PD- 91777 IRG4PH20KD Short Circuit Rated UltraFast IGBT INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE C Features • High short circuit rating optimized for motor control, tsc =10µs, VCC = 720V , TJ = 125°C, VGE = 15V • Combines low conduction losses with high switching speed • Tighter parameter distribution and higher efficiency than previous generations • IGBT co-packaged with HEXFREDTM ultrafast, ultrasoft recovery antiparallel diodes VCES = 1200V VCE(on) typ. = 3.17V G @VGE = 15V, IC = 5.0A E n-ch an nel Benefits • Latest generation 4 IGBT's offer highest power density motor controls possible • HEXFREDTM diodes optimized for performance with IGBTs. Minimized recovery characteristics reduce noise, EMI and switching losses TO-247AC Absolute Maximum Ratings Parameter VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 100°C IFM tsc VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulsed Collector Current Clamped Inductive Load Current Diode Continuous Forward Current Diode Maximum Forward Current Short Circuit Withstand Time Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw. Max. Units 1200 11 5.0 22 22 5.0 22 10 ± 20 60 24 -55 to +150 V A µs V W °C 300 (0.063 in. (1.6mm) from case) 10 lbf•in (1.1 N•m) Thermal Resistance Parameter RθJC RθJC RθCS RθJA Wt www.irf.com Junction-to-Case - IGBT Junction-to-Case - Diode Case-to-Sink, flat, greased surface Junction-to-Ambient, typical socket mount Weight Min. Typ. Max. ––– ––– ––– ––– ––– ––– ––– 0.24 ––– 6 (0.21) 2.1 3.5 ––– 40 ––– Units °C/W g (oz) 1 6/25/98 IRG4PH20KD Electrical Characteristics @ TJ = 25°C (unless otherwise specified) V(BR)CES ∆V(BR)CES/∆TJ VCE(on) VGE(th) ∆VGE(th)/∆TJ gfe ICES VFM IGES Parameter Min. Typ. Collector-to-Emitter Breakdown Voltage 1200 — Temperature Coeff. of Breakdown Voltage — 1.13 Collector-to-Emitter Saturation Voltage — 3.17 — 4.04 — 2.84 Gate Threshold Voltage 3.5 — Temperature Coeff. of Threshold Voltage — -10 Forward Transconductance 2.3 3.5 Zero Gate Voltage Collector Current — — — — Diode Forward Voltage Drop — 2.5 — 2.2 Gate-to-Emitter Leakage Current — — Max. Units Conditions — V VGE = 0V, IC = 250µA — V/°C VGE = 0V, IC = 2.5mA 4.3 IC = 5.0A VGE = 15V — V IC = 11A See Fig. 2, 5 — IC = 5.0A, TJ = 150°C 6.5 VCE = VGE, IC = 250µA — mV/°C VCE = VGE, IC = 1mA — S VCE = 100V, IC = 5.0A 250 µA VGE = 0V, VCE = 1200V 1000 VGE = 0V, VCE = 1200V, TJ = 150°C 2.9 V IC = 5.0A See Fig. 13 2.6 IC = 5.0A, TJ = 150°C ±100 nA VGE = ±20V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Qg Qge Qgc td(on) tr td(off) tf Eon Eoff Ets tsc Parameter Total Gate Charge (turn-on) Gate - Emitter Charge (turn-on) Gate - Collector Charge (turn-on) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Short Circuit Withstand Time td(on) tr td(off) tf Ets LE Cies Coes Cres trr Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Total Switching Loss Internal Emitter Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Diode Reverse Recovery Time Irr Diode Peak Reverse Recovery Current Qrr Diode Reverse Recovery Charge di(rec)M/dt Diode Peak Rate of Fall of Recovery During tb 2 Min. — — — — — — — — — — 10 — — — — — — — — — — — — — — — — — Typ. Max. Units Conditions 28 43 IC = 5.0A 4.4 6.6 nC VCC = 400V See Fig.8 12 18 VGE = 15V 50 — 30 — TJ = 25°C ns 100 150 IC = 5.0A, VCC = 800V 250 380 VGE = 15V, R G = 50Ω 0.62 — Energy losses include "tail" 0.30 — mJ and diode reverse recovery 0.92 1.2 See Fig. 9,10,18 — — µs VCC = 720V, TJ = 125°C VGE = 15V, R G = 50Ω 50 — TJ = 150°C, See Fig. 10,11,18 30 — IC = 5.0A, VCC = 800V ns 110 — VGE = 15V, RG = 50Ω, 620 — Energy losses include "tail" 1.6 — mJ and diode reverse recovery 13 — nH Measured 5mm from package 435 — VGE = 0V 44 — pF VCC = 30V See Fig. 7 8.3 — ƒ = 1.0MHz 51 77 ns TJ = 25°C See Fig. 68 102 TJ = 125°C 14 IF = 5.0A 6.0 9.0 A TJ = 25°C See Fig. 7.0 11 TJ = 125°C 15 VR = 200V 183 274 nC TJ = 25°C See Fig. 285 427 TJ = 125°C 16 di/dt = 200A/µs 380 — A/µs TJ = 25°C See Fig. 307 — TJ = 125°C 17 www.irf.com IRG4PH20KD 10 F o r b o th : D u ty c y c le : 5 0 % TJ = 1 2 5 ° C T sink = 9 0 ° C G a te d riv e a s s p e c ifie d P o w e r D is s ip a tio n = 15 W LOAD CURRENT (A) 8 S q u a re w a v e : 5 6 0% of rate d volta ge I 3 Id e a l d io d e s 0 0.1 1 10 100 f, Frequency (KHz) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) I C , Collector-to-Emitter Current (A) 10 TJ = 150 °C 1 TJ = 25 °C V GE = 15V 20µs PULSE WIDTH 0.1 1 10 VCE , Collector-to-Emitter Voltage (V) Fig. 2 - Typical Output Characteristics www.irf.com I C , Collector-to-Emitter Current (A) 100 100 10 TJ = 150 °C TJ = 25 °C V CC = 50V 5µs PULSE WIDTH 1 6 8 10 12 14 VGE , Gate-to-Emitter Voltage (V) Fig. 3 - Typical Transfer Characteristics 3 IRG4PH20KD 5.0 VCE , Collector-to-Emitter Voltage(V) Maximum DC Collector Current(A) 12 9 6 3 0 25 50 75 100 125 150 TC , Case Temperature ( °C) VGE = 15V 80 us PULSE WIDTH IC = 10 A 4.0 IC = 3.0 5A IC = 2.5 A 2.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature ( °C) Fig. 4 - Maximum Collector Current vs. Case Temperature Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature Thermal Response (Z thJC) 10 1 D = 0.50 0.20 0.10 P DM 0.05 0.1 0.01 0.00001 0.02 0.01 t1 SINGLE PULSE (THERMAL RESPONSE) t2 Notes: 1. Duty factor D = t 1 / t 2 2. Peak TJ = PDM x Z thJC + TC 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case 4 www.irf.com IRG4PH20KD 20 VGE = Cies = Cres = Coes = 0V, f = 1MHz Cge + Cgc , Cce SHORTED Cgc Cce + Cgc VGE , Gate-to-Emitter Voltage (V) 800 C, Capacitance (pF) 600 Cies 400 200 Coes VCC = 400V I C = 11A 16 12 8 4 C res 0 1 10 0 100 0 VCE , Collector-to-Emitter Voltage (V) Total Switching Losses (mJ) Total Switching Losses (mJ) 10 0.90 0.85 0.80 10 20 30 40 RGR,GGate , GateResistance Resistance (Ohm) (Ω) Fig. 9 - Typical Switching Losses vs. Gate Resistance www.irf.com 15 20 25 30 Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage V CC = 800V 960V V GE = 15V TJ = 25 °C I C = 5.0A 0 10 QG , Total Gate Charge (nC) Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage 0.95 5 50 Ω RG = 50Ohm VGE = 15V VCC =800V 960V IC = 10 A IC = 5A IC = 2.5 A 1 0.1 -60 -40 -20 0 20 40 60 80 100 120 140 160 TJ , Junction Temperature (° C ) Fig. 10 - Typical Switching Losses vs. Junction Temperature 5 IRG4PH20KD 100 Ω = 5.0Ohm = 150 °C =800V 960V = 15V I C, Collector Current (A) RG TJ VCC 3.2 VGE 2.4 1.6 VGE = 20V T J = 125 o C 10 0.8 SAFE OPERATING AREA 0.0 0 2 4 6 8 1 10 1 I C , Collector Current (A) 10 100 1000 10000 VCE, Collector-to-Emitter Voltage (V) Fig. 12 - Turn-Off SOA Fig. 11 - Typical Switching Losses vs. Collector Current 100 Instantaneous Forward Current ( A ) Total Switching Losses (mJ) 4.0 10 TJ = 1 5 0 °C TJ = 1 2 5 °C TJ = 2 5 °C 1 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 F o rward V olta ge Drop - V F M (V ) Fig. 13 - Typical Forward Voltage Drop vs. Instantaneous Forward Current 6 www.irf.com IRG4PH20KD 100 100 I F = 2 .5 A 80 I F = 1 0A IIRRM - ( A ) I F = 5 .0A trr- ( ns) 60 40 10 I F = 2.5 A I F = 10A I F = 5.0 A 20 VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C VR = 2 0 0 V T J = 1 2 5 °C TJ = 2 5 ° C 0 100 d i f /dt - (A /µs) 1 100 1000 1000 d i f /d t - (A /µ s ) Fig. 14 - Typical Reverse Recovery vs. dif/dt Fig. 15 - Typical Recovery Current vs. dif/dt 10000 1000 VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C VR = 2 0 0 V T J = 1 2 5 °C T J = 2 5 °C 600 di(rec)M/dt - ( A/µs) QIRR - ( nC ) 800 I F = 10 A I F = 5.0 A I F = 2.5 A 400 I F = 2.5 A I F = 1 0A 1000 I F = 5.0A 200 0 100 di f /dt - (A /µs) 1000 Fig. 16 - Typical Stored Charge vs. dif/dt www.irf.com 100 100 1000 di f /dt - (A /µs) Fig. 17 - Typical di(rec)M/dt vs. dif/dt 7 IRG4PH20KD Same ty pe device as D .U.T. 90% 10% Vge 430µF 80% of Vce D .U .T. VC 90% t d(off) 10% IC 5% tf tr t d(on) t=5µs Fig. 18a - Test Circuit for Measurement of Eon Eoff E ts = (Eon +Eoff ) ILM, Eon, Eoff(diode), trr, Qrr, Irr, td(on), tr, td(off), tf Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining Eoff, td(off), tf G A T E V O L T A G E D .U .T . 1 0 % +V g trr Q rr = Ic ∫ trr id d t tx +Vg tx 10% Vcc 1 0 % Irr V cc D UT VO LTAG E AN D CU RRE NT Vce V pk Irr Vcc 1 0 % Ic Ip k 9 0 % Ic Ic D IO D E R E C O V E R Y W A V E FO R M S tr td (o n ) t1 5% Vce ∫ t2 E o n = V ce ie d t t1 t2 E re c = D IO D E R E V E R S E REC OVERY ENER GY t3 Fig. 18c - Test Waveforms for Circuit of Fig. 18a, Defining Eon, td(on), tr 8 ∫ t4 V d id d t t3 t4 Fig. 18d - Test Waveforms for Circuit of Fig. 18a, Defining Erec, trr, Qrr, Irr www.irf.com IRG4PH20KD V g G A T E S IG N A L D E V IC E U N D E R T E S T C U R R E N T D .U .T . V O L T A G E IN D .U .T . C U R R E N T IN D 1 t0 t1 t2 Figure 18e. Macro Waveforms for Figure 18a's Test Circuit D.U.T. L 1000V Vc* RL= 960V 4 X I C @25°C 0 - 960V 50V 600 0µF 100V Figure 19. Clamped Inductive Load Test Circuit www.irf.com Figure 20. Pulsed Collector Current Test Circuit 9 IRG4PH20KD Notes: Repetitive rating: VGE=20V; pulse width limited by maximum junction temperature (figure 20) VCC=80%(VCES), VGE=20V, L=10µH, RG= 5.0Ω (figure 19) Pulse width ≤ 80µs; duty factor ≤ 0.1%. Pulse width 5.0µs, single shot. Case Outline - TO-247AC 3 .6 5 (.1 4 3 ) 3 .5 5 (.1 4 0 ) 0 .2 5 ( .0 1 0 ) 1 5 .9 0 (.6 2 6 ) 1 5 .3 0 (.6 0 2 ) -B- -D- M D B M -A5 .5 0 (.2 17 ) 2 0 .3 0 (.8 0 0 ) 1 9 .7 0 (.7 7 5 ) 2X 1 2 5 .3 0 (.2 0 9 ) 4 .7 0 (.1 8 5 ) 2.5 0 ( .0 8 9) 1.5 0 ( .0 5 9) 4 5.5 0 (.2 1 7) 4.5 0 (.1 7 7) LEAD 1234- 3 -C- * 1 4 .8 0 (.5 8 3 ) 1 4 .2 0 (.5 5 9 ) 2 .4 0 (.0 9 4 ) 2 .0 0 (.0 7 9 ) 2X 5 .4 5 (.2 1 5 ) 2X 4 .3 0 (.1 7 0 ) 3 .7 0 (.1 4 5 ) 3X 1 .4 0 ( .0 56 ) 1 .0 0 ( .0 39 ) 0.2 5 (.0 1 0 ) M 3 .4 0 (.1 3 3 ) 3 .0 0 (.1 1 8 ) NOTE S: 1 D IM E N S IO N S & T O LE R A N C IN G P E R A N S I Y 14 .5M , 1 98 2 . 2 C O N T R O L L IN G D IM E N S IO N : IN C H . 3 D IM E N S IO N S A R E S H O W N M IL LIM E T E R S (IN C H E S ). 4 C O N F O R M S T O J E D E C O U T L IN E T O -2 4 7A C . * A S S IG N M E N T S GAT E COLLECTO R E M IT T E R COLLECTO R LO N G E R LE A D E D (2 0m m ) V E R S IO N A V A IL A B L E (T O -2 47 A D ) T O O R D E R A D D "-E " S U F F IX TO PAR T NUM BER 0 .8 0 (.0 3 1 ) 0 .4 0 (.0 1 6 ) 2 .6 0 ( .1 0 2 ) 2 .2 0 ( .0 8 7 ) 3X C A S CO NF O RM S TO J EDEC O U TL IN E TO -2 47AC (T O -3P) D im e n s io n s in M illim e te rs a n d (In c h e s ) WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331 EUROPEAN HEADQUARTERS: Hurst Green, Oxted, Surrey RH8 9BB, UK Tel: ++ 44 1883 732020 IR CANADA: 7321 Victoria Park Ave., Suite 201, Markham, Ontario L3R 2Z8, Tel: (905) 475 1897 IR GERMANY: Saalburgstrasse 157, 61350 Bad Homburg Tel: ++ 49 6172 96590 IR ITALY: Via Liguria 49, 10071 Borgaro, Torino Tel: ++ 39 11 451 0111 IR FAR EAST: K&H Bldg., 2F, 30-4 Nishi-Ikebukuro 3-Chome, Toshima-Ku, Tokyo Japan 171 Tel: 81 3 3983 0086 IR SOUTHEAST ASIA: 315 Outram Road, #10-02 Tan Boon Liat Building, Singapore 0316 Tel: 65 221 8371 http://www.irf.com/ Data and specifications subject to change without notice. 6/98 10 www.irf.com