IRGB4715DPbF IRGS4715DPbF Insulated Gate Bipolar Transistor with Ultrafast Soft Recovery Diode VCES = 650V C IC = 15A, TC =100°C C tSC 5.5µs, TJ(max) = 175°C VCE(ON) typ. = 1.7V @ IC = 8A G G E Applications n-channel • Industrial Motor Drive • UPS • Solar Inverters • Welding G Gate C C E G IRGS4715DPbF D2‐Pak IRGB4715DPbF TO‐220AB C Collector Features E Emitter Benefits Low VCE(ON) and Switching Losses 5.5µs Short Circuit SOA Square RBSOA Maximum Junction Temperature 175°C Positive VCE (ON) Temperature Coefficient High Efficiency in a Wide Range of Applications Lead-Free, RoHs compliant Environmentally friendly Base part number Package Type IRGB4715DPbF TO-220 IRGS4715DPbF D2-Pak E Rugged Transient Performance Increased Reliability Excellent Current Sharing in Parallel Operation Standard Pack Form Quantity Tube 50 Tube 50 Tape and Reel Left 800 Tape and Reel Right 800 Orderable Part Number IRGB4715DPbF IRGS4715DPbF IRGS4715DTRLPbF IRGS4715DTRRPbF Absolute Maximum Ratings VCES IC @ TC = 25°C IC @ TC = 100°C ICM ILM IF @ TC = 25°C IF @ TC = 100°C IFM VGE PD @ TC = 25°C PD @ TC = 100°C TJ TSTG Parameter Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Pulse Collector Current, VGE = 15V Clamped Inductive Load Current, VGE = 20V Diode Continuous Forward Current Diode Continuous Forward Current Diode Maximum Forward Current Continuous Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw Max. 650 21 15 24 32 21 13 32 ±30 100 50 -40 to +175 Units V 300 (0.063 in. (1.6mm) from case) 10 lbf·in (1.1 N·m) C A V W Thermal Resistance RJC (IGBT) RJC (Diode) RCS RJA RJA 1 Parameter Thermal Resistance Junction-to-Case-(each IGBT) Thermal Resistance Junction-to-Case-(each Diode) Thermal Resistance, Case-to-Sink (flat, greased surface) Thermal Resistance, Junction-to-Ambient (TO-220) Thermal Resistance, Junction-to-Ambient (D2-Pak) www.irf.com © 2014 International Rectifier Min. ––– ––– ––– ––– ––– Submit Datasheet Feedback Typ. ––– ––– 0.5 ––– ––– Max. 1.5 3.6 ––– 62 40 Units °C/W November 12, 2014 IRGB4715DPBF/IRGS4715DPBF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)CES Collector-to-Emitter Breakdown Voltage V(BR)CES/TJ Temperature Coeff. of Breakdown Voltage Min. 650 — Typ. — 0.8 — 1.7 — 2.1 Gate Threshold Voltage 5.5 — VGE(th) — -19 VGE(th)/TJ Threshold Voltage Temperature Coeff. gfe Forward Transconductance — 5.7 — 1.0 ICES Collector-to-Emitter Leakage Current — 1.0 Gate-to-Emitter Leakage Current — — IGES — 1.8 Diode Forward Voltage Drop VF — 1.3 Switching Characteristics @ TJ = 25°C (unless otherwise specified) Max. — — Units Conditions V VGE = 0V, IC = 100µA V/°C VGE = 0V, IC = 1mA (25°C-175°C) 2.0 V IC = 8A, VGE = 15V, TJ = 25°C — IC = 8A, VGE = 15V, TJ = 175°C 7.4 V VCE = VGE, IC = 250µA — mV/°C VCE = VGE, IC = 250µA (25°C-175°C) — S VCE = 50V, IC = 8A, PW = 20µs 25 µA VGE = 0V, VCE = 650V mA VGE = 0V, VCE = 650V, TJ = 175°C — ±100 nA VGE = ±30V 2.8 V IF = 8A — IF = 8A, TJ = 175°C VCE(on) Collector-to-Emitter Saturation Voltage Qg Qge Qgc Eon Eoff Etotal td(on) tr td(off) tf Eon Parameter Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Eoff Etotal td(on) tr td(off) tf Cies Coes Cres Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance RBSOA Reverse Bias Safe Operating Area SCSOA Short Circuit Safe Operating Area 5.5 — — µs Erec trr Irr Reverse Recovery Energy of the Diode Diode Reverse Recovery Time Peak Reverse Recovery Current — — — 130 86 8 — — — µJ ns A Min. — — — — — — — — — — — — — — — — — — — — Typ. Max Units Conditions 20 30 IC = 8A 6 9 nC VGE = 15V VCC = 400V 8 12 200 310 90 180 µJ IC = 8A, VCC = 400V, VGE=15V 290 490 RG = 50, TJ = 25°C 30 50 Energy losses include tail & diode 20 30 ns reverse recovery 100 120 20 30 340 — 170 510 30 20 120 70 540 50 15 — — — — — — — — — µJ ns pF FULL SQUARE IC = 8A, VCC = 400V, VGE=15V RG = 50, TJ = 175°C Energy losses include tail & diode reverse recovery VGE = 0V VCC = 30V f = 1.0Mhz TJ = 175°C, IC = 32A VCC = 520V, Vp ≤ 650V VGE = +20V to 0V TJ = 150°C,VCC = 400V, Vp ≤ 650V VGE = +15V to 0V TJ = 175°C VCC = 400V, IF = 8A VGE = 15V, Rg = 50 Notes: VCC = 80% (VCES), VGE = 20V. R is measured at TJ of approximately 90°C. Refer to AN-1086 for guidelines for measuring V(BR)CES safely. Maximum limits are based on statistical sample size characterization. Pulse width limited by max. junction temperature. Values influenced by parasitic L and C in measurement. 2 www.irf.com © 2013 International Rectifier Submit Datasheet Feedback November 12, 2014 IRGB4715DPBF/IRGS4715DPBF 30 For both: Duty cycle : 50% Tj = 175°C Tcase = 100°C Gate drive as specified Power Dissipation = 50W Load Current ( A ) 25 20 15 Square Wave: VCC 10 I 5 Diode as specified 0 0.1 1 10 100 f , Frequency ( kHz ) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 25 120 20 90 IC (A) Ptot (W) 15 10 60 30 5 0 0 25 50 75 100 125 150 175 25 TC (°C) 50 75 100 125 150 175 TC (°C) Fig. 3 - Power Dissipation vs. Case Temperature Fig. 2 - Maximum DC Collector Current vs. Case Temperature 100 100 10µsec 10 IC (A) IC (A) 100µsec 1msec 10 1 DC Tc = 25°C Tj = 175°C Single Pulse 0.1 1 1 10 100 1000 VCE (V) Fig. 4 - Forward SOA TC = 25°C; TJ ≤ 175°C; VGE = 15V 3 www.irf.com © 2013 International Rectifier 10 100 1000 VCE (V) Fig. 5 - Reverse Bias SOA TJ = 175°C; VGE = 20V Submit Datasheet Feedback November 12, 2014 IRGB4715DPBF/IRGS4715DPBF 32 32 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 24 ICE (A) ICE (A) 24 16 8 16 8 0 0 0 2 4 6 8 10 0 2 4 10 Fig. 6 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 20µs Fig. 7 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 20µs 32 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V IF (A) 24 16 16 -40°C 25°C 175°C 8 8 0 0 0 2 4 6 8 10 0.0 0.5 1.0 V CE (V) 1.5 2.0 2.5 3.0 V F (V) Fig. 9 - Typ. Diode Forward Voltage Drop Characteristics Fig. 8 - Typ. IGBT Output Characteristics TJ = 175°C; tp = 20µs 8 8 ICE = 4A ICE = 8A 6 ICE = 16A 4 ICE = 16A 4 2 2 0 0 5 10 15 ICE = 4A ICE = 8A 6 VCE (V) VCE (V) 8 V CE (V) 24 20 V GE (V) Fig. 10 - Typical VCE vs. VGE TJ = -40°C 4 6 V CE (V) 32 ICE (A) VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V www.irf.com © 2013 International Rectifier 5 10 15 20 V GE (V) Fig. 11 - Typical VCE vs. VGE TJ = 25°C Submit Datasheet Feedback November 12, 2014 IRGB4715DPBF/IRGS4715DPBF 8 32 ICE = 4A ICE = 8A 24 ICE = 16A ICE (A) VCE (V) 6 TJ = 25°C TJ = 175°C 4 16 2 8 0 0 5 10 15 20 6 7 8 9 10 11 12 13 14 15 16 V GE (V) V GE (V) Fig. 13 - Typ. Transfer Characteristics VCE = 50V; tp = 20µs Fig. 12 - Typical VCE vs. VGE TJ = 175°C 1000 1000 600 Swiching Time (ns) Energy (J) 800 EON 400 EOFF tdOFF 100 tF tdON tR 10 200 0 1 0 2 4 6 8 10 12 14 16 0 2 4 6 8 IC (A) 10 12 14 16 IC (A) Fig. 14 - Typ. Energy Loss vs. IC TJ = 175°C; VCE = 400V, RG = 50; VGE = 15V Fig. 15 - Typ. Switching Time vs. IC TJ = 175°C; VCE = 400V, RG = 50; VGE = 15V 1000 600 Swiching Time (ns) 500 Energy (J) 400 EON 300 200 EOFF tdOFF 100 tF tdON tR 10 100 1 0 0 20 40 60 80 100 Rg () Fig. 16 - Typ. Energy Loss vs. RG TJ = 175°C; VCE = 400V, ICE = 8A; VGE = 15V 5 www.irf.com © 2013 International Rectifier 0 20 40 60 80 100 RG () Fig. 17 - Typ. Switching Time vs. RG TJ = 175°C; VCE = 400V, ICE = 8A; VGE = 15V Submit Datasheet Feedback November 12, 2014 IRGB4715DPBF/IRGS4715DPBF 20 16 14 RG = 10 12 IRR (A) IRR (A) 15 RG =22 10 RG = 50 8 RG = 100 5 10 6 0 4 2 4 6 8 10 12 14 0 20 40 IF (A) 60 80 100 RG ( Fig. 19 - Typ. Diode IRR vs. RG TJ = 175°C Fig. 18 - Typ. Diode IRR vs. IF TJ = 175°C 15 1400 1200 12 16A QRR (nC) IRR (A) 1000 9 800 8A 600 6 4A 400 200 3 0 200 400 600 0 800 200 400 800 1000 diF /dt (A/µs) diF /dt (A/µs) Fig. 20 - Typ. Diode IRR vs. diF/dt VCC = 400V; VGE = 15V; IF = 8A; TJ = 175°C Fig. 21 - Typ. Diode QRR vs. diF/dt VCC = 400V; VGE = 15V; TJ = 175°C 20 300 50 RG = 10 250 16 40 Isc Time (µs) Tsc 150 12 30 8 20 4 10 Current (A) RG = 22 RG = 5 RG = 100 200 Energy (µJ) 600 100 50 0 0 0 2 4 6 8 10 12 14 16 18 0 9 10 11 6 www.irf.com © 2013 International Rectifier 13 14 15 16 VGE (V) IF (A) Fig. 22 - Typ. Diode ERR vs. IF TJ = 175°C 12 Fig. 23 - VGE vs. Short Circuit Time VCC = 400V; TC = 150°C Submit Datasheet Feedback November 12, 2014 IRGB4715DPBF/IRGS4715DPBF 16 1000 VGE, Gate-to-Emitter Voltage (V) Capacitance (pF) Cies 100 Coes 10 Cres 14 VCES = 400V VCES = 300V 12 10 8 6 4 2 0 1 0 100 200 300 400 500 0 600 5 10 15 20 Q G, Total Gate Charge (nC) VCE (V) Fig. 25 - Typical Gate Charge vs. VGE ICE = 8A Fig. 24 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz Thermal Response ( ZthJC ) 10 1 D = 0.50 0.20 0.10 0.1 J 0.05 0.02 0.01 0.01 R1 R1 J 1 R2 R2 R3 R3 R4 R4 C 2 1 2 3 3 4 C 4 Ci= iRi Ci= iRi SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 Ri (°C/W) i (sec) 0.04301 0.000008 0.47918 0.000100 0.59180 0.001347 0.38612 0.011340 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 26 - Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 10 Thermal Response ( ZthJC ) D = 0.50 1 0.20 0.10 0.05 0.1 0.02 0.01 J R1 R1 J 1 R2 R2 R3 R3 R4 R4 C 1 2 2 3 3 4 4 Ci= iRi Ci= iRi 0.01 1E-005 0.0001 i (sec) 0.04541 0.000011 1.07777 0.000254 1.68129 0.002170 0.79672 0.016960 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 C Ri (°C/W) 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 27 - Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) 7 www.irf.com © 2013 International Rectifier Submit Datasheet Feedback November 12, 2014 IRGB4715DPBF/IRGS4715DPBF L L VCC DUT 0 80 V + - DUT 1K VCC Rg Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit diode clamp / DUT L 4X DC VCC -5V DUT / DRIVER DUT VCC Rg RSH Fig.C.T.3 - S.C. SOA Circuit Fig.C.T.4 - Switching Loss Circuit C force R= VCC ICM 100K D1 22K C sense DUT VCC DUT G force 0.0075µF Rg E sense E force Fig.C.T.5 - Resistive Load Circuit 8 www.irf.com © 2013 International Rectifier Fig.C.T.6 - BVCES Filter Circuit Submit Datasheet Feedback November 12, 2014 IRGB4715DPBF/IRGS4715DPBF 500 25 500 25 tr tf 400 300 15 300 200 10 100 5 10% ICE 10% VCE ICE (A) VCE (V) 90% ICE 20 TEST CURRENT 90% ICE 200 100 10%ICE 5 0 0 0 Eon Loss Eoff Loss -100 -5 -100 -0.2 0.2 10 10% VCE 0 -0.6 15 ICE (A) 20 VCE (V) 400 0.6 -5 -0.3 1 -0.05 0.2 0.45 0.7 time (µs) time(µs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175°C using Fig. CT.4 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 175°C using Fig. CT.4 10 QRR 5 0 Vce (V) IF (A) 80 VCE -2.5 Peak IRR -10 -0.15 300 60 200 40 ICE 100 20 0 -7.5 0.05 0.25 0.45 time (µS) Fig. WF3 - Typ. Diode Recovery Waveform @ TJ = 175°C using Fig. CT.4 9 400 tRR 2.5 -5 100 www.irf.com © 2013 International Rectifier -100 -5.00 Ice (A) 7.5 500 0 0.00 5.00 -20 10.00 Time (uS) Fig. WF4 - Typ. S.C. Waveform @ TJ = 150°C using Fig. CT.3 Submit Datasheet Feedback November 12, 2014 IRGB4715DPBF/IRGS4715DPBF TO-220AB Package Outline (Dimensions are shown in millimeters (inches)) TO-220AB Part Marking Information EXAM PLE: T H IS IS A N IR F 1 0 1 0 LO T C O D E 1789 ASSEM BLED O N W W 19, 2000 IN T H E A S S E M B L Y L IN E "C " N o t e : "P " in a s s e m b ly lin e p o s it io n in d ic a t e s "L e a d - F r e e " IN T E R N A T IO N A L R E C T IF IE R LO G O ASSEM BLY LO T C O D E PART NUM BER D ATE C O D E YEA R 0 = 2000 W EEK 19 L IN E C TO-220AB packages are not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com © 2013 International Rectifier Submit Datasheet Feedback November 12, 2014 IRGB4715DPBF/IRGS4715DPBF D2Pak (TO-263AB) Package Outline (Dimensions are shown in millimeters (inches)) D2Pak (TO-263AB) Part Marking Information THIS IS AN IRF530S WITH LOT CODE 8024 ASSEMBLED ON WW 02, 2000 IN THE ASSEMBLY LINE "L" INTERNATIONAL RECTIFIER LOGO ASSEMBLY LOT CODE PART NUMBER F530S DATE CODE YEAR 0 = 2000 WEEK 02 LINE L OR INTERNATIONAL RECTIFIER LOGO ASSEMBLY LOT CODE PART NUMBER F530S DATE CODE P = DESIGNATES LEAD - FREE PRODUCT (OPTIONAL) YEAR 0 = 2000 WEEK 02 A = ASSEMBLY SITE CODE Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 11 www.irf.com © 2013 International Rectifier Submit Datasheet Feedback November 12, 2014 IRGB4715DPBF/IRGS4715DPBF D2Pak (TO-263AB) Tape & Reel Information (Dimensions are shown in millimeters (inches)) TRR 1.60 (.063) 1.50 (.059) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 11.60 (.457) 11.40 (.449) 1.65 (.065) 0.368 (.0145) 0.342 (.0135) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 1.75 (.069) 1.25 (.049) 10.90 (.429) 10.70 (.421) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. 60.00 (2.362) MIN. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. 26.40 (1.039) 24.40 (.961) 3 30.40 (1.197) MAX. 4 Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Qualification Information† Industrial Qualification Level TO-220 Moisture Sensitivity Level N/A 2 D Pak MSL1 Yes RoHS Compliant † Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability/ †† Applicable version of JEDEC standard at the time of product release. Revision History Date 11/12/2014 Comments Added IFM Diode Maximum Forward Current = 32A with the note on page 1. Removed note from switching losses test condition on page 2. IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/ 12 www.irf.com © 2013 International Rectifier Submit Datasheet Feedback November 12, 2014