Burr-Brown ADS8321EB/2K5 16-bit, high speed, micropower sampling analog-to-digital converter Datasheet

ADS8321
SBAS123B – SEPTEMBER 1999 – REVISED SEPTEMBER 2004
16-Bit, High Speed, MicroPower Sampling
ANALOG-TO-DIGITAL CONVERTER
FEATURES
DESCRIPTION
● BIPOLAR INPUT RANGE
● 100kHz SAMPLING RATE
● MICRO POWER:
4.5mW at 100kHz
1mW at 10kHz
● POWER DOWN: 3µA max
● MSOP-8 PACKAGE
● PIN-COMPATIBLE TO ADS7816 AND ADS7822
● SERIAL (SPI/SSI) INTERFACE
The ADS8321 is a 16-bit sampling analog-to-digital converter (ADC) with tested specifications over a 4.75V to
5.25V supply range. It requires very little power even when
operating at the full 100kHz data rate. At lower data rates,
the high speed of the device enables it to spend most of its
time in the power-down mode—the average power dissipation is less than 1mW at 10kHz data rate.
The ADS8321 also features a synchronous serial (SPI/SSI
compatible) interface, and a differential input. The reference voltage can be set to any level within the range of
500mV to VCC/2.
Ultra-low power and small size make the ADS8321 ideal
for portable and battery-operated systems. It is also a
perfect fit for remote data acquisition modules, simultaneous multi-channel systems, and isolated data acquisition. The ADS8321 is available in an MSOP-8 package.
APPLICATIONS
●
●
●
●
BATTERY OPERATED SYSTEMS
REMOTE DATA ACQUISITION
ISOLATED DATA ACQUISITION
SIMULTANEOUS SAMPLING,
MULTI-CHANNEL SYSTEMS
● INDUSTRIAL CONTROLS
● ROBOTICS
● VIBRATION ANALYSIS
SAR
VREF
ADS8321
DOUT
+In
Serial
Interface
CDAC
–In
DCLOCK
S/H Amp
Comparator
CS/SHDN
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
All trademarks are the property of their respective owners.
Copyright © 1999-2004, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
www.ti.com
ABSOLUTE MAXIMUM RATINGS(1)
VCC ....................................................................................................... +6V
Analog Input ............................................................. –0.3V to (VCC + 0.3V)
Logic Input ............................................................................... –0.3V to 6V
Case Temperature ......................................................................... +100°C
Junction Temperature .................................................................... +150°C
Storage Temperature ..................................................................... +125°C
External Reference Voltage .............................................................. +5.5V
NOTE: (1) Stresses above these ratings may permanently damage the device.
ELECTROSTATIC
DISCHARGE SENSITIVITY
This integrated circuit can be damaged by ESD. Texas Instruments
recommends that all integrated circuits be handled with appropriate
precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to
complete device failure. Precision integrated circuits may be more
susceptible to damage because very small parametric changes could
cause the device not to meet its published specifications.
PACKAGE/ORDERING INFORMATION(1)
PRODUCT
MAXIMUM
INTEGRAL
LINEARITY
ERROR
(%)
NO
MISSING
CODE
ERROR
(LSB)
ADS8321E
0.018
"
"
ADS8321EB
"
PACKAGE-LEAD
PACKAGE
DESIGNATOR(1)
SPECIFICATION
TEMPERATURE
RANGE
PACKAGE
MARKING
ORDERING
NUMBER
TRANSPORT
MEDIA, QUANTITY
14
MSOP-8
DGK
–40°C to +85°C
A21
"
"
"
"
"
0.012
15
MSOP-8
DGK
–40°C to +85°C
A21
"
"
"
"
"
"
ADS8321E/250
ADS8321E/2K5
ADS8321EB/250
ADS8321EB/2K5
Tape and Reel, 250
Tape and Reel, 2500
Tape and Reel, 250
Tape and Reel, 2500
NOTE: (1) For the most current package and ordering information, see the Package Option Addendum located at the end of this data sheet.
PIN CONFIGURATION
PIN ASSIGNMENTS
Top View
MSOP
VREF
1
+In
2
8
+VCC
7
DCLOCK
PIN
NAME
DESCRIPTION
1
VREF
Reference Input
2
+In
Non Inverting Input
3
–In
Inverting Input
ADS8321
2
–In
3
6
DOUT
GND
4
5
CS/SHDN
4
GND
5
CS/SHDN
Chip Select when LOW, Shutdown Mode when
HIGH.
Ground
6
DOUT
The serial output data word is comprised of 16
bits of data. In operation the data is valid on the
falling edge of DCLOCK. The second clock
pulse after the falling edge of CS enables the
serial output. After one null bit, data is valid for
the next 16 edges.
7
DCLOCK
Data Clock synchronizes the serial data transfer
and determines conversion speed.
8
+VCC
Power Supply.
ADS8321
www.ti.com
SBAS123B
SPECIFICATIONS: +VCC = +5V
At –40°C to +85°C, VREF = +2.5V, –In = 2.5V, fSAMPLE = 100kHz, and fCLK = 24 • fSAMPLE, unless otherwise specified.
ADS8321E
PARAMETER
CONDITIONS
MIN
TYP
RESOLUTION
ANALOG INPUT
Full-Scale Input Span
Absolute Input Range
+In – (–In)
+In
–In
–VREF
–0.1
–0.1
REFERENCE INPUT
Voltage Range
Resistance
±0.018
±2
±0.006
±0.2
✻
±0.05
±0.05
+4.7V < VCC < 5.25V
100
2.9
✻
80
3
3.0
–0.3
4.0
✻
✻
✻
–40
✻
5.25
5.25
1700
V
GΩ
GΩ
µA
µA
µA
V
V
V
V
✻
✻
✻
✻
✻
✻
✻
8.5
3
+85
✻
✻
✻
0.4
Binary Two’s Complement
1100
250
5.5
0.3
Clk Cycles
Clk Cycles
kHz
MHz
✻
VCC + 0.3
0.8
4.75
2.7
Bits
% of FSR
mV
µV/°C
%
%
ppm/°C
µVrms
dB
LSB(1)
dB
dB
dB
dB
✻
✻
✻
✻
✻
✻
CMOS
TEMPERATURE RANGE
Specified Performance
±0.012
±1
–86
84
86
87
VCC/2
5
5
40
0.8
0.1
CS = VCC
V
V
V
pF
nA
✻
✻
✻
–84
82
84
85
0.5
Specified Performance
✻
✻
✻
✻
0.024
IIH = +5µA
IIL = +5µA
IOH = –250µA
IOL = 250µA
Bits
✻
16
CS = GND, fSAMPLE = 0Hz
CS = VCC
✻
✻
✻
✻
✻
4.5
VIN = 5Vp-p at 10kHz
VIN = 5Vp-p at 10kHz
VIN = 5Vp-p at 10kHz
UNITS
±0.024
±0.024
±0.3
60
80
3
fSAMPLE = 10kHz(3, 4)
Power Dissipation
Power Down
✻
✻
✻
MAX
15
±0.008
±0.4
±1
fSAMPLE = 10kHz
CS = VCC
POWER SUPPLY REQUIREMENTS
VCC
VCC Range(2)
Quiescent Current
TYP
✻
✻
14
Current Drain
DIGITAL INPUT/OUTPUT
Logic Family
Logic Levels:
VIH
VIL
VOH
VOL
Data Format
+VREF
VCC + 0.1
+4.0
25
1
SAMPLING DYNAMICS
Conversion Time
Acquisition Time
Throughput Rate
Clock Frequency Range
DYNAMIC CHARACTERISTICS
Total Harmonic Distortion
SINAD
Spurious Free Dynamic Range
SNR
MIN
16
Capacitance
Leakage Current
SYSTEM PERFORMANCE
No Missing Codes
Integral Linearity Error
Offset Error
Offset Temperature Drift
Gain Error, Positive
Negative
Gain Temperature Drift
Noise
Common-Mode Rejection Ratio
Power Supply Rejection Ratio
ADS8321EB
MAX
✻
✻
✻
✻
✻
✻
V
V
µA
µA
mW
µA
✻
°C
✻ Specifications same as ADS8321E.
NOTES: (1) LSB means Least Significant Bit. (2) See Typical Performance Curves for more information. (3) fCLK = 2.4MHz, CS = VCC for 216 clock cycles out
of every 240. (4) See the Power Dissipation section for more information regarding lower sample rates.
ADS8321
SBAS123B
www.ti.com
3
TYPICAL PERFORMANCE CURVES
At TA = +25°C, VCC = +5V, VREF = +2.5V, fSAMPLE = 100kHz, fCLK = 24 • fSAMPLE, unless otherwise specified.
FREQUENCY SPECTRUM
(8192 Point FFT, fIN = 10.03kHz, –0.3dB)
INTEGRAL LINEARITY ERROR vs CODE (+25°C)
3
–20
2
Integral Linearity Error (LSB)
0
Amplitude (dB)
–40
–60
–80
–100
–120
–140
–160
1
0
–1
–2
–3
–4
–5
–180
–6
0
10
20
30
40
50
0000H
4000H
7FF9H
Frequency (kHz)
DIFFERENTIAL LINEARITY ERROR vs CODE (+25°C)
2.5
1200
2.0
Supply Current (µA)
Differential Linearity Error (LSB)
1400
1.5
1.0
0.5
0
1000
800
600
400
–0.5
200
–1.0
–1.5
0000H
3FFFH
7FFCH
C000H
0
–50
FFFDH
0
50
100
Temperature (°C)
Hex Code
POWER-DOWN SUPPLY CURRENT
vs TEMPERATURE
QUIESCENT CURRENT vs VCC
600
1.20
500
1.10
Quiescent Current (mA)
Supply Current (nA)
FFFDH
SUPPLY CURRENT vs TEMPERATURE
3.0
400
5V
300
200
100
1.00
0.90
0.80
0.70
0
0.60
–50
–25
0
25
50
75
100
2.0
Temperature (°C)
4
C000H
Hex Code
2.5
3.0
3.5
4.0
4.5
5.0
5.5
VCC (V)
ADS8321
www.ti.com
SBAS123B
TYPICAL PERFORMANCE CURVES (Cont.)
At TA = +25°C, VCC = +5V, VREF = +2.5V, fSAMPLE = 100kHz, fCLK = 24 • fSAMPLE, unless otherwise specified.
SIGNAL-TO-NOISE AND SIGNAL-TO-(NOISE + DISTORTION)
vs INPUT FREQUENCY
MAXIMUM SAMPLE RATE vs VCC
1000
90
SNR
SNR and SINAD (dB)
Sample Rate (kHz)
85
100
10
80
SINAD
75
70
1
65
1
2
3
4
5
0.1
1
VCC (V)
10
100
Input Frequency (kHz)
SPURIOUS FREE DYNAMIC RANGE AND
TOTAL HARMONIC DISTORTION vs INPUT FREQUENCY
REFERENCE CURRENT vs SAMPLE RATE
35
90
SFDR
2.5V
30
Reference Current (µA)
SNR and SINAD (dB)
85
THD
80
75
70
25
20
1.25V
15
10
5
0
65
0.1
1
10
Input Frequency (kHz)
0
100
20
40
60
80
100
Sample Rate (kHz)
120
140
CHANGE IN GAIN vs REFERENCE VOLTAGE
NOISE vs REFERENCE VOLTAGE
15
18
10
14
Change in Gain (LSB)
Peak-to-Peak Noise (LSB)
16
12
10
8
6
4
5
0
–5
–10
2
–15
0
0.1
1
Reference Voltage (V)
0
10
ADS8321
SBAS123B
www.ti.com
0.5
1.0
1.5
2.0
Reference Voltage (V)
2.5
3.0
5
TYPICAL PERFORMANCE CURVES (Cont.)
At TA = +25°C, VCC = +5V, VREF = +2.5V, fSAMPLE = 100kHz, fCLK = 24 • fSAMPLE, unless otherwise specified.
CHANGE IN OFFSET vs TEMPERATURE
5.0
5.0
4.0
Change from +25°C (LSB)
Change in BPZ (LSB)
CHANGE IN BIPOLAR ZERO vs REFERENCE VOLTAGE
6.0
4.0
3.0
2.0
1.0
0
–1.0
–2.0
3.0
2.0
1.0
0
–1.0
–2.0
–3.0
–4.0
–3.0
–5.0
0
0.5
1.0
1.5
2.0
2.5
3.0
–50
0
Reference Voltage (V)
100
COMMON-MODE REJECTION RATIO vs FREQUENCY
CHANGE IN GAIN vs TEMPERATURE
5.0
90
4.0
80
3.0
70
2.0
CMRR (dB)
Change from +25°C (LSB)
50
Temperature (°C)
1.0
0
–1.0
–2.0
60
50
40
30
–3.0
20
–4.0
10
VCM = 1Vp-p Sinewave
0
–5.0
–50
0
50
100
1
10
100
Temperature (°C)
1k
10k
100k
1M
Frequency (Hz)
REFERENCE CURRENT vs TEMPERATURE
70
Reference Current (µA)
60
50
5V
40
30
20
10
–50
–25
0
25
50
75
100
Temperature (°C)
6
ADS8321
www.ti.com
SBAS123B
THEORY OF OPERATION
2 • VREF
peak-to-peak
Single-Ended Input
VREF
peak-to-peak
ADS821
Common
Voltage
VREF
peak-to-peak
Differential Input
FIGURE 1. Methods of Driving the ADS8321—Single-Ended
or Differential.
5
VCC = 5V
4.0
4
Single-Ended Input
3
2.8
2.2
2
1
0
–0.3
–1
0.0
0.5
1.0
1.5
2.0
2.5
VREF (V)
FIGURE 2. Single-Ended Input—Common Voltage Range
vs VREF.
The analog input is bipolar and fully differential. There are
two general methods of driving the analog input of the
ADS8321: single-ended or differential (see Figure 1). When
the input is single-ended, the –In input is held at a fixed
voltage. The +In input swings around the same voltage and
the peak-to-peak amplitude is 2 • VREF. The value of VREF
determines the range over which the common voltage may
vary (see Figure 2).
When the input is differential, the amplitude of the input is
the difference between the +In and –In input, or; +In – (–In).
A voltage or signal is common to both of these inputs. The
peak-to-peak amplitude of each input is VREF about this
common voltage. However, since the inputs are 180°C outof-phase, the peak-to-peak amplitude of the difference voltage is 2 • VREF. The value of VREF also determines the range
of the voltage that may be common to both inputs (see
Figure 3).
In each case, care should be taken to ensure that the output
impedance of the sources driving the +In and –In inputs are
matched. If this is not observed, the two inputs could have
5
VCC = 5V
4.0
4
Common Voltage Range (V)
ANALOG INPUT
3
Differential Input
2.75
2
1
1.95
0
–0.3
–1
0.0
0.5
1.0
1.5
2.0
2.5
VREF (V)
FIGURE 3. Differential Input—Common Voltage Range vs
VREF.
ADS8321
SBAS123B
ADS8321
Common
Voltage
Common Voltage Range (V)
The ADS8321 is a classic Successive Approximation Register (SAR) analog-to-digital converter (ADC). The architecture is based on capacitive redistribution which inherently
includes a sample/hold function. The converter is fabricated
on a 0.6µ CMOS process. The architecture and process
allow the ADS8321 to acquire and convert an analog signal
at up to 100,000 conversions per second while consuming
less than 5.5mW from +VCC.
The ADS8321 requires an external reference, an external
clock, and a single power source (VCC). The external reference can be any voltage between 500mV and VCC/2. The
value of the reference voltage directly sets the range of the
analog input. The reference input current depends on the
conversion rate of the ADS8321.
The external clock can vary between 24kHz (1kHz throughput) and 2.4MHz (100kHz throughput). The duty cycle of
the clock is essentially unimportant as long as the minimum
high and low times are at least 200ns (4.75V or greater). The
minimum clock frequency is set by the leakage on the
capacitors internal to the ADS8321.
The analog input is provided to two input pins: +In and –In.
When a conversion is initiated, the differential input on these
pins is sampled on the internal capacitor array. While a
conversion is in progress, both inputs are disconnected from
any internal function.
The digital result of the conversion is clocked out by the
DCLOCK input and is provided serially, most significant bit
first, on the DOUT pin. The digital data that is provided on the
DOUT pin is for the conversion currently in progress—there
is no pipeline delay. It is possible to continue to clock the
ADS8321 after the conversion is complete and to obtain the
serial data least significant bit first. See the digital timing
section for more information.
www.ti.com
7
different settling times. This may result in offset error, gain
error, and linearity error which change with both temperature and input voltage. If the impedance cannot be matched,
the errors can be lessened by giving the ADS8321 additional
acquisition time.
The input current on the analog inputs depends on a number
of factors: sample rate, input voltage, and source impedance.
Essentially, the current into the ADS8321 charges the internal capacitor array during the sample period. After this
capacitance has been fully charged, there is no further input
current. The source of the analog input voltage must be able
to charge the input capacitance (25pF) to 16-bit settling level
within 4.5 clock cycles. When the converter goes into the
hold mode or while it is in the power-down mode, the input
impedance is greater than 1GΩ.
Care must be taken regarding the absolute analog input
voltage. The +In input should always remain within the
range of GND – 300mV to VCC + 300mW. The –In input
should always remain within the range of GND – 300mV to
4V. Outside of these ranges, the converter’s linearity may
not meet specifications.
NOISE
The noise floor of the ADS8321 itself is extremely low, as
can be seen from Figures 4 and 5, and is much lower than
competing A/D converters. It was tested by applying a low
noise DC input and a 2.5V reference to the ADS8321 and
initiating 5,000 conversions. The digital output of the ADC
will vary in output code due to the internal noise of the
ADS8321. This is true for all 16-bit SAR-type ADCs. Using
a histogram to plot the output codes, the distribution should
appear bell-shaped with the peak of the bell curve representing the nominal code for the input value. The ±1σ, ±2σ, and
±3σ distributions will represent the 68.3%, 95.5%, and
99.7%, respectively, of all codes. The transition noise can be
calculated by dividing the number of codes measured by 6
and this will yield the ±3σ distribution or 99.7% of all
codes. Statistically, up to 3 codes could fall outside the
distribution when executing 1000 conversions. The
ADS8321, with five output codes for the ±3σ distribution,
will yield a ±0.8LSB transition noise. Remember, to achieve
this low noise performance, the peak-to-peak noise of the
input signal and reference must be < 50µV.
REFERENCE INPUT
1639
The external reference sets the analog input range. The
ADS8321 will operate with a reference in the range of
500mV to 2.5V. There are several important implications of
this. As the reference voltage is reduced, the analog voltage
weight of each digital output code is reduced. This is often
referred to as the Least Significant Bit (LSB) size and is
equal to 2 • VREF divided by 65,535. This means that any
offset or gain error inherent in the ADC will appear to
increase, in terms of LSB size, as the reference voltage is
reduced.
The noise inherent in the converter will also appear to
increase with lower LSB size. With a +2.5V reference, the
internal noise of the converter typically contributes only 5
LSB peak-to-peak of potential error to the output code. When
the external reference is 500mV, the potential error contribution from the internal noise will be 10 times larger—15 LSBs.
The errors due to the internal noise are gaussian in nature and
can be reduced by averaging consecutive conversion results.
For more information regarding noise, consult the typical
performance curve “Noise vs Reference Voltage.” Note that
the Effective Number of Bits (ENOB) figure is calculated
based on the converter’s signal-to-(noise + distortion) ratio
with a 1kHz, 0dB input signal. SINAD is related to ENOB
as follows:
SINAD = 6.02 • ENOB + 1.76
With lower reference voltages, extra care should be taken to
provide a clean layout including adequate bypassing, a clean
power supply, a low-noise reference, and a low-noise input
signal. Because the LSB size is lower, the converter will also
be more sensitive to external sources of error such as nearby
digital signals and electromagnetic interference.
1260
981
0
12
192
13
14
15
16
24
0
17
18
Code
FIGURE 4. Histogram of 5,000 Conversions of a DC Input
at the Code Transition.
2318
836
696
244
0
12
13
14
15
16
2
0
17
18
Code
FIGURE 5. Histogram of 5,000 Conversions of a DC Input
at the Code Center.
8
ADS8321
www.ti.com
SBAS123B
AVERAGING
The noise of the ADC can be compensated by averaging the
digital codes. By averaging conversion results, transition
noise will be reduced by a factor of 1/√n, where n is the
number of averages. For example, averaging 4 conversion
results will reduce the transition noise by 1/2 to ±0.25 LSBs.
Averaging should only be used for input signals with frequencies near DC.
For AC signals, a digital filter can be used to low pass filter
and decimate the output codes. This works in a similar
manner to averaging; for every decimation by 2, the signalto-noise ratio will improve 3dB.
SYMBOL
SERIAL INTERFACE
The ADS8321 communicates with microprocessors and
other digital systems via a synchronous 3-wire serial interface as shown in Figure 6 and Table I. The DCLOCK signal
synchronizes the data transfer with each bit being transmitted on the falling edge of DCLOCK. Most receiving systems
will capture the bitstream on the rising edge of DCLOCK.
However, if the minimum hold time for DOUT is acceptable,
the system can use the falling edge of DCLOCK to capture
each bit.
MIN
Analog Input Sample Time
4.5
TYP
MAX
UNITS
5.0
Clk Cycles
tCONV
Conversion Time
tCYC
Throughput Rate
100
kHz
tCSD
CS Falling to
0
ns
16
Clk Cycles
DCLOCK LOW
CS Falling to
tSUCS
20
ns
DCLOCK Rising
DIGITAL INTERFACE
SIGNAL LEVELS
The digital inputs of the ADS8321 can accommodate logic
levels up to 5.5V regardless of the value of VCC.
The CMOS digital output (DOUT) will swing 0V to VCC. If
VCC is 3V and this output is connected to a 5V CMOS logic
input, then that IC may require more supply current than
normal and may have a slightly longer propagation delay.
DESCRIPTION
tSMPL
thDO
DCLOCK Falling to
Current DOUT Not Valid
tdDO
DCLOCK Falling to Next
DOUT Valid
tdis
ten
5
15
ns
30
50
ns
CS Rising to DOUT Tri-State
70
100
ns
DCLOCK Falling to DOUT
Enabled
20
50
ns
tf
DOUT Fall Time
5
25
ns
tr
DOUT Rise Time
7
25
ns
TABLE I. Timing Specifications (VCC = 5V) –40°C to +85°C.
A falling CS signal initiates the conversion and data transfer.
The first 4.5 to 5.0 clock periods of the conversion cycle are
used to sample the input signal. After the fifth falling
DCLOCK edge, DOUT is enabled and will output a LOW
value for one clock period. For the next 16 DCLOCK
periods, DOUT will output the conversion result, most significant bit first. After the least significant bit (B0) has been
output, subsequent clocks will repeat the output data but in
a least significant bit first format.
After the most significant bit (B15) has been repeated, DOUT
will tri-state. Subsequent clocks will have no effect on the
converter. A new conversion is initiated only when CS has
been taken HIGH and returned LOW.
Complete Cycle
CS/SHDN
tSUCS
Sample
Power Down
Conversion
DCLOCK
tCSD
DOUT
Use positive clock edge for data transfer
Hi-Z
0
tSMPL
B15 B14 B13 B12 B11 B10 B9 B8
(MSB)
tCONV
B7
B6
B5 B4 B3
B2
B1
B0
(LSB)
Hi-Z
NOTE: Minimum 22 clock cycles required for 16-bit conversion. Shown are 24 clock cycles.
If CS remains LOW at the end of conversion, a new datastream with LSB-first is shifted out again.
FIGURE 6. ADS8321 Basic Timing Diagrams.
ADS8321
SBAS123B
www.ti.com
9
DATA FORMAT
The output data from the ADS8321 is in Binary Two’s
Complement format as shown in Table II. This table represents the ideal output code for the given input voltage and
does not include the effects of offset, gain error, or noise.
DESCRIPTION
ANALOG VALUE
Full-Scale Range
2 • VREF
Least Significant
Bit (LSB)
2 • VREF/65536
+Full Scale
BINARY CODE
HEX CODE
+VREF – 1 LSB
0111 1111 1111 1111
7FFF
0V
0000 0000 0000 0000
0000
0V – 1 LSB
1111 1111 1111 1111
FFFF
–VREF
1000 0000 0000 0000
8000
Midscale
Midscale – 1LSB
DIGITAL OUTPUT
BINARY TWO’S COMPLEMENT
–Full Scale
TABLE II. Ideal Input Voltages and Output Codes.
POWER DISSIPATION
The architecture of the converter, the semiconductor fabrication process, and a careful design allow the ADS8321 to
convert at up to a 100kHz rate while requiring very little
power. Still, for the absolute lowest power dissipation, there
are several things to keep in mind.
The power dissipation of the ADS8321 scales directly with
conversion rate. Therefore, the first step to achieving the
lowest power dissipation is to find the lowest conversion rate
that will satisfy the requirements of the system.
In addition, the ADS8321 is in power-down mode under two
conditions: when the conversion is complete and whenever
CS is HIGH (see Figure 6). Ideally, each conversion should
occur as quickly as possible, preferably at a 2.4MHz clock
rate. This way, the converter spends the longest possible time
in the power-down mode. This is very important as the
converter not only uses power on each DCLOCK transition
(as is typical for digital CMOS components) but also uses
some current for the analog circuitry, such as the comparator.
The analog section dissipates power continuously, until the
power down mode is entered.
1.4V
3kΩ
DOUT
VOH
DOUT
VOL
Test Point
tr
100pF
CLOAD
tf
Voltage Waveforms for DOUT Rise and Fall Times, tr, tf
Load Circuit for tdDO, tr, and tf
Test Point
DCLOCK
VIL
VCC
DOUT
tdDO
VOH
DOUT
tdis Waveform 2, ten
3kΩ
tdis Waveform 1
100pF
CLOAD
VOL
thDO
Load Circuit for tdis and ten
Voltage Waveforms for DOUT Delay Times, tdDO
VIH
CS/SHDN
DOUT
Waveform 1(1)
CS/SHDN
90%
DCLOCK
5
6
tdis
DOUT
Waveform 2(2)
VOL
DOUT
10%
B11
ten
Voltage Waveforms for tdis
Voltage Waveforms for ten
NOTES: (1) Waveform 1 is for an output with internal conditions such that the output
is HIGH unless disabled by the output control. (2) Waveform 2 is for an output with
internal conditions such that the output is LOW unless disabled by the output control.
FIGURE 7. Timing Diagrams and Test Circuits for the Parameters in Table I.
10
ADS8321
www.ti.com
SBAS123B
Supply Current (µA)
1000
TA = 25°C
VCC = 5.0V
VREF = 2.5V
fCLK = 2.4MHz
100
10
1
0.1
1
10
100
Sample Rate (kHz)
FIGURE 8. Maintaining fCLK at the Highest Possible Rate
Allows Supply Current to Drop Linearly with
Sample Rate.
Supply Current (µA)
1000
100
10
TA = 25°C
VCC = 5.0V
VREF = 2.5V
fCLK = 24 • fSAMPLE
1
0.1
1
10
100
Sample Rate (kHz)
FIGURE 9. Scaling fCLK Reduces Supply Current Only
Slightly with Sample Rate.
Figure 8 shows the current consumption of the ADS8321
versus sample rate. For this graph, the converter is clocked
at 2.4MHz regardless of the sample rate—CS is HIGH for
the remaining sample period. Figure 9 also shows current
consumption versus sample rate. However, in this case, the
DCLOCK period is 1/24th of the sample period—CS is
HIGH for one DCLOCK cycle out of every 16.
There is an important distinction between the power-down
mode that is entered after a conversion is complete and the
full power-down mode which is enabled when CS is HIGH.
CS LOW will shut down only the analog section. The digital
section is completely shutdown only when CS is HIGH.
Thus, if CS is left LOW at the end of a conversion and the
converter is continually clocked, the power consumption
will not be as low as when CS is HIGH. See Figure 10 for
more information.
SHORT CYCLING
Another way of saving power is to utilize the CS signal to
short cycle the conversion. Because the ADS8321 places the
latest data bit on the DOUT line as it is generated, the
converter can easily be short cycled. This term means that
the conversion can be terminated at any time. For example,
if only 14 bits of the conversion result are needed, then the
conversion can be terminated (by pulling CS HIGH) after
the 14th bit has been clocked out.
This technique can be used to lower the power dissipation
(or to increase the conversion rate) in those applications
where an analog signal is being monitored until some condition becomes true. For example, if the signal is outside a
predetermined range, the full 16-bit conversion result may
not be needed. If so, the conversion can be terminated after
the first n bits, where n might be as low as 3 or 4. This results
in lower power dissipation in both the converter and the rest
of the system, as they spend more time in the power-down
mode.
LAYOUT
1000
TA = 25°C
VCC = 5.0V
VREF = 2.5V
fCLK = 24 • fSAMPLE
Supply Current (µA)
800
600
CS LOW (GND)
400
200
0.250
CS HIGH (VCC)
0.00
0.1
1
10
100
Sample Rate (kHz)
FIGURE 10. Shutdown Current with CS HIGH is 50nA
Typically, Regardless of the Clock. Shutdown
Current with CS LOW Varies with Sample
Rate.
For optimum performance, care should be taken with the
physical layout of the ADS8321 circuitry. This will be
particularly true if the reference voltage is low and/or the
conversion rate is high. At a 100kHz conversion rate, the
ADS8321 makes a bit decision every 416ns. That is, for each
subsequent bit decision, the digital output must be updated
with the results of the last bit decision, the capacitor array
appropriately switched and charged, and the input to the
comparator settled to a 16-bit level all within one clock
cycle.
The basic SAR architecture is sensitive to spikes on the
power supply, reference, and ground connections that occur
just prior to latching the comparator output. Thus, during
any single conversion for an n-bit SAR converter, there are
n “windows” in which large external transient voltages can
easily affect the conversion result. Such spikes might originate from switching power supplies, digital logic, and high
ADS8321
SBAS123B
www.ti.com
11
power devices, to name a few. This particular source of error
can be very difficult to track down if the glitch is almost
synchronous to the converter’s DCLOCK signal—as the
phase difference between the two changes with time and
temperature, causing sporadic misoperation.
With this in mind, power to the ADS8321 should be clean
and well bypassed. A 0.1µF ceramic bypass capacitor should
be placed as close to the ADS8321 package as possible. In
addition, a 1µF to 10µF capacitor and a 5Ω or 10Ω series
resistor may be used to lowpass filter a noisy supply.
The reference should be similarly bypassed with a 0.1µF
capacitor. Again, a series resistor and large capacitor can be
used to lowpass filter the reference voltage. If the reference
voltage originates from an op amp, be careful that the op
amp can drive the bypass capacitor without oscillation (the
series resistor can help in this case). Keep in mind that while
the ADS8321 draws very little current from the reference on
average, there are still instantaneous current demands placed
on the external input and reference circuitry.
Texas Instruments OPA627 op amp provides optimum performance for buffering both the signal and reference inputs.
For low cost, low voltage, single-supply applications, the
OPA2350 or OPA2340 dual op amps are recommended.
Also, keep in mind that the ADS8321 offers no inherent
rejection of noise or voltage variation in regards to the
reference input. This is of particular concern when the
reference input is tied to the power supply. Any noise and
ripple from the supply will appear directly in the digital
results. While high frequency noise can be filtered out as
described in the previous paragraph, voltage variation due to
the line frequency (50Hz or 60Hz), can be difficult to
remove.
The GND pin on the ADS8321 should be placed on a clean
ground point. In many cases, this will be the “analog”
ground. Avoid connecting the GND pin too close to the
grounding point for a microprocessor, microcontroller, or
digital signal processor. If needed, run a ground trace directly from the converter to the power supply connection
point. The ideal layout will include an analog ground plane
for the converter and associated analog circuitry.
APPLICATION CIRCUITS
Figure 11 shows a basic data acquisition system. The
ADS8321 input range is 0V to VCC, as the reference input is
connected directly to the power supply. The 5Ω resistor and
1µF to 10µF capacitor filter the microcontroller “noise” on
the supply, as well as any high-frequency noise from the
supply itself. The exact values should be picked such that the
filter provides adequate rejection of the noise.
5V
5Ω
+
1µF to 10µF
ADS8321
+2.5V
Reference
VREF
VCC
+ 1µF to
10µF
0.1µF
0V to 5V
+In
CS
–In
DOUT
GND
Microcontroller
DCLOCK
FIGURE 11. Basic Data Acquisition System.
12
ADS8321
www.ti.com
SBAS123B
PACKAGE OPTION ADDENDUM
www.ti.com
16-Aug-2012
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package
Drawing
Pins
Package Qty
Eco Plan
(2)
Lead/
Ball Finish
MSL Peak Temp
(3)
ADS8321E/250
ACTIVE
VSSOP
DGK
8
250
Green (RoHS
& no Sb/Br)
CU NIPDAUAGLevel-2-260C-1 YEAR
ADS8321E/250G4
ACTIVE
VSSOP
DGK
8
250
Green (RoHS
& no Sb/Br)
CU NIPDAUAGLevel-2-260C-1 YEAR
ADS8321E/2K5
ACTIVE
VSSOP
DGK
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAUAGLevel-2-260C-1 YEAR
ADS8321E/2K5G4
ACTIVE
VSSOP
DGK
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAUAGLevel-2-260C-1 YEAR
ADS8321EB/250
ACTIVE
VSSOP
DGK
8
250
Green (RoHS
& no Sb/Br)
CU NIPDAUAGLevel-2-260C-1 YEAR
ADS8321EB/250G4
ACTIVE
VSSOP
DGK
8
250
Green (RoHS
& no Sb/Br)
CU NIPDAUAGLevel-2-260C-1 YEAR
ADS8321EB/2K5
ACTIVE
VSSOP
DGK
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAUAGLevel-2-260C-1 YEAR
ADS8321EB/2K5G4
ACTIVE
VSSOP
DGK
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAUAGLevel-2-260C-1 YEAR
Samples
(Requires Login)
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
16-Aug-2012
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
Addendum-Page 2
PACKAGE MATERIALS INFORMATION
www.ti.com
16-Aug-2012
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
ADS8321E/250
VSSOP
DGK
8
250
330.0
12.4
5.3
3.4
1.4
8.0
12.0
Q1
ADS8321E/2K5
VSSOP
DGK
8
2500
330.0
12.4
5.3
3.4
1.4
8.0
12.0
Q1
ADS8321EB/250
VSSOP
DGK
8
250
330.0
12.4
5.3
3.4
1.4
8.0
12.0
Q1
ADS8321EB/2K5
VSSOP
DGK
8
2500
330.0
12.4
5.3
3.4
1.4
8.0
12.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
16-Aug-2012
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
ADS8321E/250
VSSOP
DGK
8
250
367.0
367.0
35.0
ADS8321E/2K5
VSSOP
DGK
8
2500
367.0
367.0
35.0
ADS8321EB/250
VSSOP
DGK
8
250
367.0
367.0
35.0
ADS8321EB/2K5
VSSOP
DGK
8
2500
367.0
367.0
35.0
Pack Materials-Page 2
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time
of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Mobile Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated
Similar pages