XXX
90
XXX
00
Chip Erase
6
555
AA
2AA
55
555
80
555
AA
2AA
55
555
10
Sector Erase
6
555
AA
2AA
55
555
80
555
AA
2AA
55
SA
30
Erase Suspend (Note 11)
1
XXX
B0
Erase Resume (Note 12)
1
XXX
30
Legend:
X = Don’t care
PD = Data to be programmed at location PA. Data is latched
on the rising edge of WE# or CE# pulse.
RA = Address of the memory location to be read.
RD = Data read from location RA during read operation.
PA = Address of the memory location to be programmed.
Addresses are latched on the falling edge of the WE# or CE#
pulse.
Notes:
1. See Table 1 on page 7 for descriptions of bus operations.
2. All values are in hexadecimal.
SA = Address of the sector to be erased or verified. Address
bits A16–A12 uniquely select any sector.
cycle is composed of the sector address (A16–A12),
A1 = 1, and A0 = 0.
3. Except when reading array or autoselect data, all bus
cycles are write operations.
9. The Unlock Bypass command is required prior to the
Unlock Bypass Program command.
4. Address bits A16–A11 are don’t care for unlock and
command cycles, unless SA or PA required.
10. The Unlock Bypass Reset command is required to return
to reading array data when the device is in the Unlock
Bypass mode.
5. No unlock or command cycles required when device is in
read mode.
6. The Reset command is required to return to the read
mode when the device is in the autoselect mode or if DQ5
goes high.
7. The fourth cycle of the autoselect command sequence is
a read cycle.
8. The data is 00h for an unprotected sector and 01h for a
protected sector. The complete bus address in the fourth
May 5, 2006 21557F4
11. The system may read and program functions in nonerasing sectors, or enter the autoselect mode, when in the
Erase Suspend mode. The Erase Suspend command is
valid only during a sector erase operation.
12. The Erase Resume command is valid only during the
Erase Suspend mode.
13. See “Erase and Programming Performance” on page 36
for more information.
Am29LV001B
17
DATA SHEET
WRITE OPERATION STATUS
The device provides several bits to determine the
status of a write operation: DQ2, DQ3, DQ5, DQ6, and
DQ7. Table 6 on page 21 and the following subsections
describe the functions of these bits. DQ7, and DQ6
each offer a method for determining whether a program
or erase operation is complete or in progress. These
three bits are discussed first.
START
Read DQ7–DQ0
Addr = VA
DQ7: Data# Polling
The Data# Polling bit, DQ7, indicates to the host
system whether an Embedded Algorithm is in progress
or completed, or whether the device is in Erase Suspend. Data# Polling is valid after the rising edge of the
final WE# pulse in the program or erase command
sequence.
During the Embedded Program algorithm, the device
outputs on DQ7 the complement of the datum programmed to DQ7. This DQ7 status also applies to
programming during Erase Suspend. When the
Embedded Program algorithm is complete, the device
outputs the datum programmed to DQ7. The system
must provide the program address to read valid status
information on DQ7. If a program address falls within a
protected sector, Data# Polling on DQ7 is active for
approximately 1 µs, then the device returns to reading
array data.
During the Embedded Erase algorithm, Data# Polling
produces a “0” on DQ7. When the Embedded Erase
algorithm is complete, or if the device enters the Erase
Suspend mode, Data# Polling produces a “1” on DQ7.
This is analogous to the complement/true datum output
described for the Embedded Program algorithm: the
erase function changes all the bits in a sector to “1”;
prior to this, the device outputs the “complement,” or
“0.” The system must provide an address within any of
the sectors selected for erasure to read valid status
information on DQ7.
After an erase command sequence is written, if all
sectors selected for erasing are protected, Data#
Polling on DQ7 is active for approximately 100 µs, then
the device returns to reading array data. If not all
selected sectors are protected, the Embedded Erase
algorithm erases the unprotected sectors, and ignores
the selected sectors that are protected.
When the system detects DQ7 has changed from the
complement to true data, it can read valid data at DQ7–
DQ0 on the following read cycles. This is because DQ7
may change asynchronously with DQ0–DQ6 while
Output Enable (OE#) is asserted low. Figure 17, on
page 31, Data# Polling Timings (During Embedded
Algorithms), illustrates this.
Table 6 on page 21 shows the outputs for Data# Polling
on DQ7. Figure 5 shows the Data# Polling algorithm.
18
DQ7 = Data?
Yes
No
No
DQ5 = 1?
Yes
Read DQ7–DQ0
Addr = VA
DQ7 = Data?
Yes
No
FAIL
PASS
Notes:
1. VA = Valid address for programming. During a sector
erase operation, a valid address is an address within any
sector selected for erasure. During chip erase, a valid
address is any non-protected sector address.
2. DQ7 should be rechecked even if DQ5 = “1” because
DQ7 may change simultaneously with DQ5.
Figure 5.
Data# Polling Algorithm
DQ6: Toggle Bit I
Toggle Bit I on DQ6 indicates whether an Embedded
Program or Erase algorithm is in progress or complete,
or whether the device has entered the Erase Suspend
mode. Toggle Bit I may be read at any address, and is
valid after the rising edge of the final WE# pulse in the
Am29LV001B
21557F4 May 5, 2006
DATA SHEET
command sequence (prior to the program or erase
operation), and during the sector erase time-out.
During an Embedded Program or Erase algorithm
operation, successive read cycles to any address
cause DQ6 to toggle (The system may use either OE#
or CE# to control the read cycles). When the operation
is complete, DQ6 stops toggling.
After an erase command sequence is written, if all
sectors selected for erasing are protected, DQ6 toggles
for approximately 100 µs, then returns to reading array
data. If not all selected sectors are protected, the
Embedded Erase algorithm erases the unprotected
sectors, and ignores the selected sectors that are
protected.
The system can use DQ6 and DQ2 together to determine whether a sector is actively erasing or is erasesuspended. When the device is actively erasing (that is,
the Embedded Erase algorithm is in progress), DQ6
toggles. When the device enters the Erase Suspend
mode, DQ6 stops toggling. However, the system must
also use DQ2 to determine which sectors are erasing
or erase-suspended. Alternatively, the system can use
DQ7 (see the subsection on DQ7: Data# Polling).
If a program address falls within a protected sector,
DQ6 toggles for approximately 1 µs after the program
command sequence is written, then returns to reading
array data.
DQ6 also toggles during the erase-suspend-program
mode, and stops toggling once the Embedded
Program algorithm is complete.
Table 6 on page 21 shows the outputs for Toggle Bit I
on DQ6. Figure 6, on page 20 shows the toggle bit
algorithm in flowchart form, and the section “Reading
Toggle Bits DQ6/DQ2” on page 19 explains the algorithm. Figure 18, on page 31 shows the toggle bit timing
diagrams. Figure 19, on page 32 shows the differences
between DQ2 and DQ6 in graphical form. See also the
subsection on “DQ2: Toggle Bit II”, next.
DQ2: Toggle Bit II
The “Toggle Bit II” on DQ2, when used with DQ6, indicates whether a particular sector is actively erasing
(that is, the Embedded Erase algorithm is in progress),
or whether that sector is erase-suspended. Toggle Bit
II is valid after the rising edge of the final WE# pulse in
the command sequence.
DQ2 toggles when the system reads at addresses
within those sectors that were selected for erasure.
(The system may use either OE# or CE# to control the
read cycles.) But DQ2 cannot distinguish whether the
sector is actively erasing or is erase-suspended. DQ6,
by comparison, indicates whether the device is actively
erasing, or is in Erase Suspend, but cannot distinguish
which sectors are selected for erasure. Thus, both
May 5, 2006 21557F4
status bits are required for sector and mode information. Refer to Table 6 on page 21 to compare outputs
for DQ2 and DQ6.
Figure 6, on page 20 shows the toggle bit algorithm in
flowchart form, and the section “Reading Toggle Bits
DQ6/DQ2” explains the algorithm. See also the DQ6:
Toggle Bit I subsection. Figure 18, on page 31 shows
the toggle bit timing diagram. Figure 19, on page 32
shows the differences between DQ2 and DQ6 in graphical form.
Reading Toggle Bits DQ6/DQ2
Refer to Figure 6, on page 20 for the following discussion. Whenever the system initially begins reading
toggle bit status, it must read DQ7–DQ0 at least twice
in a row to determine whether a toggle bit is toggling.
Typically, the system would note and store the value of
the toggle bit after the first read. After the second read,
the system would compare the new value of the toggle
bit with the first. If the toggle bit is not toggling, the
device has completed the program or erase operation.
The system can read array data on DQ7–DQ0 on the
following read cycle.
However, if after the initial two read cycles, the system
determines that the toggle bit is still toggling, the
system also should note whether the value of DQ5 is
high (see the section on “DQ5: Exceeded Timing
Limits” on page 19). If it is, the system should then
determine again whether the toggle bit is toggling,
since the toggle bit may have stopped toggling just as
DQ5 went high. If the toggle bit is no longer toggling,
the device has successfully completed the program or
erase operation. If it is still toggling, the device did not
completed the operation successfully, and the system
must write the reset command to return to reading
array data.
The remaining scenario is that the system initially
determines that the toggle bit is toggling and DQ5 has
not gone high. The system may continue to monitor the
toggle bit and DQ5 through successive read cycles,
determining the status as described in the previous
paragraph. Alternatively, it may choose to perform
other system tasks. In this case, the system must start
at the beginning of the algorithm when it returns to
determine the status of the operation (top of Figure 6,
on page 20).
Table 6 on page 21 shows the outputs for Toggle Bit I
on DQ6. Figure 6, on page 20 shows the toggle bit
algorithm. Figure 18, on page 31 shows the toggle bit
timing diagrams. Figure 19, on page 32 shows the differences between DQ2 and DQ6 in graphical form. See
also the subsection on “DQ2: Toggle Bit II” on page 19.
DQ5: Exceeded Timing Limits
DQ5 indicates whether the program or erase time has
exceeded a specified internal pulse count limit. Under
Am29LV001B
19
DATA SHEET
these conditions DQ5 produces a “1.” This is a failure
condition that indicates the program or erase cycle was
not successfully completed.
START
The DQ5 failure condition may appear if the system
tries to program a “1” to a location that is previously programmed to “0.” Only an erase operation can change a
“0” back to a “1.” Under this condition, the device halts
the operation, and when the operation has exceeded
the timing limits, DQ5 produces a “1.”
Read DQ7–DQ0
Read DQ7–DQ0
Toggle Bit
= Toggle?
(Note 1)
Under both these conditions, the system must issue the
reset command to return the device to reading array
data.
No
DQ3: Sector Erase Timer
After writing a sector erase command sequence, the
system may read DQ3 to determine whether or not an
erase operation has begun. (The sector erase timer
does not apply to the chip erase command.) If additional sectors are selected for erasure, the entire timeout also applies after each additional sector erase command. When the time-out is complete, DQ3 switches
from “0” to “1.” If the time between additional sector
erase commands from the system can be assumed to
be less than 50 µs, the system need not monitor DQ3.
See also “Sector Erase Command Sequence” on
page 15.
Yes
No
DQ5 = 1?
Yes
Read DQ7–DQ0
Twice
Toggle Bit
= Toggle?
(Notes
1, 2)
No
Yes
Program/Erase
Operation Not
Complete, Write
Reset Command
Program/Erase
Operation Complete
Notes:
1. Read toggle bit twice to determine whether or not it is
toggling. See text.
2. Recheck toggle bit because it may stop toggling as DQ5
changes to “1”. See text.
Figure 6.
20
After the sector erase command sequence is written,
the system should read the status on DQ7 (Data#
Polling) or DQ6 (Toggle Bit I) to ensure the device has
accepted the command sequence, and then read DQ3.
If DQ3 is “1”, the internally controlled erase cycle has
begun; all further commands (other than Erase Suspend) are ignored until the erase operation is complete.
If DQ3 is “0”, the device accepts additional sector erase
commands. To ensure the command has been
accepted, the system software should check the status
of DQ3 prior to and following each subsequent sector
erase command. If DQ3 is high on the second status
check, the last command might not have been
accepted. Table 6 on page 21 shows the outputs for
DQ3.
Toggle Bit Algorithm
Am29LV001B
21557F4 May 5, 2006
DATA SHEET
Table 6.
DQ7
(Note 2)
DQ6
DQ5
(Note 1)
DQ3
DQ2
(Note 2)
DQ7#
Toggle
0
N/A
No toggle
Embedded Erase Algorithm
0
Toggle
0
1
Toggle
Reading within Erase
Suspended Sector
1
No toggle
0
N/A
Toggle
Reading within Non-Erase
Suspended Sector
Data
Data
Data
Data
Data
Erase-Suspend-Program
DQ7#
Toggle
0
N/A
N/A
Operation
Standard
Mode
Erase
Suspend
Mode
Write Operation Status
Embedded Program Algorithm
Notes:
1. DQ5 switches to ‘1’ when an Embedded Program or Embedded Erase operation has exceeded the maximum timing limits.
See “DQ5: Exceeded Timing Limits” for more information.
2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for further details.
May 5, 2006 21557F4
Am29LV001B
21
DATA SHEET
ABSOLUTE MAXIMUM RATINGS
Storage Temperature
Plastic Packages . . . . . . . . . . . . . . . –65°C to +150°C
Ambient Temperature
with Power Applied. . . . . . . . . . . . . . –65°C to +125°C
Voltage with Respect to Ground
All pins except A9, OE# and RESET#
(Note 1) . . . . . . . . . . . . . . . . . . . –0.5 V to VCC+0.5 V
VCC (Note 1). . . . . . . . . . . . . . . . . . . . –0.5 V to +3.6 V
20 ns
20 ns
+0.8 V
–0.5 V
–2.0
A9, OE#, and RESET# (Note 2) . . . –0.5 V to +12.5 V
20 ns
Output Short Circuit Current (Note 3) . . . . . . 200 mA
Notes:
1. Minimum DC voltage on input or I/O pins is –0.5 V. During
voltage transitions, input or I/O pins may undershoot VSS
to –2.0 V for periods of up to 20 ns. See Figure 7.
Maximum DC voltage on input or I/O pins is VCC +0.5 V.
During voltage transitions, input or I/O pins may overshoot
to VCC +2.0 V for periods up to 20 ns. See Figure 8.
2. Minimum DC input voltage on pins A9, OE#, and RESET#
is –0.5 V. During voltage transitions, A9, OE#, and
RESET# may undershoot VSS to –2.0 V for periods of up
to 20 ns. See Figure 7. Maximum DC input voltage on pin
A9 is +12.5 V which may overshoot to 14.0 V for periods
up to 20 ns.
3. No more than one output may be shorted to ground at a
time. Duration of the short circuit should not be greater
than one second.
Figure 7. Maximum Negative
Overshoot Waveform
20 ns
VCC
+2.0 V
VCC
+0.5 V
2.0 V
4. Stresses above those listed under “Absolute Maximum
Ratings” may cause permanent damage to the device.
This is a stress rating only; functional operation of the device
at these or any other conditions above those indicated in
the operational sections of this data sheet is not implied.
Exposure of the device to absolute maximum rating conditions
for extended periods may affect device reliability.
20 ns
20 ns
Figure 8. Maximum Positive
Overshoot Waveform
OPERATING RANGES
Commercial (C) Devices
Ambient Temperature (TA) . . . . . . . . . . . 0°C to +70°C
Industrial (I) Devices
Ambient Temperature (TA) . . . . . . . . . –40°C to +85°C
Extended (E) Devices
Ambient Temperature (TA) . . . . . . . . –55°C to +125°C
VCC Supply Voltages
VCC for regulated voltage range. . . . . . +3.0 V to 3.6 V
VCC for full voltage range . . . . . . . . . . . +2.7 V to 3.6 V
Operating ranges define those limits between which the functionality of the device is guaranteed.
22
Am29LV001B
21557F4 May 5, 2006
DATA SHEET
DC CHARACTERISTICS
CMOS Compatible
Parameter
Description
Test Conditions
Min
Typ
Max
Unit
±1.0
µA
ILI
Input Load Current
VIN = VSS to VCC,
VCC = VCC max
ILIT
A9 Input Load Current
VCC = VCC max; A9 = 12.5 V
35
µA
ILR
RESET# Input Load Current
VCC = VCC max; RESET# =
12.5 V
35
µA
ILO
Output Leakage Current
VOUT = VSS to VCC,
VCC = VCC max
±1.0
µA
ICC1
VCC Active Read Current
(Notes 1, 2)
CE# = VIL, OE# = VIH
ICC2
VCC Active Write Current
(Notes 2, 3, 5)
ICC3
5 MHz
7
12
1 MHz
2
4
CE# = VIL, OE# = VIH
15
30
mA
VCC Standby Current (Note
2)
CE#, RESET# = VCC ± 0.3 V
0.2
5
µA
ICC4
VCC Reset Current (Note 2)
RESET# = VSS ± 0.3 V
0.2
5
µA
ICC5
Automatic Sleep Mode
(Notes 2, 4)
VIH = VCC ± 0.3 V;
VIL = VSS ± 0.3 V
0.2
5
µA
VIL
Input Low Voltage
–0.5
0.8
V
VIH
Input High Voltage
0.7 x VCC
VCC + 0.3
V
VID
Voltage for Autoselect and
VCC = 3.3 V
Temporary Sector Unprotect
11.5
12.5
V
VOL
Output Low Voltage
0.45
V
VOH1
Output High Voltage
VOH2
VLKO
mA
IOL = 4.0 mA, VCC = VCC min
IOH = –2.0 mA, VCC = VCC min
0.85 VCC
IOH = –100 µA, VCC = VCC min
VCC–0.4
Low VCC Lock-Out Voltage
(Note 5)
2.3
V
2.5
V
Notes:
1. The ICC current listed is typically less than 2 mA/MHz, with OE# at VIH.
2. Maximum ICC specifications are tested with VCC = VCCmax.
3. ICC active while Embedded Erase or Embedded Program is in progress.
4. Automatic sleep mode enables the low power mode when addresses remain stable for tACC + 30 ns. Typical sleep mode
current is 200 nA.
5. Not 100% tested.
May 5, 2006 21557F4
Am29LV001B
23
DATA SHEET
DC CHARACTERISTICS (CONTINUED)
Zero Power Flash
Supply Current in mA
20
15
10
5
0
0
500
1000
1500
2000
2500
3000
3500
4000
Time in ns
Note: Addresses are switching at 1 MHz
Figure 9.
ICC1 Current vs. Time (Showing Active and Automatic Sleep Currents)
10
Supply Current in mA
8
3.6 V
6
2.7 V
4
2
0
1
2
3
4
5
Frequency in MHz
Note: T = 25 °C
Figure 10.
24
Typical ICC1 vs. Frequency
Am29LV001B
21557F4 May 5, 2006
DATA SHEET
TEST CONDITIONS
Table 7.
Test Specifications
3.3
-45R,
-55
Test Condition
2.7 kW
Device
Under
Test
CL
Output Load
30
Input Rise and Fall Times
Figure 11.
Test Setup
100
pF
5
ns
0.0–3.0
V
Input timing measurement
reference levels
1.5
V
Output timing
measurement reference
levels
1.5
V
Input Pulse Levels
Note: Diodes are IN3064 or equivalent
Unit
1 TTL gate
Output Load Capacitance,
CL
(including jig capacitance)
6.2 kW
-70,
-90
KEY TO SWITCHING WAVEFORMS
WAVEFORM
INPUTS
OUTPUTS
Steady
Changing from H to L
Changing from L to H
3.0 V
Input
Don’t Care, Any Change Permitted
Changing, State Unknown
Does Not Apply
Center Line is High Impedance State (High Z)
1.5 V
Measurement Level
1.5 V
Output
0.0 V
Figure 12.
May 5, 2006 21557F4
Input Waveforms and Measurement Levels
Am29LV001B
25
DATA SHEET
AC CHARACTERISTICS
Read Operations
Parameter
Speed Option
JEDEC
Std
Description
tAVAV
tRC
Read Cycle Time (Note 1)
tAVQV
tACC
Address to Output Delay
tELQV
tCE
Chip Enable to Output Delay
tGLQV
tOE
tEHQZ
tGHQZ
tAXQX
Test Setup
-45R
-55
-70
-90
Unit
Min
45
55
70
90
ns
CE# = VIL
OE# = VIL
Max
45
55
70
90
ns
OE# = VIL
Max
45
55
70
90
ns
Output Enable to Output Delay
Max
25
30
30
35
ns
tDF
Chip Enable to Output High Z (Note 1)
Max
10
15
16
16
ns
tDF
Output Enable to Output High Z (Note 1)
Max
10
15
16
16
ns
Read
Output Enable
Hold Time (Note 1) Toggle and
Data# Polling
Min
0
ns
tOEH
Min
10
ns
tOH
Output Hold Time From Addresses, CE#
or OE#, Whichever Occurs First (Note 1)
Min
0
ns
Note:
1. Not 100% tested.
2. See Figure 11 and Table 7 for test specifications.
tRC
Addresses Stable
Addresses
tACC
CE#
tDF
tOE
OE#
tOEH
WE#
tCE
tOH
HIGH Z
HIGH Z
Output Valid
Outputs
RESET#
n/a Am29F002NB
Figure 13.
26
Read Operations Timings
Am29LV001B
21557F4 May 5, 2006
DATA SHEET
AC CHARACTERISTICS
Hardware Reset (RESET#)
Parameter
JEDEC
Std
Description
Test Setup
All Speed Options
Unit
tREAD RESET# Pin Low (During Embedded
Algorithms) to Read or Write (See Note)
Y
Max
20
µs
RESET# Pin Low (NOT During
Embedded Algorithms) to Read or Write
(See Note)
Max
500
ns
tRP
RESET# Pulse Width
Min
500
ns
tRH
RESET# High Time Before Read (See
Note)
Min
50
ns
tRPD
RESET# Low to Standby Mode
Min
20
µs
tREAD
Y
Note: Not 100% tested.
CE#, OE#
tRH
RESET#
n/a Am29F002NB
tRP
tReady
Reset Timings NOT during Embedded Algorithms
Reset Timings during Embedded Algorithms
RESET#
n/a Am29F002NB
tRP
Figure 14.
May 5, 2006 21557F4
RESET# Timings
Am29LV001B
27
DATA SHEET
AC CHARACTERISTICS
Erase/Program Operations
Parameter
Speed Options
JEDEC
Std
Description
tAVAV
tWC
Write Cycle Time (Note 1)
Min
tAVWL
tAS
Address Setup Time
Min
tWLAX
tAH
Address Hold Time
Min
35
45
45
45
ns
tDVWH
tDS
Data Setup Time
Min
20
20
35
45
ns
tWHDX
tDH
Data Hold Time
Min
0
ns
tOES
Output Enable Setup Time (Note 1)
Min
0
ns
tGHWL
tGHWL
Read Recovery Time Before Write
(OE# High to WE# Low)
Min
0
ns
tELWL
tCS
CE# Setup Time
Min
0
ns
tWHEH
tCH
CE# Hold Time
Min
0
ns
tWLWH
tWP
Write Pulse Width
Min
tWHWL
tWPH
Write Pulse Width High
Min
30
ns
Programming Operation (Note 2)
Typ
9
µs
Sector Erase Operation (Note 2)
Typ
0.7
sec
VCC Setup Time (Note 1)
Min
50
µs
tWHWH1
tWHWH2
tWHWH
-45R
-55
-70
-90
Unit
45
55
70
90
ns
0
25
30
ns
35
35
ns
1
tWHWH
2
tVCS
Notes:
1. Not 100% tested.
2. See “Erase and Programming Performance” for more information.
28
Am29LV001B
21557F4 May 5, 2006
DATA SHEET
AC CHARACTERISTICS
Program Command Sequence (last two cycles)
tAS
tWC
Addresses
Read Status Data (last two cycles)
555h
PA
PA
PA
tAH
CE#
tCH
OE#
tWHWH1
tWP
WE#
tWPH
tCS
tDS
tDH
A0h
Data
PD
Status
DOUT
VCC
tVCS
Note: PA = program address, PD = program data, DOUT is the true data at the program address.
Figure 15.
May 5, 2006 21557F4
Program Operation Timings
Am29LV001B
29
DATA SHEET
AC CHARACTERISTICS
Erase Command Sequence (last two cycles)
tAS
tWC
2AAh
Addresses
Read Status Data
VA
SA
VA
555h for chip erase
tAH
CE#
tCH
OE#
tWP
WE#
tWPH
tCS
tWHWH2
tDS
tDH
Data
55h
30h
In
Progress
Complete
10 for Chip Erase
tVCS
VCC
Note: SA = sector address (for Sector Erase), VA = Valid Address for reading status data (see “Write Operation Status”).
Figure 16.
30
Chip/Sector Erase Operation Timings
Am29LV001B
21557F4 May 5, 2006
DATA SHEET
AC CHARACTERISTICS
tRC
Addresses
VA
VA
VA
tACC
tCE
CE#
tCH
tOE
OE#
tOEH
tDF
WE#
tOH
High Z
DQ7
Complement
Complement
DQ0–DQ6
Status Data
Status Data
Valid Data
True
High Z
Valid Data
True
Note: VA = Valid address. Illustration shows first status cycle after command sequence, last status read cycle, and array data
read cycle.
Figure 17.
Data# Polling Timings (During Embedded Algorithms)
tRC
Addresses
VA
VA
VA
VA
tACC
tCE
CE#
tCH
tOE
OE#
tOEH
tDF
WE#
tOH
DQ6/DQ2
High Z
Valid Status
Valid Status
(first read)
(second read)
Valid Status
Valid Data
(stops toggling)
Note: VA = Valid address; not required for DQ6. Illustration shows first two status cycle after command sequence, last status read
cycle, and array data read cycle.
Figure 18.
May 5, 2006 21557F4
Toggle Bit Timings (During Embedded Algorithms)
Am29LV001B
31
DATA SHEET
AC CHARACTERISTICS
Enter
Embedded
Erasing
Erase
Suspend
Erase
Resume
Erase
Erase Suspend
Suspend
Read
Program
Erase Suspend
Read
Erase
WE#
Enter Erase
Suspend Program
Erase
Complete
Erase
DQ6
DQ2
Note: The system can use OE# or CE# to toggle DQ2/DQ6. DQ2 toggles only when read at an address within an
erase-suspended sector.
Figure 19.
DQ2 vs. DQ6
Temporary Sector Unprotect
Parameter
JEDEC
Std
Description
All Speed Options
Unit
tVIDR
VID Rise and Fall Time
Min
500
ns
tRSP
RESET# Setup Time for Temporary
Sector Unprotect
Min
4
µs
Note: Not 100% tested.
12 V
RESET#
0 or 3 V
0 or 3 V
tVIDR
tVIDR
Program or Erase Command Sequence
CE#
WE#
tRSP
Figure 20.
32
Temporary Sector Unprotect Timing Diagram
Am29LV001B
21557F4 May 5, 2006
DATA SHEET
AC CHARACTERISTICS
VID
VIH
RESET#
SA, A6,
A1, A0
Valid*
Valid*
Sector Protect/Unprotect
Data
60h
1 µs
Valid*
Verify
60h
40h
Status
Sector Protect: 100 µs
Sector Unprotect: 10 ms
CE#
WE#
OE#
Note: For sector protect, A6 = 0, A1 = 1, A0 = 0. For sector unprotect, A6 = 1, A1 = 1, A0 = 0.
Figure 21.
May 5, 2006 21557F4
In-System Sector Protect/Unprotect Timing Diagram
Am29LV001B
33
DATA SHEET
AC CHARACTERISTICS
Alternate CE# Controlled Erase/Program Operations
Parameter
Speed Options
JEDEC
Std
Description
-45
-55
-70
-90
Unit
tAVAV
tWC
Write Cycle Time (Note 1)
Min
45
55
70
90
ns
tAVEL
tAS
Address Setup Time
Min
tELAX
tAH
Address Hold Time
Min
35
45
45
45
ns
tDVEH
tDS
Data Setup Time
Min
20
20
35
45
ns
tEHDX
tDH
Data Hold Time
Min
0
ns
tOES
Output Enable Setup Time (Note 1)
Min
0
ns
tGHEL
tGHEL
Read Recovery Time Before Write
(OE# High to WE# Low)
Min
0
ns
tWLEL
tWS
WE# Setup Time
Min
0
ns
tEHWH
tWH
WE# Hold Time
Min
0
ns
tELEH
tCP
CE# Pulse Width
Min
tEHEL
tCPH
CE# Pulse Width High
Min
30
ns
tWHWH1
tWHWH1
Programming Operation (Notes 1, 2)
Typ
9
µs
tWHWH2
tWHWH2
Sector Erase Operation (Notes 1, 2)
Typ
0.7
sec
0
25
30
ns
35
35
ns
Notes:
1. Not 100% tested.
2. See “Erase and Programming Performance” on page 36 for more information.
34
Am29LV001B
21557F4 May 5, 2006
DATA SHEET
AC CHARACTERISTICS
555 for program
2AA for erase
PA for program
SA for sector erase
555 for chip erase
Data# Polling
Addresses
PA
tWC
tAS
tAH
tWH
WE#
tGHEL
OE#
tCP
CE#
tWS
tWHWH1 or 2
tCPH
tDS
tDH
DQ7#
Data
tRH
A0 for program
55 for erase
DOUT
PD for program
30 for sector erase
10 for chip erase
RESET#
Notes:
1. Figure indicates the last two bus cycles of the program or erase command sequence.
2. PA program address, SA = Sector Address, PD = program data, DQ7# = complement of the data written to the device,
DOUT = data written to the device.
Figure 22.
May 5, 2006 21557F4
Alternate CE# Controlled Write Operation Timings
Am29LV001B
35
DATA SHEET
ERASE AND PROGRAMMING PERFORMANCE
Parameter
Typ (Note 1)
Max (Note 2)
Unit
Comments
0.7
15
s
Excludes 00h programming
prior to erasure (Note 4)
Sector Erase Time
Chip Erase Time
7
Byte Programming Time
9
300
µs
1.1
3.3
s
Chip Programming Time (Note 3)
s
Excludes system level
overhead (Note 5)
Notes:
1. Typical program and erase times assume the following conditions: 25×C, 3.0 V VCC, 1,000,000 cycles. Additionally,
programming typicals assume checkerboard pattern.
2. Under worst case conditions of 90°C, VCC = 2.7 V (3.0 V for -45R), 1,000,000 cycles.
3. The typical chip programming time is considerably less than the maximum chip programming time listed, since most bytes
program faster than the maximum program times listed.
4. In the pre-programming step of the Embedded Erase algorithm, all bytes are programmed to 00h before erasure.
5. System-level overhead is the time required to execute the two- or four-bus-cycle sequence for the program command. See
Table 5 on page 17 for further information on command definitions.
6. The device has a minimum erase and program cycle endurance of 1,000,000 cycles.
LATCHUP CHARACTERISTICS
Description
Min
Max
Input voltage with respect to VSS on all pins except I/O pins
(including A9, OE#, and RESET#)
–1.0 V
13.0 V
Input voltage with respect to VSS on all I/O pins
–1.0 V
VCC + 1.0 V
–100 mA
+100 mA
VCC Current
Includes all pins except VCC. Test conditions: VCC = 3.0 V, one pin at a time.
TSOP PIN CAPACITANCE
Parameter
Symbol
Parameter Description
Test Setup
Typ
Max
Unit
CIN
Input Capacitance
VIN = 0
6
7.5
pF
COUT
Output Capacitance
VOUT = 0
8.5
12
pF
CIN2
Control Pin Capacitance
VIN = 0
7.5
9
pF
Typ
Max
Unit
Notes:
1. Sampled, not 100% tested.
2. Test conditions TA = 25°C, f = 1.0 MHz.
PLCC PIN CAPACITANCE
Parameter Symbol
CIN
Parameter Description
Test Setup
Input Capacitance
VIN = 0
4
6
pF
COUT
Output Capacitance
VOUT = 0
8
12
pF
CIN2
Control Pin Capacitance
VPP = 0
8
12
pF
Notes:
1. Sampled, not 100% tested.
2. Test conditions TA = 25°C, f = 1.0 MHz.
36
Am29LV001B
21557F4 May 5, 2006
DATA SHEET
DATA RETENTION
Parameter
Test Conditions
Min
Unit
150×C
10
Years
125×C
20
Years
Minimum Pattern Data Retention Time
May 5, 2006 21557F4
Am29LV001B
37
DATA SHEET
PHYSICAL DIMENSIONS
PL 032—32-Pin Plastic Leaded Chip Carrier
Dwg rev AH; 10/99
38
Am29LV001B
21557F4 May 5, 2006
DATA SHEET
PHYSICAL DIMENSIONS*
TS 032—32-Pin Standard Thin Small Outline Package
Dwg rev AA; 10/99
* For reference only. BSC is an ANSI standard for Basic Space Centering.
May 5, 2006 21557F4
Am29LV001B
39
DATA SHEET
REVISION SUMMARY
Revision A (January 1998)
Physical Dimensions
Initial release. (This revision also represented the
Am29LV010B device.)
Replaced figures with more detailed illustrations.
Revision A+1 (February 1998)
Revision E+1 (November 13, 2000)
Added table of contents. Deleted the burn-in option
from the Ordering Information section.
Logic Symbol
Deleted the BYTE# input from the drawing. (This revision also represented the Am29LV010B device.)
Revision F (September 26, 2002)
Revision B (April 1998)
The 45 ns speed option is now available in the industrial temperature range.
Split the Am29LV001B/Am29LV010B data sheet, with
the elimination of all references to Am29LV010B.
Revision C (April 1998)
Global
Command Definitions
In the introductory paragraph, modified text to indicate
that incorrectly written command sequences may place
the device in an unknown state.
Global
Deleted 120 ns speed option; added 90 ns speed
option.
DC Characteristics
Distinctive Characteristics
Added RESET# input load current specification to
table.
Changed process technology to 0.35 µm.
AC Characteristics, Read Operations
Temporary Sector Unprotect
Changed tDF to 16 ns for 70 and 90 ns speed options.
Entered timing specifications for tVIDR and tRSP.
Revision F+1 (October 21, 2004)
Erase and Programming Performance
Changed endurance in Note 2 to 1 million cycles;
added worst case voltage for -45R speed option.
Global
Added Colophon
Ordering Information
Revision D (January 1999)
Added temperature ranges for Pb-free package types
Distinctive Characteristics
Valid Combinations
Changed process technology to 0.32 µm.
Added valid combination types
DC Characteristics—CMOS Compatible
ICC1, ICC2, ICC3, ICC4, ICC5: Added Note 2 “Maximum
ICC specifications are tested with VCC = VCCmax”.
Revision F+2 (July 20, 2005)
ICC3, ICC4: Deleted VCC = VCCmax.
Changed to include Pb-free for PDIP or PLCC
package.
Figure 20. Temporary Sector Unprotect Timing
Diagram
Modified second tVIDR parameter.
Ordering Information
Revision F3 (February 20, 2006)
Global
Data Retention
Removed Reverse TSOP option.
Added new table.
Revision F4 (May 5, 2006)
Revision E (November 17, 1999)
Global
AC Characteristics—Figure 15. Program
Operations Timing and Figure 16. Chip/Sector
Erase Operations
Added obsolescence information.
Deleted tGHWL and changed OE# waveform to start at
high.
40
Am29LV001B
21557F4 May 5, 2006
DATA SHEET
Colophon
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for any use that includes fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the
public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility,
aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for
any use where chance of failure is intolerable (i.e., submersible repeater and artificial satellite). Please note that Spansion LLC will not be liable
to you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products. Any semiconductor
devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design
measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating
conditions. If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign
Exchange and Foreign Trade Law of Japan, the US Export Administration Regulations or the applicable laws of any other country, the prior authorization by the respective government entity will be required for export of those products.
Trademarks
Copyright © 2000–2006 Advanced Micro Devices, Inc. All rights reserved.
AMD, the AMD logo, and combinations thereof are registered trademarks of Advanced Micro Devices, Inc.
ExpressFlash is a trademark of Advanced Micro Devices, Inc.
Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.
May 5, 2006 21557F4
Am29LV001B
41
Similar pages