! "# " $ % $ " &'(µ )) *Ω + $# #$ " ,- .#/*0*#,! $1" .#/)0)#,! $1" .#/(0(#,! $1" 2 3$ 3 " , " ,- .#/*0*#,! $1" .#/)0)#,! $1" .#/(0(#,! $1" 4 , " ,- .#/*04*#,! $1" .#/)04)#,! $1" .#/(04(#,! $1" " 3$" ,- .#/*04#*.#/)04#* 5. "" %3 6**7/8/ 4 "" %3 8*77#* 9:; "" %3 ))8(( 6:; "" %3 '8/**<7) +6:; "" %3 7<8)0 46:; "" %3 8/77*07=*#7 +6 "" %3 8(<)) ' .#/*0=/)0=/(044#* ' * *7 *& 3 , 3 ))#3 > ->- 79 , 1 3 , - ! $$? -3@ > &! $ 3A! ( - ! $$? ! $$ ? -3 ' .#/*0=/)0=/(044#* ' ) *7 *& 3 , 3 ))#3 > ->- 79 , 1 3 , - ! $$? -3@ > &! $ 3A! ( - ! $$? ! $$ ? -3 ' .#/*0=/)0=/(044#* ' 7 *7 *& 3 , 3 ))#3 > ->- 79 , 1 3 , - ! $$? -3@ > &! $ 3A! ( - ! $$? ! $$ ? -3 ' .#/*0=/)0=/(044#* ' ( *7 *& 3 , 3 ))#3 > ->- 79 , 1 3 , - ! $$? -3@ > &! $ 3A! ( - ! $$? ! $$ ? -3 ' .#/*0=/)0=/(044#* ' *7 *& 3 , 3 ))#3 > ->- 79 , 1 3 , - ! $$? -3@ > &! $ 3A! ( - ! $$? ! $$ ? -3 ' .#/*0=/)0=/(044#* ' 0 *7 ' .#/*0=/)0=/(044#* ± ± ! ± "# "± !# "± !" ' < *7 )° &,- 1-- 2 ! $% & ' ()*+ * ! $./*+ * 0 /.$*+ * * * * $$% & ' $ " &*+ * 3 * 1+% . 45 °$ 6+% .45 " °$ 2" 6+% °$ " *9 * (B0 $ % $ ! $$? 3 ! $$ > ! 3 *4! ?> 3 3, ! 3 !" 1 3 3?>, $$, 3 ! , 3 1 3 )! $ % $ > !C #, , , ! $$? 3 7!> % ""$ 3% $ ! $$? > % )9 *4, 3 ' .#/*0=/)0=/(044#* ' / *7 )° &,- 1-- *+ * 7 " ()$% & 7 7 $ $ 7 $$% & 7 7 $./ <*+ <* 0 7 /.$ <*+ <* $$% (',6 /( $:'('$/(&6&$6 * = &8" ' µ' *8* *8 38 9:; ' *8" *3&8 7 * &8 &8 ' 7 7 * &8 &8 µ' ' " 7 2 $%( $( 7 $./ 6%*+ * 7 &( ( +$ × $ * & " = × &8' *8* " * &8" ' &8 ' 7 Ω $ * 4 =( : *8 38 >:; $ 7 $%.1 ?%@ 7 0 7 :; (( 7 0 µ ( 7 0 µ *8*3&8"' Ω3.< (8 *8"*3&8"' Ω (8 × * ' .#/*0=/)0=/(044#* " " #" ! ' 8 *7 .#/*0 . B* .#/*0 /B*0 .#/*0 D *7B)0 .#/*0 )B( .#/*0 + 7B0 .#/*0 . D + B0 .#/0 D *7B)0 .#/0 D D *7B( .#/0 )B( .#/0 + + )B0 .#/0 DD+ - B0 ) ( )° ' .#/*0=/)0=/(044#* ' * *7 Fig.1 Forword Current vs. Ambient Temperatute Fig.2 Collector Power Dissiption vs. Ambient Temperature Collector Power dissipation Pc (mW) 60 Forward current IF (mA) 50 40 30 20 10 0 -30 0 25 50 75 100 125 200 150 100 50 0 -30 o 7mA 2 Ta= 75 C 50 C o 200 o 100 o 50 20 10 5 2 2 4 6 8 10 12 14 16 18 20 0 0.5 1.0 1.5 2.0 2.5 3.0 Forward voltage VF (V) Forward current IF (mA) Fig.5 Current Transfer Ratio vs. Forward Current Fig.6 Collector Current vs. Collector-emitter Voltage 200 50 VCE= 5V Ta= 25 C 180 o o 160 Collector current Ic (mA) Current transfer ratio CTR (%) o 25 C 0C -25 C 1 0 140 120 100 80 60 40 40 25mA 30 20mA 2 5 10 20 50 Forward current IF(mA) .#/*0=/)0=/(044#* Pc(MAX.) 15mA 20 10mA 10 5mA 0 1 Ta= 25 C IF = 30mA 20 0 125 1 0 ' 100 o Forward current IF (mA) Collecotr-emitter saturation voltage VCE (sat) (V) 5mA 3 75 500 O Ta= 25 C 1mA 3mA 4 50 Fig.4 Forward Current vs. Forward Voltage 6 5 25 Ambient temperature Ta ( C) Fig.3 Collector-emitter Saturation Voltage vs. Forward Current Ic= 0.5mA 0 o Ambient temperature Ta ( C) 0 1 2 3 4 5 6 7 8 9 Collector-emitter voltage VCE (V) ' ** *7 Fig.8 Collector-emitter Saturation Voltage vs. Ambient Temperature Relative current transfer ratio (%) 150 Collector-emitter saturation voltage VCE (sat) (V) Fig.7 Relative Current Transfer Ratio vs. Ambient Temperature I F = 5mA VCE= 5V 100 50 0 -30 0 25 50 75 0.16 I F= 20mA Ic= 1mA 0.14 0.12 0.10 0.08 0.06 0.04 0.02 0 -25 100 50 75 100 Fig.10 Response Time vs. Load Resistance -5 500 VCE= 20V -6 10 Response time ( s) Collector dark current I CEO (A) 25 Ambient temperature Ta ( C) Fig.9 Collector Dark Current vs. Ambient Temperature 10 0 o o Ambient temperature Ta ( C) -7 10 -8 10 -9 10 200 100 50 tr 20 10 td tf 5 ts 2 1 -10 10 VCE = 2V Ic= 2mA o Ta= 25 C 0.5 -11 10 -25 0 25 50 75 0.2 0.05 100 o Ambient temperature Ta ( C) 0.1 0.2 1 2 5 10 Test Circuit for Response Time Fig.11 Frequency Response Vcc Voltage gain Av (dB) 0.5 Load resistance RL (k ) VCE = 2V Ic= 2mA o Ta= 25 C 0 Input RD RL Input Output Output 10% 90% ts td tr 10 tf RL= 10k 1k 100 Test Circuit for Frequency Response Vcc 20 0.5 1 RD 2 5 10 20 50 100 RL Output 500 Frequency f (kHz) ' .#/*0=/)0=/(044#* ' *) *7 ' .#/*0=/)0=/(044#* ' *7 *7