IRF IRF6718L2TRPBF Directfet power mosfet Datasheet

PD - 97395E
IRF6718L2TRPbF
IRF6718L2TR1PbF
RoHS Compliant Containing No Lead and Bromide 
l Dual Sided Cooling Compatible 
l Ultra Low Package Inductance
l Very Low R DS(ON) for Reduced Conduction Losses
l Optimized for Active O-Ring / Efuse Applications
l Compatible with existing Surface Mount Techniques 
l
DirectFET® Power MOSFET ‚
Typical values (unless otherwise specified)
VDSS
VGS
S2
SB
Qg
tot
64nC
Qgd
Qgs2
Qrr
Qoss
Vgs(th)
20nC
9.4nC
67nC
50nC
1.9V
DirectFET® ISOMETRIC
L6
M2
RDS(on)
25V max ±20V max 0.50mΩ@10V 1.0mΩ@4.5V
Applicable DirectFET Outline and Substrate Outline 
S1
RDS(on)
M4
L4
L6
L8
Description
The IRF6718L2TRPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFET® packaging to achieve
the lowest on-state resistance in a package that has the footprint of a D-pak. The DirectFET package is compatible with existing layout
geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when
application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling
to maximize thermal transfer in power systems.
The IRF6718L2TRPbF has extremely low Si Rdson coupled with ultra low package resistance to minimize conduction losses. The
IRF6718L2TRPbF has been optimized for parameters that are critical in reliable operation on Active O-Ring / Efuse / hot swap applications.
Absolute Maximum Ratings
Parameter
VDS
Drain-to-Source Voltage
Gate-to-Source Voltage
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Continuous Drain Current, VGS @ 10V
Pulsed Drain Current
Single Pulse Avalanche Energy
Avalanche Current
VGS
ID @ TA = 25°C
ID @ TA = 70°C
ID @ TC = 25°C
IDM
EAS
IAR
g
g
h
VGS, Gate-to-Source Voltage (V)
Typical RDS(on) (mΩ)
4
ID = 61A
3
2
T J = 125°C
1
T J = 25°C
0
2
4
6
8
e
e
f
10
VGS, Gate -to -Source Voltage (V)
Fig 1. Typical On-Resistance vs. Gate Voltage
Max.
Units
25
±20
61
52
270
490
530
49
V
A
mJ
A
14.0
ID= 49A
12.0
VDS= 20V
VDS= 13V
10.0
8.0
6.0
4.0
2.0
0.0
0
20
40
60
80
100 120 140 160 180
QG Total Gate Charge (nC)
Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage
Notes:
 Click on this section to link to the appropriate technical paper.
‚ Click on this section to link to the DirectFET Website.
ƒ Surface mounted on 1 in. square Cu board, steady state.
www.irf.com
„ TC measured with thermocouple mounted to top (Drain) of part.
Repetitive rating; pulse width limited by max. junction temperature.
† Starting TJ = 25°C, L = 0.44mH, RG = 25Ω, IAS = 49A.
1
07/27/11
IRF6718L2TR/TR1PbF
Static @ TJ = 25°C (unless otherwise specified)
Parameter
BVDSS
Min.
Conditions
Typ. Max. Units
VGS = 0V, ID = 250μA
Drain-to-Source Breakdown Voltage
Breakdown Voltage Temp. Coefficient
25
–––
–––
11
Static Drain-to-Source On-Resistance
–––
–––
0.50
1.0
VGS(th)
Gate Threshold Voltage
1.35
1.90
V
mV/°C Reference to 25°C, ID = 1mA
0.70
mΩ VGS = 10V, ID = 61A
VGS = 4.5V, ID = 49A
1.4
2.35
V VDS = VGS, ID = 150μA
ΔVGS(th)/ΔTJ
IDSS
Gate Threshold Voltage Coefficient
Drain-to-Source Leakage Current
–––
–––
-7.6
–––
–––
1.0
Gate-to-Source Forward Leakage
–––
–––
–––
–––
150
100
Gate-to-Source Reverse Leakage
Forward Transconductance
–––
820
–––
–––
-100
–––
Total Gate Charge
Pre-Vth Gate-to-Source Charge
–––
–––
64
18
96
–––
Post-Vth Gate-to-Source Charge
–––
9.4
–––
Gate-to-Drain Charge
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
–––
20
16.6
–––
–––
Output Charge
–––
–––
29.4
50
–––
–––
Gate Resistance
Turn-On Delay Time
–––
–––
0.90
67
–––
–––
ΔΒVDSS/ΔTJ
RDS(on)
IGSS
gfs
Qg
Qgs1
Qgs2
Qgd
Qgodr
Qsw
Qoss
RG
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
–––
–––
i
i
mV/°C
μA VDS = 20V, VGS = 0V
VDS = 20V, VGS = 0V, TJ = 125°C
nA
VGS = 20V
VGS = -20V
S
VDS = 13V, ID = 49A
VDS = 13V
nC
VGS = 4.5V
ID = 49A
See Fig. 18
nC
VDS = 16V, VGS = 0V
Ω
i
VDD = 13V, VGS = 4.5V
ns
ID = 49A
Rise Time
–––
140
–––
Turn-Off Delay Time
Fall Time
–––
–––
47
53
–––
–––
RG= 6.8Ω
Input Capacitance
Output Capacitance
–––
–––
8910
2310
–––
–––
VGS = 0V
Reverse Transfer Capacitance
–––
1115
–––
pF
VDS = 13V
ƒ = 1.0MHz
Diode Characteristics
Parameter
Conditions
Min.
Typ. Max. Units
IS
Continuous Source Current
(Body Diode)
–––
–––
61
ISM
Pulsed Source Current
(Body Diode)
–––
–––
490
VSD
Diode Forward Voltage
Reverse Recovery Time
–––
–––
–––
39
1.0
59
V
ns
TJ = 25°C, IF = 49A
Reverse Recovery Charge
–––
67
100
nC
di/dt = 200A/μs
trr
Qrr
g
A
MOSFET symbol
showing the
integral reverse
p-n junction diode.
TJ = 25°C, IS = 49A, VGS = 0V
i
i
Notes:
Repetitive rating; pulse width limited by max. junction temperature.
‡ Pulse width ≤ 400μs; duty cycle ≤ 2%.
2
www.irf.com
IRF6718L2TR/TR1PbF
Absolute Maximum Ratings
Max.
Units
4.3
3.0
83
270
-55 to + 175
W
Parameter
e
e
f
Power Dissipation
Power Dissipation
Power Dissipation
Peak Soldering Temperature
Operating Junction and
Storage Temperature Range
PD @TA = 25°C
PD @TA = 70°C
PD @TC = 25°C
TP
TJ
TSTG
°C
Thermal Resistance
e
j
k
fl
RθJA
RθJA
RθJA
RθJC
RθJ-PCB
Parameter
Typ.
Max.
Units
–––
12.5
20
–––
1.0
35
–––
–––
1.8
–––
°C/W
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Ambient
Junction-to-Case
Junction-to-PCB Mounted
Linear Derating Factor
e
0.029
W/°C
Thermal Response ( Z thJA )
100
10
1
D = 0.50
0.20
0.10
0.05
0.02
0.01
0.1
τJ
0.01
0.001
0.0001
1E-006
R1
R1
τJ
τ1
R2
R2
R3
R3
τA
τ1
τ2
τ2
τ3
τ4
τ3
Ci= τi/Ri
Ci= τi/Ri
0.0001
τ4
τA
τi (sec)
12.2942
18.10679
14.4246
2.626824
2.07265
0.007811
6.20859
0.239314
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
SINGLE PULSE
( THERMAL RESPONSE )
1E-005
Ri (°C/W)
R4
R4
0.001
0.01
0.1
1
10
100
1000
t1 , Rectangular Pulse Duration (sec)
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient 
(At lower pulse widths ZthJA & ZthJC are combined)
Notes:
‰ Mounted on minimum footprint full size board with metalized
ƒ Surface mounted on 1 in. square Cu board, steady state.
„ TC measured with thermocouple incontact with top (Drain) of part. back and with small clip heatsink.
Š Rθ is measured at TJ of approximately 90°C.
ˆ Used double sided cooling, mounting pad with large heatsink.
ƒ Surface mounted on 1 in. square Cu
board (still air).
www.irf.com
‰ Mounted on minimum footprint full size board with metalized
back and with small clip heatsink. (still air)
3
IRF6718L2TR/TR1PbF
1000
1000
100
BOTTOM
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
10
BOTTOM
100
1
2.5V
≤60μs PULSE WIDTH
0.1
1
10
100
1000
0.1
1
Fig 4. Typical Output Characteristics
100
1000
Fig 5. Typical Output Characteristics
1000
2.0
VDS = 15V
≤60μs PULSE WIDTH
Typical RDS(on) (Normalized)
ID = 61A
100
10
T J = 175°C
T J = 25°C
T J = -40°C
1
10
V DS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
ID, Drain-to-Source Current (A)
Tj = 175°C
10
0.1
0.1
V GS = 10V
V GS = 4.5V
1.5
1.0
0.5
1
2
3
4
5
-60 -40 -20 0 20 40 60 80 100120140160180
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Fig 7. Normalized On-Resistance vs. Temperature
Fig 6. Typical Transfer Characteristics
100000
0.90
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
Top
Typical RDS(on) ( mΩ)
C oss = C ds + C gd
C, Capacitance(pF)
≤60μs PULSE WIDTH
2.5V
Tj = 25°C
Ciss
10000
Coss
Crss
1000
0.80
Bottom
T J = 25°C
Vgs = 6.0V
Vgs = 8.0V
Vgs = 10V
Vgs = 12V
Vgs = 14V
Vgs = 16V
Vgs = 18V
0.70
0.60
0.50
100
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage
4
VGS
10V
5.0V
4.5V
4.0V
3.5V
3.0V
2.8V
2.5V
0
50
100
150
200
ID, Drain Current (A)
Fig 9. Typical On-Resistance vs.
Drain Current and Gate Voltage
www.irf.com
IRF6718L2TR/TR1PbF
10000
T J = 175°C
100
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
T J = 25°C
T J = -40°C
10
1
OPERATION IN THIS AREA
LIMITED BY R DS(on)
1000
1msec
100
10msec
DC
10
T C = 25°C
1
T J = 175°C
VGS = 0V
Single Pulse
0
0.1
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
0
VSD, Source-to-Drain Voltage (V)
ID, Drain Current (A)
250
200
150
100
50
0
50
75
100
125
150
10
100
Fig 11. Maximum Safe Operating Area
Typical VGS(th) Gate threshold Voltage (V)
300
25
1
VDS, Drain-to-Source Voltage (V)
Fig 10. Typical Source-Drain Diode Forward Voltage
3.0
2.5
2.0
1.5
ID = 150μA
1.0
ID = 250μA
ID = 1.0mA
ID = 1.0A
0.5
0.0
-75 -50 -25 0
175
25 50 75 100 125 150 175 200
T J , Temperature ( °C )
T C , Case Temperature (°C)
Fig 12. Maximum Drain Current vs. Case Temperature
400
Fig 13. Typical Threshold Voltage vs. Junction
Temperature
2400
EAS , Single Pulse Avalanche Energy (mJ)
Gfs, Forward Transconductance (S)
100μsec
ID
2.9A
4.6A
BOTTOM 49A
TOP
2000
300
TJ = 25°C
1600
200
1200
T J = 175°C
100
V DS = 10V
380μs PULSE WIDTH
2
0
800
400
0
0
20
40
60
80
ID,Drain-to-Source Current (A)
100
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 14. Typ. Forward Transconductance vs. Drain Current Fig 15. Maximum Avalanche Energy vs. Drain Current
www.irf.com
5
IRF6718L2TR/TR1PbF
1000
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming DTj = 150°C and
Tstart =25°C (Single Pulse)
Duty Cycle = Single Pulse
Avalanche Current (A)
100
10
0.01
1
0.05
0.10
0.1
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming Δ Tj = 25°C and
Tstart = 150°C.
0.01
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
1.0E+00
1.0E+01
tav (sec)
Fig 16. Typical Avalanche Current vs.Pulsewidth
EAR , Avalanche Energy (mJ)
600
Single Pulse
ID = 49A
500
400
300
200
100
0
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
Fig 17. Maximum Avalanche Energy
vs. Temperature
6
175
Notes on Repetitive Avalanche Curves , Figures 16, 17:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 19a, 19b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. ΔT = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 16, 17).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
www.irf.com
IRF6718L2TR/TR1PbF
Id
Vds
Vgs
L
VCC
DUT
0
20K
1K
Vgs(th)
S
Qgodr
Fig 18a. Gate Charge Test Circuit
Qgs2 Qgs1
Qgd
Fig 18b. Gate Charge Waveform
V(BR)DSS
tp
15V
DRIVER
L
VDS
D.U.T
RG
+
- VDD
IAS
20V
I AS
0.01Ω
tp
Fig 19a. Unclamped Inductive Test Circuit
VDS
VGS
RG
A
RD
Fig 19b. Unclamped Inductive Waveforms
VGS
90%
D.U.T.
+
- VDD
V10V
GS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
Fig 20a. Switching Time Test Circuit
www.irf.com
10%
VDS
td(off)
tf
td(on)
tr
Fig 20b. Switching Time Waveforms
7
IRF6718L2TR/TR1PbF
D.U.T
Driver Gate Drive
+
ƒ
+
‚
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
di/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
V DD
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
D=
Period
P.W.
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
Body Diode
VDD
Forward Drop
Inductor
Current
Inductor Curent
-
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 19. Diode Reverse Recovery Test Circuit for N-Channel
HEXFET® Power MOSFETs
DirectFET® Board Footprint, L6 (Large Size Can).
Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations
G = GATE
D = DRAIN
S = SOURCE
D
D
D
8
D
S
S
S
S
S
S
G
D
D
www.irf.com
IRF6718L2TR/TR1PbF
DirectFET® Outline Dimension, L6 Outline (LargeSize Can).
Please see AN-1035 for DirectFET assembly details and stencil and substrate design recommendations
DIMENSIONS
METRIC
MAX
CODE MIN
9.15
A
9.05
7.10
B
6.85
6.00
C
5.90
0.65
D
0.55
0.62
E
0.58
1.22
F
1.18
G
0.98 1.02
0.77
H
0.73
0.42
J
0.38
1.47
K
1.34
2.69
L
2.52
M
0.616 0.676
N
0.020 0.080
0.18
P
0.09
IMPERIAL
MIN
0.356
0.270
0.232
0.022
0.023
0.046
0.015
0.029
0.015
0.053
0.099
0.0235
0.0008
0.003
MAX
0.360
0.280
0.236
0.026
0.024
0.048
0.017
0.030
0.017
0.058
0.106
0.0274
0.0031
0.007
DirectFET® Part Marking
GATE MARKING
LOGO
PART NUMBER
BATCH NUMBER
DATE CODE
Line above the last character of
the date code indicates "Lead-Free"
www.irf.com
9
IRF6718L2TR/TR1PbF
DirectFET® Tape & Reel Dimension (Showing component orientation).
NOTE: Controlling dimensions in mm Std reel
quantity is 4000 parts. (ordered as IRF6718L2PBF).
REEL DIMENSIONS
STANDARD OPTION (QTY 4000)
METRIC
IMPERIAL
MIN
MAX
CODE
MAX
MIN
12.992 N.C
A
330.0
N.C
0.795
B
N.C
20.2
N.C
0.504
C
0.520
12.8
13.2
0.059
D
1.5
N.C
N.C
3.937
E
100.0
N.C
N.C
N.C
F
0.889
N.C
22.4
G
0.646
0.724
16.4
18.4
H
0.626
0.724
15.9
18.4
016'%10641..+0)
&+/'05+105+0//
%1&'
#
$
%
&
'
(
)
*
&+/'05+105
+/2'4+#.
/'64+%
/+0 /#:
/+0 /#:
0%
0%
0%
0%
Note: For the most current drawing please refer to IR website at http://www.irf.com/package
Data and specifications subject to change without notice.
This product has been designed and qualified to MSL1 rating for the Consumer market.
Additional storage requirement details for DirectFET products can be found in application note AN1035 on IR’s Web site.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 07/2011
10
www.irf.com
Similar pages