IRF IRFP90N20DPBF High frequency dc-dc converter Datasheet

PD - 95664
SMPS MOSFET
IRFP90N20DPbF
HEXFET® Power MOSFET
Applications
High frequency DC-DC converters
l Lead-Free
l
VDSS
RDS(on) max
ID
200V
0.023Ω
94Ao
Benefits
Low Gate-to-Drain Charge to Reduce
Switching Losses
l Fully Characterized Capacitance Including
Effective COSS to Simplify Design, (See
App. Note AN1001)
l Fully Characterized Avalanche Voltage
and Current
l
TO-247AC
Absolute Maximum Ratings
Parameter
ID @ TC = 25°C
ID @ TC = 100°C
IDM
PD @TC = 25°C
VGS
dv/dt
TJ
TSTG
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current 
Power Dissipation
Linear Derating Factor
Gate-to-Source Voltage
Peak Diode Recovery dv/dt ƒ
Operating Junction and
Storage Temperature Range
Soldering Temperature, for 10 seconds
Mounting torqe, 6-32 or M3 screw
Max.
94o
Units
66
380
580
3.8
± 30
6.7
-55 to + 175
A
W
W/°C
V
V/ns
°C
300 (1.6mm from case )
10 lbf•in (1.1N•m)
Thermal Resistance
Parameter
RθJC
RθCS
RθJA
Notes 
Junction-to-Case
Case-to-Sink, Flat, Greased Surface
Junction-to-Ambient
through o
www.irf.com
Typ.
Max.
Units
–––
0.24
–––
0.26
–––
40
°C/W
are on page 8
1
7/30/04
IRFP90N20DPbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
Drain-to-Source Breakdown Voltage
∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
Gate Threshold Voltage
V(BR)DSS
IDSS
Drain-to-Source Leakage Current
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
Min. Typ. Max. Units
Conditions
200 ––– –––
V
VGS = 0V, ID = 250µA
–––
0.24 ––– V/°C Reference to 25°C, ID = 1mA
––– ––– 0.023
Ω
VGS = 10V, ID = 56A „
3.0
––– 5.0
V
VDS = V GS, ID = 250µA
––– ––– 25
VDS = 200V, VGS = 0V
µA
––– ––– 250
VDS = 160V, VGS = 0V, TJ = 150°C
––– ––– 100
VGS = 30V
nA
––– ––– -100
VGS = -30V
Dynamic @ TJ = 25°C (unless otherwise specified)
gfs
Qg
Qgs
Qgd
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
Coss
Coss
Coss eff.
Parameter
Forward Transconductance
Total Gate Charge
Gate-to-Source Charge
Gate-to-Drain ("Miller") Charge
Turn-On Delay Time
Rise Time
Turn-Off Delay Time
Fall Time
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Output Capacitance
Output Capacitance
Effective Output Capacitance
Min.
39
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
–––
Typ.
–––
180
45
87
23
160
43
79
6040
1070
170
8350
420
870
Max. Units
Conditions
–––
S
VDS = 50V, ID = 56A
270
I D = 56A
67
nC
VDS = 160V
130
VGS = 10V, „
–––
VDD = 100V
–––
ID = 56A
ns
–––
RG = 1.2Ω
–––
VGS = 10V „
–––
VGS = 0V
–––
VDS = 25V
–––
pF
ƒ = 1.0MHz
–––
VGS = 0V, V DS = 1.0V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 160V, ƒ = 1.0MHz
–––
VGS = 0V, VDS = 0V to 160V
Avalanche Characteristics
Parameter
EAS
IAR
EAR
Single Pulse Avalanche Energy‚
Avalanche Current
Repetitive Avalanche Energy
Typ.
Max.
Units
–––
–––
–––
1010
56
58
mJ
A
mJ
Diode Characteristics
IS
ISM
VSD
trr
Qrr
ton
2
Parameter
Continuous Source Current
(Body Diode)
Pulsed Source Current
(Body Diode) 
Diode Forward Voltage
Reverse Recovery Time
Reverse RecoveryCharge
Forward Turn-On Time
Min. Typ. Max. Units
Conditions
D
MOSFET symbol
––– ––– 94 o
showing the
A
G
integral reverse
––– ––– 380
S
p-n junction diode.
––– ––– 1.5
V
TJ = 25°C, IS = 56A, VGS = 0V „
––– 230 340
ns
TJ = 25°C, IF = 56A
––– 1.9 2.8
µC di/dt = 100A/µs „
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
www.irf.com
IRFP90N20DPbF
1000
1000
VGS
15V
12V
10V
8.0V
7.0V
6.0V
5.5V
BOTTOM 5.0V
100
VGS
15V
12V
10V
8.0V
7.0V
6.0V
5.5V
BOTTOM 5.0V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
10
5.0V
1
0.1
100
5.0V
10
20µs PULSE WIDTH
Tj = 25°C
20µs PULSE WIDTH
Tj = 175°C
1
0.01
0.1
1
10
0.1
100
1
100
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
1000.00
3.5
I D = 94A
3.0
T J = 175°C
100.00
T J = 25°C
10.00
VDS = 15V
20µs PULSE WIDTH
1.00
5.0
7.0
9.0
11.0
13.0
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
www.irf.com
15.0
2.5
(Normalized)
R DS(on) , Drain-to-Source On Resistance
ID, Drain-to-Source Current (Α)
10
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
2.0
1.5
1.0
0.5
V GS = 10V
0.0
-60
-40
-20
0
20
40
60
80
TJ, Junction Temperature
100 120 140 160 180
( °C)
Fig 4. Normalized On-Resistance
vs. Temperature
3
IRFP90N20DPbF
1000000
100000
10000
Ciss
Coss
1000
Crss
100
I D = 56A
7
5
2
10
0
1
10
100
0
1000
80
120
160
200
Fig 6. Typical Gate Charge vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.
Drain-to-Source Voltage
10000
ID, Drain-to-Source Current (A)
1000.00
ISD, Reverse Drain Current (A)
40
QG, Total Gate Charge (nC)
VDS, Drain-to-Source Voltage (V)
OPERATION IN THIS AREA
LIMITED BY RDS(on)
1000
T J = 175°C
100.00
100
T J = 25°C
10.00
1.00
100µsec
10
1msec
1
0.10
10msec
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
0.1
0.0
0.5
1.0
1.5
2.0
2.5
VSD, Source-toDrain Voltage (V)
Fig 7. Typical Source-Drain Diode
Forward Voltage
4
VDS = 160V
VDS = 100V
VDS = 40V
10
Coss = Cds + Cgd
VGS , Gate-to-Source Voltage (V)
C, Capacitance(pF)
12
VGS = 0V,
f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
3.0
1
10
100
1000
VDS , Drain-toSource Voltage (V)
Fig 8. Maximum Safe Operating Area
www.irf.com
IRFP90N20DPbF
100
RD
V DS
LIMITED BY PACKAGE
VGS
I D , Drain Current (A)
80
D.U.T.
RG
+
-VDD
10V
60
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
40
Fig 10a. Switching Time Test Circuit
VDS
20
90%
0
25
50
75
100
125
TC , Case Temperature
150
175
( °C)
10%
VGS
Fig 9. Maximum Drain Current vs.
Case Temperature
td(on)
tr
t d(off)
tf
Fig 10b. Switching Time Waveforms
(Z thJC)
1
D = 0.50
0.1
Thermal Response
0.20
0.10
0.05
P DM
0.01
0.02
0.01
SINGLE PULSE
(THERMAL RESPONSE)
t1
t2
Notes:
1. Duty factor D =
2. Peak T
0.001
0.00001
0.0001
0.001
0.01
t1/ t 2
J = P DM x Z thJC
+TC
0.1
1
t 1, Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRFP90N20DPbF
2100
15V
ID
TOP
DRIVER
D.U.T
RG
+
V
- DD
IAS
20V
tp
1680
A
0.01Ω
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS
tp
EAS , Single Pulse Avalanche Energy (mJ)
L
VDS
23A
40A
56A
BOTTOM
1260
840
420
0
25
50
75
100
125
150
175
( °C)
Starting T , Junction
Temperature
J
Fig 12c. Maximum Avalanche Energy
vs. Drain Current
I AS
Fig 12b. Unclamped Inductive Waveforms
Current Regulator
Same Type as D.U.T.
QG
10 V
50KΩ
12V
.2µF
.3µF
QGS
QGD
D.U.T.
VG
+
V
- DS
VGS
3mA
Charge
Fig 13a. Basic Gate Charge Waveform
6
IG
ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
www.irf.com
IRFP90N20DPbF
Peak Diode Recovery dv/dt Test Circuit
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
+
D.U.T
ƒ
+
‚
-
-
„
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
Driver Gate Drive
P.W.
Period
D=
+
-
VDD
P.W.
Period
VGS=10V
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor Curent
Ripple ≤ 5%
ISD
* VGS = 5V for Logic Level Devices
Fig 14. For N-Channel HEXFET® Power MOSFETs
www.irf.com
7
IRFP90N20DPbF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
EXAMPLE: T HIS IS AN IRFPE30
WIT H AS SEMBLY
LOT CODE 5657
AS SEMBLED ON WW 35, 2000
IN T HE ASS EMB LY LINE "H"
Note: "P" in assembly line
position indicates "Lead-Free"
Notes:
IRFPE 30
56
AS SEMBLY
LOT CODE
 Repetitive rating; pulse width limited by
035H
57
DATE CODE
YEAR 0 = 2000
WEEK 35
LINE H
„ Pulse width ≤ 300µs; duty cycle ≤ 2%.
Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS
max. junction temperature.
‚ Starting TJ = 25°C, L = 0.64mH
o Calculated continuous current based on maximum allowable
R G = 25Ω, IAS = 56A.
ƒ ISD ≤ 56A, di/dt ≤ 470A/µs, VDD ≤ V(BR)DSS,
TJ ≤ 175°C
PART NUMBER
INT ERNAT IONAL
RECTIFIER
LOGO
junction temperature. Package limitation current is 90A.
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.07/04
8
www.irf.com
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/
Similar pages