Intersil ISL28213FBZ Single, dual, quad general purpose micropower, rrio operational amplifier Datasheet

Single, Dual, Quad General Purpose Micropower, RRIO
Operational Amplifier
ISL28113, ISL28213, ISL28413
Features
The ISL28113, ISL28213, and ISL28413 are single, dual, and
quad channel general purpose micropower, rail-to-rail input and
output operational amplifiers with supply voltage range of 1.8V
to 5.5V. Key features are a low supply current of 130µA
maximum per channel at room temperature, a low bias current
and a wide input voltage range, which enables the ISL28x13
devices to be excellent general purpose op-amps for a wide range
of applications.
• Low Current Consumption. . . . . . . . . . . . . . . . . . . . . . . . . . 130µA
The ISL28113 is available in the SC70-5 and SOT23-5 packages,
the ISL28213 is in the MSOP8, SOIC8, SOT23-8 packages, and
the ISL28413 is in the TSSOP14, SOIC14 packages. All devices
operate over the extended temperature range of -40°C to
+125°C.
• Wide Supply Range . . . . . . . . . . . . . . . . . . . . . . . . . . 1.8V to 5.5V
• Gain Bandwidth Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2MHz
• Input Bias Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20pA, Max.
• Operating Temperature Range. . . . . . . . . . . . .-40°C to +125°C
• Packages
- ISL28113 (Single) . . . . . . . . . . . . . . . . . . . . . SC70-5, SOT23-5
- ISL28213 (Dual). . . . . . . . . . . . . . . . MSOP8, SOIC8, SOT23-8
- ISL28413 (Quad) . . . . . . . . . . . . . . . . . . . . . SOIC14, TSSOP14
Applications
• Power Supply Control/Regulation
Related Literature
• Process Control
• See AN1519 for “ISL28213/14SOICEVAL2Z Evaluation Board
User’s Guide”
• Signal Gain/Buffers
• See AN1520 for “ISL28113/14SOT23EVAL1Z Evaluation
Board User’s Guide”
• Current Shunt Sensing
• See AN1542 for “ISL28213/14MSOPEVAL2Z Evaluation Board
User’s Guide”
• Active Filters
• Trans-impedance Amps
RF
100kΩ
LOAD
RINRSENSE
IN-
10kΩ
RIN+
IN+
+5V
-
VOUT
V+
ISL28x13
V-
+
10kΩ
GAIN = 10
RREF+
100kΩ
VREF
SINGLE-SUPPLY, LOW-SIDE CURRENT SENSE AMPLIFIER
FIGURE 1. TYPICAL APPLICATION
June 9, 2011
FN6728.5
1
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 1-888-468-3774 | Copyright Intersil Americas Inc. 2009-2011. All Rights Reserved
Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries.
All other trademarks mentioned are the property of their respective owners.
ISL28113, ISL28213, ISL28413
Ordering Information
PART NUMBER
(Notes 2, 3)
PART
MARKING
PACKAGE
(Pb-Free)
PKG.
DWG. #
ISL28113FEZ-T7 (Note 1)
BJA
5 Ld SC-70
P5.049
ISL28113FEZ-T7A (Note 1)
BJA
5 Ld SC-70
P5.049
ISL28113FHZ-T7 (Note 1)
BCYA
5 Ld SOT-23
P5.064A
ISL28113FHZ-T7A (Note 1)
BCYA
5 Ld SOT-23
P5.064A
ISL28213FUZ
8213Z
8 Ld MSOP
M8.118A
ISL28213FUZ-T7 (Note 1)
8213Z
8 Ld MSOP
M8.118A
ISL28213FBZ
28213 FBZ
8 Ld SOIC
M8.15E
ISL28213FBZ-T7 (Note 1)
28213 FBZ
8 Ld SOIC
M8.15E
ISL28213FBZ-T13 (Note 1)
28213 FBZ
8 Ld SOIC
M8.15E
Coming Soon
ISL28213FHZ-T7 (Note 1)
TBD
8 Ld SOT-23
P8.064
Coming Soon
ISL28213FHZ-T7A (Note 1)
TBD
8 Ld SOT-23
P8.064
ISL28413FVZ
28413 FVZ
14 Ld TSSOP
MDP0044
ISL28413FVZ-T7 (Note 1)
28413 FVZ
14 Ld TSSOP
MDP0044
ISL28413FVZ-T13 (Note 1)
28413 FVZ
14 Ld TSSOP
MDP0044
ISL28413FBZ
28413 FBZ
14 Ld SOIC
MDP0027
ISL28413FBZ-T7 (Note 1)
28413 FBZ
14 Ld SOIC
MDP0027
ISL28413FBZ-T13 (Note 1)
28413 FBZ
14 Ld SOIC
MDP0027
ISL28113SOT23EVAL1Z
Evaluation Board
ISL28213MSOPEVAL2Z
Evaluation Board
ISL28213SOICEVAL2Z
Evaluation Board
Coming Soon
ISL28413TSSOPEVAL1Z
Evaluation Board
NOTES:
1. Please refer to TB347 for details on reel specifications.
2. These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte
tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil
Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.
3. For Moisture Sensitivity Level (MSL), please see device information page for ISL28113, ISL28213, ISL28413. For more information on MSL please
see Techbrief TB363.
Pin Configurations
ISL28113
(5 LD SC-70)
TOP VIEW
IN+
1
VS-
2
IN-
3
5
4
ISL28113
(5 LD SOT-23)
TOP VIEW
VS+
OUT
2
OUT
1
VS-
2
IN+
3
5
4
ISL28213
(8 LD MSOP, 8 LD SOIC, 8 LD SOT-23)
TOP VIEW
VS+
IN-
OUT_A
1
8
VS+
IN-_A
2
7
OUT_B
IN+_A
3
6
IN-_B
VS-
4
5
IN+_B
FN6728.5
June 9, 2011
ISL28113, ISL28213, ISL28413
Pin Configurations (Continued)
ISL28413
(14 LD TSSOP, 14 LD SOIC)
TOP VIEW
14 OUT_D
OUT_A 1
IN-_A 2
13 IN-_D
IN+_A 3
12 IN+_D
11 VS-
VS+ 4
IN+_B 5
10 IN+_C
IN-_B 6
9 IN-_C
8 OUT_C
OUT_B 7
Pin Descriptions
PIN NUMBER
PIN NAME
OUT
OUT_A
OUT_B
OUT_C
OUT_D
5 LD
SC-70
5 LD
SOT-23
4
1
8 LD MSOP,
8 LD SOIC,
8 LD SOT-23
14 LD TSSOP,
14 LD SOIC
DESCRIPTION
Output
1
7
V+
1
7
8
14
OUT
VCIRCUIT 1
VS-
2
2
4
11
Negative supply voltage
V+
CAPACITIVELY
TRIGGERED
ESD CLAMP
VCIRCUIT 2
IN+
IN+_A
IN+_B
IN+_C
IN+_D
1
ININ-_A
IN-_B
IN-_C
IN-_D
3
VS+
5
Positive Input
3
3
5
3
5
10
12
V+
IN-
IN+
Negative Input
4
2
6
5
8
3
2
6
9
13
4
VCIRCUIT 3
Positive supply voltage
See “CIRCUIT 2”
FN6728.5
June 9, 2011
ISL28113, ISL28213, ISL28413
Absolute Maximum Ratings (TA = +25°C)
Thermal Information
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6.5V
Supply Turn-on Voltage Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1V/µs
Differential Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20mA
Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . .V- - 0.5V to V+ + 0.5V
Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .V- - 0.5V to V+ + 0.5V
ESD Rating
Human Body Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4000V
Machine Model
ISL28113, ISL28213 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350V
ISL28413. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400V
Charged Device Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2000V
Thermal Resistance (Typical)
θJA (°C/W)
θJC (°C/W)
5 Ld SC-70 (Notes 4, 5) . . . . . . . . . . . . . . . .
250
N/A
5 Ld SOT-23 (Notes 4, 5) . . . . . . . . . . . . . . .
225
N/A
8 Ld MSOP (Notes 4, 5) . . . . . . . . . . . . . . . .
180
100
8 Ld SOIC Package (Notes 4, 5) . . . . . . . . .
126
90
8 Ld SOT-23 (Notes 4, TBD) . . . . . . . . . . . .
240
TBD
14 Ld TSSOP Package (Notes 4, 5) . . . . . .
120
40
14 Ld SOIC Package (Notes 4, 5). . . . . . . .
90
50
Ambient Operating Temperature Range . . . . . . . . . . . . . . -40°C to +125°C
Storage Temperature Range . . . . . . . . . . . . . . . . . . . . . . . -65°C to +150°C
Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . +125°C
Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .see link below
http://www.intersil.com/pbfree/Pb-FreeReflow.asp
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product
reliability and result in failures not covered by warranty.
NOTES:
4. θJA is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.
5. For θJC, the “case temp” location is the top of the package.
Electrical Specifications
VS+ = 5V, VS- = 0V, RL = Open, VCM = VS/2, TA = +25°C, unless otherwise specified. Boldface limits apply over
the operating temperature range, -40°C to +125°C, unless otherwise specified.
PARAMETER
DESCRIPTION
CONDITIONS
MIN
(Note 6)
TYP
MAX
(Note 6)
UNIT
-5
0.5
5
mV
6
mV
2
10
µV/°C
1
30
pA
3
20
pA
100
pA
20
pA
-50
50
pA
- 0.1V
+5.1V
V
DC SPECIFICATIONS
VOS
Input Offset Voltage
-6
TCVOS
Input Offset Voltage Temperature
Coefficient
IOS
Input Offset Current
IB
Input Bias Current
-40°C to +125°C
ISL28113
-20
-100
ISL28213, ISL28413
Common Mode Input
Voltage Range
-20
3
ZIN
Input Impedance
1012
Ω
CIN
Input Capacitance
1
pF
CMRR
Common Mode Rejection Ratio
VCM = -0.1V to 5.1V
72
dB
-40°C to +125°C
70
dB
VS = 1.8V to 5.5V
71
dB
-40°C to +125°C
70
dB
4.993
V
PSRR
VOH
Power Supply Rejection Ratio
Output Voltage Swing, High
RL = 10kΩ
4.985
4.98
VOL
V+
Output Voltage Swing, Low
Supply Voltage
4
RL = 10kΩ
V
13
1.8
15
mV
20
mV
5.5
V
FN6728.5
June 9, 2011
ISL28113, ISL28213, ISL28413
Electrical Specifications
VS+ = 5V, VS- = 0V, RL = Open, VCM = VS/2, TA = +25°C, unless otherwise specified. Boldface limits apply over
the operating temperature range, -40°C to +125°C, unless otherwise specified. (Continued)
PARAMETER
IS
DESCRIPTION
Supply Current per Amplifier
CONDITIONS
RL = OPEN
MIN
(Note 6)
TYP
MAX
(Note 6)
UNIT
90
130
µA
170
µA
ISC+
Output Source Short Circuit Current RL = 10Ω to V-
-22
mA
ISC-
Output Sink Short Circuit Current
RL = 10Ω to V+
16
mA
GBWP
Gain Bandwidth Product
VS = ±2.5V
AV = 100, RF = 100kΩ,
RG = 1kΩ, RL = 10kΩ to VCM
2
MHz
eN VP-P
Peak-to-Peak Input Noise Voltage
VS = ±2.5V
f = 0.1Hz to 10Hz
14
µVP-P
eN
Input Noise Voltage Density
VS = ±2.5V
f = 1kHz
55
nV/√(Hz)
iN
Input Noise Current Density
VS = ±2.5V
f = 1kHz
5
fA/√(Hz)
Cin
Differential Input Capacitance
VS = ±2.5V
f = 1MHz
1.0
pF
1.3
pF
1
V/µs
100
ns
115
ns
7.5
µs
AC SPECIFICATIONS
Common Mode Input Capacitance
TRANSIENT RESPONSE
SR
Slew Rate 20% to 80% VOUT
VOUT = 0.5V to 4.5V
tr, tf, Small Signal
Rise Time, tr 10% to 90%
VS = ±2.5V
AV = +1, VOUT = 0.05VP-P,
RF = 0Ω, RL = 10kΩ, CL = 15pF
Fall Time, tf 10% to 90%
ts
Settling Time to 0.1%, 4VP-P Step
VS = ±2.5V
AV = +1, RF = 0Ω, RL = 10kΩ,
CL = 1.2pF
NOTE:
6. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design.
5
FN6728.5
June 9, 2011
ISL28113, ISL28213, ISL28413
Typical Performance Curves
VS = ±2.5V, VCM = 0V, RL = Open, unless otherwise specified.
50
10,000
40
10
0
-10
-20
-30
SIMULATION
-50
-40
-20
0
20
40
60
80
100
120
140
1000
100
10
1
10
100
TEMPERATURE (°C)
10k
100k
FIGURE 3. INPUT NOISE VOLTAGE SPECTRAL DENSITY
FIGURE 2. INPUT BIAS CURRENT vs TEMPERATURE
20
120
20
100
0
100
0
-20
80
GAIN
60
-40
40
-60
20
-80
0
-100
-20 V+ = ±0.9V
RL = 100k
-40
CL = 10pF
-60 SIMULATION
-80
0.1
1
10
-120
PHASE
-140
-160
100
1k
10k 100k
FREQUENCY (Hz)
1M
-180
10M 100M
80
-20
GAIN
60
-60
20
-80
0
-100
-20 V+ = ±2.5V
RL = 100k
-40
CL = 10pF
-60 SIMULATION
-80
0.1
80
70
70
60
60
50
50
30
20
10
SIMULATION
0
0.01 0.1
1
10
100 1k 10k 100k 1M
FREQUENCY (Hz)
10M 100M
FIGURE 6. CMRR vs FREQUENCY, VS = ±2.5
6
1
10
-120
PHASE
-140
-160
100
1k
10k 100k
FREQUENCY (Hz)
1M
-180
10M 100M
FIGURE 5. OPEN-LOOP GAIN, PHASE vs FREQUENCY,
RL = 100kΩ, CL = 10pF, VS = ±2.5V
80
40
-40
40
PSRR (dB )
CMRR (dB)
FIGURE 4. OPEN-LOOP GAIN, PHASE vs FREQUENCY,
RL = 100kΩ, CL = 10pF, VS = ±0.9V
OPEN LOOP GAIN (dB)
120
PHASE (°)
OPEN LOOP GAIN (dB)
1k
FREQUENCY (Hz)
PHASE (°)
IBIAS (pA)
20
-40
V+ = ±2.5V
AV = 1
INPUT NOISE VOLTAGE (nV/√Hz)
30
PSRR- VS = ±2.5V
PSRR- VS = ±0.9V
PSRR+ VS = ±0.9V
40
30
PSRR+ VS = ±2.5V
RL = INF
20 C = 4pF
L
10 AV = +1
VCM = 100mVP-P
0
100
1k
10k
100k
FREQUENCY (Hz)
1M
10M
FIGURE 7. PSRR vs FREQUENCY, VS = ±0.9V, ±2.5V
FN6728.5
June 9, 2011
ISL28113, ISL28213, ISL28413
Typical Performance Curves
70
GAIN (dB)
V+ = ±2.5V
CL = 4pF
RL = 10k
VOUT = 50mVP-P
AV = 100
30
20
AV = 10
Rg = 10k, Rf = 100k
10
0
0
Rg = 1k, Rf = 100k
50
40
1
Rg = 100, Rf = 100k
AV = 1000
NORMALIZED GAIN (dB)
60
VS = ±2.5V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)
AV = 1
1k
100
-2
-3
VOUT = 10mVP-P
-4
VOUT = 50mVP-P
VOUT = 100mVP-P
-5
VS = ±2.5V
-6
10k
100k
1M
FREQUENCY (Hz)
10M
-7
-9
100
100M
1
6
0
5
RL = 49.9k
-2
RL = 10k
-3
-4
RL = 4.99k
-5
-6
-7
-8
V+ = ±2.5V
RL = 1k
CL = 4pF
AV = +1
VOUT = 50mVP-P
-9
100
1k
RL = 499
RL = 100
10k
100k
FREQUENCY (Hz)
1M
1k
10k
100k
FREQUENCY (Hz)
1M
10M
10M
CL = 1004pF
3
CL = 474pF
2
CL = 224pF
1
0
CL = 104pF
-1 VS = ±2.5V
RL = 10k
-2
AV = +1
-3 VOUT = 50mVP-P
-4
10k
1k
CL = 26pF
CL = 4pF
100k
FREQUENCY (Hz)
1M
10M
FIGURE 11. GAIN vs FREQUENCY vs CL
1
140
0
120
-1
CROSS-TALK (dB)
NORMALIZED GAIN (dB)
VOUT = 1VP-P
4
FIGURE 10. GAIN vs FREQUENCY vs RL
-2
-3
-4
-5
VS = ±2.5V
-6 CL = 4pF
RL = 10k
-7
AV = +1
-8 VOUT = 50mVP-P
VS = ±1.75V
-9
10k
VOUT = 500mVP-P
FIGURE 9. FREQUENCY RESPONSE vs VOUT
NORMALIZED GAIN (dB)
NORMALIZED GAIN (dB)
FIGURE 8. FREQUENCY RESPONSE vs CLOSED LOOP GAIN
-1
VOUT = 200mVP-P
CL = 4pF
AV = +1
RL = 10k
-8
Rg = OPEN, Rf = 0
-10
10
-1
VS = ±1.25V
10M
FIGURE 12. GAIN vs FREQUENCY vs SUPPLY VOLTAGE
7
80
60
40
20
VS = ±0.9V
100k
1M
FREQUENCY (Hz)
100
0
10
VS = ±2.5V
RL-DRIVER = INF
RL-RECEIVER = 10k
CL = 4pF
AV = +1
VSOURCE = 1VP-P
100
1k
10k
100k
FREQUENCY (Hz)
1M
10M
FIGURE 13. CROSSTALK, VS = ±2.5V
FN6728.5
June 9, 2011
ISL28113, ISL28213, ISL28413
VS = ±2.5V, VCM = 0V, RL = Open, unless otherwise specified. (Continued)
30
3
20
2
LARGE SIGNAL (V)
10
VS = ±2.5V
RL = 10k
CL = 15pF
AV = +1
VOUT = 50mVP-P
0
-10
-20
-30
1
VS = ±0.9V
0
RL = 10k
CL = 15pF
AV = +1
VOUT = RAIL
-1
-2
0
200
400
600
-3
800 1000 1200 1400 1600 1800 2000
TIME (ns)
0.5
0
RL = INF
CL = 15pF
AV =10
Rf = 9.09k, Rg = 1k
-0.1
-0.2
-0.3
0.5
-0.5
0.4
-1.5
OUTPUT @ VS=±0.9V
OUTPUT @ VS = ±2.5V
-0.4
0
-1.0
-0.5
2
4
6
8
10
12
TIME (ms)
14
16
18
0.6
INPUT (V)
INPUT
OUTPUT (V)
0.1
0
20
FIGURE 15. LARGE SIGNAL TRANSIENT RESPONSE vs RL
VS = ±0.9V, ±2.5V
FIGURE 14. SMALL SIGNAL TRANSIENT RESPONSE, VS = ±2.5V
INPUT (V)
VS = ±2.5V
3.0
OUTPUT @ VS = ±2.5V
RL = INF
CL = 15pF
AV =10
Rf = 9.09k, Rg = 1k
0.2
0.1
-2.5
0
2.0
OUTPUT @ VS=±0.9V
0.3
-2.0
2.5
1.5
1.0
OUTPUT (V)
SMALL SIGNAL (mV)
Typical Performance Curves
0.5
0
INPUT
-0.6
0
1
2
3
4
5
6
TIME (ms)
7
8
9
-3.0
10
-0.1
FIGURE 16. NEGATIVE OUTPUT OVERLOAD RESPONSE TIME,
VS = ±0.9V, ±2.5V
0
1
2
3
4
5
6
TIME (ms)
7
8
9
-0.5
10
FIGURE 17. POSITIVE OUTPUT OVERLOAD RESPONSE TIME,
VS = ±0.9V, ±2.5V
90
O
T
O
T
VE
R
O
20
SH
30
O
O
40
SH
50
+
60
O
VE
R
OVERSHOOT (%)
VS = ±2.5V
80 RL = 10k
AV = 1
70 V
OUT = 50mVP-P
10
0
10
100
1k
CAPACITANCE (pF)
10k
FIGURE 18. % OVERSHOOT vs LOAD CAPACITANCE, VS = ±2.5V
8
FN6728.5
June 9, 2011
ISL28113, ISL28213, ISL28413
Applications Information
Power Dissipation
Functional Description
It is possible to exceed the +125°C maximum junction
temperatures under certain load, power supply conditions and
ambient temperature conditions. It is therefore important to
calculate the maximum junction temperature (TJMAX) for all
applications to determine if power supply voltages, load
conditions, or package type need to be modified to remain in the
safe operating area. These parameters are related using
Equation 1:
The ISL28113, ISL28213 and ISL28413 are single, dual and
quad, CMOS rail-to-rail input, output (RRIO) micropower
operational amplifiers. They are designed to operate from single
supply (1.8V to 5.5V) or dual supply (±0.9V to ±2.75V). The parts
have an input common mode range that extends 100mV above
and below the power supply voltage rails. The output stage can
swing to within 15mV of the supply rails with a 10kΩ load.
Input ESD Diode Protection
where:
All input terminals have internal ESD protection diodes to both
positive and negative supply rails, limiting the input voltage to
within one diode beyond the supply rails (see “Pin Descriptions Circuit 1” on page 3). For applications where the input voltage
may exceed either power supply voltage by 0.5V or more, an
external series resistor must be used to ensure the input currents
never exceed 20mA (see Figure 19).
V+
VIN-
RIN-
-
RIN+
+
(EQ. 1)
T JMAX = T MAX + θ JA xPD MAXTOTAL
• PDMAXTOTAL is the sum of the maximum power dissipation of
each amplifier in the package (PDMAX)
• PDMAX for each amplifier can be calculated using Equation 2:
V OUTMAX
PD MAX = V S × I qMAX + ( V S - V OUTMAX ) × -----------------------R
(EQ. 2)
L
where:
• TMAX = Maximum ambient temperature
RF
• θJA = Thermal resistance of the package
• PDMAX = Maximum power dissipation of 1 amplifier
• VS = Total supply voltage
RL
RG
V-
FIGURE 19. INPUT ESD DIODE CURRENT LIMITING
Output Phase Reversal
Output phase reversal is a change of polarity in the amplifier
transfer function when the input voltage exceeds the supply
voltage. The ISL28113, ISL28213 and ISL28413 are immune to
output phase reversal, even when the input voltage is 1V beyond
the supplies.
Unused Channels
If the application requires less than all amplifiers one channel,
the user must configure the unused channel(s) to prevent it from
oscillating. The unused channel(s) will oscillate if the input and
output pins are floating. This will result in higher than expected
supply currents and possible noise injection into the channel
being used. The proper way to prevent this oscillation is to short
the output to the inverting input and ground the positive input (as
shown in Figure 20).
• IqMAX = Maximum quiescent supply current of 1 amplifier
• VOUTMAX = Maximum output voltage swing of the application
• RL = Load resistance
ISL28113, ISL28213 and ISL28413 SPICE
Model
Figure 21 shows the SPICE model schematic and Figure 22 shows
the net list for the SPICE model. The model is a simplified version
of the actual device and simulates important AC and DC
parameters. AC parameters incorporated into the model are: 1/f
and flatband noise, Slew Rate, CMRR, Gain and Phase. The DC
parameters are IOS, total supply current and output voltage swing.
The model uses typical parameters given in the “Electrical
Specifications” Table beginning on page 4. The AVOL is adjusted
for 85dB with the dominate pole at 100Hz. The CMRR is set 72dB,
f = 35kHz). The input stage models the actual device to present an
accurate AC representation. The model is configured for ambient
temperature of +25°C.
Figures 23 through 32 show the characterization vs simulation
results for the Noise Voltage, Closed Loop Gain vs Frequency,
Large Signal 5V Step Response, CMRR and Open Loop Gain
Phase.
+
FIGURE 20. PREVENTING OSCILLATIONS IN UNUSED CHANNELS
9
FN6728.5
June 9, 2011
ISL28113, ISL28213, ISL28413
LICENSE STATEMENT
The information in this SPICE model is protected under the
United States copyright laws. Intersil Corporation hereby grants
users of this macro-model hereto referred to as “Licensee”, a
nonexclusive, nontransferable licence to use this model as long
as the Licensee abides by the terms of this agreement. Before
using this macro-model, the Licensee should read this license. If
the Licensee does not accept these terms, permission to use the
model is not granted.
The Licensee may not sell, loan, rent, or license the
macro-model, in whole, in part, or in modified form, to anyone
outside the Licensee’s company. The Licensee may modify the
macro-model to suit his/her specific applications, and the
Licensee may make copies of this macro-model for use within
their company only.
This macro-model is provided “AS IS, WHERE IS, AND WITH NO
WARRANTY OF ANY KIND EITHER EXPRESSED OR IMPLIED,
INCLUDING BUY NOT LIMITED TO ANY IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.”
In no event will Intersil be liable for special, collateral, incidental,
or consequential damages in connection with or arising out of
the use of this macro-model. Intersil reserves the right to make
changes to the product and the macro-model without prior
notice.
10
FN6728.5
June 9, 2011
ISL28113, ISL28213, ISL28413
En
Vin+
+
Voltage Noise Stage
+
R21
800E3
28
V++
29 DN
D13
+
+
-
0.00035V
En
R22
5E11
+
CinDiff
R23
5E11
-
2
+
-
R2
R1
1.0004 1.0004
3
Vc
Vmid
1
In+
9
M16
5
M14
R3
10
R4
10
11
R7
1
M15
Cin1
Cin2
1.26pF
1.26pF
+
-
100
25E-12
-
V--
4
15
DX
D2
5
RA2
1
G2A
+1E-6V
IOS
DX
D1
R9
14
13
I1
5E-3
R10
1E9
RA1
1
M17
R8
1
7
Vin-
G1A
R6
10
12
R5
10
6
10
8
4
EOS
1.02pF
I2
5E-3
V1
1E-6V
Vc
+
-
V9
Vmid
V2
V-VCM
1ST Gain Stage
Input Stage
V++
G1
17
+
-
4
5
D3
DX
+
V3
- 0.61V
G3
19
+
-
R11
1
318.329E3
D5
DX
+
V5
G5
R13
- 0.604V
+
-
C2
5.0nF
4.5474
R15
1E6
Vmid
Vc
Vg
R12
1
G2
+
-
18
-
V4
0.61V
+
-
+
G4
D4
DX
V--
20
C3
0.604V
+
V6
5.0nF
-
R14
D6
DX
R16
1E6
G6
E4
+
-
Vg
Vmid
22
+
-
Vmid
V++
21
16
Vc
L1
+
-
L2
4.5474
318.329E3
V-VCM
VCM
1ST Gain Stage (Cont)
2nd Gain Stage
Mid Supply Ref
Common Mode Gain Stage
V++
+
-
+
-
E2
D9
DX
D10
DX
26
R17
5305.32
ISY
90uA
Vg
C4
10pF
D7
DX
27
24
G11
+
V7
+
+
-
0.08V
V8
25
+
DX
-
D8
R18
V--
+
E3
V-
C3
G8
Supply Isolation Stage
10pF
Pole Stage
0.08V
G12
5305.32
+
VOUT
VOUT
23
Vmid
V-
+
R19
50
D11
DY
+
-
+
-
G9
D12
DY
R20
50
+
-
V+
-
G7
V+
G10
Output Stage
FIGURE 21. SPICE SCHEMATIC
11
FN6728.5
June 9, 2011
ISL28113, ISL28213, ISL28413
* source ISL28113_SPICEmodel
* Revision D, LaFontaine February 22, 2010 Improved noise
performance
* Model for Noise, supply currents, CMRR 72dB f=35kHz, AVOL
85dB f=100Hz
* SR = 1.0V/us, GBWP 2MHz, 2nd pole 3MHz Output voltage clamp
and short ckt I limit
*Copyright 2009 by Intersil Corporation
*Refer to data sheet “LICENSE STATEMENT” Use of
*this model indicates your acceptance with the
*terms and provisions in the License Statement.
* Connections:
+input
*
|
-input
*
|
|
+Vsupply
*
|
|
|
-Vsupply
*
|
|
|
|
output
*
|
|
|
|
|
.subckt ISL28113subckt
Vin+ Vin- V+
VVOUT
* source ISL28113_DS rev1
*
*Voltage Noise
E_En
VIN+ EN 28 0 1
D_D13
29 28 DN
V_V9
29 0 0.45
R_R21
28 0 30
*
*Input Stage
M_M14
3 1 5 5 NCHANNELMOSFET
M_M15
4 VIN- 6 6 NCHANNELMOSFET
M_M16
11 VIN- 9 9 PMOSISIL
M_M17
12 1 10 10 PMOSISIL
I_I1
7 V-- DC 5e-3
I_I2
V++ 8 DC 5e-3
I_IOS
VIN- 1 DC 25e-12
G_G1A
V++ 14 4 3 1404
G_G2A
V-- 14 11 12 1404
V_V1
V++ 2 1e-6
V_V2
13 V-- 1e-6
R_R1
3 2 1.0004
R_R2
4 2 1.0004
R_R3
5 7 10
R_R4
7 6 10
R_R5
9 8 10
R_R6
8 10 10
R_R7
13 11 1
R_R8
13 12 1
R_RA1
14 V++ 1
R_RA2
V-- 14 1
C_CinDif
VIN- EN 1.02E-12
C_Cin1
V-- EN 1.26e-12
C_Cin2
V-- VIN- 1.26e-12
*
*1st Gain Stage
G_G1
V++ 16 15 VMID 334.753e-3
G_G2
V-- 16 15 VMID 334.753e-3
V_V3
17 16 .61
V_V4
16 18 .61
D_D1
15 VMID DX
D_D2
VMID 15 DX
D_D3
17 V++ DX
D_D4
V-- 18 DX
R_R9
15 14 100
R_R10
15 VMID 1e9
R_R11
16 V++ 1
R_R12
V-- 16 1
*
*2nd Gain Stage
G_G3
V++ VG 16 VMID 24.893e-3
G_G4
V-- VG 16 VMID 24.893e-3
V_V5
19 VG .604
V_V6
VG 20 .604
D_D5
19 V++ DX
D_D6
V-- 20 DX
R_R13
VG V++ 318.329e3
R_R14
V-- VG 318.329e3
C_C2
VG V++ 5E-09
C_C3
V-- VG 5E-09
*
*Mid supply Ref
E_E4
VMID V-- V++ V-- 0.5
E_E2
V++ 0 V+ 0 1
E_E3
V-- 0 V- 0 1
I_ISY
V+ V- DC 90e-6
*
*Common Mode Gain Stage with Zero
G_G5
V++ VC VCM VMID 0.25118
G_G6
V-- VC VCM VMID 0.25118
E_EOS
1 EN VC VMID 1
R_R15
VC 21 0.001
R_R16
22 VC 0.001
R_R22
EN VCM 5e11
R_R23
VCM VIN- 5e11
L_L1
21 V++ 4.547418E-09
L_L2
22 V-- 4.547418E-09
*
*Pole Stage
G_G7
V++ 23 VG VMID 0.18849
G_G8
V-- 23 VG VMID 0.18849
R_R17
23 V++ 5.30532
R_R18
V-- 23 5.30532
C_C4
23 V++ 1e-8
C_C5
V-- 23 1e-8
*
*Output Stage with Correction Current Sources
G_G9
26 V-- VOUT 23 0.02
G_G10
27 V-- 23 VOUT 0.02
G_G11
VOUT V++ V++ 23 0.02
G_G12
V-- VOUT 23 V-- 0.02
V_V7
24 VOUT .08
V_V8
VOUT 25 .08
D_D7
23 24 DX
D_D8
25 23 DX
D_D9
V++ 26 DX
D_D10
V++ 27 DX
D_D11
V-- 26 DY
D_D12
V-- 27 DY
R_R19
VOUT V++ 50
R_R20
V-- VOUT 50
.model pmosisil pmos (kp=16e-3 vto=-0.6)
.model NCHANNELMOSFET nmos (kp=3e-3 vto=0.6)
.model DN D(KF=6.69e-9 AF=1)
.MODEL DX D(IS=1E-12 Rs=0.1)
.MODEL DY D(IS=1E-15 BV=50 Rs=1)
.ends ISL28113subckt
FIGURE 22. SPICE NET LIST
12
FN6728.5
June 9, 2011
ISL28113, ISL28213, ISL28413
Characterization vs Simulation Results
10,000
V+ = ±2.5V
AV = 1
INPUT NOISE VOLTAGE (nV/√Hz)
INPUT NOISE VOLTAGE (nV/√Hz)
10,000
1000
100
10
1
10
100
1k
FREQUENCY (Hz)
10k
1000
100
10
100k
AV = 1000
GAIN (dB)
AV = 100
AV = 10
20
40
20
Rg = 10k, Rf = 100k
10
AV = 1
-10
10
0
Rg = OPEN, Rf = 0
10k
100k
1M
FREQUENCY (Hz)
1k
100
100M
10M
FIGURE 25. CHARACTERIZED CLOSED LOOP GAIN vs FREQUENCY
-10
100
VS = ±2.5V
LARGE SIGNAL (V)
VS = ±0.9V
RL = 10k
CL = 15pF
AV = +1
VOUT = RAIL
-1
-2
0
2
4
6
8
10
12
14
16
18
TIME (ms)
FIGURE 27. CHARACTERIZED LARGE SIGNAL TRANSIENT
RESPONSE vs RL, VS = ±0.9V, ±2.5V
13
10k
100k
1.0M
FREQUENCY (Hz)
20
10M
100M
VOUT
2
1
0
1.0k
(A) AC sims.dat (active)
3
2
LARGE SIGNAL (V)
10
FIGURE 26. SIMULATED CLOSED LOOP GAIN vs FREQUENCY
3
-3
100k
60
V+ = ±2.5V
CL = 4pF
RL = 10k
VOUT = 50mVP-P
30
0
10k
Rg = 1k, Rf = 100k
50
40
100
1k
FREQUENCY (Hz)
(A) AC sims.dat (active)
70
Rg = 100, Rf = 100k
GAIN (dB)
60
10
FIGURE 24. SIMULATED INPUT NOISE VOLTAGE
FIGURE 23. CHARACTERIZED INPUT NOISE VOLTAGE
70
1
VS = ±2.5V
1
VIN
-0
-1
RL = 10k
-2
CL = 15pF
AV = +10
VOUT = RAIL
-3
0
5
10
15
TIME (µs)
20
25
30
FIGURE 28. SIMULATED LARGE SIGNAL TRANSIENT RESPONSE vs
RL, VS = ±0.9V, ±2.5V
FN6728.5
June 9, 2011
ISL28113, ISL28213, ISL28413
20
100
0
80
-20
GAIN
60
-40
40
-60
20
-80
0
-100
-20 V+ = ±2.5V
RL = 100k
-40
CL = 10pF
-60 SIMULATION
-80
0.1
1
10
-120
PHASE
-140
-160
100
1k
10k 100k
FREQUENCY (Hz)
1M
-180
10M 100M
FIGURE 29. SIMULATED (DESIGN) OPEN-LOOP GAIN, PHASE vs
FREQUENCY
OPEN LOOP GAIN (dB)/PHASE (°)
120
PHASE (°)
OPEN LOOP GAIN (dB)
Characterization vs Simulation Results (Continued)
(A) AC sims.dat (active)
200
160
120
80
40
0
0.01
0.1
1.0
10
100 1.0k 10k 100k 1.0M 10M 100M
FREQUENCY (Hz)
FIGURE 30. SIMULATED (SPICE) OPEN-LOOP GAIN, PHASE vs
FREQUENCY
(A) AC sims.dat (active)
80
80
70
60
50
CMRR (dB )
CMRR (dB)
60
40
30
20
20
10
0
0.01
40
SIMULATION
0.1
1
10
100 1k 10k 100k 1M
FREQUENCY (Hz)
FIGURE 31. SIMULATED (DESIGN) CMRR
14
10M 100M
0
0.01
0.1
1.0
10
100 1.0k 10k 100k 1.0M 10M 100M
FREQUENCY (Hz)
FIGURE 32. SIMULATED (SPICE) CMRR
FN6728.5
June 9, 2011
ISL28113, ISL28213, ISL28413
Revision History
The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to Web to make sure you
have the latest Rev.
DATE
REVISION
CHANGE
5/18/11
FN6728.5
- On page 2, Ordering Information table: ISL28113FHZ-T7 & -T7A PKG DWG # changed from MDP0038 (Obsoleted) to
P5.064A. Removed ISL28213FHZ and added “Coming Soon” to parts ISL28213FHZ-T7A and ISL28413TSSOPEVAL1Z.
- On page 3, Pin Descriptions: Circuit 3 diagram, removed anti-parallel diodes from the IN+ to IN- terminals.
- On page 4, Absolute Maximum Ratings: changed Differential Input Voltage from "0.5V" to "V- - 0.5V to V+ + 0.5V".
- On page 4, updated CMRR and PSRR parameters in Electrical Specifications table with test condition specifiying -40°C
to 125°C typical parameter.
- On page 5, updated Note 6 (“over-temp” note) referenced in MIN and MAX column headings of Electrical Specifications
table from "Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature
limits established by characterization and are not production tested." to new standard "Compliance to datasheet limits is
assured by one or more methods: production test, characterization and/or design."
- On page 9, under “Input ESD Diode Protection,” removed “They also contain back to-back diodes across the input
terminals.” Changed “For applications where the input differential voltage is expected to exceed 0.5V, an external series
resistor...” to “For applications where the input differential voltage may exceed either power supply voltage by 0.5V or
more, an external series resistor...”. Removed “Although the amplifier is fully protected, high input slew rates that exceed
the amplifier slew rate (±1V/µs) may cause output distortion.”
- On page 9, Figure 19: updated circuit schematic by removing back-to-back input protection diodes.
- On page 18, replaced Package Outline Drawing MDP0038 (obsolete) with P5.064A.
3/23/10
FN6728.4
Page 1, 2nd paragraph - Added “...SOT23-8 packages...” and changed “SO8” to “SOIC8”.
Also global, changed S08 to SOIC8
Pg 2, Ordering Information table: Part # ISL28213FEZ changed to ISL28213FHZ and Part Marking changed to "TBD"
-Added Related Literature on page 1, updated ordering information by adding Eval boards.
-Added to ordering information part number ISL28213FHZ 8 Ld SOT-23 Package as coming soon.
-Replaced Figure 24 Simulated Input Noise Voltage with following changes:
Y-axis from “10 to 100” to “10,000 to 10”
Removed (A) AC sims.dat (active) from top of graph
Curve changed to improve noise performance
Made changes to Spice Net List as follows:
-Changed Revision from “C” to “D” and added improved noise performance to Revision line.
-Changed in Voltage Noise
“V_V9 29 0 .00035” to “V_V9 29 0 0.45”
“R_R21
28 0 800E3 TC=0,0” to “R_R21
28 0 30”
-Removed TC=0 in Input Stage from R_R1 through C_Cin2
-Removed TC=0 in 1st Gain Stage from R_R9 through R_R12
-Removed TC=0 in 2nd Gain Stage from R_R13 through C_C3
-Changed in Common Mode Gain Stage with Zero
“G_G5
V++ VC VCM VMID 2.5118E-10” to “G_G5
V++ VC VCM VMID 0.25118”
“G_G6
V-- VC VCM VMID 2.5118E-10” to “G_G6
V-- VC VCM VMID 0.25118”
Removed TC=0 from R_R16 through R_R23
-Changed in Pole Stage
“G_G7
V++ 23 VG VMID 188.49e-6” to ‘G_G7
V++ 23 VG VMID 0.18849”
“G_G8
V-- 23 VG VMID 188.49e-6” to “G_G8
V-- 23 VG VMID 0.18849”
Removed TC=0 from R_R17 through C_C5
Removed TC=0 in Output Stage with Correction Current Sources from R_R19 and R_R20
Made changes to Spice Schematic Figure 21 as follows:
-Input Stage - Modified connection to the EOS (voltage control voltage source)
-Added to Thermal Information 8 LD SOT-23 as TBD
-Added to pin configuration for the ISL28213 8 Ld SOT-23
12/16/09
FN6728.3
Removed “Coming Soon” from MSOP package options in the “Ordering Information” on page 2.
Updated the Theta JA for the MSOP package option from 170°C/W to 180°C/W on page 4.
11/17/09
FN6728.2
Removed “Coming Soon” from SC70 and SOT-23 package options in the “Ordering Information” on page 2.
11/12/09
FN6728.1
Changed theta Ja to 250 from 300. Added license statement (page 10) and reference in spice model (page 12).
10/26/09
FN6728.0
Initial Release
15
FN6728.5
June 9, 2011
ISL28113, ISL28213, ISL28413
Products
Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products
address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks.
Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a
complete list of Intersil product families.
*For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page
on intersil.com: ISL28113, ISL28213, ISL28413
To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff
FITs are available from our website at http://rel.intersil.com/reports/search.php
For additional products, see www.intersil.com/product_tree
Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted
in the quality certifications found at www.intersil.com/design/quality
Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time
without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be
accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third
parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.
For information regarding Intersil Corporation and its products, see www.intersil.com
16
FN6728.5
June 9, 2011
ISL28113, ISL28213, ISL28413
Small Outline Transistor Plastic Packages (SC70-5)
P5.049
D
VIEW C
e1
5 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE
INCHES
5
SYMBOL
4
E
CL
1
2
CL
3
e
E1
b
CL
0.20 (0.008) M
C
C
CL
A
A2
SEATING
PLANE
A1
-C-
PLATING
b1
0.043
0.80
1.10
-
0.004
0.00
0.10
-
A2
0.031
0.039
0.80
1.00
-
b
0.006
0.012
0.15
0.30
-
b1
0.006
0.010
0.15
0.25
c
0.003
0.009
0.08
0.22
6
c1
0.003
0.009
0.08
0.20
6
D
0.073
0.085
1.85
2.15
3
E
0.071
0.094
1.80
2.40
-
E1
0.045
0.053
1.15
1.35
3
e
0.0256 Ref
0.65 Ref
-
e1
0.0512 Ref
1.30 Ref
-
L2
c1
NOTES
0.031
0.010
0.018
0.017 Ref.
0.26
0.46
4
0.420 Ref.
0.006 BSC
0o
N
c
MAX
0.000
α
WITH
MIN
A
L
b
MILLIMETERS
MAX
A1
L1
0.10 (0.004) C
MIN
-
0.15 BSC
8o
0o
5
8o
-
5
5
R
0.004
-
0.10
-
R1
0.004
0.010
0.15
0.25
Rev. 3 7/07
NOTES:
BASE METAL
1. Dimensioning and tolerances per ASME Y14.5M-1994.
2. Package conforms to EIAJ SC70 and JEDEC MO-203AA.
4X θ1
3. Dimensions D and E1 are exclusive of mold flash, protrusions,
or gate burrs.
R1
4. Footlength L measured at reference to gauge plane.
5. “N” is the number of terminal positions.
R
GAUGE PLANE
SEATING
PLANE
L
C
L1
α
L2
6. These Dimensions apply to the flat section of the lead between
0.08mm and 0.15mm from the lead tip.
7. Controlling dimension: MILLIMETER. Converted inch dimensions are for reference only.
4X θ1
VIEW C
0.4mm
0.75mm
2.1mm
0.65mm
TYPICAL RECOMMENDED LAND PATTERN
17
FN6728.5
June 9, 2011
ISL28113, ISL28213, ISL28413
Package Outline Drawing
P5.064A
5 LEAD SMALL OUTLINE TRANSISTOR PLASTIC PACKAGE
Rev 0, 2/10
1.90
0-3°
D
A
0.08-0.20
5
4
PIN 1
INDEX AREA
2.80
3
1.60
3
0.15 C D
2x
2
5
(0.60)
0.20 C
2x
0.95
SEE DETAIL X
B
0.40 ±0.05
3
END VIEW
0.20 M C A-B D
TOP VIEW
10° TYP
(2 PLCS)
2.90
5
H
0.15 C A-B
2x
C
1.45 MAX
1.14 ±0.15
0.10 C
SIDE VIEW
SEATING PLANE
(0.25) GAUGE
PLANE
0.45±0.1
0.05-0.15
4
DETAIL "X"
(0.60)
(1.20)
NOTES:
(2.40)
1.
Dimensions are in millimeters.
Dimensions in ( ) for Reference Only.
2.
Dimensioning and tolerancing conform to ASME Y14.5M-1994.
3.
Dimension is exclusive of mold flash, protrusions or gate burrs.
4.
Foot length is measured at reference to guage plane.
5.
This dimension is measured at Datum “H”.
6.
Package conforms to JEDEC MO-178AA.
(0.95)
(1.90)
TYPICAL RECOMMENDED LAND PATTERN
18
FN6728.5
June 9, 2011
ISL28113, ISL28213, ISL28413
Package Outline Drawing
M8.118A
8 LEAD MINI SMALL OUTLINE PLASTIC PACKAGE (MSOP)
Rev 0, 9/09
3.0±0.1
8
A
0.25
CAB
3.0±0.1
4.9±0.15
DETAIL "X"
1.10 Max
PIN# 1 ID
B
SIDE VIEW 2
1
0.18 ± 0.05
2
0.65 BSC
TOP VIEW
0.95 BSC
0.86±0.09
H
GAUGE
PLANE
C
0.25
SEATING PLANE
0.33 +0.07/ -0.08
0.08 C A B
0.10 ± 0.05
3°±3°
0.10 C
0.55 ± 0.15
DETAIL "X"
SIDE VIEW 1
5.80
NOTES:
4.40
3.00
1.
Dimensions are in millimeters.
2.
Dimensioning and tolerancing conform to JEDEC MO-187-AA
and AMSE Y14.5m-1994.
3.
Plastic or metal protrusions of 0.15mm max per side are not
included.
4.
Plastic interlead protrusions of 0.25mm max per side are not
included.
5.
Dimensions “D” and “E1” are measured at Datum Plane “H”.
6.
This replaces existing drawing # MDP0043 MSOP 8L.
0.65
0.40
1.40
TYPICAL RECOMMENDED LAND PATTERN
19
FN6728.5
June 9, 2011
ISL28113, ISL28213, ISL28413
Package Outline Drawing
M8.15E
8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE
Rev 0, 08/09
4
4.90 ± 0.10
A
DETAIL "A"
0.22 ± 0.03
B
6.0 ± 0.20
3.90 ± 0.10
4
PIN NO.1
ID MARK
5
(0.35) x 45°
4° ± 4°
0.43 ± 0.076
1.27
0.25 M C A B
SIDE VIEW “B”
TOP VIEW
1.75 MAX
1.45 ± 0.1
0.25
GAUGE PLANE
C
SEATING PLANE
0.10 C
0.175 ± 0.075
SIDE VIEW “A
0.63 ±0.23
DETAIL "A"
(0.60)
(1.27)
NOTES:
(1.50)
(5.40)
1.
Dimensions are in millimeters.
Dimensions in ( ) for Reference Only.
2.
Dimensioning and tolerancing conform to AMSE Y14.5m-1994.
3.
Unless otherwise specified, tolerance : Decimal ± 0.05
4.
Dimension does not include interlead flash or protrusions.
Interlead flash or protrusions shall not exceed 0.25mm per side.
5.
The pin #1 identifier may be either a mold or mark feature.
6.
Reference to JEDEC MS-012.
TYPICAL RECOMMENDED LAND PATTERN
20
FN6728.5
June 9, 2011
ISL28113, ISL28213, ISL28413
Small Outline Package Family (SO)
A
D
h X 45°
(N/2)+1
N
A
PIN #1
I.D. MARK
E1
E
c
SEE DETAIL “X”
1
(N/2)
B
L1
0.010 M C A B
e
H
C
A2
GAUGE
PLANE
SEATING
PLANE
A1
0.004 C
0.010 M C A B
L
b
0.010
4° ±4°
DETAIL X
MDP0027
SMALL OUTLINE PACKAGE FAMILY (SO)
INCHES
SYMBOL
SO-14
SO16 (0.300”)
(SOL-16)
SO20
(SOL-20)
SO24
(SOL-24)
SO28
(SOL-28)
TOLERANCE
NOTES
A
0.068
0.068
0.068
0.104
0.104
0.104
0.104
MAX
-
A1
0.006
0.006
0.006
0.007
0.007
0.007
0.007
±0.003
-
A2
0.057
0.057
0.057
0.092
0.092
0.092
0.092
±0.002
-
b
0.017
0.017
0.017
0.017
0.017
0.017
0.017
±0.003
-
c
0.009
0.009
0.009
0.011
0.011
0.011
0.011
±0.001
-
D
0.193
0.341
0.390
0.406
0.504
0.606
0.704
±0.004
1, 3
E
0.236
0.236
0.236
0.406
0.406
0.406
0.406
±0.008
-
E1
0.154
0.154
0.154
0.295
0.295
0.295
0.295
±0.004
2, 3
e
0.050
0.050
0.050
0.050
0.050
0.050
0.050
Basic
-
L
0.025
0.025
0.025
0.030
0.030
0.030
0.030
±0.009
-
L1
0.041
0.041
0.041
0.056
0.056
0.056
0.056
Basic
-
h
0.013
0.013
0.013
0.020
0.020
0.020
0.020
Reference
-
16
20
24
28
Reference
-
N
SO-8
SO16
(0.150”)
8
14
16
Rev. M 2/07
NOTES:
1. Plastic or metal protrusions of 0.006” maximum per side are not included.
2. Plastic interlead protrusions of 0.010” maximum per side are not included.
3. Dimensions “D” and “E1” are measured at Datum Plane “H”.
4. Dimensioning and tolerancing per ASME Y14.5M-1994
21
FN6728.5
June 9, 2011
ISL28113, ISL28213, ISL28413
Thin Shrink Small Outline Package Family (TSSOP)
MDP0044
0.25 M C A B
D
THIN SHRINK SMALL OUTLINE PACKAGE FAMILY
A
MILLIMETERS
(N/2)+1
N
SYMBOL 14 LD 16 LD 20 LD 24 LD 28 LD TOLERANCE
PIN #1 I.D.
E
E1
1
(N/2)
B
0.20 C B A
2X
N/2 LEAD TIPS
TOP VIEW
0.05
e
C
SEATING
PLANE
H
A
1.20
1.20
1.20
1.20
1.20
Max
A1
0.10
0.10
0.10
0.10
0.10
±0.05
A2
0.90
0.90
0.90
0.90
0.90
±0.05
b
0.25
0.25
0.25
0.25
0.25
+0.05/-0.06
c
0.15
0.15
0.15
0.15
0.15
+0.05/-0.06
D
5.00
5.00
6.50
7.80
9.70
±0.10
E
6.40
6.40
6.40
6.40
6.40
Basic
E1
4.40
4.40
4.40
4.40
4.40
±0.10
e
0.65
0.65
0.65
0.65
0.65
Basic
L
0.60
0.60
0.60
0.60
0.60
±0.15
L1
1.00
1.00
1.00
1.00
1.00
Reference
Rev. F 2/07
0.10 M C A B
b
0.10 C
N LEADS
NOTES:
1. Dimension “D” does not include mold flash, protrusions or gate
burrs. Mold flash, protrusions or gate burrs shall not exceed
0.15mm per side.
SIDE VIEW
2. Dimension “E1” does not include interlead flash or protrusions.
Interlead flash and protrusions shall not exceed 0.25mm per
side.
SEE DETAIL “X”
3. Dimensions “D” and “E1” are measured at dAtum Plane H.
4. Dimensioning and tolerancing per ASME Y14.5M-1994.
c
END VIEW
L1
A
A2
GAUGE
PLANE
0.25
L
A1
0° - 8°
DETAIL X
22
FN6728.5
June 9, 2011
Similar pages