LITEON LTV-846 Current transfer ratio Datasheet

 ! "# " $ % $ " &'(µ )) *Ω
+ $# #$ " ,- .#/*0*#,! $1"
.#/)0)#,! $1"
.#/(0(#,! $1"
2 3$ 3 " , " ,- .#/*0*#,! $1"
.#/)0)#,! $1"
.#/(0(#,! $1"
4 , " ,- .#/*04*#,! $1"
.#/)04)#,! $1"
.#/(04(#,! $1"
" 3$" ,- .#/*04#*.#/)04#*
5. "" %3 6**7/8/
4 "" %3 8*77#*
9:; "" %3 ))8((
6:; "" %3 '8/**<7)
+6:; "" %3 7<8)0
46:; "" %3 8/77*07=*#7
+6 "" %3 8(<))
' .#/*0=/)0=/(044#*
' *
*7
*& 3 , 3
))#3 > ->-
79 , 1 3 , - ! $$? -3@ > &! $ 3A! ( - ! $$? ! $$ ? -3
' .#/*0=/)0=/(044#*
' )
*7
*& 3 , 3
))#3 > ->-
79 , 1 3 , - ! $$? -3@ > &! $ 3A! ( - ! $$? ! $$ ? -3
' .#/*0=/)0=/(044#*
' 7
*7
*& 3 , 3
))#3 > ->-
79 , 1 3 , - ! $$? -3@ > &! $ 3A! ( - ! $$? ! $$ ? -3
' .#/*0=/)0=/(044#*
' (
*7
*& 3 , 3
))#3 > ->-
79 , 1 3 , - ! $$? -3@ > &! $ 3A! ( - ! $$? ! $$ ? -3
' .#/*0=/)0=/(044#*
' *7
*& 3 , 3
))#3 > ->-
79 , 1 3 , - ! $$? -3@ > &! $ 3A! ( - ! $$? ! $$ ? -3
' .#/*0=/)0=/(044#*
' 0
*7
' .#/*0=/)0=/(044#*
± ± ! ± "#
"± !#
"± !"
' <
*7
)°
&,-
1--
2
!
$%
&
'
()*+
*
!
$./*+
*
0
/.$*+
*
*
*
*
$$%
&
'
$
"
&*+
* 3
*
1+%
. 45
°$
6+%
.45 "
°$
2" 6+%
°$
"
*9 * (B0
$ % $ ! $$? 3 ! $$ > ! 3
*4! ?> 3 3, ! 3 !" 1 3 3?>, $$, 3
! , 3 1 3
)! $ % $ > !C #, , , ! $$? 3
7!> % ""$ 3% $ ! $$? > %
)9 *4, 3
' .#/*0=/)0=/(044#*
' /
*7
)°
&,-
1--
*+
*
7
"
()$%
&
7
7
$
$
7
$$%
&
7
7
$./
<*+
<*
0
7
/.$
<*+
<*
$$%
(',6 /(
$:'('$/(&6&$6
* =
&8" '
µ'
*8*
*8 38 9:;
'
*8" *3&8
7
*
&8
&8
'
7
7
*
&8
&8
µ'
'
"
7
2 $%(
$(
7
$./
6%*+
* 7
&(
( +$
×
$
*
&
"
=
×
&8'
*8*
"
*
&8" '
&8 '
7
Ω
$ *
4 =( :
*8 38 >:;
$
7
$%.1 ?%@
7
0
7
:;
((
7
0
µ
( 7
0
µ
*8*3&8"'
Ω3.<
(8
*8"*3&8"'
Ω
(8
× *
' .#/*0=/)0=/(044#*
" " #" !
' 8
*7
.#/*0
.
B*
.#/*0
/B*0
.#/*0
D
*7B)0
.#/*0
)B(
.#/*0
+
7B0
.#/*0
. D +
B0
.#/0
D
*7B)0
.#/0
D D
*7B(
.#/0
)B(
.#/0
+ +
)B0
.#/0
DD+ -
B0
) (
)°
' .#/*0=/)0=/(044#*
' *
*7
Fig.1 Forword Current
vs. Ambient Temperatute
Fig.2 Collector Power Dissiption
vs. Ambient Temperature
Collector Power dissipation Pc (mW)
60
Forward current IF (mA)
50
40
30
20
10
0
-30
0
25
50
75
100
125
200
150
100
50
0
-30
o
7mA
2
Ta= 75 C
50 C
o
200
o
100
o
50
20
10
5
2
2
4
6
8 10 12 14 16 18 20
0
0.5
1.0
1.5
2.0
2.5
3.0
Forward voltage VF (V)
Forward current IF (mA)
Fig.5 Current Transfer Ratio vs.
Forward Current
Fig.6 Collector Current vs.
Collector-emitter Voltage
200
50
VCE= 5V
Ta= 25 C
180
o
o
160
Collector current Ic (mA)
Current transfer ratio CTR (%)
o
25 C
0C
-25 C
1
0
140
120
100
80
60
40
40
25mA
30
20mA
2
5
10
20
50
Forward current IF(mA)
.#/*0=/)0=/(044#*
Pc(MAX.)
15mA
20
10mA
10
5mA
0
1
Ta= 25 C
IF = 30mA
20
0
125
1
0
' 100
o
Forward current IF (mA)
Collecotr-emitter saturation voltage
VCE (sat) (V)
5mA
3
75
500
O
Ta= 25 C
1mA
3mA
4
50
Fig.4 Forward Current vs. Forward
Voltage
6
5
25
Ambient temperature Ta ( C)
Fig.3 Collector-emitter Saturation
Voltage vs. Forward Current
Ic= 0.5mA
0
o
Ambient temperature Ta ( C)
0
1
2
3
4
5
6
7
8
9
Collector-emitter voltage VCE (V)
' **
*7
Fig.8 Collector-emitter Saturation Voltage
vs. Ambient Temperature
Relative current transfer ratio (%)
150
Collector-emitter saturation voltage
VCE (sat) (V)
Fig.7 Relative Current Transfer Ratio
vs. Ambient Temperature
I F = 5mA
VCE= 5V
100
50
0
-30
0
25
50
75
0.16
I F= 20mA
Ic= 1mA
0.14
0.12
0.10
0.08
0.06
0.04
0.02
0
-25
100
50
75
100
Fig.10 Response Time vs. Load
Resistance
-5
500
VCE= 20V
-6
10
Response time ( s)
Collector dark current I CEO (A)
25
Ambient temperature Ta ( C)
Fig.9 Collector Dark Current vs.
Ambient Temperature
10
0
o
o
Ambient temperature Ta ( C)
-7
10
-8
10
-9
10
200
100
50
tr
20
10
td
tf
5
ts
2
1
-10
10
VCE = 2V
Ic= 2mA
o
Ta= 25 C
0.5
-11
10
-25
0
25
50
75
0.2
0.05
100
o
Ambient temperature Ta ( C)
0.1 0.2
1
2
5
10
Test Circuit for Response Time
Fig.11 Frequency Response
Vcc
Voltage gain Av (dB)
0.5
Load resistance RL (k )
VCE = 2V
Ic= 2mA
o
Ta= 25 C
0
Input
RD
RL
Input
Output
Output
10%
90%
ts
td
tr
10
tf
RL= 10k 1k 100
Test Circuit for Frequency Response
Vcc
20
0.5 1
RD
2
5 10 20
50 100
RL
Output
500
Frequency f (kHz)
' .#/*0=/)0=/(044#*
' *)
*7
' .#/*0=/)0=/(044#*
' *7
*7
Similar pages