Rohm EMT6 Power mamage,emt (dual transistors) Datasheet

EMF20/UMF20N
Transistors
Power management (dual transistors)
EMF20/UMF20N
2SC4617and DTC144E are housed independently in a EMT6 or UMT6 package.
zApplication
Power management circuit
zExternal dimensions (Units : mm)
0.22
zFeatures
1) Power switching circuit in a single package.
2) Mounting cost and area can be cut in half.
(4)
(3)
(5)
(2)
1.2
1.6
(1)
0.5
0.13
(6)
0.5 0.5
1.0
1.6
EMF20
ROHM : EMT6
zStructure
Silicon epitaxial planar transistor
Each lead has same dimensions
Abbreviated symbol : F20
1.3
0.65
(1)
2.0
(3)
(2)
(4)
(6)
(5)
0.2
zEquivalent circuits
0.65
UMF20N
1.25
(3)
(2)
(1)
0.1Min.
R2
(4)
ROHM : UMT6
EIAJ : SC-88
(5)
0.9
Tr1
R1
0∼0.1
DTr2
0.7
0.15
2.1
Each lead has same dimensions
(6)
Abbreviated symbol :F20
R1=47kΩ
R2=47kΩ
zPackage, marking, and packaging specifications
Type
EMF20 UMF20N
Package
EMT6
UMT6
Marking
F20
F20
Code
T2R
TR
Basic ordering unit (pieces) 8000
3000
1/4
EMF20/UMF20N
Transistors
zAbsolute maximum ratings (Ta=25°C)
Tr1
Symbol
Limits
Unit
Collector-base voltage
VCBO
60
V
Collector-emitter voltage
VCEO
50
V
Emitter-base voltage
VEBO
7
V
Parameter
Collector current
IC
150
mA
Power dissipation
PC
150 (TOTAL)
mW
Junction temperature
Tj
150
C
Storage temperature
Tstg
−55 to +150
C
∗
∗ 120mW per element must not be exceeded.
DTr2
Limits
Parameter
Symbol
50
VCC
Supply voltage
−10~+40
VIN
Input voltage
100
IC
Collector current
30
IO
Output current
150(TOTAL)
PC
Power dissipation
Tj
150
Junction temperature
Tstg
−55 to +150
Range of storage temperature
Unit
V
V
mA
mA
mW
C
C
∗1
∗2
∗1 Characteristics of built-in transistor.
∗2 120mW per element must not be exceeded.
Each terminal mounted on a recommended land.
zElectrical characteristics (Ta=25°C)
Tr1
Parameter
Symbol Min. Typ. Max. Unit
Conditions
Collector-base breakdown voltage
BVCBO
60
−
−
V
IC=50µA
Collector-emitter breakdown voltage
BVCEO
50
−
−
V
IC=1mA
Emitter-base breakdown voltage
BVEBO
7
−
−
V
IE=50µA
ICBO
−
−
0.1
µA
VCB=60V
Collector cutoff current
Emitter cutoff current
Collector-emitter saturation voltage
DC current transfer ratio
Transition frequency
Output capacitance
IEBO
−
−
0.1
µA
VEB=7V
VCE (sat)
−
−
0.4
V
IC/IB=50mA/5mA
hFE
180
−
390
−
VCE=6V, IC=1mA
fT
−
180
−
Cob
−
2
3.5
MHz VCE=12V, IE=−2mA, f=100MHz
PF
VCB=12V, IE=0A, f=1MHz
DTr2
Parameter
Input voltage
Output voltage
Input current
Output current
DC current gain
Transition frequency
Input resistance
Resistance ratio
Symbol
VI(off)
VI(on)
VO(on)
II
IO(off)
GI
Min.
−
3.0
−
−
−
20
Typ.
−
−
100
−
−
−
Max.
0.5
−
300
180
500
−
Unit
V
V
mV
µA
nA
−
Conditions
VCC=5V, IO=100µA
VO=0.3V, IO=2mA
VO=10mA, II=0.5mA
VI=5V
VCC=50V, VI=0V
VO=5V, IO=5mA
fT
−
250
−
MHz
VCE=10V, IE=−5mA, f=100MHz ∗
R1
R2/R1
32.9
0.8
47
1.0
61.1
1.2
kΩ
−
−
−
∗Characteristics of built-in transistor.
2/4
EMF20/UMF20N
Transistors
zElectrical characteristic curves
Tr1
COLLECTOR CURRENT : IC (mA)
2
1
25˚C
−55˚C
5
0.5
0.2
0.1
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
0.30mA
0.25mA
60
0.20mA
0.15mA
40
0.10mA
20
0.05mA
0
BASE TO EMITTER VOLTAGE : VBE (V)
1.2
500
Ta=100˚C
DC CURRENT GAIN : hFE
DC CURRENT GAIN : hFE
0.8
Ta=25˚C
VCE=5V
3V
1V
200
100
50
10
0.2
VCE=5V
−55˚C
100
50
1
2
5
10 20
10
0.2
50 100 200
0.2
IC/IB=50
20
10
0.1
0.05
0.02
0.5
1
2
5
10
20
50 100 200
COLLECTOR CURRENT : IC (mA)
Fig.7 Collector-emitter saturation
voltage vs. collector current ( I )
2
5
10 20
50 100 200
0.5
IC/IB=10
0.2
0.1
Ta=100˚C
25˚C
−55˚C
0.05
0.02
0.01
0.2
0.5
1
2
5
10
20
50 100 200
COLLECTOR CURRENT : IC (mA)
Fig.8 Collector-emitter saturation
voltage vs. collector current ( II )
12µA
4
9µA
6µA
2
3µA
IB=0A
0
0
4
8
12
16
20
COLLECTOR TO EMITTER VOLTAGE : VCE (V)
Fig.3 Grounded emitter output
characteristics ( II )
Ta=25˚C
0.5
0.2
0.1
IC/IB=50
0.05
20
10
0.02
0.01
0.2
0.5
1
2
5
10 20
50 100 200
COLLECTOR CURRENT : IC (mA)
Fig.6 Collector-emitter saturation
voltage vs. collector current
Fig.5 DC current gain vs. collector
current ( II )
COLLECTOR SATURATION VOLTAGE : VCE (sat) (V)
Ta=25˚C
1
COLLECTOR CURRENT : IC (mA)
Fig.4 DC current gain vs. collector
current ( I )
0.5
0.5
18µA
15µA
2.0
25˚C
200
COLLECTOR CURRENT : IC (mA)
0.01
0.2
1.6
20
0.5
21µA
Fig.2 Grounded emitter output
characteristics ( I )
20
COLLECTOR SATURATION VOLTAGE : VCE (sat) (V)
0.4
24µA
6
COLLECTOR TO EMITTER VOLTAGE : VCE (V)
Fig.1 Grounded emitter propagation
characteristics
500
27µA
IB=0A
0
1.6
30µA
Ta=25˚C
8
COLLECTOR SATURATION VOLTAGE : VCE (sat) (V)
10
80
10
COLLECTOR SATURATION VOLTAGE : VCE (sat) (V)
20
0.50mA
mA
0.45mA
0.40
0.35mA
Ta=25˚C
COLLECTOR CURRENT : IC (mA)
100
VCE=6V
Ta=100˚C
COLLECTOR CURRENT : IC (mA)
50
0.5
IC/IB=50
Ta=100˚C
25˚C
−55˚C
0.2
0.1
0.05
0.02
0.01
0.2
0.5
1
2
5
10
20
50 100
COLLECTOR CURRENT : IC (mA)
Fig.9 Collector-emitter saturation
voltage vs. collector current ( III )
3/4
EMF20/UMF20N
200
100
50
−0.5
−1
−2
−5
−10
−20
−50 −100
EMITTER CURRENT : IE (mA)
Fig.10 Gain bandwidth product vs.
emitter current
20
10
Ta=25˚C
f=1MHz
IE=0A
IC=0A
Cib
5
2
Co
b
1
0.2
0.5
1
2
5
10
20
50
COLLECTOR TO BASE VOLTAGE : VCB (V)
EMITTER TO BASE VOLTAGE
: VEB (V)
Fig.11 Collector output capacitance vs.
collector-base voltage
Emitter input capacitance vs.
emitter-base voltage
BASE COLLECTOR TIME CONSTANT : Cc rbb' (ps)
Ta=25˚C
VCE=6V
500
COLLECTOR OUTPUT CAPACITANCE : Cob (pF)
EMITTER INPUT CAPACITANCE
: Cib (pF)
TRANSITION FREQUENCY : fT (MHz)
Transistors
Ta=25˚C
f=32MHZ
VCB=6V
200
100
50
20
10
−0.2
−0.5
−1
−2
−5
−10
EMITTER CURRENT : IE (mA)
Fig.12 Base-collector time constant vs.
emitter current
DTr2
10m
5m
VO=0.3V
OUTPUT CURRENT : Io (A)
INPUT VOLTAGE : VI(on) (V)
50
20
10
Ta=−40°C
25°C
100°C
5
2
1
500m
200m
100m
100µ 200µ
500µ 1m
2m
5m 10m 20m
50m 100m
2m Ta=100°C
25°C
1m
−40°C
500µ
200µ
100µ
50µ
20µ
10µ
5µ
2µ
1µ
0
Fig.9 Input voltage vs. output current
(ON characteristics)
VO=5V
500
200
100
Ta=100°C
25°C
−40°C
50
20
10
5
2
0.5
1.0
1.5
2.0
2.5
3.0
INPUT VOLTAGE : VI(off) (V)
OUTPUT CURRENT : IO (A)
1
1k
VCC=5V
DC CURRENT GAIN : GI
100
Fig.10 Output current vs. input voltage
(OFF characteristics)
1
100µ 200µ 500µ 1m
2m
5m 10m 20m
50m 100m
OUTPUT CURRENT : IO (A)
Fig.11 DC current gain vs. output
current
lO/lI=20
OUTPUT VOLTAGE : VO(on) (V)
500m
200m
100m
Ta=100°C
25°C
−40°C
50m
20m
10m
5m
2m
1m
100µ 200µ
500µ 1m
2m
5m 10m 20m
50m 100m
OUTPUT CURRENT : IO (A)
Fig.12 Output voltage vs. output
current
4/4
Appendix
Notes
No technical content pages of this document may be reproduced in any form or transmitted by any
means without prior permission of ROHM CO.,LTD.
The contents described herein are subject to change without notice. The specifications for the
product described in this document are for reference only. Upon actual use, therefore, please request
that specifications to be separately delivered.
Application circuit diagrams and circuit constants contained herein are shown as examples of standard
use and operation. Please pay careful attention to the peripheral conditions when designing circuits
and deciding upon circuit constants in the set.
Any data, including, but not limited to application circuit diagrams information, described herein
are intended only as illustrations of such devices and not as the specifications for such devices. ROHM
CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any
third party's intellectual property rights or other proprietary rights, and further, assumes no liability of
whatsoever nature in the event of any such infringement, or arising from or connected with or related
to the use of such devices.
Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
otherwise dispose of the same, no express or implied right or license to practice or commercially
exploit any intellectual property rights or other proprietary rights owned or controlled by
ROHM CO., LTD. is granted to any such buyer.
Products listed in this document use silicon as a basic material.
Products listed in this document are no antiradiation design.
The products listed in this document are designed to be used with ordinary electronic equipment or devices
(such as audio visual equipment, office-automation equipment, communications devices, electrical
appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of
reliability and the malfunction of with would directly endanger human life (such as medical instruments,
transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other
safety devices), please be sure to consult with our sales representative in advance.
About Export Control Order in Japan
Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control
Order in Japan.
In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause)
on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.
Appendix1-Rev1.0
Similar pages