LT1211/LT1212 14MHz, 7V/µs, Single Supply Dual and Quad Precision Op Amps U DESCRIPTIO ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ Slew Rate: 7V/µs Typ Gain-Bandwidth Product: 14MHz Typ Fast Settling to 0.01% 2V Step to 200µV: 900ns Typ 10V Step to 1mV: 2.2µs Typ Excellent DC Precision in All Packages Input Offset Voltage: 275µV Max Input Offset Voltage Drift: 6µV/°C Max Input Offset Current: 30nA Max Input Bias Current: 125nA Max Open-Loop Gain: 1200V/mV Min Single Supply Operation Input Voltage Range Includes Ground Output Swings to Ground While Sinking Current Low Input Noise Voltage: 12nV/√Hz Typ Low Input Noise Current: 0.2pA/√Hz Typ Specified on 3.3V, 5V and ±15V Large Output Drive Current: 20mA Min Low Supply Current per Amplifier: 1.8mA Max Dual in 8-Pin DIP and SO-8 Quad in 14-Pin DIP and Narrow SO-16 Note: For applications requiring higher slew rate, see the LT1213/LT1214 and LT1215/LT1216 data sheets. , LTC and LT are registered trademarks of Linear Technology Corporation. The LT®1211 is a dual, single supply precision op amp with a 14MHz gain-bandwidth product and a 7V/µs slew rate. The LT1212 is a quad version of the same amplifier. The DC precision of the LT1211/LT1212 eliminates trims in most systems while providing high frequency performance not usually found in single supply amplifiers. The LT1211/LT1212 will operate on any supply greater than 2.5V and less than 36V total. These amplifiers are specified on single 3.3V, single 5V and ±15V supplies, and only require 1.3mA of quiescent supply current per amplifier. The inputs can be driven beyond the supplies without damage or phase reversal of the output. The minimum output drive is 20mA, ideal for driving low impedance loads. UO FEATURES APPLICATI ■ ■ ■ ■ ■ ■ S 2.5V Full-Scale 12-Bit Systems: VOS ≤ 0.45LSB 10V Full-Scale 16-Bit Systems: VOS ≤ 1.8LSB Active Filters Photo Diode Amplifiers DAC Current-to-Voltage Amplifiers Battery-Powered Systems UO TYPICAL APPLICATI Input Bias Current Cancellation RG Input Current vs Input Voltage RF 100 90 V+ 1/2 LT1211 + VIN VOUT SIGNAL AMP 1M + 22pF 1/2 LT1211 CANCELLATION AMP – 70 RIN = 300M 60 50 40 WITH CANCELLATION 30 20 10 0 0.01 1211/12 TA01 1M INPUT CURRENT (nA) 80 – VS = 5V, VOUT IN LINEAR REGION WITHOUT CANCELLATION RIN = 2.4G 0.1 1 INPUT VOLTAGE (V) 10 1211/12 TA02 1 LT1211/LT1212 W W W AXI U U ABSOLUTE RATI GS Total Supply Voltage (V + to V –) ............................. 36V Input Current ..................................................... ±15mA Output Short-Circuit Duration (Note 1) ........ Continuous Operating Temperature Range LT1211C/LT1212C ............................ – 40°C to 85°C LT1211I/LT1212I ............................... – 40°C to 85°C LT1211M ......................................... – 55°C to 125°C Specified Temperature Range LT1211C/LT1212C/ LT1211I/LT1212I (Note 5) ................... –40°C to 85°C LT1211M ......................................... – 55°C to 125°C Storage Temperature Range ................ – 65°C to 150°C Junction Temperature (Note 2) Plastic Package (N8, S8, N, S) ........................ 150°C Ceramic Package (J8)...................................... 175°C Lead Temperature (Soldering, 10 sec)................. 300°C U W U PACKAGE/ORDER I FOR ATIO ORDER PART NUMBER TOP VIEW OUT A 1 8 V+ –IN A 2 7 OUT B A +IN A 3 LT1211CN8 LT1211ACN8 LT1211IN8 LT1211MJ8 LT1211AMJ8 6 –IN B B V– 4 J8 PACKAGE 8-LEAD CERDIP 5 +IN B N8 PACKAGE 8-LEAD PDIP +IN A 3 13 –IN D +IN A 3 A D V+ 4 +IN B 5 6 –IN B B 5 +IN B 1211 1211I TOP VIEW 16 OUT D OUT A 1 –IN A 2 +IN A 3 V+ 11 V – A D 14 +IN D 13 4 +IN B 5 15 –IN D B C V– –IN B 6 11 –IN C 9 –IN C OUT B 7 10 OUT C OUT B 7 8 OUT C NC 8 C N PACKAGE 14-LEAD PDIP ORDER PART NUMBER LT1212CS LT1212IS 12 +IN C –IN B 6 B S8 PART MARKING S8 PACKAGE 8-LEAD PLASTIC SO LT1212CN LT1212IN 12 +IN D 10 +IN C LT1211CS8 LT1211IS8 7 OUT B A V– 4 ORDER PART NUMBER 14 OUT D 8 V+ TJMAX = 150°C, θJA = 150°C/W TOP VIEW –IN A 2 OUT A 1 –IN A 2 TJMAX = 175°C, θJA = 100°C/W (J) TJMAX = 150°C, θJA = 100°C/W (N) OUT A 1 ORDER PART NUMBER TOP VIEW 9 NC S PACKAGE 16-LEAD PLASTIC SO TJMAX = 150°C, θJA = 100°C/W TJMAX = 150°C, θJA = 70°C/W U AVAILABLE OPTIO S NUMBER OF OP AMPS Two (Dual) 2 TA RANGE – 40°C to 85°C MAX VOS (25°C) 150µV 275µV MAX TC VOS (∆VOS /∆T) 1.5µV/°C 3µV/°C 275µV 6µV/°C CERAMIC (J) PACKAGE PLASTIC DIP (N) LT1211ACN8 LT1211CN8, LT1211IN8 SURFACE MOUNT (S) LT1211CS8, LT1211IS8 LT1211/LT1212 U AVAILABLE OPTIO S NUMBER OF OP AMPS Two (Dual) TA RANGE – 55°C to 125°C Four (Quad) – 40°C to 85°C MAX VOS (25°C) 150µV 275µV 275µV MAX TC VOS (∆VOS /∆T) 1.5µV/°C 3µV/°C 6µV/°C CERAMIC (J) LT1211AMJ8 LT1211MJ8 PACKAGE PLASTIC DIP (N) SURFACE MOUNT (S) LT1212CN, LT1212IN LT1212CS, LT1212IS 5V ELECTRICAL CHARACTERISTICS VS = 5V, VCM = 0.5V, VOUT = 0.5V, TA = 25°C, unless otherwise noted. SYMBOL VOS ∆VOS ∆Time IOS IB en PARAMETER Input Offset Voltage Long-Term Input Offset Voltage Stability Input Offset Current Input Bias Current Input Noise Voltage Input Noise Voltage Density in Input Noise Current Density Input Resistance (Note 3) Input Capacitance Input Voltage Range CMRR PSRR AVOL IO SR GBW IS tr, tf OS tPD tS THD Common-Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain Maximum Output Voltage Swing (Note 4) Maximum Output Current Slew Rate Gain-Bandwidth Product Supply Current per Amplifier Minimum Supply Voltage Full Power Bandwidth Rise Time, Fall Time Overshoot Propagation Delay Settling Time Open-Loop Output Resistance Total Harmonic Distortion CONDITIONS 0.1Hz to 10Hz fO = 10Hz fO = 1000Hz fO = 10Hz fO = 1000Hz Differential Mode Common Mode f = 1MHz VCM = 0V to 3.5V VS = 2.5V to 12.5V VO = 0.05V to 3.7V, RL = 500Ω Output High, No Load Output High, ISOURCE = 1mA Output High, ISOURCE = 15mA Output Low, No Load Output Low, ISINK = 1mA Output Low, ISINK = 15mA (Note 9) AV = – 2 f = 100kHz LT1211AC LT1211AM MIN TYP MAX 75 150 0.5 LT1211C/LT1211M LT1212C MIN TYP MAX 100 275 0.6 5 50 250 12.5 12.0 0.9 0.2 40 500 10 3.8 – 0.3 105 115 560 4.40 4.30 4.00 0.003 0.047 0.362 ±50 4 13 1.3 2.2 300 45 25 36 900 75 0.001 5 60 250 12.5 12.0 0.9 0.2 40 500 10 3.8 – 0.3 102 110 560 4.40 4.30 4.00 0.003 0.047 0.362 ±50 4 13 1.3 2.2 300 45 25 36 900 75 0.001 10 3.5 0 90 90 250 4.30 4.20 3.85 ±20 0.9 Single Supply AV = 1, VO = 2.5VP-P AV = 1, 10% to 90%, VO = 100mV AV = 1, VO = 100mV AV = 1, VO = 100mV 0.01%, AV = 1, ∆VO = 2V IO = 0mA, f = 5MHz AV = 1, VO = 1VRMS, 20Hz to 20kHz 20 100 10 3.5 0 86 87 250 4.30 4.20 3.85 0.006 0.065 0.500 ±20 1.8 2.5 0.9 30 125 0.006 0.065 0.500 1.8 2.5 UNITS µV µV/Mo nA nA nVP-P nV/√Hz nV/√Hz pA/√Hz pA/√Hz MΩ MΩ pF V V dB dB V/mV V V V V V V mA V/µs MHz mA V kHz ns % ns ns Ω % 3 LT1211/LT1212 5V ELECTRICAL CHARACTERISTICS VS = 5V, VCM = 0.5V, VOUT = 0.5V, 0°C ≤ TA ≤ 70°C, unless otherwise noted. SYMBOL VOS ∆VOS ∆T IOS IB CMRR PSRR AVOL IS PARAMETER Input Offset Voltage Input Offset Voltage Drift (Note 3) Input Offset Current Input Bias Current Input Voltage Range CONDITIONS Common-Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain Maximum Output Voltage Swing (Note 4) VCM = 0.1V to 3.4V VS = 2.5V to 12.5V VO = 0.05V to 3.7V, RL = 500Ω Output High, No Load Output High, ISOURCE = 1mA Output High, ISOURCE = 10mA Output Low, No Load Output Low, ISINK = 1mA Output Low, ISINK = 10mA MIN 8-Pin DIP Package 14-Pin DIP, SOIC Package Supply Current per Amplifier 3.4 0.1 89 89 150 4.20 4.10 3.90 0.8 LT1211AC TYP MAX 100 175 0.7 1.5 5 60 3.5 – 0.1 105 114 430 4.33 4.23 4.03 0.004 0.052 0.290 1.4 25 110 0.007 0.070 0.400 2.1 LT1211C/LT1212C MIN TYP MAX 150 375 1 3 2 6 10 35 70 135 3.4 3.5 0.1 – 0.1 85 102 86 110 150 430 4.20 4.33 4.10 4.23 3.90 4.03 0.004 0.007 0.052 0.070 0.290 0.400 0.8 1.4 2.1 UNITS µV µV/°C µV/°C nA nA V V dB dB V/mV V V V V V V mA LT1211C/LT1212C LT1211I/LT1212I MIN TYP MAX 175 500 1 3 2 6 20 50 80 145 3.1 3.2 0.2 0 84 101 85 109 100 390 4.15 4.25 4.00 4.16 3.80 3.96 0.005 0.008 0.053 0.075 0.300 0.420 0.7 1.5 2.2 UNITS µV µV/°C µV/°C nA nA V V dB dB V/mV V V V V V V mA VS = 5V, VCM = 0.5V, VOUT = 0.5V, – 40°C ≤ TA ≤ 85°C, unless otherwise noted. (Note 5) SYMBOL VOS ∆VOS ∆T IOS IB CMRR PSRR AVOL IS 4 PARAMETER Input Offset Voltage Input Offset Voltage Drift (Note 3) Input Offset Current Input Bias Current Input Voltage Range CONDITIONS Common-Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain Maximum Output Voltage Swing (Note 4) VCM = 0.2V to 3.1V VS = 2.5V to 12.5V VO = 0.05V to 3.7V, RL = 500Ω Output High, No Load Output High, ISOURCE = 1mA Output High, ISOURCE = 10mA Output Low, No Load Output Low, ISINK = 1mA Output Low, ISINK = 10mA Supply Current per Amplifier 8-Pin DIP Package 14-Pin DIP, SOIC Package LT1211AC MIN TYP MAX 120 200 0.7 1.5 3.1 0.2 88 88 100 4.15 4.00 3.80 0.7 10 70 3.2 0 104 113 390 4.25 4.16 3.96 0.005 0.053 0.300 1.5 30 120 0.008 0.075 0.420 2.2 LT1211/LT1212 5V ELECTRICAL CHARACTERISTICS VS = 5V, VCM = 0.5V, VOUT = 0.5V, – 55°C ≤ TA ≤ 125°C, unless otherwise noted. SYMBOL VOS ∆VOS ∆T IOS IB CMRR PSRR AVOL IS PARAMETER Input Offset Voltage Input Offset Voltage Drift (Note 3) Input Offset Current Input Bias Current Input Voltage Range CONDITIONS Common-Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain Maximum Output Voltage Swing (Note 4) VCM = 0.4V to 3.1V VS = 2.5V to 12.5V VO = 0.05V to 3.7V, RL = 500Ω Output High, No Load Output High, ISOURCE = 1mA Output High, ISOURCE = 10mA Output Low, No Load Output Low, ISINK = 1mA Output Low, ISINK = 10mA Supply Current per Amplifier MIN 3.1 0.4 87 87 100 4.10 3.95 3.70 0.5 LT1211AM TYP MAX 140 250 0.7 1.5 15 75 3.2 0.2 104 113 250 4.20 4.10 3.90 0.007 0.060 0.350 1.7 MIN 40 130 0.010 0.085 0.500 2.5 LT1211C/LT1211M LT1212C MIN TYP MAX 150 550 5 30 50 120 13.5 13.8 –15.0 – 15.3 86 102 87 110 1200 5000 13.8 14.0 –14.4 –14.6 ±20 ±50 5 7 8 14 0.9 1.8 2.5 128 140 ±1.2 ±2.0 60 2.2 UNITS µV nA nA V V dB dB V/mV V V mA V/µs MHz mA dB V kHz µs 0.5 25 85 3.2 0.2 101 109 250 4.20 4.10 3.90 0.007 0.060 0.350 1.7 75 160 UNITS µV µV/°C nA nA V V dB dB V/mV V V V mV mV mV mA 3.1 0.4 81 84 100 4.10 3.95 3.70 0.010 0.085 0.500 2.5 LT1211M TYP MAX 200 500 1 3 + –15V ELECTRICAL CHARACTERISTICS VS = ±15V, VCM = 0V, VOUT = 0V, TA = 25°C, unless otherwise noted. SYMBOL VOS IOS IB PARAMETER Input Offset Voltage Input Offset Current Input Bias Current Input Voltage Range CONDITIONS CMRR PSRR AVOL Common-Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain Maximum Output Voltage Swing IO SR GBW IS Maximum Output Current Slew Rate Gain-Bandwidth Product Supply Current per Amplifier Channel Separation Minimum Supply Voltage Full Power Bandwidth Settling Time VCM = –15V to 13.5V VS = ±2V to ±18V VO = 0V to ±10V, RL = 2k Output High, ISOURCE = 15mA Output Low, ISINK = 15mA (Note 9) AV = – 2 (Note 6) f = 100kHz VO = ±10V, RL = 2k Equal Split Supplies AV = 1, VO = 20VP-P 0.01%, AV = 1, ∆VO = 10V LT1211AC LT1211AM MIN TYP 125 5 45 13.5 13.8 –15.0 – 15.3 90 105 90 113 1200 5000 13.8 14.0 –14.4 –14.6 ±20 ±50 5 7 8 14 0.9 1.8 128 140 ±1.2 60 2.2 MAX 400 20 95 2.5 ±2.0 5 LT1211/LT1212 + –15V ELECTRICAL CHARACTERISTICS VS = ±15V, VCM = 0V, VOUT = 0V, 0°C ≤ TA ≤ 70°C, unless otherwise noted. SYMBOL VOS ∆VOS ∆T IOS IB PARAMETER Input Offset Voltage Input Offset Voltage Drift (Note 3) Input Offset Current Input Bias Current Input Voltage Range CONDITIONS CMRR PSRR AVOL Common-Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain Maximum Output Voltage Swing VCM = –14.9V to 13.4V VS = ±2V to ±18V VO = 0V to ±10V, RL = 2k Output High, ISOURCE = 10mA Output Low, ISINK = 10mA IS Supply Current per Amplifier MIN 8-Pin DIP Package 14-Pin DIP, SOIC Package 13.4 –14.9 89 89 1000 13.8 – 14.5 0.8 LT1211AC TYP MAX 150 425 0.7 1.5 10 55 13.5 –15.1 104 112 3500 14.0 – 14.7 2.1 20 100 2.9 LT1211C/LT1212C MIN TYP MAX 200 650 1 3 2 6 10 35 60 125 13.4 13.5 –14.9 –15.1 85 101 86 108 1000 3500 13.8 14.0 – 14.5 – 14.7 0.8 2.1 2.9 UNITS µV µV/°C µV/°C nA nA V V dB dB V/mV V V mA LT1211C/LT1212C LT1211I/LT1212I MIN TYP MAX 250 700 1 3 2 6 10 40 60 130 13.1 13.2 –14.8 –15.0 84 100 85 107 1000 3000 13.7 13.9 – 14.5 – 14.7 0.7 2.2 3.0 UNITS µV µV/°C µV/°C nA nA V V dB dB V/mV V V mA LT1211M TYP MAX 300 800 1 3 UNITS µV µV/°C VS = ±15V, VCM = 0V, VOUT = 0V, – 40°C ≤ TA ≤ 85°C, unless otherwise noted. (Note 5) SYMBOL VOS ∆VOS ∆T IOS IB PARAMETER Input Offset Voltage Input Offset Voltage Drift (Note 3) Input Offset Current Input Bias Current Input Voltage Range CONDITIONS CMRR PSRR AVOL Common-Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain Maximum Output Voltage Swing VCM = – 14.8V to 13.1V VS = ±2V to ±18V VO = 0V to ±10V, RL = 2k Output High, ISOURCE = 10mA Output Low, ISINK = 10mA IS Supply Current per Amplifier 8-Pin DIP Package 14-Pin DIP, SOIC Package LT1211AC MIN TYP MAX 175 450 0.7 1.5 13.1 –14.8 88 88 1000 13.7 – 14.5 0.7 10 55 13.2 –15.0 103 111 3000 13.9 – 14.7 2.2 25 100 3.0 VS = ±15V, VCM = 0V, VOUT = 0V, – 55°C ≤ TA ≤ 125°C, unless otherwise noted. SYMBOL VOS ∆VOS ∆T IOS IB PARAMETER Input Offset Voltage Input Offset Voltage Drift (Note 3) Input Offset Current Input Bias Current Input Voltage Range CONDITIONS CMRR PSRR AVOL Common-Mode Rejection Ratio Power Supply Rejection Ratio Large-Signal Voltage Gain Maximum Output Voltage Swing VCM = – 14.6V to 13.1V VS = ±2V to ±15V VO = 0V to ±10V, RL = 2k Output High, ISOURCE = 10mA Output Low, ISINK = 10mA IS Supply Current per Amplifier 6 MIN 13.1 –14.6 87 87 800 13.6 –14.3 0.5 LT1211AM TYP MAX 200 500 0.7 1.5 10 55 13.2 –14.8 103 111 1500 13.8 –14.5 2.3 MIN 40 110 3.4 13.1 –14.6 81 84 800 13.6 –14.3 0.5 10 60 13.2 –14.8 100 107 1500 13.8 –14.5 2.3 60 140 3.4 nA nA V V dB dB V/mV V V mA LT1211/LT1212 3.3V ELECTRICAL CHARACTERISTICS VS = 3.3V, VCM = 0.5V, VOUT = 0.5V, TA = 25°C, unless otherwise noted. (Note 7) SYMBOL PARAMETER VOS Input Offset Voltage Input Voltage Range (Note 8) IO CONDITIONS Maximum Output Voltage Swing Output High, No Load Output High, ISOURCE = 1mA Output High, ISOURCE = 15mA Output Low, No Load Output Low, ISINK = 1mA Output Low, ISINK = 15mA Maximum Output Current MIN 1.8 0 2.60 2.50 2.15 ±20 LT1211AC LT1211AM TYP MAX 75 150 2.1 – 0.3 2.70 2.60 2.30 0.003 0.006 0.047 0.065 0.362 0.500 ±50 LT1211C/LT1211M LT1212C MIN TYP MAX 100 275 1.8 2.1 0 – 0.3 2.60 2.70 2.50 2.60 2.15 2.30 0.003 0.006 0.047 0.065 0.362 0.500 ±20 ±50 UNITS µV V V V V V V V V mA LT1211C/LT1212C MIN TYP MAX 150 375 1.7 1.8 0.1 – 0.1 2.50 2.63 2.40 2.53 2.20 2.33 0.004 0.007 0.052 0.070 0.290 0.400 UNITS µV V V V V V V V V LT1211C/LT1212C LT1211I/LT1212I MIN TYP MAX 175 500 1.4 1.5 0.2 0 2.45 2.55 2.30 2.46 2.10 2.26 0.005 0.008 0.053 0.075 0.300 0.420 UNITS µV V V V V V V V V LT1211M TYP 200 1.5 0.2 2.50 2.40 2.20 0.007 0.060 0.350 UNITS µV V V V V V V V V VS = 3.3V, VCM = 0.5V, VOUT = 0.5V, 0°C ≤ TA ≤ 70°C, unless otherwise noted. (Note 7) SYMBOL PARAMETER VOS Input Offset Voltage Input Voltage Range (Note 8) CONDITIONS Maximum Output Voltage Swing Output High, No Load Output High, ISOURCE = 1mA Output High, ISOURCE = 10mA Output Low, No Load Output Low, ISINK = 1mA Output Low, ISINK = 10mA MIN 1.7 0.1 2.50 2.40 2.20 LT1211AC TYP 100 1.4 – 0.1 2.63 2.53 2.33 0.004 0.052 0.290 MAX 175 0.007 0.070 0.400 VS = 3.3V, VCM = 0.5V, VOUT = 0.5V, – 40°C ≤ TA ≤ 85°C, unless otherwise noted. (Notes 5, 7) SYMBOL PARAMETER VOS Input Offset Voltage Input Voltage Range (Note 8) CONDITIONS Maximum Output Voltage Swing Output High, No Load Output High, ISOURCE = 1mA Output High, ISOURCE = 10mA Output Low, No Load Output Low, ISINK = 1mA Output Low, ISINK = 10mA MIN 1.4 0.2 2.45 2.30 2.10 LT1211AC TYP 120 1.5 0 2.55 2.46 2.26 0.005 0.053 0.300 MAX 200 0.008 0.075 0.420 VS = 3.3V, VCM = 0.5V, VOUT = 0.5V, – 55°C ≤ TA ≤ 125°C, unless otherwise noted. (Note 7) SYMBOL PARAMETER VOS Input Offset Voltage Input Voltage Range (Note 8) CONDITIONS Maximum Output Voltage Swing Output High, No Load Output High, ISOURCE = 1mA Output High, ISOURCE = 10mA Output Low, No Load Output Low, ISINK = 1mA Output Low, ISINK = 10mA MIN 1.4 0.4 2.40 2.25 2.00 LT1211AM TYP MAX 130 250 1.5 0.2 2.50 2.40 2.20 0.007 0.010 0.060 0.085 0.350 0.500 MIN 1.4 0.4 2.40 2.25 2.00 MAX 500 0.010 0.085 0.500 7 LT1211/LT1212 ELECTRICAL CHARACTERISTICS Note 1: A heat sink may be required to keep the junction temperature below absolute maximum when the output is shorted indefinitely. Note 2: TJ is calculated from the ambient temperature TA and power dissipation PD according to the following formulas: LT1211MJ8, LT1211AMJ8: TJ = TA + (PD × 100°C/W) LT1211CN8, LT1211ACN8: TJ = TA + (PD × 100°C/W) LT1211CS8: TJ = TA + (PD × 150°C/W) LT1212CN: TJ = TA + (PD × 70°C/W) LT1212CS: TJ = TA + (PD × 100°C/W) Note 3: This parameter is not 100% tested. Note 4: Guaranteed by correlation to 3.3V and ±15V tests. Note 5: The LT1211C/LT1212C are guaranteed to meet specified performance from 0°C to 70°C and are designed, characterized and expected to meet these extended temperature limits, but are not tested at – 40°C and 85°C. The LT1211I/LT1212I are guaranteed to meet the extended temperature limits. Note 6: Slew rate is measured between ±8.5V on an output swing of ±10V on ±15V supplies. Note 7: Most LT1211/LT1212 electrical characteristics change very little with supply voltage. See the 5V tables for characteristics not listed in the 3.3V table. Note 8: Guaranteed by correlation to 5V and ±15V tests. Note 9: Guaranteed by correlation to 3.3V tests. U W TYPICAL PERFOR A CE CHARACTERISTICS Distribution of Offset Voltage Drift with Temperature Distribution of Input Offset Voltage 70 Distribution of Input Offset Voltage 70 50 VS = 5V 60 LT1211 J8 PACKAGE LT1211 N8 PACKAGE VS = 5V VS = ±15V LT1211 J8 PACKAGE LT1211 N8 PACKAGE 60 LT1211 J8 PACKAGE LT1211 N8 PACKAGE 40 30 20 PERCENT OF UNITS (%) PERCENT OF UNITS (%) 30 20 10 10 0 –350 –250 –150 –50 50 150 250 INPUT OFFSET VOLTAGE (µV) –1 –2 1 –3 3 0 2 OFFSET VOLTAGE DRIFT WITH TEMPERATURE (µV/°C) 1211/12 G01 Distribution of Input Offset Voltage 70 VS = ±15V VS = 5V LT1211 S8 PACKAGE LT1212 N PACKAGE LT1212 S PACKAGE 40 50 40 30 20 700 1211/12 G03 50 PERCENT OF UNITS (%) PERCENT OF UNITS (%) 20 Distribution of Offset Voltage Drift with Temperature 70 VS = 5V 30 1211/12 G02 Distribution of Input Offset Voltage 60 40 0 –700 –500 –300 –100 100 300 500 INPUT OFFSET VOLTAGE (µV) 0 350 50 10 60 LT1211 S8 PACKAGE LT1212 N PACKAGE LT1212 S PACKAGE PERCENT OF UNITS (%) PERCENT OF UNITS (%) 40 50 30 20 LT1211 S8 PACKAGE LT1212 N PACKAGE LT1212 S PACKAGE 50 40 30 20 10 10 10 0 –350 –250 –150 –50 50 150 250 INPUT OFFSET VOLTAGE (µV) 0 350 1211/12 G04 8 –2 –4 2 –6 6 0 4 OFFSET VOLTAGE DRIFT WITH TEMPERATURE (µV/°C) 1211/12 G05 0 –700 –500 –300 –100 100 300 500 INPUT OFFSET VOLTAGE (µV) 700 1211/12 G06 LT1211/LT1212 U W TYPICAL PERFOR A CE CHARACTERISTICS Voltage Gain, Phase vs Frequency CL = 20pF RL = 2k 120 CL = 20pF RL = 2k PHASE 40 VS = ±15V 20 VOLTAGE GAIN (dB) 60 VS = 5V 20 VS = ±15V 20 GAIN 0 –20 0 VS = ±15V 0 –20 10 100 –40 1k 10k 100k 1M 10M 100M FREQUENCY (Hz) –20 100k 12 60 10 50 TA = 25°C, 125°C 40 TA = –55°C 30 20 10 3 5 7 10 20 TOTAL SUPPLY VOLTAGE (V) 1 1211/12 G08 Slew Rate vs Temperature Capacitive Load Handling 10 80 AV = –2 RL = 10k VS = ±15V 0 30 40 1211/12 G09 Slew Rate vs Supply Voltage 10 TA = 125°C VS = 5V 70 8 6 VS = 5V OVERSHOOT (%) 60 SLEW RATE (V/µs) 8 TA = 125°C 11 –60 100M 1M 10M FREQUENCY (Hz) 1211/12 G07 TA = 25°C AV = –2 RL = 10k TA = 25°C 13 VS = 5V VS = 5V 1 40 TA = –55°C 14 PHASE MARGIN (DEG) 80 15 80 60 40 100 16 PHASE SHIFT (DEG) VOLTAGE GAIN (dB) 100 60 140 SLEW RATE (V/µs) Gain-Bandwidth Product, Phase Margin vs Supply Voltage GAIN-BANDWIDTH PRODUCT (MHz) Voltage Gain vs Frequency TA = 25°C 6 TA = –55°C 4 4 50 40 30 AV = 1 20 2 AV = 5 10 AV = 10 25 0 50 75 TEMPERATURE (°C) 100 0 0 125 0 4 8 12 16 20 24 28 32 TOTAL SUPPLY VOLTAGE (V) 1211/12 G10 5 VS = ±15V 25 OUTPUT SWING (VP-P) OUTPUT SWING (VP-P) 4 3 2 1 0 100 Total Harmonic Distortion and Noise vs Frequency 30 VS = 5V 20 15 10 5 1k 10k 100k FREQUENCY (Hz) 1M 1211/12 G13 0 100 1k 10k 100k FREQUENCY (Hz) 10000 1211/12 G12 Undistorted Output Swing vs Frequency, VS = ±15V AV = 1 1000 100 CAPACITIVE LOAD (pF) 1211/12 G11 Undistorted Output Swing vs Frequency, VS = 5V AV = –1 10 36 TOTAL HARMONIC DISTORTION AND NOISE (%) 2 –50 –25 1M 1211/12 G14 0.1 VS = 5V VO = 3VP-P RL = 1k 0.01 AV = 10 0.001 0.0001 10 AV = 1 100 1k 10k FREQUENCY (Hz) 100k 1211/12 G15 9 LT1211/LT1212 U W TYPICAL PERFOR A CE CHARACTERISTICS Open-Loop Voltage Gain vs Supply Voltage Positive Output Saturation Voltage vs Temperature Open-Loop Gain, VS = 5V 6k 1.4 SATURATION VOLTAGE, V + – VOUT (V) RL = 2k 5k 4k TA = –55°C 3k TA = 25°C 2k TA = 125°C INPUT, 5µV/DIV OPEN-LOOP VOLTAGE GAIN (V/mV) RL = 2k RL = 500Ω 0 1k 1 2 3 OUTPUT (V) 4 VS = 5V 1.2 ISOURCE = 20mA 1.0 ISOURCE = 10mA 0.8 ISOURCE = 1mA 0.6 ISOURCE = 10µA 0.4 1211/12 G17 0 4 0 8 12 16 20 24 28 32 TOTAL SUPPLY VOLTAGE (V) 0.2 –50 –25 36 50 25 75 0 TEMPERATURE (°C) 100 1211/12 G16 1211/12 G18 Negative Output Saturation Voltage vs Temperature Open-Loop Gain, VS = ±15V Voltage Gain vs Load Resistance RL = 2k INPUT, 5µV/DIV OPEN-LOOP VOLTAGE GAIN (V/mV) TA = 25°C VS = ±15V 1k VS = 5V 100 RL = 500Ω –10 0 OUTPUT (V) 10 1211/12 G20 SATURATION VOLTAGE, VOUT – V – (mV) 1000 10k 10 10 100 1k LOAD RESISTANCE (Ω) ISINK = 20mA ISINK = 10mA 100 ISINK = 1mA 10 ISINK = 10µA VS = 5V 1 –50 –25 10k 0 25 50 75 TEMPERATURE (°C) Output Short-Circuit Current vs Temperature Channel Separation vs Frequency 140 110 100 90 80 70 60 50 40 30 10k 100k 1M FREQUENCY (Hz) 10M 1211/12 G22 10 1000 VS = ±15V 50 40 VS = ±15V SOURCING OR SINKING VS = 5V SOURCING OUTPUT IMPEDANCE (Ω) 120 OUTPUT SHORT-CIRCUIT CURRENT (mA) VS = ±15V TA = 25°C 125 Output Impedance vs Frequency 60 130 100 1211/12 G21 1211/12 G19 CHANNEL SEPARATION (dB) 125 30 100 10 AV = 100 1 AV = 10 0.1 AV = 1 20 –50 –25 50 100 25 75 0 CASE TEMPERATURE (°C) 125 1211/12 G23 0.01 10k 100k 1M FREQUENCY (Hz) 10M 1211/12 G24 LT1211/LT1212 U W TYPICAL PERFOR A CE CHARACTERISTICS 5V Large-Signal Response 5V Large-Signal Response 5V Small-Signal Response 3V 0V 0V 20mV/DIV 3V 100ns/DIV VS = 5V AV = 1 500ns/DIV VS = 5V AV = 1 1211/12 G25 20mV/DIV 10V 10V 0V 0V –10V –10V 100ns/DIV 2µs/DIV VS = ±15V AV = 1 1211/12 G28 VS = ±15V AV = –1 RF = RG = 1k 1211/12 G29 10 2V/DIV 500mV/DIV 1mV/DIV 250µV/DIV 1211/12 G31 VS = ±15V AV = – 1 OUTPUT STEP (V) 6 VS = 5V AV = 1 1211/12 G30 VS = ±15V 8 200ns/DIV 2µs/DIV Settling Time to 0.01% vs Output Step ±15V Settling 5V Settling 1211/12 G27 ±15V Large-Signal Response ±15V Large-Signal Response ±15V Small-Signal Response VS = ±15V AV = 1 500ns/DIV VS = 5V AV = – 1 RF = RG = 1k CF = 20pF 1211/12 G26 INVERTING 4 2 0 –2 –4 INVERTING –6 500ns/DIV –8 1211/12 G32 NONINVERTING NONINVERTING –10 0.5 2.0 1.0 1.5 SETTLING TIME (µs) 2.5 1211/12 G33 11 LT1211/LT1212 U W TYPICAL PERFOR A CE CHARACTERISTICS Supply Current vs Supply Voltage Supply Current vs Temperature Warm-Up Drift vs Time 2.6 TA = 125°C TA = 25°C 1 TA = –55°C 0 1 0 2 3 4 SUPPLY VOLTAGE (V) 2 VS = ±15V 2.2 1.8 VS = 5V 1.4 1.0 0.6 –50 –25 5 CHANGE IN OFFSET VOLTAGE (µV) SUPPLY CURRENT PER AMPLIFIER (mA) SUPPLY CURRENT PER AMPLIFIER (mA) 2 25 0 50 75 TEMPERATURE (°C) 100 VS = 5V RL = ∞ 2 TYPICAL AMPLIFIERS 1 0 –1 –2 125 10 30 40 20 TIME AFTER POWER-UP (SEC) 0 1211/12 G35 1211/12 G34 1211/12 G36 Input Bias Current vs Common-Mode Voltage Input Bias Current vs Temperature 100 50 Common-Mode Range vs Temperature V+ 0 VS = 5V VS = 5V 80 70 60 +IB 50 IOS –IB –20 COMMON-MODE RANGE (V) INPUT BIAS CURRENT (nA) INPUT BIAS CURRENT (nA) 90 TA = 25°C –40 TA = 125°C –60 TA = –55°C –80 V + –1 V + –2 V – +1 V– 40 30 –50 –25 100 125 0 2 3 1 COMMON-MODE VOLTAGE (V) –1 Input Noise Current, Noise Voltage Density vs Frequency 2.0 1.4 VOLTAGE NOISE 1.2 10 1.0 8 0.8 6 0.6 4 0.4 CURRENT NOISE 2 0 10 100 1k 10k FREQUENCY (Hz) 0.2 0 100k 1211/12 G40 12 100 125 130 VS = 5V 90 80 70 60 50 40 30 20 10 10k 100 Input Referred Power Supply Rejection Ratio vs Frequency POWER SUPPLY REJECTION RATIO (dB) 1.6 14 50 25 75 0 TEMPERATURE (°C) 1211/12 G39 110 COMMON-MODE REJECTION RATIO (dB) INPUT NOISE VOLTAGE DENSITY (nV/√Hz) 1.8 INPUT NOISE CURRENT DENSITY (pA/√Hz) VS = ±15V TA = 25°C RS = 0Ω 12 –50 –25 Common-Mode Rejection Ratio vs Frequency 20 16 4 1211/12 G38 1211/12 G37 18 V – –1 –100 50 25 75 0 TEMPERATURE (°C) 110 100 90 10M 1211/12 G41 POSITIVE SUPPLY 80 70 60 50 NEGATIVE SUPPLY 40 30 100k 1M FREQUENCY (Hz) VS = ±15V AV = 100 120 1k 10k 100k 1M FREQUENCY (Hz) 10M 1211/12 G42 LT1211/LT1212 U W U UO APPLICATI S I FOR ATIO Supply Voltage The LT1211/LT1212 op amps are fully functional and all internal bias circuits are in regulation with 2.2V of supply. The amplifiers will continue to function with as little as 1.5V, although the input common-mode range and the phase margin are about gone. The minimum operating supply voltage is guaranteed by the PSRR tests which are done with the input common mode equal to 500mV and a minimum supply voltage of 2.5V. The LT1211/LT1212 are guaranteed over the full – 55°C to 125°C range with a minimum supply voltage of 2.5V. The positive supply pin of the LT1211/LT1212 should be bypassed with a small capacitor (about 0.01µF) within an inch of the pin. When driving heavy loads and for good settling time, an additional 4.7µF capacitor should be used. When using split supplies, the same is true for the negative supply pin. Power Dissipation The LT1211/LT1212 amplifiers combine high speed and large output current drive into very small packages. Because these amplifiers work over a very wide supply range, it is possible to exceed the maximum junction temperature under certain conditions. To insure that the LT1211/ LT1212 are used properly, calculate the worst case power dissipation, define the maximum ambient temperature, select the appropriate package and then calculate the maximum junction temperature. The worst case amplifier power dissipation is the total of the quiescent current times the total power supply voltage plus the power in the IC due to the load. The quiescent supply current of the LT1211/LT1212 has a positive temperature coefficient. The maximum supply current of each amplifier at 125°C is given by the following formula: ISMAX = 2.5 + 0.036 • (VS – 5) in mA VS is the total supply voltage. The power in the IC due to the load is a function of the output voltage, the supply voltage and load resistance. The worst case occurs when the output voltage is at half supply, if it can go that far, or its maximum value if it cannot reach half supply. For example, calculate the worst case power dissipation while operating on ±15V supplies and driving a 500Ω load. ISMAX = 2.5 + 0.036 • (30 – 5) = 3.4mA PDMAX = 2 • VS • ISMAX + (VS – VOMAX) • VOMAX/RL PDMAX = 2 • 15V × 3.4mA + (15V – 7.5V) • 7.5V/500 = 0.102 + 0.113 = 0.215W per Amp If this is the quad LT1212, the total power in the package is four times that, or 0.860W. Now calculate how much the die temperature will rise above the ambient. The total power dissipation times the thermal resistance of the package gives the amount of temperature rise. For this example, in the SO surface mount package, the thermal resistance is 100°C/W junction-to-ambient in still air. Temperature Rise = PDMAX • θJA = 0.860W • 100°C/W = 86°C The maximum junction temperature allowed in the plastic package is 150°C. Therefore the maximum ambient allowed is the maximum junction temperature less the temperature rise. Maximum Ambient = 150°C – 86°C = 64°C That means the SO quad can only be operated at or below 64°C on ±15V supplies with a 500Ω load. As a guideline to help in the selection of the LT1211/ LT1212, the following table describes the maximum supply voltage that can be used with each part based on the following assumptions: 1. The maximum ambient is 70°C or 125°C depending on the part rating. 2. The load is 500Ω, includes the feedback resistors. 3. The output can be anywhere between the supplies. PART LT1211MJ8 LT1211CN8 LT1211CS8 LT1212CN LT1212CS MAX SUPPLIES 19.5V or ±16.4V 25.2V or ±18.0V 20.3V or ±17.1V 21.0V or ±17.8V 17.3V or ±14.4V MAX POWER AT MAX TA 500mW 800mW 533mW 1143mW 800mW 13 LT1211/LT1212 U W U UO APPLICATI S I FOR ATIO Inputs Typically, at room temperature, the inputs of the LT1211/ LT1212 can common mode 400mV below ground (V –) and to within 1.2V of the positive supply with the amplifier still functional. However the input bias current and offset voltage will shift as shown in the characteristic curves. For full precision performance, the common-mode range should be limited between ground (V –) and 1.5V below the positive supply. When either of the inputs is taken below ground (V –) by more than about 700mV, that input bias current will increase dramatically. The current is limited by internal 100Ω resistors between the input pins and diodes to each supply. The output will remain low (no phase reversal) for inputs 1.3V below ground (V –). If the output does not have to sink current, such as in a single supply system with a 1k load to ground, there is no phase reversal for inputs up to 8V below ground. There are no clamps across the inputs of the LT1211/ LT1212 and therefore each input can be forced to any voltage between the supplies. The input current will remain constant at about 60nA over most of this range. When an input gets closer than 1.5V to the positive supply, that input current will gradually decrease to zero until the input goes above the supply, then it will increase due to the previously mentioned diodes. If the inverting input is held more positive than the noninverting input by 200mV or more, while at the same time the noninverting input is within 300mV of ground (V –), then the supply current will increase by 1mA and the noninverting input current will increase to about 10µA. This should be kept in mind in comparator applications where the inverting input stays above ground (V –) and the noninverting input is at or near ground (V –). Output The output of the LT1211/LT1212 will swing to within 0.60V of the positive supply with no load. The open-loop output resistance, when the output is driven hard into the 14 positive rail, is about 100Ω as the output starts to source current; this resistance drops to about 25Ω as the current increases. Therefore when the output sources 1mA, the output will swing to within 0.7V of the positive supply. While sourcing 20mA, it is within 1.1V of the positive supply. The output of the LT1211/LT1212 will swing to within 3mV of the negative supply while sinking zero current. Thus, in a typical single supply application with the load going to ground, the output will go to within 3mV of ground. The open-loop output resistance when the output is driven hard into the negative rail is about 44Ω at low currents and reduces to about 24Ω at high currents. Therefore, when the output sinks 1mA, the output is about 42mV above the negative supply and while sinking 20mA, it is about 480mV above it. The output of the LT1211/LT1212 has reverse-biased diodes to each supply. If the output is forced beyond either supply, unlimited currents will flow. If the current is transient and limited to several hundred mA, no damage will occur. Feedback Components Because the input currents of the LT1211/LT1212 are less than 125nA, it is possible to use high value feedback resistors to set the gain. However, care must be taken to insure that the pole that is formed by the feedback resistors and the input capacitance does not degrade the stability of the amplifier. For example, if a single supply, noninverting gain of two is set with two 20k resistors, the LT1211/LT1212 will probably oscillate. This is because the amplifier goes open-loop at 3MHz (6dB of gain) and has 50° of phase margin. The feedback resistors and the 10pF input capacitance generate a pole at 1.6MHz that introduces 63° of phase shift at 3MHz! The solution is simple; use lower value resistors or add a feedback capacitor of 10pF or more. LT1211/LT1212 W U U UO APPLICATI S I FOR ATIO following photos. These amplifiers are unity-gain stable op amps and not fast comparators, therefore, the logic being driven may oscillate due to the long transition time. The output can be speeded up by adding 20mV or more of hysteresis (positive feedback), but the offset is then a function of the input direction. Comparator Applications Sometimes it is desirable to use an op amp as a comparator. When operating the LT1211/LT1212 on a single 3.3V or 5V supply, the output interfaces directly with most TTL and CMOS logic. The response time of the LT1211/LT1212 is a strong function of the amount of input overdrive as shown in the LT1211 Comparator Response (+) 20mV, 10mV, 5mV, 2mV Overdrives LT1211 Comparator Response (–) 20mV, 10mV, 5mV, 2mV Overdrives 4 OUTPUT (V) OUTPUT (V) 4 2 2 0 INPUT (mV) INPUT (mV) 0 100 0 100 0 5µs/DIV VS = 5V RL = ∞ 5µs/DIV VS = 5V RL = ∞ 1211/12 AI01 1211/12 AI02 W W SI PLIFIED SCHE ATIC V+ I1 I4 I3 I2 I6 I5 Q3 Q13 BIAS CM Q14 Q4 –IN Q15 +IN Q1 Q11 Q2 OUT RF Q7 Q12 CF Q10 Q8 Q5 Q9 Q6 Q16 I7 CO I8 CI V– 1211/12 SS 15 LT1211/LT1212 UO TYPICAL APPLICATI S 1A Voltage-Controlled Current Source V+ 1Ω 1k 1k 1k 500pF – VIN 100Ω 1/2 LT1211 Si9430DY P-CHANNEL + IOUT V IOUT = IN 1Ω tr < 1µs 1k RL 1211/12 TA04 1A Voltage-Controlled Current Sink V+ V+ VIN RL IOUT + 1/2 LT1211 – 100Ω Si9410DY N-CHANNEL 500pF 1k V IOUT = IN 1Ω tr < 1µs 16 1Ω 1211/12 TA05 LT1211/LT1212 U PACKAGE DESCRIPTIO Dimensions in inches (millimeters) unless otherwise noted. J8 Package 8-Lead CERDIP (Narrow 0.300, Hermetic) (LTC DWG # 05-08-1110) CORNER LEADS OPTION (4 PLCS) 0.023 – 0.045 (0.584 – 1.143) HALF LEAD OPTION 0.045 – 0.068 (1.143 – 1.727) FULL LEAD OPTION 0.005 (0.127) MIN 0.405 (10.287) MAX 8 7 6 5 0.025 (0.635) RAD TYP 0.220 – 0.310 (5.588 – 7.874) 1 0.300 BSC (0.762 BSC) 2 3 4 0.200 (5.080) MAX 0.015 – 0.060 (0.381 – 1.524) 0.008 – 0.018 (0.203 – 0.457) 0° – 15° NOTE: LEAD DIMENSIONS APPLY TO SOLDER DIP/PLATE OR TIN PLATE LEADS 0.045 – 0.068 (1.143 – 1.727) 0.014 – 0.026 (0.360 – 0.660) 0.125 3.175 0.100 ± 0.010 MIN (2.540 ± 0.254) J8 1197 17 LT1211/LT1212 U PACKAGE DESCRIPTIO Dimensions in inches (millimeters) unless otherwise noted. N8 Package 8-Lead PDIP (Narrow 0.300) (LTC DWG # 05-08-1510) 0.400* (10.160) MAX 8 7 6 5 1 2 3 4 0.255 ± 0.015* (6.477 ± 0.381) 0.300 – 0.325 (7.620 – 8.255) 0.065 (1.651) TYP 0.009 – 0.015 (0.229 – 0.381) ( +0.035 0.325 –0.015 8.255 +0.889 –0.381 0.130 ± 0.005 (3.302 ± 0.127) 0.045 – 0.065 (1.143 – 1.651) ) 0.125 (3.175) 0.020 MIN (0.508) MIN 0.018 ± 0.003 (0.457 ± 0.076) N8 1197 0.100 ± 0.010 (2.540 ± 0.254) *THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm) N Package 14-Lead PDIP (Narrow 0.300) (LTC DWG # 05-08-1510) 0.770* (19.558) MAX 14 13 12 11 10 9 8 1 2 3 4 5 6 7 0.255 ± 0.015* (6.477 ± 0.381) 0.130 ± 0.005 (3.302 ± 0.127) 0.300 – 0.325 (7.620 – 8.255) 0.045 – 0.065 (1.143 – 1.651) 0.020 (0.508) MIN 0.065 (1.651) TYP 0.009 – 0.015 (0.229 – 0.381) +0.035 0.325 –0.015 0.005 (0.125) MIN 0.100 ± 0.010 (2.540 ± 0.254) *THESE DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.010 INCH (0.254mm) ( +0.889 8.255 –0.381 18 ) 0.125 (3.175) MIN 0.018 ± 0.003 (0.457 ± 0.076) N14 1197 LT1211/LT1212 U PACKAGE DESCRIPTIO Dimensions in inches (millimeters) unless otherwise noted. S8 Package 8-Lead Plastic Small Outline (Narrow 0.150) (LTC DWG # 05-08-1610) 0.189 – 0.197* (4.801 – 5.004) 7 8 6 5 0.150 – 0.157** (3.810 – 3.988) 0.228 – 0.244 (5.791 – 6.197) 1 0.010 – 0.020 × 45° (0.254 – 0.508) 0.008 – 0.010 (0.203 – 0.254) 3 2 4 0.053 – 0.069 (1.346 – 1.752) 0.004 – 0.010 (0.101 – 0.254) 0°– 8° TYP 0.016 – 0.050 0.406 – 1.270 0.050 (1.270) TYP 0.014 – 0.019 (0.355 – 0.483) *DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE **DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE SO8 0996 S Package 16-Lead Plastic Small Outline (Narrow 0.150) (LTC DWG # 05-08-1610) 0.386 – 0.394* (9.804 – 10.008) 16 15 14 13 12 11 10 9 0.150 – 0.157** (3.810 – 3.988) 0.228 – 0.244 (5.791 – 6.197) 1 0.010 – 0.020 × 45° (0.254 – 0.508) 0.008 – 0.010 (0.203 – 0.254) 2 3 4 5 6 0.053 – 0.069 (1.346 – 1.752) 0.014 – 0.019 (0.355 – 0.483) 8 0.004 – 0.010 (0.101 – 0.254) 0° – 8° TYP 0.016 – 0.050 0.406 – 1.270 7 0.050 (1.270) TYP S16 0695 *DIMENSION DOES NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.006" (0.152mm) PER SIDE **DIMENSION DOES NOT INCLUDE INTERLEAD FLASH. INTERLEAD FLASH SHALL NOT EXCEED 0.010" (0.254mm) PER SIDE Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. 19 LT1211/LT1212 U TYPICAL APPLICATIO Single Supply, 100kHz, 4th Order Butterworth Lowpass Filter C1 1000pF R1 2.94k VIN C2 1000pF 1000pF – 1/4 LT1211 R2 866Ω 1000pF – 1.21k 1/4 LT1211 + – 1/4 LT1211 + 2.10k 1/4 LT1211 + 2.94k – VOUT + 1. 21k 1211/12 TA03a 20k 3.3V + 13k 10 1µF 0 –10 12-BIT ACCURATE SIGNAL RANGE FROM 6mV TO 1.8V ON 3.3V SINGLE SUPPLY. MAXIMUM OUTPUT OFFSET ERROR IS 676µV. 1 C1C2R1R2 1 R1 = WOQC1 Q R2 = WOC2 WO2 = GAIN (dB) FOR EACH 2ND ORDER SECTION: –20 –30 –40 –50 –60 –70 –80 –90 10k 100k 1M FREQUENCY (Hz) 10M 1211/12 TA03b RELATED PARTS PART NUMBER DESCRIPTION COMMENTS LT1213/LT1214 28MHz, 12V/µs, Single Supply Dual and Quad Precision Op Amps Twice as Fast as LT1211 LT1215/LT1216 23MHz, 50V/µs, Single Supply Dual and Quad Precision Op Amps Seven Times LT1211 Slew Rate LT1498/LT1499 10MHz, 6V/µs, Dual/Quad Rail-to-Rail Input and Output Precision C-Load Op Amps Rail-to-Rail LT1211 LT1630/LT1631 30MHz, 10V/µs, Dual/Quad Rail-to-Rail Input and Output Precision Op Amps Rail-to-Rail LT1213 LT1632/LT1633 45MHz, 45V/µs, Dual/Quad Rail-to-Rail Input and Output Precision Op Amps Rail-to-Rail LT1215 20 Linear Technology Corporation 12112fa LT/TP 0798 2K REV A • PRINTED IN USA 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408)432-1900 ● FAX: (408) 434-0507 ● www.linear-tech.com LINEAR TECHNOLOGY CORPORATION 1993