Infineon IGW40T120 Low loss igbt in trench and fieldstop technology Datasheet

IGW40T120
TrenchStop Series
^
Low Loss IGBT in Trench and Fieldstop technology
C
•
•
•
•
•
•
•
Short circuit withstand time – 10µs
Designed for :
G
E
- Frequency Converters
- Uninterrupted Power Supply
Trench and Fieldstop technology for 1200 V applications offers :
- very tight parameter distribution
- high ruggedness, temperature stable behavior
NPT technology offers easy parallel switching capability due to
positive temperature coefficient in VCE(sat)
Low EMI
Low Gate Charge
Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
Type
IGW40T120
VCE
IC
VCE(sat),Tj=25°C
Tj,max
1200V
40A
1.8V
150°C
P-TO-247-3-1
(TO-247AC)
Package
Ordering Code
TO-247AC
Q67040-S4519
Maximum Ratings
Parameter
Symbol
Value
Unit
Collector-emitter voltage
VCE
1200
V
DC collector current
IC
A
TC = 25°C
75
TC = 100°C
40
Pulsed collector current, tp limited by Tjmax
ICpul s
105
Turn off safe operating area
-
105
VGE
±20
V
tSC
10
µs
Ptot
270
W
°C
VCE ≤ 1200V, Tj ≤ 150°C
Gate-emitter voltage
1)
Short circuit withstand time
VGE = 15V, VCC ≤ 1200V, Tj ≤ 150°C
Power dissipation
TC = 25°C
Operating junction temperature
Tj
-40...+150
Storage temperature
Tstg
-55...+150
Soldering temperature, 1.6mm (0.063 in.) from case for 10s
-
1)
260
Allowed number of short circuits: <1000; time between short circuits: >1s.
Power Semiconductors
1
Preliminary / Rev. 1 Jul-02
IGW40T120
TrenchStop Series
^
Thermal Resistance
Parameter
Symbol
Conditions
Max. Value
Unit
0.45
K/W
Characteristic
IGBT thermal resistance,
RthJC
junction – case
Thermal resistance,
TO-247AC
RthJA
40
junction – ambient
Electrical Characteristic, at Tj = 25 °C, unless otherwise specified
Parameter
Symbol
Conditions
Value
min.
typ.
max.
1200
-
-
T j =2 5 °C
-
1.8
2.3
T j =1 2 5° C
-
2.1
-
T j =1 5 0° C
-
2.3
-
5.0
5.8
6.5
Unit
Static Characteristic
Collector-emitter breakdown voltage
V ( B R ) C E S V G E = 0V , I C = 1 .5m A
Collector-emitter saturation voltage
VCE(sat)
V
V G E = 15 V , I C = 40 A
Gate-emitter threshold voltage
VGE(th)
I C = 1. 5m A, V C E = V G E
Zero gate voltage collector current
ICES
V C E = 12 0 0V ,
V G E = 0V
mA
T j =2 5 °C
-
-
0.4
T j =1 5 0° C
-
-
4.0
Gate-emitter leakage current
IGES
V C E = 0V , V G E =2 0 V
-
-
600
nA
Transconductance
gfs
V C E = 20 V , I C = 40 A
-
21
-
S
Integrated gate resistor
RGint
Power Semiconductors
6
2
Ω
Preliminary / Rev. 1 Jul-02
IGW40T120
TrenchStop Series
^
Dynamic Characteristic
Ciss
V C E = 25 V ,
-
2500
-
Coss
V G E = 0V ,
-
130
-
Reverse transfer capacitance
Crss
f= 1 MH z
-
110
-
Gate charge
QGate
V C C = 96 0 V, I C =4 0 A
-
203
-
nC
nH
Input capacitance
Output capacitance
pF
V G E = 15 V
Internal emitter inductance
LE
T O - 24 7A C
-
-
13
IC(SC)
V G E = 15 V ,t S C ≤ 10 µs
V C C = 6 0 0 V,
T j = 25 ° C
-
210
-
measured 5mm (0.197 in.) from case
Short circuit collector current
1)
A
Switching Characteristic, Inductive Load, at Tj=25 °C
Parameter
Symbol
Conditions
Value
min.
typ.
max.
-
48
-
-
34
-
-
480
-
-
70
-
-
3.3
-
-
3.2
-
-
6.5
-
Unit
IGBT Characteristic
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
Turn-off energy
Eoff
Total switching energy
Ets
T j =2 5 °C ,
V C C = 60 0 V, I C = 4 0 A,
V G E = 0/ 15 V ,
R G = 15 Ω,
2)
L σ =1 8 0n H,
2)
C σ = 3 9p F
Energy losses include
“tail” and diode
reverse recovery.
ns
mJ
Switching Characteristic, Inductive Load, at Tj=150 °C
Parameter
Symbol
Conditions
Value
min.
typ.
max.
-
52
-
-
40
-
-
580
-
-
120
-
-
5.0
-
-
5.4
-
-
10.4
-
Unit
IGBT Characteristic
Turn-on delay time
td(on)
Rise time
tr
Turn-off delay time
td(off)
Fall time
tf
Turn-on energy
Eon
Turn-off energy
Eoff
Total switching energy
Ets
1)
2)
T j =1 5 0° C
V C C = 60 0 V, I C = 4 0 A,
V G E = 0/ 15 V ,
R G = 1 5Ω ,
2)
L σ =1 8 0n H,
2)
C σ = 3 9p F
Energy losses include
“tail” and diode
reverse recovery.
ns
mJ
Allowed number of short circuits: <1000; time between short circuits: >1s.
Leakage inductance L σ an d Stray capacity C σ due to dynamic test circuit in Figure E.
Power Semiconductors
3
Preliminary / Rev. 1 Jul-02
IGW40T120
TrenchStop Series
^
100A
tp=3µs
100A
80A
10µs
TC=110°C
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
TC=80°C
60A
40A
Ic
20A
10A
50µs
150µs
500µs
1A
20ms
Ic
DC
0A
10Hz
100Hz
1kHz
10kHz
0,1A
1V
100kHz
f, SWITCHING FREQUENCY
Figure 1. Collector current as a function of
switching frequency
(Tj ≤ 150°C, D = 0.5, VCE = 600V,
VGE = 0/+15V, RG = 15Ω)
10V
100V
1000V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 2. Safe operating area
(D = 0, TC = 25°C,
Tj ≤150°C;VGE=15V)
70A
60A
IC, COLLECTOR CURRENT
Ptot, POWER DISSIPATION
250W
200W
150W
100W
50W
0W
25°C
50A
40A
30A
20A
10A
50°C
75°C
100°C
0A
25°C
125°C
TC, CASE TEMPERATURE
Figure 3. Power dissipation as a function of
case temperature
(Tj ≤ 150°C)
Power Semiconductors
4
75°C
125°C
TC, CASE TEMPERATURE
Figure 4. Collector current as a function of
case temperature
(VGE ≥ 15V, Tj ≤ 150°C)
Preliminary / Rev. 1 Jul-02
IGW40T120
TrenchStop Series
100A
100A
90A
90A
80A
VGE=17V
70A
15V
60A
13V
IC, COLLECTOR CURRENT
IC, COLLECTOR CURRENT
^
11V
50A
9V
40A
7V
30A
VGE=17V
70A
15V
60A
13V
11V
50A
9V
40A
7V
30A
20A
20A
10A
10A
0A
0A
0V
1V
2V
3V
4V
5V
6V
0V
100A
90A
80A
70A
60A
50A
40A
30A
20A
TJ=150°C
25°C
10A
0A
0V
2V
4V
6V
8V
10V
12V
2V
3V
4V
5V
6V
3,5V
IC=80A
3,0V
2,5V
2,0V
IC=40A
1,5V
IC=25A
1,0V
IC=10A
0,5V
0,0V
-50°C
0°C
50°C
100°C
TJ, JUNCTION TEMPERATURE
Figure 8. Typical collector-emitter
saturation voltage as a function of
junction temperature
(VGE = 15V)
VGE, GATE-EMITTER VOLTAGE
Figure 7. Typical transfer characteristic
(VCE=20V)
Power Semiconductors
1V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 6. Typical output characteristic
(Tj = 150°C)
VCE(sat), COLLECTOR-EMITT SATURATION VOLTAGE
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristic
(Tj = 25°C)
IC, COLLECTOR CURRENT
80A
5
Preliminary / Rev. 1 Jul-02
IGW40T120
TrenchStop Series
^
td(off)
100ns
t, SWITCHING TIMES
t, SWITCHING TIMES
1000 ns
tf
td(on)
tr
10ns
1ns
0A
20A
40A
td(off)
100 ns
tf
td(on)
tr
10 ns
1 ns
60A
5Ω
IC, COLLECTOR CURRENT
Figure 9. Typical switching times as a
function of collector current
(inductive load, TJ=150°C,
VCE=600V, VGE=0/15V, RG=15Ω,
Dynamic test circuit in Figure E)
15Ω
25Ω
35Ω
45Ω
RG, GATE RESISTOR
Figure 10. Typical switching times as a
function of gate resistor
(inductive load, TJ=150°C,
VCE=600V, VGE=0/15V, IC=40A,
Dynamic test circuit in Figure E)
VGE(th), GATE-EMITT TRSHOLD VOLTAGE
t, SWITCHING TIMES
td(off)
100ns
tf
td(on)
tr
10ns
0°C
50°C
100°C
150°C
TJ, JUNCTION TEMPERATURE
Figure 11. Typical switching times as a
function of junction temperature
(inductive load, VCE=600V,
VGE=0/15V, IC=40A, RG=15Ω,
Dynamic test circuit in Figure E)
Power Semiconductors
7V
6V
max.
5V
typ.
4V
min.
3V
2V
1V
0V
-50°C
0°C
50°C
100°C
150°C
TJ, JUNCTION TEMPERATURE
Figure 12. Gate-emitter threshold voltage as
a function of junction temperature
(IC = 1.5mA)
6
Preliminary / Rev. 1 Jul-02
IGW40T120
TrenchStop Series
^
Ets*
20,0mJ
15,0mJ
Eon*
10,0mJ
Eoff
5,0mJ
0,0mJ
10A
20A
30A
40A
50A
60A
E off
E on*
E, SWITCHING ENERGY LOSSES
E, SWITCHING ENERGY LOSSES
Eoff
5 mJ
15mJ
10mJ
5mJ
Eon*
5Ω
15Ω
25Ω
35Ω
RG, GATE RESISTOR
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, TJ=150°C,
VCE=600V, VGE=0/15V, IC=40A,
Dynamic test circuit in Figure E)
*) E on and E ts include losses
due to diode recovery
E ts *
Ets*
10 mJ
0 mJ
70A
IC, COLLECTOR CURRENT
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, TJ=150°C,
VCE=600V, VGE=0/15V, RG=15Ω,
Dynamic test circuit in Figure E)
15mJ
*) Eon and Ets include losses
due to diode recovery
15 mJ
25,0mJ
E, SWITCHING ENERGY LOSSES
E, SWITCHING ENERGY LOSSES
*) Eon and Etsinclude losses
due to diode recovery
*) Eon and Ets include losses
due to diode recovery
10mJ
Ets*
5mJ E
off
Eon*
0mJ
50°C
100°C
0mJ
400V
150°C
TJ, JUNCTION TEMPERATURE
Figure 15. Typical switching energy losses
as a function of junction
temperature
(inductive load, VCE=600V,
VGE=0/15V, IC=40A, RG=15Ω,
Dynamic test circuit in Figure E)
Power Semiconductors
500V
600V
700V
800V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 16. Typical switching energy losses
as a function of collector emitter
voltage
(inductive load, TJ=150°C,
VGE=0/15V, IC=40A, RG=15Ω,
Dynamic test circuit in Figure E)
7
Preliminary / Rev. 1 Jul-02
IGW40T120
TrenchStop Series
^
1nF
15V
240V
c, CAPACITANCE
VGE, GATE-EMITTER VOLTAGE
Ciss
960V
10V
Crss
5V
0V
0nC
50nC
100nC
150nC
200nC
IC(sc), short circuit COLLECTOR CURRENT
10µs
5µs
12V
14V
10V
20V
300A
200A
100A
0A
16V
VGE, GATE-EMITTETR VOLTAGE
Figure 19. Short circuit withstand time as a
function of gate-emitter voltage
(VCE=600V, start at TJ=25°C)
Power Semiconductors
0V
VCE, COLLECTOR-EMITTER VOLTAGE
Figure 18. Typical capacitance as a function
of collector-emitter voltage
(VGE=0V, f = 1 MHz)
15µs
0µs
10pF
250nC
QGE, GATE CHARGE
Figure 17. Typical gate charge
(IC=40 A)
tSC, SHORT CIRCUIT WITHSTAND TIME
Coss
100pF
12V
14V
16V
18V
VGE, GATE-EMITTETR VOLTAGE
Figure 20. Typical short circuit collector
current as a function of gateemitter voltage
(VCE ≤ 600V, Tj ≤ 150°C)
8
Preliminary / Rev. 1 Jul-02
IGW40T120
TrenchStop Series
VCE
600V
60A
400V
40A
200V
20A
0V
600V
60A
40A
IC
400V
200V
20A
VCE
IC
0A
0us
0.5us
1us
1.5us
t, TIME
Figure 21. Typical turn on behavior
(VGE=0/15V, RG=15Ω, Tj = 150°C,
Dynamic test circuit in Figure E)
ZthJC, TRANSIENT THERMAL RESISTANCE
IC, COLLECTOR CURRENT
VCE, COLLECTOR-EMITTER VOLTAGE
^
0A
0us
0V
0.5us
1us
1.5us
t, TIME
Figure 22. Typical turn off behavior
(VGE=15/0V, RG=15Ω, Tj = 150°C,
Dynamic test circuit in Figure E)
D=0.5
-1
10 K/W
0.2
0.1
0.05
-2
10 K/W
R,(K/W)
0.159
0.133
0.02
0.120
0.01
0.038
single pulse
R1
τ, (s)=
1.10*10-1
1.56*10-2
1.35*10-3
1.51*10-4
R2
C 1 = τ 1 /R 1
C 2 = τ 2 /R 2
10ms
100ms
-3
10 K/W
10µs
100µs
1ms
tP, PULSE WIDTH
Figure 23. IGBT transient thermal resistance
(D = tp / T)
Power Semiconductors
9
Preliminary / Rev. 1 Jul-02
IGW40T120
TrenchStop Series
^
dimensions
TO-247AC
[mm]
symbol
min
max
min
max
A
4.78
5.28
0.1882
0.2079
B
2.29
2.51
0.0902
0.0988
C
1.78
2.29
0.0701
0.0902
D
1.09
1.32
0.0429
0.0520
E
1.73
2.06
0.0681
0.0811
F
2.67
3.18
0.1051
0.1252
G
0.76 max
20.80
21.16
0.8189
0.8331
K
15.65
16.15
0.6161
0.6358
L
5.21
5.72
0.2051
0.2252
M
19.81
20.68
0.7799
0.8142
N
3.560
4.930
0.1402
0.1941
Q
10
0.0299 max
H
∅P
Power Semiconductors
[inch]
3.61
6.12
0.1421
6.22
0.2409
0.2449
Preliminary / Rev. 1 Jul-02
IGW40T120
TrenchStop Series
^
τ1
τ2
r1
r2
τn
rn
Tj (t)
p(t)
r1
r2
rn
Figure A. Definition of switching times
TC
Figure D. Thermal equivalent
circuit
Figure B. Definition of switching losses
Power Semiconductors
Figure E. Dynamic test circuit
Leakage inductance Lσ =180nH
an d Stray capacity C σ =39pF.
11
Preliminary / Rev. 1 Jul-02
IGW40T120
^
TrenchStop Series
Published by
Infineon Technologies AG,
Bereich Kommunikation
St.-Martin-Strasse 53,
D-81541 München
© Infineon Technologies AG 2001
All Rights Reserved.
Attention please!
The information herein is given to describe certain components and shall not be considered as warranted characteristics.
Terms of delivery and rights to technical change reserved.
We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits,
descriptions and charts stated herein.
Infineon Technologies is an approved CECC manufacturer.
Information
For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon
Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).
Warnings
Due to technical requirements components may contain dangerous substances. For information on the types in question
please contact your nearest Infineon Technologies Office.
Infineon Technologies Components may only be used in life-support devices or systems with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of
that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or
systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect
human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.
Power Semiconductors
12
Preliminary / Rev. 1 Jul-02
Similar pages