Holt HI-8282U Arinc 429 serial transmitter and dual receiver Datasheet

HI-8282
September 2006
ARINC 429 SERIAL TRANSMITTER AND DUAL RECEIVER
FEATURES
GENERAL DESCRIPTION
The HI-8282 is a silicon gate CMOS device for interfacing
the ARINC 429 serial data bus to a 16-bit parallel data bus.
Two receivers and an independent transmitter are
provided. The receiver input circuitry and logic are
designed to meet the ARINC 429 specifications for loading,
level detection, timing, and protocol. The transmitter
section provides the ARINC 429 communication protocol.
An external line driver such as the Holt HI-8585 or HI-3182
is required to translate the 5 volt logic outputs to ARINC 429
drive levels.
The 16-bit parallel data bus exchanges the 32-bit ARINC
data word in two steps when either loading the transmitter
or interrogating the receivers. The data bus interfaces with
CMOS and TTL.
Timing of all the circuitry begins with the master clock input,
CLK. For ARINC 429 applications, the master clock
frequency is 1 MHz.
Each independent receiver monitors the data stream with a
sampling rate 10 times the data rate. The sampling rate is
software selectable at either 1MHz or 125KHz. The results
of a parity check are available as the 32nd ARINC bit. The
HI-8282 examines the null and data timings and will reject
erroneous patterns. For example, with a 125 KHz clock
selection, the data frequency must be between 10.4 KHz
and 15.6 KHz.
The transmitter has a First In, First Out (FIFO) memory to
store 8 ARINC words for transmission. The data rate of the
transmitter is software selectable by dividing the master
clock, CLK, by either 10 or 80. The master clock is used to
set the timing of the ARINC transmission within the required
resolution.
! ARINC specification 429 compliant
! 16-Bit parallel data bus
! Direct receiver interface to ARINC bus
! Timing control 10 times the data rate
! Selectable data clocks
! Receiver error rejection per ARINC
specification 429
! Automatic transmitter data timing
! Self test mode
! Parity functions
! Low power, single 5 volt supply
! Industrial & full military temperature ranges
! DSCC SMD part number
PIN CONFIGURATION (Top View)
Vcc
1
40
NC
(REC. 1 INPUT) 429DI1(A)
2
39
MR
(REC.1 INPUT) 429DI1(B)
3
38
TX CLK (XMIT CLOCK OUT)
(REC. 2 INPUT) 429DI2(A)
4
37
CLK
(REC. 2 INPUT) 429DI2(B)
5
36
NC
(REC.1 DATA FLAG) D/R1
6
35
NC
(REC.2 DATA FLAG) D/R2
7
34
CWSTR (CONTROL WORD STROBE)
SEL
8
33
ENTX
(REC. 1 OUTPUT ENABLE) EN1
9
32
429DO (XMIT DATA)
(REC. 2 OUTPUT ENABLE) EN2
10
31
429DO (XMIT DATA)
BD15
11
30
TX/R
BD14
12
29
PL2
(XMIT BYTE 2 LE)
BD13
13
28
PL1
(XMIT BYTE 1 LE)
BD12
14
27
BD00
BD11
15
26
BD01
BD10
16
25
BD02
BD09
17
24
BD03
BD08
18
23
BD04
BD07
19
22
BD05
BD06
20
21
GND
(REC. BYTE SELECT)
APPLICATIONS
! Avionics data communication
! Serial to parallel conversion
! Parallel to serial conversion
(MASTER RESET)
(MASTER CLK IN)
(ENABLE XMIT)
(XMIT READY FLAG)
HI-8282C / CT / CM-01 / CM-03
SMD # 5962-8688002QA
40-Pin Ceramic Side-Brazed DIP
(See page 10 for additional Package Pin Configurations)
(DS8282 Rev. E)
HOLT INTEGRATED CIRCUITS
www.holtic.com
09/06
HI-8282
PIN DESCRIPTION
SYMBOL
FUNCTION
DESCRIPTION
VCC
POWER
429DI1 (A)
INPUT
+5V ±5%
ARINC receiver 1 positive input
429DI1 (B)
INPUT
ARINC receiver 1 negative input
429DI2 (A)
INPUT
ARINC receiver 2 positive input
429DI2 (B)
INPUT
ARINC receiver 2 negative input
D/R1
OUTPUT
Receiver 1 data ready flag
D/R2
OUTPUT
Receiver 2 data ready flag
SEL
INPUT
Receiver data byte selection (0 = BYTE 1) (1 = BYTE 2)
EN1
INPUT
Data Bus control, enables receiver 1 data to outputs
EN2
INPUT
Data Bus control, enables receiver 2 data to outputs if EN1 is high
BD15
I/O
Data Bus
BD14
I/O
Data Bus
BD13
I/O
Data Bus
BD12
I/O
Data Bus
BD11
I/O
Data Bus
BD10
I/O
Data Bus
BD09
I/O
Data Bus
BD08
I/O
Data Bus
BD07
I/O
Data Bus
BD06
I/O
Data Bus
GND
POWER
BD05
I/O
Data Bus
0V
BD04
I/O
Data Bus
BD03
I/O
Data Bus
BD02
I/O
Data Bus
BD01
I/O
Data Bus
BD00
I/O
Data Bus
PL1
INPUT
Latch enable for byte 1 entered from data bus to transmitter FIFO.
PL2
INPUT
TX/R
OUTPUT
Transmitter ready flag. Goes low when ARINC word loaded into FIFO. Goes high
after transmission and FIFO empty.
Latch enable for byte 2 entered from data bus to transmitter FIFO. Must follow PL1.
429DO
OUTPUT
"ONES" data output from transmitter.
429DO
OUTPUT
"ZEROES" data output from transmitter.
ENTX
INPUT
Enable Transmission
CWSTR
INPUT
Clock for control word register
CLK
INPUT
Master Clock input
TX CLK
OUTPUT
MR
INPUT
Transmitter Clock equal to Master Clock (CLK), divided by either 10 or 80.
Master Reset, active low
HOLT INTEGRATED CIRCUITS
2
HI-8282
FUNCTIONAL DESCRIPTION
ARINC 429 DATA FORMAT
The following table shows the bit positions in exchanging data with
the receiver or the transmitter. ARINC bit 1 is the first bit
transmitted or received.
CONTROL WORD REGISTER
The HI-8282 contains 10 data flip flops whose D inputs are connected to the data bus and clocks connected to CWSTR. Each
flip flop provides options to the user as follows:
DATA
BUS
PIN
FUNCTION CONTROL
BDO5
SELF TEST
0 = ENABLE
DESCRIPTION
If enabled, an internal connection
is made passing 429DO and
429DO to the receiver logic inputs
BDO6
RECEIVER 1
DECODER
1 = ENABLE
If enabled, ARINC bits 9 and,
10 must match the next two
control word bits
BDO7
-
-
If Receiver 1 Decoder is
enabled, the ARINC bit 9
must match this bit
-
If Receiver 1 Decoder is
enabled, the ARINC bit 10
must match this bit
BDO8
-
BDO9
RECEIVER 2
DECODER
1 = ENABLE
If enabled, ARINC bits 9 and
10 must match the next two
control word bits
BD10
-
-
If Receiver 2 Decoder is
enabled, then ARINC bit 9
must match this bit
BD11
-
-
If Receiver 2 Decoder is
enabled, then ARINC bit 10
must match this bit
INVERT
XMTR
PARITY
1 = ENABLE
Logic 0 enables normal odd parity
and Logic 1 enables even parity
output in transmitter 32nd bit
BD13
XMTR DATA
CLK SELECT
0 = ÷10
1 = ÷80
CLK is divided either by 10 or
80 to obtain XMTR data clock
BD14
RCVR DTA
CLK SELECT
0 = ÷10
1 = ÷80
CLK is divided either by 10 or
80 to obtain RCVR data clock
BD12
vcc
BYTE 1
DATA
BUS
BD BD BD BD BD BD BD BD BD BD BD BD BD BD BD BD
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
ARINC
BIT
13 12 11 10
DATA
BUS
BD BD BD BD BD BD BD BD BD BD BD BD BD BD BD BD
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00
ARINC
BIT
29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14
9
31 30 32
1
2
3
4
5
6
8
BYTE 2
THE RECEIVERS
ARINC BUS INTERFACE
Figure 1 shows the input circuit for each receiver. The ARINC 429
specification requires the following detection levels:
STATE
ONE
NULL
ZERO
DIFFERENTIAL VOLTAGE
+6.5 Volts to +13 Volts
+2.5 Volts to -2.5 Volts
-6.5 Volts to -13 Volts
The HI-8282 guarantees recognition of these levels with a common
mode Voltage with respect to GND less than ±4V for the worst case
condition (4.75V supply and 13v signal level).
The tolerances in the design guarantee detection of the above
levels, so the actual acceptance ranges are slightly larger. If the
ARINC signal is out of the actual acceptance ranges, including the
nulls, the chip rejects the data.
DIFFERENTIAL
AMPLIFIERS
429DI1 (A)
COMPARATORS
ONES
OR
429DI2 (A)
vcc
7
NULL
GND
ZEROES
429DI1 (B)
OR
429DI2 (B)
GND
FIGURE 1. ARINC RECEIVER INPUT
HOLT INTEGRATED CIRCUITS
3
HI-8282
FUNCTIONAL DESCRIPTION (cont.)
RECEIVER LOGIC OPERATION
3. Each data bit must follow its predecessor by not less than
8 samples and no more than 12 samples. In this manner the
bit rate is checked. With exactly 1MHz input clock frequency,
the acceptable data bit rates are as follows:
Figure 2 shows a block diagram of the logic section of each
receiver.
DATA BIT RATE MIN
DATA BIT RATE MAX
BIT TIMING
The ARINC 429 specification contains the following timing
specification for the received data:
HIGH SPEED
LOW SPEED
100K BPS ± 1% 12K -14.5K BPS
BIT RATE
10 ± 5 µsec
PULSE RISE TIME 1.5 ± 0.5 µsec
10 ± 5 µsec
PULSE FALL TIME 1.5 ± 0.5 µsec
5 µsec ± 5%
34.5 to 41.7 µsec
PULSE WIDTH
The HI-8282 accepts signals that meet these specifications and
rejects outside the tolerances. The way the logic operation
achieves this is described below:
1. Key to the performance of the timing checking logic is an accurate 1MHz clock source. Less than 0.1% error is recommended.
2. The sampling shift registers are 10 bits long and must show
three consecutive Ones, Zeros or Nulls to be considered valid
data. Additionally, for data bits, the One or Zero in the upper
bits of the sampling shift registers must be followed by a Null in
the lower bits within the data bit time. For a Null in the word
gap, three consecutive Nulls must be found in both the upper
and lower bits of the sampling shift register. In this manner the
minimum pulse width is guaranteed.
HIGH SPEED
LOW SPEED
83K BPS
125K BPS
10.4K BPS
15.6K BPS
4. The Word Gap timer samples the Null shift register every
10 input clocks (80 for low speed) after the last data bit of a
valid reception. If the Null is present, the Word Gap counter
is incremented. A count of 3 will enable the next reception.
RECEIVER PARITY
The receiver parity circuit counts Ones received, including the parity bit, ARINC bit 32. If the result is odd, then "0" will appear in the
32nd bit.
RETRIEVING DATA
Once 32 valid bits are recognized, the receiver logic generates
an End of Sequence (EOS). If the receiver decoder is enabled
and the 9th and 10th ARINC bits match the control word program bits or if the receiver decoder is disabled, then EOS
clocks the data ready flag flip flop to a "1", D/R1 or D/R2 (or
both) will go low. The data flag for a receiver will remain low until after both ARINC bytes from that receiver are retrieved. This
is accomplished by activating EN with SEL, the byte selector,
low to retrieve the first byte and activating EN with SEL high to
retrieve the second byte. EN1 retrieves data from receiver 1
and EN2 retrieves data from receiver 2.
If another ARINC word is received and a new EOS occurs before the two bytes are retrieved, the data is overwritten by the
new word.
TO PINS
SEL
MUX
CONTROL
EN
32 TO 16 DRIVER
CLOCK
OPTION
CONTROL
BIT BD14
D/R
DECODER
CONTROL
BITS
/
LATCH
ENABLE
CONTROL
32 BIT LATCH
BITS 9 & 10
32 BIT SHIFT REGISTER
DATA
PARITY
CHECK
32ND
BIT
BIT
COUNTER
AND
END OF
SEQUENCE
BIT CLOCK
EOS
ONES
CLK
CLOCK
EOS
WORD GAP
WORD GAP
TIMER
SHIFT REGISTER
BIT CLOCK
END
START
NULL
SHIFT REGISTER
ZEROS
SHIFT REGISTER
SEQUENCE
CONTROL
ERROR
ERROR
DETECTION
FIGURE 2.
RECEIVER BLOCK DIAGRAM
HOLT INTEGRATED CIRCUITS
4
CLOCK
HI-8282
FUNCTIONAL DESCRIPTION (cont.)
TRANSMITTER PARITY
TRANSMITTER
The parity generator counts the ONES in the 31-bit word. If the
BD12 control word bit is set low, the 32nd bit transmitted will make
parity odd. If the control bit is high, the parity is even.
A block diagram of the transmitter section is shown in Figure 3.
SELF TEST
FIFO OPERATION
If the BD05 control word bit is set low, the digital outputs of the
transmitter are internally connected to the logic inputs of the
receivers, bypassing the analog bus interface circuitry. Data to
Receiver 1 is as transmitted and data to Receiver 2 is the
complement. All data transmitted during self test is also present
on the TXA(OUT) and TXB(OUT) line driver outputs.
The FIFO is loaded sequentially by first pulsing PL1 to load byte
1 and then PL2 to load byte 2. The control logic automatically
loads the 31 bit word in the next available position of the FIFO. If
TX/R, the transmitter ready flag, is high (FIFO empty), then 8
words, each 31 bits long, may be loaded. If TX/R is low, then
only the available positions may be loaded. If all 8 positions are
full, the FIFO ignores further attempts to load data.
SYSTEM OPERATION
DATA TRANSMISSION
The two receivers are independent of the transmitter. Therefore,
control of data exchanges is strictly at the option of the user. The
only restrictions are:
When ENTX goes high, enabling transmission, the FIFO
positions are incremented with the top register loading into the
data transmission shift register. Within 2.5 data clocks the first
data bit appears at either 429DO or 429DO. The 31 bits in the
data transmission shift register are presented sequentially to the
outputs in the ARINC 429 format with the following timing:
ARINC DATA BIT TIME
DATA BIT TIME
NULL BIT TIME
WORD GAP TIME
HIGH SPEED
10 Clocks
5 Clocks
5 Clocks
40 Clocks
1. The received data may be overwritten if not retrieved
within one ARINC word cycle.
2. The FIFO can store 8 words maximum and ignores
attempts to load addition data if full.
LOW SPEED
80 Clocks
40 Clocks
40 Clocks
320 Clocks
3. Byte 1 of the transmitter data must be loaded first.
4. Either byte of the received data may be retrieved first.
Both bytes must be retrieved to clear the data ready flag.
The word counter detects when all loaded positions are
transmitted and sets the transmitter ready flag, TX/R, high.
5. After ENTX, transmission enable, goes high it cannot go
low until TX/R, transmitter ready flag, goes high. Otherwise,
one ARINC word is lost during transmission.
BIT BD12
31 BIT PARALLEL
LOAD SHIFT REGISTER
BIT CLOCK
PARITY
GENERATOR
429DO
429DO
BIT
AND
WORD GAP
COUNTER
WORD CLOCK
8 X 31 FIFO
DATA AND
NULL TIMER
SEQUENCER
START
SEQUENCE
ADDRESS
WORD COUNTER
AND
FIFO CONTROL
LOAD
TX/R
ENTX
INCREMENT
WORD COUNT
FIFO
LOADING
SEQUENCER
PL1
PL2
DATA BUS
DATA
CLOCK
FIGURE 3.
DATA CLOCK
DIVIDER
TRANSMITTER BLOCK DIAGRAM
CONTROL BIT
BD13
HOLT INTEGRATED CIRCUITS
5
CLK
TX CLK
HI-8282
FUNCTIONAL DESCRIPTION (cont.)
now ready to be transmitted according to the parity programmed
into the control word register.
REPEATER OPERATION
In normal operation, either byte of a received data word may be
read from the receiver latches first by use of SEL input. During
repeater operation however, the lower byte of the data word must
be read first. This is necessary because, as the data is being
read, it is also being loaded into the FIFO and the transmitter
FIFO is always loaded with the lower byte of the data word first.
he repeater mode of operation allows a data word that has been
received by the HI-8282 to be placed directly into its FIFO for
transmission. After a 32-bit word has been shifted into Tthe
receiver shift register, the D/R flag will go low. A logic "0" is placed
on the SEL line and EN is strobed. This is the same procedure as
for normal receiver operation and it places the lower byte (16) of the
data word on the data bus. By strobing PL1 at the same time as EN ,
MASTER RESET (MR)
the byte will also be placed into the transmitter FIFO. SEL is then
taken high and EN is strobed again to place the upper byte of the
data word on the data bus. By strobing PL2 at the same time as EN,
the second byte will also be placed into the FIFO. The data word is
On a Master Reset data transmission and reception are
immediately terminated, all three FIFOs are cleared as are the
FIFO flags at the device pins and in the Status Register. The
Control Register is not affected by a Master Reset.
TIMING DIAGRAMS
DATA RATE - EXAMPLE PATTERN
429DO
ARINC BIT
429DO
DATA
NULL
DATA
DATA
NULL
BIT 1
NEXT WORD
WORD GAP
BIT 32
BIT 31
BIT 30
NULL
LOADING CONTROL WORD
VALID
DATA BUS
tCWSET
tCWHLD
CWSTR
tCWSTR
RECEIVER OPERATON
ARINC DATA
BIT 31
DATA READY FLAG
BIT 32
D/R
tEND/R
tD/R
BYTE SELECT
SEL
DON'T CARE
DON'T CARE
tSELEN
ENABLE BYTE ON BUS
tSELEN
tENSEL
DON'T CARE
tEN
tENSEL
EN
tENEN
tDATAEN
tD/REN
tDATAEN
BYTE 1 VALID
DATA BUS
tENDATA
HOLT INTEGRATED CIRCUITS
6
BYTE 2 VALID
tENDATA
HI-8282
TIMING DIAGRAMS (cont.)
TRANSMITTER OPERATION
BYTE 2 VALID
BYTE 1 VALID
DATA BUS
tDWSET
tDWSET
tDWHLD
tDWHLD
PL1
tPL21
tPL
PL2
tPL12
tPL
tTX/R
TX/R
TRANSMITTING DATA
PL2
tDTX/R
tPL2EN
TX/R
ENTX
ARINC BIT
tENDAT
429DO
or
429DO
tENTX/R
DATA
BIT 1
DATA
BIT 32
DATA
BIT 2
REPEATER OPERATION TIMING
429DI
BIT 32
tEND/R
D/R
tD/R
tD/REN
tEN
tENEN
tEN
EN
tSELEN
SEL
tENSEL
DON'T CARE
DON'T CARE
tENPL
tSELEN
tPLEN
tENSEL
PL1
tPLEN
tENPL
PL2
tTX/R
TX/R
tTX/REN
tENTX/R
ENTX
tDTX/R
tENDAT
BIT 1
429DO
BIT 32
tNULL
HOLT INTEGRATED CIRCUITS
7
HI-8282
ABSOLUTE MAXIMUM RATINGS
Supply Voltage Vcc
-0.3V to +7V
Power Dissipation
Voltage at ARINC input pins
-29V to +29V
Operating Temperature Range: (Industrial)
(Military)
-40°C to +85°C
-55°C to +125°C
Storage Temperature Range:
-65°C to +150°C
Voltage at any other pin
DC Current Drain per input pin
-0.3V to Vcc +0.3V
10mA
500mW
NOTE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only.
Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied.
Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
DC ELECTRICAL CHARACTERISTICS
Vcc = 5V ±5%, GND = 0V, TA = Operating Temperature Range (unless otherwise specified).
LIMITS
PARAMETER
SYMBOL
CONDITIONS
VIH
VIL
VNUL
Pins 2 to 3, 4 to 5: Common
mode voltage less than ±4V
with respect to GND
MIN
TYP
MAX
6.5
-13.0
-2.5
10.0
-10.0
0
13.0
-6.5
2.5
27
27
UNIT
ARINC INPUTS
Differential Input Voltage:
Input Resistance:
Input Current:
Input Capacitance:
(Guaranteed but not tested)
ONE
ZERO
NULL
Differential
To GND
To Vcc
RI
RG
RH
12
12
12
Input Sink
Input Source
IIH
IIL
-450
Differential
To GND
To Vcc
CI
CG
CH
Input Voltage HI
Input Voltage LO
VIH
VIL
Input Sink
Input Source
IIH
IIL
Input Voltage HI
Input Voltage LO
VIH
VIL
Input Sink
Input Source
IIH
IIL
Pins 2 to 3, 4 to 5
V
V
V
KW
KW
kW
200
µA
µA
20
20
20
pF
pF
pF
0.7
V
V
BI-DIRECTIONAL INPUTS
Input Voltage:
Input Current:
2.1
1.5
-1.5
µA
µA
ALL OTHER INPUTS
Input Voltage:
Input Current:
3.5
0.7
10
-20
V
V
µA
µA
OUTPUTS
Output Voltage:
Logic "1" Output Voltage
Logic "0" Output Voltage
VOH
VOL
IOH = -1.5mA
IOL = 1.8mA
2.7
Output Current:
(Bi-directional Pins)
Output Sink
Output Source
IOL
IOH
VOUT = 0.4V
VOUT = VCC - 0.4V
3.0
1.5
mA
mA
Output Current:
(All Other Outputs)
Output Sink
Output Source
IOL
IOH
VOUT = 0.4V
VOUT = VCC - 0.4V
3.6
1.5
mA
mA
Output Capacitance:
0.4
V
V
CO
15
pF
Standby Supply Current:
ICC1
20
mA
Operating Supply Current:
ICC2
20
mA
SUPPLY INPUT
HOLT INTEGRATED CIRCUITS
9
HI-8282
AC ELECTRICAL CHARACTERISTICS
Vcc = 5V, GND = 0V, TA = Operating Temperature Range and fclk = 1MHz +0.1% with 60/40 duty cycle
PARAMETER
SYMBOL
LIMITS
MIN
TYP
MAX
UNITS
CONTROL WORD TIMING
Pulse Width - CWSTR
Setup - DATA BUS Valid to CWSTR HIGH
Hold - CWSTR HIGH to DATA BUS Hi-Z
tCWSTR
tCWSET
tCWHLD
130
140
0
ns
ns
ns
RECEIVER TIMING
Delay - Start ARINC 32nd Bit to D/R LOW: High Speed
Low Speed
tD/R
tD/R
16
128
µs
µs
200
ns
ns
Delay - D/R LOW to EN L0W
Delay - EN LOW to D/R HIGH
tD/REN
tEND/R
0
Setup - SEL to EN L0W
Hold - SEL to EN HIGH
tSELEN
tENSEL
20
50
Delay - EN L0W to DATA BUS Valid
Delay - EN HIGH to DATA BUS Hi-Z
tENDATA
tDATAEN
Pulse Width - EN1 or EN2
Spacing - EN HIGH to next EN L0W
tEN
tENEN
240
50
ns
ns
tPL
200
ns
tDWSET
tDWHLD
110
20
ns
ns
Spacing - PL1 to PL2
tPL12
0
ns
250
ns
ns
200
30
ns
ns
FIFO TIMING
Pulse Width - PL1 or PL2
Setup - DATA BUS Valid to PL HIGH
Hold - PL HIGH to DATA BUS Hi-Z
Spacing - PL2 to PL1
tPL21
Delay - PL2 HIGH to TX/R LOW
tTX/R
Spacing - PL2 HIGH to ENTX HIGH
tPL2EN
ns
840
ns
TRANSMISSION TIMING
Delay - ENTX HIGH to TXA(OUT) or TXB(OUT): High Speed
Delay - ENTX HIGH to TXA(OUT) or TXB(OUT): Low Speed
0
µs
tENDAT
tENDAT
25
200
µs
µs
Delay - 32nd ARINC Bit to TX/R HIGH
tDTX/R
400
ns
Spacing - TX/R HIGH to ENTX L0W
tENTX/R
0
ns
Delay - EN LOW to PL LOW
tENPL
0
ns
Hold - PL HIGH to EN HIGH
tPLEN
0
ns
tTX/REN
0
ns
tMR
400
ns
REPEATER OPERATION TIMING
Delay - TX/R LOW to ENTX HIGH
Master Reset Pulse Width
ARINC Data Rate and Bit Timing
± 1%
HOLT INTEGRATED CIRCUITS
9
HI-8282
ADDITIONAL HI-8282 PIN CONFIGURATIONS
(See page 1 for the 40-pin Ceramic Side-Brazed DIP Package )
44-PIN J-LEAD CERQUAD
44-PIN PLASTIC PLCC
HI-8282J-44
HI-8282JT-44
HI-8282U
HI-8282UT
44-PIN CERAMIC LCC
HI-8282S
HI-8282ST
HI-8282SM-01
HOLT INTEGRATED CIRCUITS
10
HI-8282
ORDERING INFORMATION
HI - 8282 x x - xx (Ceramic)
PART
NUMBER
TEMPERATURE
RANGE
FLOW
BURN
IN
Blank
-40°C TO +85°C
I
NO
T
-55°C TO +125°C
T
NO
M-01
-55°C TO +125°C
M
YES
M-03 (1)
-55°C TO +125°C
DSCC
YES
PART
NUMBER
PACKAGE
DESCRIPTION
LEAD
FINISH (2)
C
40 PIN CERAMIC SIDE BRAZED DIP
Gold (‘M’ flow: solder)
S
44 PIN CERAMIC LEADLESS CHIP CARRIER
Gold (‘M’ flow: solder)
U
44 PIN CERQUAD (not available with ‘M’ flow)
Solder
HI - 8282J x x - 44 (Plastic)
PART
NUMBER
Blank
F
PART
NUMBER
LEAD
FINISH
Tin / Lead (Sn / Pb) Solder
100% Matte Tin (Pb-free, RoHS compliant)
TEMPERATURE
RANGE
FLOW
BURN
IN
Blank
-40°C TO +85°C
I
NO
T
-55°C TO +125°C
T
NO
PART
NUMBER
8282J
PACKAGE
DESCRIPTION
44 PIN PLASTIC J LEAD (3)
(1) Only available in ‘C’ package. SMD# 5962-8688002QA
(2) Gold terminal finish is Pb-Free, RoHS compliant.
(3) NOT RECOMMENDED FOR NEW DESIGNS. The newer HI-8282APJI and HI-8282APJT replaces the
HI-8282J-44 and HI-8282JT-44 respectively. The HI-8282A parts are rated as Moisture Sensitive Level 1
(MSL 1) and do not require any special handling. The older HI-8282J-44 and HI-8282JT-44 are rated as
MSL 3 and require dry-packaging and /or bake-out in accordance with IPC/JEDEC J-STD-020A.
HOLT INTEGRATED CIRCUITS 12
11
HI-8282 PACKAGE DIMENSIONS
inches (millimeters)
40-PIN CERAMIC SIDE-BRAZED DIP
Package Type: 40C
2.020 MAX
(51.308 MAX)
.595 ± .010
(15.113 ± .254)
.610 ± .010
(15.494 ± .254)
.050 TYP
(1.270 TYP)
.225 MAX
(5.715 MAX)
.125 MIN
(3.175 MIN)
.085 ± .009
(2.159 ± .229)
.018 TYP
(.457 TYP)
.100 BSC
(2.540 BSC)
.600 ± .010
(15.240 ± .254)
.010 + .002/- .001
(.254 + .051/- .025)
44-PIN J-LEAD CERQUAD
Package Type: 44U
2 1 44 43
.688 ± .005
(17.475 ± .127)
MAX.
SQ.
.650 ± .010
(16.510 ± .254)
SQ.
.200
(5.080)MAX.
.039 ± .005
(.990 ± .127)
.019 ± .002
(.483 ± .051)
.050
TYP.
(1.270)
.100 ± .007
(2.540 ± .178)
HOLT INTEGRATED CIRCUITS
12
.620 ±.012
(15.748 ± .305)
HI-8282 PACKAGE DIMENSIONS
inches (millimeters)
44-PIN PLASTIC PLCC
Package Type: 44J
PIN NO. 1
.045 x 45°
PIN NO. 1 IDENT
.045 x 45°
.050 ± .005
(1.27 ± .127)
.690 ± .005
(17.526 ± .127)
SQ.
.653 ± .004
(16.586 ± .102)
SQ.
.031± .005
(.787 ± .127)
.017 ± .004
(.432 ± .102)
SEE DETAIL
A
.009
.011
.172 ± .008
(4.369 ± .203)
DETAIL A
.610 ± .020
(15.494± .508)
.015 ± .002
(.381 ± .051)
.020 MIN
(.508 MIN)
R .025
.045
44-PIN CERAMIC LEADLESS CHIP CARRIER
Package Type: 44S
.020 INDEX
(.508 INDEX)
PIN 1
.040 x 45° 3 PLCS
(1.016 x 45° 3 PLCS)
.075 ± .004
(1.905 ± .101)
.050 ± .005
(1.270 ± .127)
.651 ± .011
(16.535 ± .279)
SQ.
.050 BSC
(1.270 BSC)
.025 ± .003
(.635 ±.076)
.009R ± .006
(.229R ±.152)
.092 ± .028
(2.336 ± .711)
HOLT INTEGRATED CIRCUITS
13
.326 ± .006
(8.280 ± .152)
PIN 1
Similar pages