AD ADD8702 12-channel gamma buffers with v buffer Datasheet

12-Channel Gamma Buffers
with VCOM Buffer
ADD8702
FEATURES
Programmable 12-Channel Gamma Reference Generator
Mask Programmable Adjustable VCOM Buffer
Upper/Lower Outputs Swing to VDD/GND
Continuous Output Current: 10 mA
VCOM Peak Output Current: 250 mA
Outputs with Fast Settling Time for Load Change
Output Pins Are Compatible with ADD8701
Single-Supply Operation: 7 V to 16 V
Supply Current: 15 mA Max
The ADD8702 provides a complete programmed set of gamma
voltage references for the LCD source drivers. These references
settle quickly to load change. The VCOM output is stable with
high capacitive loads and can source or sink 250 mA peak current. The VCOM output level can be adjusted using an external
trim-potentiometer or discrete resistors.
PANEL
TIMING
CONTROLLER
GND
VGMA12
VGMA11
VGMA10
VGMA9
VGMA8
VGMA7
31
30
26
28
27
26
25
VGMA6
VIN11
4
21
VGMA5
VIN10
5
20
VGMA4
VIN9
6
19
VGMA3
VIN8
7
18
VGMA2
VIN7
8
17
VGMA1
9
10
11
12
13
14
15
16
GND
22
VDD
3
VLOW
VDD
VHIGH
VIN2
23
VIN3
GND
2
VIN4
24
VCOM ADJ
VIN5
1
GENERAL DESCRIPTION
The ADD8702 is a low cost, mask programmable, 12-channel
gamma reference generator, plus an adjustable VCOM driver. This
part is designed to provide gamma correction for high resolution
TFT LCD panels. The 12 gamma reference levels and VCOM are
mask programmable to 0.3% resolution using the on-chip 500
chain resistor string. This reduces component and board costs.
32
VDD
VIN6
APPLICATIONS
TFT LCD Panels
VCOM OUT
FUNCTIONAL BLOCK DIAGRAM
The output pins are compatible with the ADD8701. This allows
for single board design and fast turns for prototyping using the
initial ADD8701 board design.
The ADD8702 is specified over the temperature range of –40°C
to +85°C and comes in the 32-lead lead frame chip scale package (LFCSP) for compact board space.
ADD8702
TIMING AND CONTROL
GAMMA
REFERENCE
VOLTAGES
SCAN DRIVER CONTROL
GAMMA
VCOM
SOURCE DRIVER
NO. 1
SOURCE DRIVER
NO. 2
SOURCE DRIVER
NO. 8
384
384
384
R G B
SCAN
DRIVERS
768
TFT COLOR PANEL
1024 768
Figure 1. Typical SVGA TFT LCD Application
REV. 0
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties that
may result from its use. No license is granted by implication or otherwise
under any patent or patent rights of Analog Devices. Trademarks and
registered trademarks are the property of their respective companies.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700
www.analog.com
Fax: 781/326-8703
© 2003 Analog Devices, Inc. All rights reserved.
ADD8702–SPECIFICATIONS
ELECTRICAL CHARACTERISTICS (V
DD
= 16 V, TA = 25ⴗC, unless otherwise specified.)
Parameter
Symbol
OUTPUT ACCURACY
VSYSTEM ERROR
VSY ERROR
MASK PROGRAMMABLE
RESISTOR STRING
Total Resistor String
Resistor Matching
RTOTAL
RMATCH
500 Elements VLOW to VHIGH
Any Two Segments
VOUT
IL = 100 µA
IL = 5 mA
–40°C ≤ TA ≤ +85°C
IL = 5 mA
OUTPUT CHARACTERISTICS
Output Voltage High
(VGMA11, VGMA12)
Output Voltage Mid
(VGMA3 to VGMA10)
Output Voltage Low
(VGMA1, VGMA2)
VOUT
Conditions
Min
15.85
15.75
Typ
Max
Unit
10
50
mV
22.5
1
kΩ
%
15.995
15.95
V
V
V
V
14.6
IL = 100 µA
IL = 5 mA
–40°C ≤ TA ≤ +85°C
1 V Step 0.1%, RL = 10 kΩ, CL = 200 pF
10
150
1
mV
mV
mV
mA
mA
µs
IOUT
IPK
tS
1 V Step 0.1%, RL = 10 kΩ, CL = 200 pF
35
250
0.8
mA
mA
µs
SUPPLY CHARACTERISTICS
Supply Voltage
Power Supply Rejection Ratio
VDD
PSRR
VS = 6 V to 17 V, –40°C ≤ TA ≤ +85°C
SUPPLY CURRENT
ISYS
VOUT
Continuous Output Current
Peak Output Current
Settling Time—Voltage
IOUT
IPK
tS
VCOM CHARACTERISTICS
Continuous Output Current
Peak Output Current
Settling Time—Voltage
No Load
–40°C ≤ TA ≤ +85°C
5
50
7
68
150
250
16
V
dB
15
16
mA
mA
75
11
Specifications subject to change without notice.
–2–
REV. 0
ADD8702
ABSOLUTE MAXIMUM RATINGS*
Supply Voltage (VS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V
Storage Temperature Range . . . . . . . . . . . . . –65°C to +150°C
Operating Temperature Range . . . . . . . . . . . . –40°C to +85°C
Junction Temperature Range . . . . . . . . . . . . . –65°C to +150°C
Lead Temperature Range (Soldering, 60 sec.) . . . . . . . . 300°C
ESD Tolerance (HBM) . . . . . . . . . . . . . . . . . . . . . . . ± 1,000 V
Package Type
JA1
JB2
Unit
32-Lead LFCSP (CP)
35
13
°C/W
NOTES
1
θJA is specified for worst-case conditions, i.e., θJA is specified for device soldered
in circuit board for surface-mount packages.
2
ψJB is applied for calculating the junction temperature by reference to the board
temperature.
*Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the
device at these or any other conditions above those indicated in the operational
sections of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect device reliability.
ORDERING GUIDE
Model
Temperature
Range
Package
Description
Package
Option
ADD8702ACP-R2
ADD8702ACP-REEL
ADD8702ACP-REEL7
–40°C to +85°C
–40°C to +85°C
–40°C to +85°C
32-Lead LFCSP
32-Lead LFCSP
32-Lead LFCSP
CP-32
CP-32
CP-32
32 VCOM OUT
31 GND
30 VGMA12
29 VGMA11
28 VGMA10
27 VGMA9
26 VGMA8
25 VGMA7
PIN CONFIGURATION
24 GND
23 VDD
22 VGMA6
21 VGMA5
20 VGMA4
19 VGMA3
18 VGMA2
17 VGMA1
PIN 1
INDICATOR
ADD8702
TOP VIEW
VIN6 9
VIN5 10
VIN4 11
VIN3 12
VIN2 13
VLOW 14
VDD 15
GND 16
VDD 1
VCOM ADJ 2
VHIGH 3
VIN11 4
VIN10 5
VIN9 6
VIN8 7
VIN7 8
PIN FUNCTION DESCRIPTIONS
Pin No.
Mnemonic
Description
1, 15, 23
VDD
Power (+)
2
VCOM ADJ
VCOM Adjust Input
3
4–13
14
VHIGH
VIN11–VIN2
VLOW
Highest Gamma Input Voltage
Gamma Buffer Inputs
Lowest Gamma Input Voltage
16, 24, 31
GND
Power (–)
17–22, 25–30
VGMA1–VGMA12
Gamma Buffer Outputs
32
VCOM OUT
VCOM Buffer Output
CAUTION
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily
accumulate on the human body and test equipment and can discharge without detection. Although the
ADD8702 features proprietary ESD protection circuitry, permanent damage may occur on devices
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended
to avoid performance degradation or loss of functionality.
REV. 0
–3–
ADD8702–Typical Performance Characteristics
12
12
8
6
4
2k, 10k
0
10
GAIN (dB)
SUPPLY CURRENT (mA)
SUPPLY CURRENT (mA)
VDD = 16V
GAMMA 1 TO 9
11
10
9
8
–10
150
–20
7
–30
2
0
10
VDD = 16V
TA = 25C
6
0
4
8
12
SUPPLY VOLTAGE (V)
5
–40
16
TPC 1. Supply Current vs.
Supply Voltage
25
TEMPERATURE (C)
–40
100k
85
TPC 2. Supply Current vs.
Temperature
10
2k, 10k
0
0
20
VDD = 16V
VCOM
VDD = 16V
GAMMA 1 TO 9
10
2k, 10k
150
–20
50pF
GAIN (dB)
GAIN (dB)
GAIN (dB)
–10
–10
30M
TPC 3. Frequency Response
vs. Resistive Loading
10
VDD = 16V
GAMMA 10 TO 12
1M
10M
FREQUENCY (Hz)
150
–20
0
100pF
340pF
–10
–30
540pF
–30
–20
–40
1040pF
–40
100k
–50
100k
30M
1M
10M
FREQUENCY (Hz)
TPC 4. Frequency Response
vs. Resistive Loading
–30
100k
30M
TPC 5. Frequency Response
vs. Resistive Loading
180
VDD = 16V
VCOM
10
50pF
0
100pF
340pF
–10
GAIN (dB)
10
0
–10
340pF
540pF
100pF
1040pF
1040pF
–30
100k
1M
10M
FREQUENCY (Hz)
TPC 7. Frequency Response
vs. Capacitive Loading
30M
30M
GAMMA 12
GAMMA 1
140
120
100
80
540pF
–20
–20
VDD = 16V
GAMMA 1 TO 12
RL = 2k
160
PHASE SHIFT (Degrees)
VDD = 16V
GAMMA 10 TO 12
1M
10M
FREQUENCY (Hz)
TPC 6. Frequency Response
vs. Capacitive Loading
20
20
GAIN (dB)
1M
10M
FREQUENCY (Hz)
–30
100k
50pF
60
40
1M
10M
FREQUENCY (Hz)
30M
TPC 8. Frequency Response
vs. Capacitive Loading
–4–
0
200
400
600
800 1,000
CAPACITIVE LOAD (pF)
1,200
TPC 9. Input and Output Phase
Shift vs. Capacitive Load
REV. 0
ADD8702
16
VDD = 16V
RL = 10k
CL = 100pF
VDD = 16V
RNULL = 33
CL = 100pF
14
VOLTAGE (20mV/DIV)
VOLTAGE (2V/DIV)
SLEW RATE (V/s)
12
10
VCOM SLEW RATE FALLING
8
VCOM SLEW RATE RISING
6
4
7V < V DD < 16V
RNULL = 33
CL = 0.1F
2
0
–40
TPC 10. Large Signal Transient
Response
TPC 12. Small Signal Transient
Response
11
11
9
9
8
8
120pF
7
320pF
1F 10F
6
5
520pF
4
VDD = 16V
GAMMA = 11
10
VDD = 16V
VCOM
10
9
8
320pF
7
120pF
6
AMPLITUDE (V)
VDD = 16V
GAMMA = 2
AMPLITUDE (V)
AMPLITUDE (V)
TIME (20s/DIV)
TPC 11. Slew Rate vs. Temperature
11
10
1F 10F
5
520pF
4
120pF
7
5
4
520pF
3
3
2
2
2
1
1
1
0
–200
0
–200
0
–200
200
600
1,000
TIME (ns)
1,400
1,800
200
600
1,000
TIME (ns)
1,400
1,800
1F 10F
320pF
6
3
200
600
1,000
TIME (ns)
1,400
TPC 13. Transient Load
Response vs. Capacitive Load
TPC 14. Transient Load
Response vs. Capacitive Load
TPC 15. Transient Load
Response vs. Capacitive Load
100
1,400
50
80
70
60
50
SINK
40
30
SOURCE
20
10
0
0.001
0.01
0.1
1
10
LOAD CURRENT (mA)
TPC 16. Output Voltage
Error vs. Load Current
REV. 0
100
1,200
VDD = 16V
GAMMA 10 TO 12
OUTPUT VOLTAGE ERROR (mV)
VDD = 16V
90 GAMMA 1 TO 9
OUTPUT VOLTAGE ERROR (mV)
OUTPUT VOLTAGE ERROR (mV)
85
25
TEMPERATURE (C)
TIME (2s/DIV)
SINK
1,000
800
600
400
SOURCE
200
0
0.001
1,800
VDD = 16V
45 VCOM
40
35
30
25
20
SOURCE
15
10
SINK
5
0.01
0.1
1
10
LOAD CURRENT (mA)
TPC 17. Output Voltage
Error vs. Load Current
–5–
100
0
0.001
0.01
0.1
1
10
LOAD CURRENT (mA)
TPC 18. Output Voltage
Error vs. Load Current
100
ADD8702
80
4,000
3,000
2,000
1,000
0
–22
–14
–6
2
10
18
26
OUTPUT VOLTAGE ERROR (mV)
34
TPC 19. Output Voltage Error
Distribution
40
20
0
–20
–40
PSRR
–60
–80
–100
–120
100
10k
100k
FREQUENCY (Hz)
1M
10M
TIME (40s/DIV)
TPC 21. No Phase Reversal
70
VDD = 16V
VCOM AND BUFFERS 1 TO 9
MARKER SET @ 10kHz
MARKER READING = 25.7nV/ Hz
60
50
VOLTAGE NOISE DENSITY (nV/ Hz)
VOLTAGE NOISE DENSITY (nV/ Hz)
1k
TPC 20. Power Supply Rejection
Ratio vs. Frequency
70
40
30
20
10
0
–10
ALL CHANNELS
VDD = 8V
TA = 25C
60
VOLTAGE (3V/DIV)
VDD = 16V
TA = 25C
5,000 ALL CHANNELS
POWER SUPPLY REJECTION RATIO (dB)
FREQUENCY (No. of Amplifiers)
6,000
0
5
10
15
FREQUENCY (Hz)
20
TPC 22. Voltage Noise Density
vs. Frequency
25
VDD = 16V
BUFFERS 10 TO 12
MARKER SET @ 10kHz
MARKER READING = 36.6nV/ Hz
60
50
40
30
20
10
0
–10
0
5
10
15
FREQUENCY (Hz)
20
25
TPC 23. Voltage Noise Density
vs. Frequency
–6–
REV. 0
ADD8702
VHIGH
A12
GMA 12
VIN11
A11
GMA 11
VIN10
A10
GMA 10
VIN9
A9
GMA 9
VIN8
A8
GMA 8
VIN7
A7
GMA 7
VIN6
A6
GMA 6
VIN5
A5
GMA 5
VIN4
A4
GMA 4
VIN3
A3
GMA 3
VIN2
A2
GMA 2
VLOW
A1
GMA 1
16V
BUFFER
RNULL
CT
RL
Figure 2. Bandwidth Measurement Information
Panel size and resolution determine the number of gamma
reference voltages required. For a 256-grayscale level, 8-bit color
scheme, 6 ⫻ 2 external reference nodes should be sufficient to
match the characteristics of the LCD driver to the characteristics
of the actual LCD panel for improved picture quality. External
reference gamma correction voltages are often generated using
a simple resistor ladder. Using the ADD8702, the resistor
ladder is incorporated in the IC for reduced cost and number
of components.
16V
0.1s
BUFFER
33
1k
VTH
5V
VTH
10V
5V
0V
Figure 3. Transient Load Regulation Test Circuit
The ADD8702 is designed to meet the rail-to-rail capability
needed by the application, yet offers the lowest cost per channel
solution. The ADD8702 gamma buffers offer 10 mA continuous
drive current capability. To be more competitive, the design
maximizes the die area by allowing specific channels to swing to
the positive rail and negative rail. So it is imperative that the
channels swinging close to the supply rail be used for the positive gamma references and the channels swinging close to GND
be used for the negative gamma references. The VCOM buffer can
handle up to 35 mA continuous output current and can drive up
to 1,000 pF pure capacitive load. Provision is available to adjust
the VCOM voltage to a desired level. Refer to Figure 4 for an
example of an application circuit for adjusting the output of the
VCOM buffer.
VDD
NEGATIVE GAMMA REFERENCES
Figure 1 is a block diagram of the configuration of an XGAcompatible (1024 ⫻ 768) TFT color panel with the ADD8702
providing gamma correction reference voltages to the source
drivers and an integrated VCOM driver for LCD common node.
POSITIVE GAMMA REFERENCES
APPLICATIONS
LCD SOURCE DRIVER
VCOM AMP
LCD COMMON PLANE
32k
GND
VCOM ADJUST
2k
ADD8702
Figure 4. Application Circuit
Table I. ADD8702 – 000 Mask Option, Resistor Tap Points
(0 ≤ ≤ 500) VDD = 12.5 V, VHIGH = 12.5 V, and VLOW = GND
VGMA1
VGMA2
VGMA3
VGMA4
VGMA5
VGMA6
VGMA7
VGMA8
VGMA9
VGMA10
VGMA11
VGMA12
VCOM
REV. 0
–7–
Tap Point ()
Voltage
Unit
8
57
84
115
139
194
218
298
371
418
442
488
200
0.2
1.43
2.11
2.89
3.48
4.86
5.45
7.45
9.29
10.45
11.04
12.2
5
V
V
V
V
V
V
V
V
V
V
V
V
V
ADD8702
OUTLINE DIMENSIONS
32-Lead Lead Frame Chip Scale Package [LFCSP]
(CP-32)
5.00
BSC SQ
0.60 MAX
PIN 1
INDICATOR
12 MAX
32 1
0.50
BSC
4.75
BSC SQ
3.25
3.10 SQ
2.95
BOTTOM
VIEW
0.50
0.40
0.30
1.00
0.90
0.80
PIN 1
INDICATOR
0.60 MAX
25
24
TOP
VIEW
C03820–0–6/03(0)
Dimensions shown in millimeters
17
16
9
8
3.50
REF
0.80 MAX
0.65 NOM
0.05 MAX
0.02 NOM
SEATING
PLANE
0.30
0.23
0.18
0.20 REF
COPLANARITY
0.08
COMPLIANT TO JEDEC STANDARDS MO-220-VHHD-2
–8–
REV. 0
Similar pages