IMC101T/IMC102T iMOTION™ IMC100 High performance motor control IC series IMC100 Quality Requirement Category: Industry Feature list • • • • • • • • • • • Motion Control Engine (MCE) as ready-to-use solution for variable speed drives Field oriented control (FOC) for permanent magnet synchronous motor (PMSM) Space vector PWM with sinusoidal commutation and integrated protection features Current sensing via single or leg shunt Sensorless operation Optional support for hall sensors (analog or digital) Optional boost or totem pole PFC control integrated Flexible host interface options for motor control commands: UART, PWM or analog input signal Support for IEC 60335 (‘Class B’) Integrated scripting engine for application flexibility Multiple package options Applications • • • • Refrigerators Home appliances Pumps, fans ...any other PMSM drive Ordering Information Product Type Application Package IMC101T-T038 single motor TSSOP-38 IMC101T-Q048 QFN-48 IMC101T-F048 TQFP-48 IMC101T-F064 LQFP-64 IMC102T-F048 single motor + PFC (boost, totem pole) IMC102T-F064 Note: Datasheet TQFP-48 LQFP-64 Variants in TQFP-48 package under development. www.infineon.com Please read the Important Notice and Warnings at the end of this document 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Description Description iMOTION™ IMC100 is a family of highly integrated ICs for the control of variable speed drives. By integrating both the required hardware and software to perform control of a permanent magnet synchronous motor (PMSM) they provide the shortest time to market for any motor system at the lowest system and development cost. Power Factor Correction boost/ totem pole Power Supply Gate Driver 3-Phase Inverter UART iMOTION™ analog IMC100 Status LED Temp Sense Datasheet M Position Current Sensing single / leg shunt Position Sensing sensorless / hall 2 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Table of contents Table of contents Feature list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 About this document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1 Block Diagram Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 2.1 2.2 2.3 2.4 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Pin Configuration IMC101T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Pin Configuration Drawing IMC101T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Pin Configuration IMC102T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Pin Configuration Drawing IMC102T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 3.1 3.2 3.3 3.4 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Application schematic motor control single shunt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Application schematic motor control leg shunt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Application schematic motor control plus boost PFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Application schematic motor control plus totem pole PFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4 4.1 4.1.1 4.1.2 4.1.3 4.1.4 4.2 4.2.1 4.2.2 4.2.3 4.2.4 4.3 4.3.1 4.3.2 4.3.3 4.4 4.4.1 4.4.2 4.4.3 4.5 4.5.1 Electrical characteristics and parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 General Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Parameter Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Pin Reliability in Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Input/Output Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Analog to Digital Converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 Power Supply Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Flash Memory Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Testing Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 Power-Up and Supply Threshold Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 On-Chip Oscillator Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Motor Control Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 PWM Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Current Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Fault Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Power Factor Correction (PFC) parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Boost PFC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Datasheet 3 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series About this document 4.5.2 4.5.3 4.5.4 4.6 4.6.1 4.6.1.1 4.6.2 4.6.3 4.6.4 4.6.5 4.6.6 4.6.7 4.7 Totem Pole PFC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 PFC Current Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 PFC Fault Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Control Interface Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Serial Interface Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 UART Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Analog Speed Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Frequency Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Duty Cycle Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Over Temperature Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Pulse Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 LED Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Quality Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5 5.1 5.1.1 5.1.2 5.1.3 5.1.4 5.2 5.3 Package specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Package Outline PG-TSSOP-38-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 Package Outline PG-VQFN-48-73 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Package Outline PG-TQFP-48 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 Package Outline PG-LQFP-64-26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 Thermal Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 Part marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 About this document Scope and purpose This Datasheet describes the mechanical, electrical and functional characteristics of the iMOTION™ IMC100 series of motor control ICs. If no specific device is given the characteristics are valid for all devices within the iMOTION™ IMC100 series. For a detailed description of the functionality and configuration options please refer to the reference manual of the Motion Control Engine. Intended audience The Datasheet is targeting developers implementing a variable speed drive. Datasheet 4 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Block Diagram Reference 1 Block Diagram Reference The block diagram below gives an overview on the available functional units in the iMOTION™ IMC100 family. Not all units are required in all applications and some modules might share pins in smaller packages. Please refer to the pin configuration for the individual packages and the application schematic examples given. Motion Control Engine Motor Control Interface Motor Parameter Table Calculation Engine Parameter Selection Control Interface FOC Block Totem-Pole PFC Angle Estimator Boost PFC Interrupt Controller Motion Control Sequencer Space Vector PWM Safety Monitor Fault Handling Current Sense Logic Program RAM UART Secure Loader Enable/ Disable Digital filter OR Enable/ Disable Comparator Data RAM Programmable Gain UART Flash Memory 12bit A/D & MUX Programmable Gain DAC Reference Voltage Temperature sensing GPIO PORT Clock monitoring optional 96 MHz Oscillator 32 kHz Oscillator Oscillator Watchdog Watchdog Timer RESET Voltage supervision 3.3V – 5.0V Figure 1 Datasheet Analog Comparator Hall digital analog Encoder EVR Block diagram 5 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Pin Configuration 2 Pin Configuration The following tables give the pin configurations of the individual devices of the IMC100 series in the available packages. The pin type is specified as follows: • I - digital input • O - digital output • AIN - analog input The pin function given below refers to the standard software configuration. Different software might configure pins differently. Some of the input pins can be configured to have pull up or pull down resistor and some output pins can be configured to push-pull or open drain. This is described in the reference manual of the respective software. Pins that do not have any signal assigned are reserved for future use. These pins should be left unconnected and neither be connected to ground nor to the positive supply. Note: All required reference voltages are generated by an internal DAC, therefor the pins like REFU, REFV, REFW and PFCREF only require a blocking capacitor. 2.1 Table 1 Pin Configuration IMC101T Pin list Signal Type LQFP-64 VQFN-48 TQFP-48 TSSOP-38 Description VDD Power 2, 24, 25, 18, 19, 35, 50 27, 38 18, 19, 27, 38 10, 26 Supply Voltage VSS Power 1, 23, 49 17, 37 17, 37 9, 25 Ground PWMUL O 29 21 21 11 PWM output phase U low side PWMUH O 30 22 22 12 PWM output phase U high side PWMVL O 31 23 23 13 PWM output phase V low side PWMVH O 32 24 24 14 PWM output phase V high side PWMWL O 33 25 25 15 PWM output phase W low side PWMWH O 34 26 26 16 PWM output phase W high side GK I 36 28 28 18 Motor gate kill input VDC AIN 14 8 8 2 DC bus sensing input IU/ISS AIN 18 12 12 6 Current sense input phase U / single shunt IV AIN 15 9 9 3 Current sense input phase V / analog input IW AIN 11 5 5 37 Current sense input phase W / analog input REFU AIN 17 11 11 5 Itrip phase U reference / analog input REFV AIN 16 10 10 4 Itrip phase V reference / analog input REFW AIN 10 4 4 36 Itrip phase W reference / analog input Supply Motor control Datasheet 6 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Pin Configuration Table 1 Signal Pin list (continued) Type LQFP-64 VQFN-48 TQFP-48 TSSOP-38 Description DIR I 52 40 40 28 Direction input DUTYFREQ I 55 43 43 31 Duty/Frequency input VSP AIN 9 3 3 35 Analog speed reference input PGOUT O 42 30 30 21 Pulse output PARAM AIN 20 14 14 8 Parameter table selection, analog PAR0 I 3 33 33 22 Parameter page select 0 PAR1 I 4 34 34 23 Parameter page select 1 PAR2 I 5 35 35 24 Parameter page select 2 PAR3 I 6 36 36 27 Parameter page select 3 NTC AIN 13 7 7 7 External thermistor input LED O 41 29 29 17 Status LED Interface Communication RX0 I 57 45 45 33 Serial port 0, receive input TX0 O 58 46 46 34 Serial port 0, transmit output RX1 I 63 47 47 20 Serial port 1, receive input TX1 O 64 48 48 19 Serial port 1, transmit output Datasheet 7 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Pin Configuration 2.2 Pin Configuration Drawing IMC101T The following drawings give the position of the functional pins for the available packages. Figure 2 - 1 38 - VDC 2 37 IW IV 3 36 REFW REFV 4 35 VSP REFU 5 34 TX0 IU/ISS 6 33 RX0 NTC 7 32 - PARAM 8 31 DUTYFREQ VSS 9 30 - VDD 10 29 - PWMUL 11 28 DIR PWMUH 12 27 PAR3 PWMVL 13 26 VDD PWMVH 14 25 VSS PWMWL 15 24 PAR2 PWMWH 16 23 PAR1 LED 17 22 PAR0 GK 18 21 PGOUT TX1 19 20 RX1 Top View IMC101T T038 IMC101T-T038 Pins that do not have any signal assigned are reserved for future use. These pins should be left unconnected and neither be connected to ground nor to the positive supply. Datasheet 8 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Figure 3 TX0 RX0 - DUTYFREQ - - DIR - VDD VSS 46 45 44 43 42 41 40 39 38 37 PAR2 3 34 PAR1 REFW 4 33 PAR0 IW 5 32 - - 6 31 - NTC 7 30 PGOUT VDC 8 29 LED IV 9 28 GK REFV 10 27 VDD REFU 11 26 PWMWL IU/ISS 12 25 PWMWH 20 21 22 23 24 PWMUL PWMUH PWMVL PWMVH 18 VDD - 17 VSS 19 16 - VDD 15 IMC101T Q048 - VSP RX1 35 Top View 14 2 47 PAR3 PARAM - TX1 36 13 1 - - 48 Pin Configuration IMC101T-Q048 Pins that do not have any signal assigned are reserved for future use. These pins should be left unconnected and neither be connected to ground nor to the positive supply. Datasheet 9 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series - - - TX0 RX0 - DUTYFREQ - - DIR - VDD VSS 61 60 59 58 57 56 55 54 53 52 51 50 49 - 4 45 - PAR2 5 44 - PAR3 6 43 - - 7 42 PGOUT - 8 41 LED VSP 9 40 - REFW 10 39 - IW 11 38 - - 12 37 - NTC 13 36 GK VDC 14 35 VDD IV 15 34 PWMWH REFV 16 33 PWMWL 20 21 22 23 24 25 26 27 28 29 30 31 32 PARAM - - VSS VDD VDD - - - PWMUL PWMUH PWMVL PWMVH IMC101T F064 19 PAR1 - 46 - 3 62 - 18 PAR0 RX1 47 Top View IU/ISS 2 17 VDD 63 - REFU 1 TX1 48 Figure 4 VSS 64 Pin Configuration IMC101T-F064 Pins that do not have any signal assigned are reserved for future use. These pins should be left unconnected and neither be connected to ground nor to the positive supply. Datasheet 10 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Pin Configuration 2.3 Table 2 Pin Configuration IMC102T Pin list Signal Type LQFP-64 TQFP-48 Description VDD Power 2, 24, 25, 35, 50 18, 19, 27, 38 Supply Voltage VSS Power 1, 23, 49 17, 37 Ground PWMUL O 29 21 PWM output phase U low side PWMUH O 30 22 PWM output phase U high side PWMVL O 31 23 PWM output phase V low side PWMVH O 32 24 PWM output phase V high side PWMWL O 33 25 PWM output phase W low side PWMWH O 34 26 PWM output phase W high side GK I 36 28 Motor gate kill input VDC AIN 14 8 DC bus sensing input IU/ISS AIN 18 12 Current sense input phase U / single shunt IV AIN 15 9 Current sense input phase V / analog input IW AIN 11 5 Current sense input phase W / analog input REFU AIN 17 11 Itrip phase U reference / analog input REFV AIN 16 10 Itrip phase V reference / analog input REFW AIN 10 4 Itrip phase W reference / analog input Supply Motor control Power factor correction PFCG0 O 44 31 PFC gate drive 0 PFCG1 O 43 32 PFC gate drive 1 (totem pole only - high side switch) PFCI AIN 12 6 PFC current sensing PFCREF AIN 21 15 Itrip PFC reference input PFCITRIP AIN 22 16 Itrip PFC input VAC1 AIN 20 14 VAC sense input line 1 VAC2 AIN 19 13 VAC sense input line 2 DIR I 52 40 Direction input DUTYFREQ I 55 43 Duty/Frequency input VSP AIN 9 3 Analog speed reference input PGOUT O 42 30 Pulse output PAR0 I 3 33 Parameter page select 0 PAR1 I 4 34 Parameter page select 1 Interface Datasheet 11 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Pin Configuration Table 2 Pin list (continued) Signal Type LQFP-64 TQFP-48 Description PAR2 I 5 35 Parameter page select 2 PAR3 I 6 36 Parameter page select 3 NTC AIN 13 7 External thermistor input LED O 41 29 Status LED RX0 I 57 45 Serial port 0, receive input TX0 O 58 46 Serial port 0, transmit output RX1 I 63 47 Serial port 1, receive input TX1 O 64 48 Serial port 1, transmit output Communication Datasheet 12 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Pin Configuration 2.4 Pin Configuration Drawing IMC102T - - - TX0 RX0 - DUTYFREQ - - DIR - VDD VSS 61 60 59 58 57 56 55 54 53 52 51 50 49 - 4 45 - PAR2 5 44 PFCG0 PAR3 6 43 PFCG1 - 7 42 PGOUT - 8 41 LED VSP 9 40 - REFW 10 39 - IW 11 38 - PFCI 12 37 - NTC 13 36 GK VDC 14 35 VDD IV 15 34 PWMWH REFV 16 33 PWMWL 20 21 22 23 24 25 26 27 28 29 30 31 32 VAC1 PFCREF PFCITRIP VSS VDD VDD - - - PWMUL PWMUH PWMVL PWMVH IMC102T F064 19 PAR1 - 46 VAC2 3 62 - 18 PAR0 RX1 47 Top View IU/ISS 2 17 VDD 63 - REFU 1 TX1 48 Figure 5 VSS 64 The following drawings give the position of the functional pins for the available packages. IMC102T-F064 Pins that do not have any signal assigned are reserved for future use. These pins should be left unconnected and neither be connected to ground nor to the positive supply. Datasheet 13 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Functional description 3 Functional description iMOTION™ IMC100 is a series of highly integrated ICs for the control of a Permanent Magnet Synchronous Motor (PMSM). IMC101 devices provide control of a single motor while the IMC102 devices control the motor and additionally a boost or totem pole power factor correction (PFC). The IMC100 series is based on Infineon’s Motion Control Engine (MCE) and integrate all hardware and software functions required to implement a closed loop sensorless (or optionally sensor based) control algorithm for permanent magnet motors. IMC100 devices do not require any software programming and can be configured for a wide range of motor control inverters. The IMC100 series takes advantage of a new hardware platform that is based on a comprehensive set of innovative analog and motor control peripherals. The high level of integration both in terms of hardware modules and software algorithms results in a minimum number of external components required for the implementation of the inverter control. Infineon’s patented and field proven Motion Control Engine (MCE) implements field oriented control (FOC) using single or leg shunt current feedback and uses space vector pulse width modulation (PWM) with sinusoidal signals to achieve highest energy efficiency. In addition to the motor control algorithm it also integrates multiple configurable protection features like over- and under-voltage, over current, rotor lock etc. to protect both the power stage as well as the motor during application tuning or in case of malfunction. The second generation of the MCE further improves the performance of the sensorless control algorithm and adds functionality like optional sensor support for applications that require accurate rotor positioning, two types of ready-to-use PFC algorithms as well as more and flexible and faster host interface options. The IMC100 series is offered in several device and package variants for applications from single motor control to motor control plus PFC. All devices can be used in applications requiring functional safety according to IEC 60335 (‘Class B’). There are multiple versions of the MCE software offered by Infineon and made available for download from the Infineon web site. By using a special secure boot loader algorithm in combination with type specific chip IDs it is assured that these MCE software versions can only be installed onto the matching hardware derivatives, i.e. IMC100 variants for which the software has been tested and released for. Infineon provides the tools to program these software images for download from the website. This data sheet provides all electrical, mechanical, thermal and quality parameters. A detailed description of the features, functionality and configuration of the Motion Control Engine (MCE) can be found in the respective reference manual of the MCE. The application schematics in the following chapters show some examples of different use cases for the IMC100 devices. The combination of the different configuration options like leg vs. single shunt, sensorless or sensored operation, boost or totem pole PFC etc. is not limited to the examples shown here but can be chosen according to the individual application requirements. Datasheet 14 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Functional description 3.1 Application schematic motor control single shunt Figure 6 gives the schematic diagram for a motor control system using the IMC101 in sensorless operation and single shunt mode. ~ VDD PAR0 Motor Parameter Selection 4 digital analog 3.3V – 5.0V PWMUH PAR1 PAR2 PWMUL PAR3 PWMVH 6 PWMVL PARAM PWMWH PWMWL Preconfigured IO VSP VDC DUTYFREQ DIR GK PGOUT LED IFX High Voltage Gate Drive IC Host Interface SW Update Host Interface UART VDD RX0 TX0 RX1 ISS TX1 REFU Motor VSS Figure 6 Datasheet IMC101 in single shunt configuration 15 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Functional description 3.2 Application schematic motor control leg shunt Figure 7 gives the schematic diagram for a motor control system using the IMC101 in sensorless operation and leg shunt mode. ~ VDD PAR0 Motor Parameter Selection 4 digital analog 3.3V – 5.0V PWMUH PAR1 PAR2 PWMUL PAR3 PWMVH 6 PWMVL PARAM PWMWH PWMWL Preconfigured IO VSP VDC DUTYFREQ DIR GK PGOUT LED VDD IFX High Voltage Gate Drive IC Host Interface SW Update Host Interface UART RX0 IU TX0 REFU VDD IV RX1 REFV TX1 VDD IW REFW Motor VSS Figure 7 Datasheet IMC101 in leg shunt configuration 16 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Functional description 3.3 Application schematic motor control plus boost PFC Figure 8 gives the schematic diagram for a motor control system with boost PFC using the IMC102 in sensorless operation and single shunt mode. ~ VDD PAR0 Motor Parameter Selection 4 digital 3.3V – 5.0V PFCG0 PAR1 PAR2 PWMUH PAR3 analog PWMUL PARAM 6 PWMVH Gate Driver PWMVL Preconfigured IO PWMWH VSP PWMWL DUTYFREQ DIR GK PGOUT VDD LED Host Interface SW Update Host Interface UART VDC VDD PFCI RX0 PFCREF VDD 3 phase Gate Driver TX0 ISS RX1 REFU TX1 VAC1 VAC2 Motor VSS Figure 8 Datasheet IMC102 in single shunt configuration with boost PFC control 17 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Functional description 3.4 Application schematic motor control plus totem pole PFC Figure 9 gives the schematic diagram for a motor control system with totem pole PFC using the IMC102 in sensorless operation and single shunt mode. ~ VDD PAR0 Motor Parameter Selection 4 digital 2 PFCG0 3.3V – 5.0V PFCG1 PAR1 PAR2 PWMUH PAR3 analog PWMUL PARAM 6 PWMVH Gate Driver PWMVL Preconfigured IO PWMWH VSP PWMWL DUTYFREQ DIR GK PGOUT VDD LED Host Interface SW Update Host Interface UART VDC PFCI RX0 PFCREF VDD VDD 3 phase Gate Driver TX0 ISS RX1 REFU TX1 VAC1 VAC2 Motor VSS Figure 9 Datasheet IMC102 in single shunt configuration with totem pole PFC 18 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters 4 Electrical characteristics and parameters 4.1 General Parameters 4.1.1 Parameter Interpretation The parameters listed in this section represent partly the characteristics of the IMC100 and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are indicated by the abbreviations in the “Symbol” column: • CC Such parameters indicate Controller Characteristics, which are distinctive feature of the IMC100 and must be regarded for a system design. • SR Such parameters indicate System Requirements, which must be provided by the application system in which the IMC100 is designed in. 4.1.2 Absolute Maximum Ratings Stresses above the values listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability. Table 3 Absolute Maximum Rating Parameters Parameter Symbol Values Min. Typ. Unit Note or Test Condition Max. Ambient temperature TA SR -40 – 105 °C – Junction temperature TJ SR -40 – 115 °C – Storage temperature TST SR -55 – 125 °C – Voltage on power supply pin with respect to VSSP VDDP SR -0.3 – 6 V – SR -0.3 – VDDP + 0.3 or max. 6 V whichever is lower Voltage on analog input pins with respect to VSSP VAIN VAREF SR -0.5 – VDDP + 0.5 or max. 6 V whichever is lower Input current on any pin during overload condition IIN SR -10 – 10 mA – Absolute maximum sum of all input currents during overload condition ΣIIN SR -50 – +50 mA – Voltage on digital pins with respect to VIN VSSP Datasheet 19 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters 4.1.3 Pin Reliability in Overload When receiving signals from higher voltage devices, low-voltage devices experience overload currents and voltages that go beyond their own IO power supplies specification. Table 4 defines overload conditions that will not cause any negative reliability impact if all the following conditions are met: • full operation life-time is not exceeded • Operating Conditions are met for - pad supply levels (VDDP) - temperature If a pin current is outside of the Operating Conditions but within the overload conditions, then the parameters of this pin as stated in the Operating Conditions can no longer be guaranteed. Operation is still possible in most cases but with relaxed parameters. Note: An overload condition on one or more pins does not require a reset. Note: A series resistor at the pin to limit the current to the maximum permitted overload current is sufficient to handle failure situations like short to battery. Table 4 Overload Parameters Parameter Symbol Values Min. Unit Typ. Max. Input current on analog port pins during overload condition IOVA SR -3 – 3 mA Input current on any port pin during overload condition IOV -5 – 5 mA Absolute sum of all input circuit currents during overload condition IOVS SR – – 25 mA Datasheet SR 20 Note or Test Condition 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters Figure 10 shows the path of the input currents during overload via the ESD protection structures. The diodes against VDDP and ground are a simplified representation of these ESD protection structures. VDDP VDDP Pn.y IOVx GND ESD Figure 10 GND Pad Input Overload Current via ESD structures Table 5 and Table 6 list input voltages that can be reached under overload conditions. Note that the absolute maximum input voltages as defined in the Absolute Maximum Ratings must not be exceeded during overload. Table 5 PN-Junction Characterisitics for positive Overload Pad Type IOV = 5 mA Standard, High-current, AN/DIG_IN VIN = VDDP +(0.3 ... 0.5) V VAIN = VDDP + 0.5 V VAREF = VDDP + 0.5 V Table 6 PN-Junction Characterisitics for negative Overload Pad Type IOV = 5 mA Standard, High-current, AN/DIG_IN VIN = VSS - (0.3 … 0.5) V VAIN = VSS - 0.5 V VAREF = VSS - 0.5 V Datasheet 21 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters 4.1.4 Operating Conditions The following operating conditions must not be exceeded in order to ensure correct operation and reliability of the IMC100. All parameters specified in the following tables refer to these operating conditions, unless noted otherwise. Table 7 Operating Conditions Parameters Parameter Symbol Values Min. Unit Typ. Max. Ambient Temperature TA SR -40 – 105 °C Junction temperature TJ SR -40 – 115 °C Digital supply voltage1) VDDP SR 3.0 3.3 5.5 V Short circuit current of digital outputs2) ISC -5 – 5 mA Absolute sum of short circuit currents of the device3) ΣISC_D SR – – 25 mA 1 2 3 SR Note or Test Condition See also the Supply Monitoring thresholds Power-Up and Supply Threshold Characteristics. Applicable for digital outputs. See also section "Pin Reliability in Overload" for overload current definitions. Datasheet 22 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters 4.2 DC Parameters 4.2.1 Input/Output Characteristics The table below provides the characteristics of the input/output pins of the IMC100. Note: These parameters are not subject to production test, but verified by design and/or characterization. Note: Unless otherwise stated, input DC and AC characteristics, including peripheral timings, assume that the input pads operate with the standard hysteresis. Table 8 Input/Output Characteristics (Operating Conditions apply) Parameter Output low voltage on port pins Output low voltage on PWM outputs Output high voltage on port pins Output high voltage on PWM outputs Rise/fall time on PWM outputs4) Rise/fall time on standard pad Symbol VOLP VOLP1 VOHP VOHP1 Limit Values CC CC CC CC tHCPR, tHCPF CC tR, tF CC Unit Test Conditions Min. Max. – 1.0 V IOL = 11 mA (5 V) IOL = 7 mA (3.3 V) – 0.4 V IOL = 5 mA (5 V) IOL = 3.5 mA (3.3 V) – 1.0 V IOL = 50 mA (5 V) IOL = 25 mA (3.3 V) – 0.32 V IOL = 10 mA (5 V) – 0.4 V IOL = 5 mA (3.3 V) VDDP - 1.0 – V IOH = -10 mA (5 V) IOH = -7 mA (3.3 V) VDDP - 0.4 – V IOH = -4.5 mA (5 V) IOH = -2.5 mA (3.3 V) VDDP - 0.32 – V IOH = -6 mA (5 V) VDDP - 1.0 – V IOH = -8 mA (3.3 V) VDDP - 0.4 – V IOH = -4 mA (3.3 V) – 9 ns 50 pF @ 5 V – 12 ns 50 pF @ 3.3 V – 12 ns 50 pF @ 5 V – 15 ns 50 pF @ 3.3 V. Pin capacitance (digital inputs/outputs) CIO CC – 10 pF Pull-up/-down resistor on port pins (if enabled in software) RPUP CC 20 50 kΩ 4 VIN = VSSP Rise/Fall time parameters are taken with 10% - 90% of supply. Datasheet 23 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters Table 8 Input/Output Characteristics (Operating Conditions apply) (continued) Parameter Symbol Limit Values Min. Max. Unit Test Conditions Input leakage current 5) IOZP CC -1 1 µA 0 < VIN < VDDP, TA 105°C Maximum current per pin standard pin IMP SR -10 11 mA – Maximum current per PWM outputs pins IMP1A SR -10 50 mA – Maximum current into VDDP / out of VSS IMVDD / IMVSS SR – 260 mA 5 An additional error current (IINJ) will flow if an overload current flows through an adjacent pin. Datasheet 24 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters 4.2.2 Analog to Digital Converter (ADC) The following table shows the Analog to Digital Converter (ADC) characteristics. This specification applies to all analog input as given in the pin configuration list. Note: These parameters are not subject to production test, but verified by design and/or characterization. Table 9 ADC Characteristics (Operating Conditions apply)6) Parameter Symbol Values Min. Unit Typ. Supply voltage range VDD SR 3.0 Analog input voltage range VAIN SR VSSP- 0.05 – VDDP+ 0.05 V Conversion time tC12 CC – 1.0 1.6 μs Total capacitance of an analog input CAINT CC – – 10 pF Total capacitance of the reference input CAREFT CC – – 10 pF Sample time tsample CC – 200 – ns RMS noise ENRMS CC – 1.5 – LSB12 DNL error EADNL CC – ±2.0 – LSB12 INL error EAINL CC – ±4.0 – LSB12 Gain error EAGAIN CC – ±0.5 – % Offset error EAOFF CC – ±8.0 – mV 6 – Max. 5.5 Note or Test Condition V VDD = 3.3V All parameters are defined for the full supply range if not stated otherwise. Datasheet 25 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters 4.2.3 Power Supply Current The total power supply current defined below consists of a leakage and a switching component. Application relevant values are typically lower than those given in the following tables, and depend on the customer's system operating conditions (e.g. thermal connection or used application configurations). Note: These parameters are not subject to production test, but verified by design and/or characterization. Table 10 Power Supply parameter table; VDDP = 5V Parameter Symbol Values Min. Unit Typ. Max. Active mode current motor control only IDDPWM CC − 10 20 mA Active mode current motor control plus PFC IDDPFC CC − 14 20 mA Deep Sleep mode current7) IDDPDS CC − 0.27 − mA Wake-up time from Sleep to Active mode tSSA CC − 6 − cycles Wake-up time from Deep Sleep to Active mode tDSA CC − 290 − μsec 4.2.4 Note or Test Condition IMC102 only Flash Memory Parameters Note: These parameters are not subject to production test, but verified by design and/or characterization. Table 11 Flash Memory Parameters Parameter Symbol Values Min. Typ. Unit Note or Test Condition years Max. 100 erase / program cycles Sum of page and sector erase cycles Max. Data Retention Time tRET CC Erase Cycles8) NECYC CC 5*104 cycles Total Erase Cycles NTECYC CC 2*106 cycles 7 8 10 CPU in sleep, peripherals clock disabled, Flash is powered down and code executed from RAM after wakeup. Sum of page erase and sector erase cycles a page sees. Datasheet 26 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters 4.3 AC Parameters 4.3.1 Testing Waveforms VDDP VSS 90% 90% 10% 10% tR Figure 11 tF Rise/Fall Time Parameters VDDP VDDP / 2 Test Points VDDP / 2 VSS Figure 12 Testing Waveform, Output Delay VLOAD + 0.1V VLOAD - 0.1V Figure 13 Datasheet Timing Reference Points VOH - 0.1V VOL + 0.1V Testing Waveform, Output High Impedance 27 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters 4.3.2 Power-Up and Supply Threshold Characteristics This chapter provides the characteristics of the supply threshold in IMC100. The guard band between the lowest valid operating voltage and the brownout reset threshold provides a margin for noise immunity and hysteresis. The electrical parameters may be violated while VDDP is outside its operating range. The brownout detection triggers a reset within the defined range. The prewarning detection can be used to trigger an early warning and issue corrective and/or fail-safe actions in case of a critical supply voltage drop. Note: These parameters are not subject to production test, but verified by design and/or characterization. Note: Operating Conditions apply. Table 12 Power-Up and Supply Threshold Parameters Parameter Symbol Values Min. Unit Typ. Note or Test Condition Max. VDDP ramp-up time tRAMPUP SR VDDP/ SVDDPrise – 107 μs VDDP slew rate SVDDPOP SR 0 – 0.1 V/μs Slope during normal operation SVDDP10 SR 0 – 10 V/μs Slope during fast transient within +/-10% of VDDP SVDDPrise SR 0 – 10 V/μs Slope during power-on or restart after brownout event SVDDPfall9) SR 0 – 0.25 V/μs Slope during supply falling out of the +/-10% limits10) VDDPPW CC 2.1 2.25 2.4 V ANAVDEL.VDEL_SELECT = 00B 2.85 3 3.15 V ANAVDEL.VDEL_SELECT = 01B 4.2 4.4 4.6 V ANAVDEL.VDEL_SELECT = 10B calibrated, before user code starts running VDDP prewarning voltage VDDP brownout reset voltage VDDPBO CC 1.55 1.62 1.75 V VDDP voltage to ensure defined pad states VDDPPA CC – 1.0 – V 9 10 A capacitor of at least 100 nF has to be added between VDDP and VSSP to fulfill the requirement as stated for this parameter. Valid for a 100 nF buffer capacitor connected to supply pin where current from capacitor is forwarded only to the chip. A larger capacitor value has to be chosen if the power source sink a current. Datasheet 28 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters Table 12 Power-Up and Supply Threshold Parameters (continued) Parameter Symbol Values Min. Typ. Unit Note or Test Condition Max. Start-up time from poweron reset tSSW CC − 260 – μs Time to the first user code instruction11) Start-up time to PWM on tPWMON CC 5.2 - 360 ms Time to PWM enabled 5.0V } VDDP Figure 14 11 VDDPPW VDDPBO Supply Threshold Parameters This values does not include the ramp-up time. During startup firmware execution, MCLK is running at 48 MHz and the clocks to peripheral as specified in register CGATSTAT0 are gated. Datasheet 29 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters 4.3.3 On-Chip Oscillator Characteristics Table 13 provides the characteristics of the 96 MHz digital controlled oscillator DCO1. The DCO1 is used as the time base during normal operation. Note: These parameters are not subject to production test, but verified by design and/or characterization. Table 13 96 MHz DCO1 Characteristics Parameter Symbol Limit Values Min. Typ. Max. Unit Test Conditions Nominal frequency fNOM CC 95.7 96 96.3 MHz under nominal conditions12) after trimming Short term frequency deviation (over VDDC) ΔfST CC -1 – 1 % with respect to fNOM (typ), at 25°C Accuracy ΔfLT CC -1.7 – 3.4 % with respect to fNOM(typ), over temperature (0°C to 85°C) -3.9 – 4.0 % with respect to fNOM(typ), over temperature (-40°C to 105°C) Table 14 provides the characteristics of the 32 kHz digital controlled oscillator DCO2. The DCO2 is only used internally as a secondary clock source for the internal watchdog and as a fallback in case of failure of DCO1. Table 14 32 kHz DCO2 Characteristics Parameter Symbol Limit Values Min. Typ. Max. Unit Test Conditions Nominal frequency fNOM CC 32.5 32.75 33 kHz under nominal conditions13) after trimming Short term frequency deviation (over VDDC) ΔfST CC -1 – 1 % with respect to fNOM(typ), at 25°C Accuracy ΔfLT CC -1.7 – 3.4 % with respect to fNOM(typ), over temperature (0°C to 85°C) -3.9 – 4.0 % with respect to fNOM(typ), over temperature (-40°C to 105°C) 12 13 The deviation is relative to the factory trimmed frequency at nominal VDDC and TA = + 25°C. The deviation is relative to the factory trimmed frequency at nominal VDDC and TA = + 25°C. Datasheet 30 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters 4.4 Motor Control Parameters The following parameters are defined in the iMOTION™ motion control engine (MCE) software. 4.4.1 Table 15 PWM Characteristics Electrical characteristics Parameter Symbol Values Min. Motor PWM Frequency 4.4.2 Table 16 fPWM 5 Unit Typ. 16 Max. 20 kHz Current Sensing Motor Current Sensing Parameter Symbol Values Min. Input range IPWM Configurable analog gain Itrip input range IPWMTRIP Itrip offset Input capacitance 4.4.3 CREF Unit Typ. Max. VDD+0.05 Note or test condition VSS-0.05 - V - 1/ 3/ 6/ 12 - VSS-0.05 - VDD+0.05 V - ±8 - mV - - 10 pF REFU, REFV, REFW capacitor Unit Note or test condition Fault Timing Figure 15 Fault timing Table 17 Gatekill timing Parameter Symbol Values Min. Typ. Max. GK pulse width twGK 1 - - μs GK input to PWM shutoff tGK - 1.3 - μs Datasheet Note or test condition 31 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters Table 17 Gatekill timing (continued) Parameter Symbol Values Min. Typ. Unit Note or test condition Max. Motor Fault reset timing tRESET - 1.84 - ms fault reset command via UART to PWM reactivation Itrip to PWM shutoff tPWMOFF - 1.0 - μs single shunt Itrip to PWM shutoff tPWMOFF - 1.0 - μs leg shunt Datasheet 32 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters 4.5 Power Factor Correction (PFC) parameters The parameters specified for the power factor correction only refer to the IMC102 with integrated PFC control algorithms. 4.5.1 Table 18 Boost PFC characteristics Electrical characteristics Parameter Symbol Values Min. PFC frequency 4.5.2 Table 19 fPFC - Typ. 20 Unit Note or test condition kHz Motor PWM frequency within specified range Unit Note or test condition kHz Motor PWM frequency within specified range Max. 50 Totem Pole PFC characteristics Electrical characteristics Parameter Symbol Values Min. PFC frequency 4.5.3 fPFC - Typ. 20 Max. 50 PFC Current Sensing The current sensing specification applies to both PFC algorithms, boost mode and totem pole. Table 20 PFC Current Sensing Parameter Symbol Values Min. Input range IPFC Configurable analog gain PFC Itrip input range IPFCTRIP Itrip offset Input capacitance Datasheet CREF Typ. Unit Note or test condition V VDD= 3.3 or 5.0 V Max. VSS- 0.05 - - 1/ 3/ 6/ 12 - VSS-0.05 - VDD+ 0.05 V VDD= 3.3 or 5.0 V - ±3 - mV Input voltage difference > 200mV - - 10 pF PFCREF capacitor 33 VDD+ 0.05 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters 4.5.4 Table 21 PFC Fault Timing PFC Fault timing Parameter Symbol Values Min. Unit Typ. Max. Itrip to PFC PWM shutoff tPFCOFF - 1.18 - μs PFC fault reset timing tRESET - 1.0 - ms Datasheet 34 Note or test condition fault reset command via UART to PWM reactivation 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters 4.6 Control Interface Parameters The following tables specify the interfaces that can be used to control the motor drive in the application. 4.6.1 Serial Interface Parameters The IMC100 series provides the following communication interfaces. Note: These parameters are not subject to production test, but verified by design and/or characterization. 4.6.1.1 UART Interface The UART interface is configured as given below. Note: Operating Conditions apply. Table 22 Electrical characteristics Parameter Symbol Values Min. Unit Typ. Max. UART baud rate 1200 57600 - UART mode - 8-N-1 - UART sampling filter period 14) TUARTFIL - 1/16 - Note or test condition Bps data-parity-stop bit TBAUD TBAUD TXD Start Bit Data and Parity Bit Stop Bit RXD TUARTFIL Figure 16 14 UART timing Each bit including start and stop bit is sampled three times at center of a bit at an interval of 1/16 TBAUD. If three sampled values do not agree, then UART noise error is generated. Datasheet 35 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters 4.6.2 Analog Speed Input motor speed RPM max motor stop RPM min VSP VSP MAX VSP START VSP STOP Figure 17 VSP analog control mode Table 23 Analog Speed Control Voltage (VSP) Parameter Symbol Values Min. Typ. Unit Note or test condition Max. Motor start voltage VSPSTART - 1.2 - V Configured VSPSTART=1.0V Motor stop voltage VSPSTOP - 1.0 - V Configured VSPSTOP=1.0V Motor max voltage VSPMAX - 4.9 4.95 V VDD=5.0V VSP active to PWM start tSTART - 44 - ms VSP inactive to PWM stop tSTOP - 16 - ms Datasheet 36 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters 4.6.3 Frequency Input In frequency input control mode, the motor operations like motor start, motor stop and speed change are controlled by applying a square wave frequency signal on a digital input pin. motor speed RPM max motor stop RPM min f CTRL Frequency input control mode Table 24 Frequency Control Mode Parameter f MAX f START f STOP Figure 18 Symbol Values Min. Typ. Unit Note or test condition fSTART > fSTOP Max. Motor start frequency fSTART - 100 360 Hz Motor stop frequency fSTOP - 50 - Hz Motor max speed frequency fMAX - - 1000 Hz Frequency input duty cycle TDUTY 10 - 90 % Datasheet 37 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters 4.6.4 Duty Cycle Input In duty cycle input control mode, the motor operations like motor start, stop and speed change are controlled by varying the duty cycle of a rectangular wave signal on a digital input pin. motor speed RPM max motor stop RPM min T CTRL Duty cycle input control mode Table 25 Duty Cycle Control Mode Parameter T MAX T START T STOP Figure 19 Symbol Values Min. Unit Typ. Max. Input signal frequency fDUTY 5 1000 20000 Hz Motor start duty cycle TSTART - 10 - % Motor stop duty cycle TSTOP - 5 - % Motor max duty cycle TMAX - 95 - % Datasheet 38 Note or test condition TSTART > TSTOP 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters 4.6.5 Over Temperature Input The over temperature input can be used to continuously monitor an external temperature sensor like an NTC. Table 26 Over Temperature Input Parameter Symbol Values Min. Over Temperature Input Threshold VOT Over Temperature to PWM shutdown tOT 4.6.6 0.1 Typ. Unit Note or test condition VDD=3.3V, Configurable parameter e.g. via MCEDesigner, default=1.0V Max. 1.0 3.0 V 1.0 2.1 ms Pulse Output The IMC100 series can generate a square wave pulse output in sync with the motor rotation which can be used to monitor the motor speed. The number of pulses to be generated for a full rotation can be configured. Table 27 Pulse Output Parameter Symbol Values Min. Unit Typ. Max. Pulses per Rotation PPR 4 - 24 Pulse duty cycle tPPR - 50 - 4.6.7 Note or test condition % LED Output The IMC100 series provides an output that can be connected to an LED to give a visual indication of the status of the motor drive. Table 28 LED Output Parameter Symbol Values Min. Unit Typ. Max. Fault to LED delay tLEDFAULT - 53 - ms Fault reset to LED delay tLEDRESET - 1.84 - ms LED blinking frequency fLED 1 1000 Hz LED blinking duty cycle tLED 5 95 % Datasheet 39 Note or test condition 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Electrical characteristics and parameters 4.7 Quality Declaration Table 29 shows the characteristics of the quality parameters in the IMC100. Table 29 Quality Parameters Parameter Symbol Limit Values Unit Notes Min. Max. VHBM SR − 2000 V Conforming to EIA/ JESD22-A114-B ESD susceptibility according to VCDM SR Charged Device Model (CDM) pins − 500 V Conforming to JESD22C101-C Moisture sensitivity level MSL CC − 3 − JEDEC J-STD-020C Soldering temperature TSDR SR − 260 °C Profile according to JEDEC J-STD-020D ESD susceptibility according to Human Body Model (HBM) Datasheet 40 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Package specification 5 Package specification 5.1 Package Outlines All dimensions in mm. You can find complete information about Infineon packages, packing and marking in our Infineon Internet Page “Packages”: www.infineon.com/packages 5.1.1 Figure 20 Datasheet Package Outline PG-TSSOP-38-9 PG-TSSOP-38-9 41 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Package specification 5.1.2 Figure 21 Datasheet Package Outline PG-VQFN-48-73 PG-VQFN-48-73 42 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Package specification 5.1.3 Figure 22 Datasheet Package Outline PG-TQFP-48 PG-TQFP-48 43 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Package specification 5.1.4 Figure 23 Datasheet Package Outline PG-LQFP-64-26 PG-LQFP-64-26 44 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Package specification 5.2 Thermal Considerations Table 30 Thermal Characteristics of the Packages Parameter Symbol Limit Values Min. Max. Unit Package Types Exposed Die Pad Dimensions Ex × Ey CC - 4.2 × 4.2 mm PG-VQFN-48-73 Thermal resistance JunctionAmbient1) RΘJA CC - 86.0 K/W PG-TSSOP-38-9 - 44.9 K/W PG-VQFN-48-73 - t.b.d. K/W PG-TQFP-48 66.7 K/W PG-LQFP-64-26 Note: For electrical reasons, it is required to connect the exposed pad to the board ground VSSP, independent of EMC and thermal requirements. When operating the IMC100 in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage. The maximum heat that can be dissipated depends on the package and its integration into the target board. The “Thermal resistance RΘJA” quantifies these parameters. The power dissipation must be limited so that the average junction temperature does not exceed 115°C. The difference between junction temperature and ambient temperature is determined by ΔT = (PINT + PIOSTAT + PIODYN) × RΘJA The internal power consumption is defined as PINT = VDDP × IDDP (switching current and leakage current). The static external power consumption caused by the output drivers is defined as PIOSTAT = Σ((VDDP - VOH) × IOH) + Σ(VOLIOL) The dynamic external power consumption caused by the output drivers (PIODYN) depends on the capacitive load connected to the respective pins and their switching frequencies. If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation: • Reduce VDDP, if possible in the system • Reduce the system frequency • Reduce the number of output pins • Reduce the load on active output drivers 1 Device mounted on a 4-layer JEDEC board (JESD 51-5); exposed pad of VQFN soldered. Datasheet 45 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series Package specification 5.3 Part marking Manufacturer IMC101T T038 XXXXX Figure 24 Datasheet Part number Lot number or -code IMC102T Q048 XXXXX Part marking 46 1.1 2018-02-20 iMOTION™ IMC100 High performance motor control IC series References 6 References Revision history Document version Date of release Description of changes 1.0 2018-02-09 • Initial version 1.1 2018-02-20 • corrected RX1, TX1 in QFN-48, QFP-48 and LQFP-64 Datasheet 47 1.1 2018-02-20 Trademarks All referenced product or service names and trademarks are the property of their respective owners. Edition 2018-02-20 Published by Infineon Technologies AG 81726 Munich, Germany © 2018 Infineon Technologies AG All Rights Reserved. Do you have a question about any aspect of this document? Email: [email protected] Document reference IFX-utn1491921304081 IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics (“Beschaffenheitsgarantie”) . With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer’s products and any use of the product of Infineon Technologies in customer’s applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury