Freescale Semiconductor Technical Data Document Number: MRF7S35015HS Rev. 1, 8/2008 RF Power Field Effect Transistor N - Channel Enhancement - Mode Lateral MOSFET MRF7S35015HSR3 Designed for pulsed wideband applications operating at frequencies between 3100 and 3500 MHz. • Typical Pulsed Performance: VDD = 32 Volts, IDQ = 50 mA, Pout = 15 Watts Peak (3 Watts Avg.), Pulsed Signal, f = 3500 MHz, Pulse Width = 100 μsec, Duty Cycle = 20% Power Gain — 16 dB Drain Efficiency — 41% • Typical WiMAX Performance: VDD = 32 Volts, IDQ = 150 mA, Pout = 1.8 Watts Avg., f = 3500 MHz, 802.16d, 64 QAM 3/4, 4 Bursts, 10 MHz Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF Power Gain — 18 dB Drain Efficiency — 16% RCE — - 33 dB (EVM — 2.2% rms) • Capable of Handling 10:1 VSWR, @ 32 Vdc, 3300 MHz, 15 Watts Peak Power • Capable of Handling 3 dB Overdrive @ 32 Vdc Features • Characterized with Series Equivalent Large - Signal Impedance Parameters • Internally Matched for Ease of Use • Integrated ESD Protection • Greater Negative Gate - Source Voltage Range for Improved Class C Operation • RoHS Compliant • In Tape and Reel. R3 Suffix = 250 Units per 32 mm, 13 inch Reel. 3100 - 3500 MHz, 15 W PEAK, 32 V PULSED LATERAL N - CHANNEL RF POWER MOSFET CASE 465J - 02, STYLE 1 NI - 400S - 240 Table 1. Maximum Ratings Rating Symbol Value Unit Drain - Source Voltage VDSS - 0.5, +65 Vdc Gate - Source Voltage VGS - 6.0, +10 Vdc Operating Voltage VDD 32, +0 Vdc Storage Temperature Range Tstg - 65 to +150 °C Case Operating Temperature TC 150 °C TJ 225 °C Symbol Value (2,3) Unit RθJC 0.60 0.73 °C/W Operating Junction Temperature (1,2) Table 2. Thermal Characteristics Characteristic Thermal Resistance, Junction to Case Case Temperature 80°C, 15 W Pulsed, 100 μsec Pulse Width, 20% Duty Cycle Case Temperature 81°C, 15 W Pulsed, 500 μsec Pulse Width, 10% Duty Cycle 1. Continuous use at maximum temperature will affect MTTF. 2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. 3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf. Select Documentation/Application Notes - AN1955. © Freescale Semiconductor, Inc., 2008. All rights reserved. RF Device Data Freescale Semiconductor MRF7S35015HSR3 1 Table 3. ESD Protection Characteristics Test Methodology Class Human Body Model (per JESD22 - A114) 1B (Minimum) Machine Model (per EIA/JESD22 - A115) A (Minimum) Charge Device Model (per JESD22 - C101) IV (Minimum) Table 4. Electrical Characteristics (TC = 25°C unless otherwise noted) Characteristic Symbol Min Typ Max Unit Gate - Source Leakage Current (VGS = 5 Vdc, VDS = 0 Vdc) IGSS — — 1 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 32 Vdc, VGS = 0 Vdc) IDSS — — 2 μAdc Zero Gate Voltage Drain Leakage Current (VDS = 65 Vdc, VGS = 0 Vdc) IDSS — — 10 μAdc Gate Threshold Voltage (VDS = 10 Vdc, ID = 33.5 μAdc) VGS(th) 1.2 2 2.7 Vdc Gate Quiescent Voltage (VDD = 32 Vdc, ID = 50 mAdc, Measured in Functional Test) VGS(Q) 1.8 2.5 3.3 Vdc Drain - Source On - Voltage (VGS = 10 Vdc, ID = 300 mAdc) VDS(on) 0.1 1.7 0.3 Vdc Reverse Transfer Capacitance (VDS = 32 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Crss — 0.12 — pF Output Capacitance (VDS = 32 Vdc ± 30 mV(rms)ac @ 1 MHz, VGS = 0 Vdc) Coss — 92 — pF Input Capacitance (VDS = 32 Vdc, VGS = 0 Vdc ± 30 mV(rms)ac @ 1 MHz) Ciss — 46 — pF Off Characteristics On Characteristics Dynamic Characteristics (1) Functional Tests (In Freescale Test Fixture, 50 ohm system) VDD = 32 Vdc, IDQ = 50 mA, Pout = 15 W Peak (3 W Avg.), f = 3100 MHz and f = 3500 MHz, Pulsed, 100 μsec Pulse Width, 20% Duty Cycle, 25 ns Input Rise Time Power Gain Gps 13 16 19 Drain Efficiency ηD Input Return Loss IRL dB 38 41 — % — - 12 -7 dB Pulsed RF Performance (In Freescale Application Test Fixture, 50 ohm system) VDD = 32 Vdc, IDQ = 50 mA, Pout = 15 W Peak (3 W Avg.), f = 3100 MHz and f = 3500 MHz, Pulsed, 100 μsec Pulse Width, 20% Duty Cycle, 25 ns Input Rise Time Output Pulse Droop (500 μsec Pulse Width, 10% Duty Cycle) Load Mismatch Tolerance (VSWR = 10:1 at all Phase Angles) DRPout VSWR - T — 0.2 — dB No Degradation in Output Power 1. Part internally matched both on input and output. MRF7S35015HSR3 2 RF Device Data Freescale Semiconductor B3 B2 VBIAS RF INPUT + + C9 C8 C7 C6 Z15 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 Z12 Z13 Z14 C10 B1 + + + C3 C2 C1 C4 VSUPPLY Z17 Z16 Z18 Z19 Z20 Z21 Z22 Z23 Z24 Z25 Z26 Z27 Z28 Z29 Z30 Z31 RF OUTPUT C5 DUT Z1 Z2* Z3* Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 Z12 Z13 Z14 Z15 Z16 Z17 0.375″ x 0.071″ Microstrip 0.126″ x 0.524″ Microstrip 0.079″ x 0.016″ Microstrip 0.153″ x 0.071″ Microstrip 0.076” x 0.520″ Microstrip 0.037″ x 0.252″ Microstrip 0.084″ x 0.73″ Microstrip 0.123″ x 0.440″ Microstrip 0.048″ x 0.073″ Microstrip 0.081″ x 0.184″ Microstrip 0.030″ x 0.262″ Microstrip 0.525″ x 0.336″ Microstrip 0.182″ x 0.466″ Microstrip 0.077″ x 0.466″ Microstrip 0.603″ x 0.048″ Microstrip 0.063″ x 0.618″ Microstrip 0.534″ x 0.040″ Microstrip Z18 Z19 Z20 Z21 Z22 Z23 Z24 Z25 Z26 Z27 Z28 Z29 Z30 Z31 PCB 0.078″ x 0.454″ Microstrip 0.055″ x 0.244″ Microstrip 0.630″ x 0.073″ Microstrip 0.218″ x 0.038″ Microstrip 0.060″ x 0.552″ Microstrip 0.079″ x 0.038″ Microstrip 0.062″ x 0.526″ Microstrip 0.032″ x 0.070″ Microstrip 0.110″ x 0.526″ Microstrip 0.053″ x 0.072″ Microstrip 0.028″ x 0.070″ Microstrip 0.098″ x 0.148″ Microstrip 0.062″ x 0.526″ Microstrip 0.529″ x 0.070″ Microstrip Arlon CuClad 250GX - 0300 - 55 - 22, 0.030″, εr = 2.55 * Line length includes microstrip bends Figure 1. MRF7S35015HSR3 Test Circuit Schematic Table 5. MRF7S35015HSR3 Test Circuit Component Designations and Values Part Description Part Number Manufacturer B1* Long Ferrite Bead 2743021447 Fair - Rite B2, B3 Short Ferrite Beads 2743019447 Fair - Rite C1 470 μF, 63 V Electrolytic Capacitor 477KXM063M Illinois Cap C2 47 μF, 50 V Electrolytic Capacitor 476KXM050M Illinois Cap C3, C9 22 μF, 35 V Tantalum Capacitors T491X226K035AT Kemet C4, C5, C10 2.7 pF Chip Capacitors ATC100B2R7BT500XT ATC C6 0.8 pF Chip Capacitor ATC100B0R8BT500XT ATC C7 0.1 μF Chip Capacitor CDR33BX104AKYS AVX C8 22 μF, 25 V Tantalum Capacitor T491D226K025AT Kemet * B1 is removed for WiMAX circuit performance. MRF7S35015HSR3 RF Device Data Freescale Semiconductor 3 C8 C3 B2 B1 B3 C7 C1 C2 C4 C6 C9 C5 CUT OUT AREA C10 MRF7S35015H Rev. 1 Figure 2. MRF7S35015HSR3 Test Circuit Component Layout MRF7S35015HSR3 4 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS 10 Coss 100 Ciss 10 TJ = 200°C ID, DRAIN CURRENT (AMPS) C, CAPACITANCE (pF) 1000 Measured with ±30 mV(rms)ac @ 1 MHz VGS = 0 Vdc 1 TJ = 175°C TJ = 150°C 1 Crss TC = 25°C 0.1 0.1 0 5 10 15 20 30 35 1 100 Figure 3. Capacitance versus Drain - Source Voltage Figure 4. DC Safe Operating Area Gps 3300 MHz 45 46 3500 MHz 16 3300 MHz 15.5 40 35 30 15 ηD 3100 MHz 14.5 25 14 20 VDD = 32 Vdc, IDQ = 50 mA Pulse Width = 100 μsec Duty Cycle = 20% 13.5 13 2 15 Pout, OUTPUT POWER (dBm) PULSED 47 ηD, DRAIN EFFICIENCY (%) 16.5 50 3100 MHz f = 3500 MHz 10 Ideal P3dB = 43 dBm (19.8 W) P2dB = 42.7 dBm (19 W) 45 44 P1dB = 42.2 dBm (16.7 W) 43 Actual 42 41 40 VDD = 32 Vdc, IDQ = 50 mA, f = 3500 MHz Pulse Width = 100 μsec, Duty Cycle = 20% 39 38 30 10 21 22 23 24 25 26 27 28 29 Pout, OUTPUT POWER (WATTS) PULSED Pin, INPUT POWER (dBm) PULSED Figure 5. Pulsed Power Gain and Drain Efficiency versus Output Power Figure 6. Pulsed Output Power versus Input Power 20 30 17 IDQ = 300 mA 18 16 Gps, POWER GAIN (dB) 19 Gps, POWER GAIN (dB) 10 VDS, DRAIN−SOURCE VOLTAGE (VOLTS) 17 Gps, POWER GAIN (dB) 25 VDS, DRAIN−SOURCE VOLTAGE (VOLTS) 150 mA 17 100 mA 16 50 mA 15 VDD = 32 Vdc, f = 3500 MHz Pulse Width = 100 μsec, Duty Cycle = 20% 14 15 14 13 32 V 12 IDQ = 50 mA, f = 3500 MHz Pulse Width = 100 μsec Duty Cycle = 20% 11 13 30 V 28 V 26 V VDD = 24 V 10 1 10 30 1 10 Pout, OUTPUT POWER (WATTS) PULSED Pout, OUTPUT POWER (WATTS) PULSED Figure 7. Pulsed Power Gain versus Output Power Figure 8. Pulsed Power Gain versus Output Power 30 MRF7S35015HSR3 RF Device Data Freescale Semiconductor 5 TYPICAL CHARACTERISTICS 17 3100 MHz −30_C 3300 MHz −30_C 60 −30_C 3300 MHz 25_C 16 3100 MHz 25_C 3500 MHz −30_C 20 3300 MHz 85_C 15 3500 MHz 85_C 3100 MHz 85_C 3500 MHz 25_C 10 5 50 Gps 40 15 TC = −30_C 30 14 25_C 13 12 VDD = 32 Vdc, IDQ = 50 mA Pulse Width = 100 μsec, Duty Cycle = 20% 85_C ηD 85_C 20 10 VDD = 32 Vdc, IDQ = 50 mA, f = 3100 MHz Pulse Width = 100 μsec, Duty Cycle = 20% 11 0 0.2 0.4 0.6 0.8 1 0 1 10 Pout, OUTPUT POWER (WATTS) PULSED Pin, INPUT POWER (WATTS) PULSED Figure 9. Pulsed Output Power versus Input Power Figure 10. Pulsed Power Gain and Drain Efficiency versus Output Power — 3100 MHz 18 −30_C Gps 17 Gps, POWER GAIN (dB) 30 60 50 TC = −30_C 40 16 85_C 25_C 15 14 30 85_C 20 ηD 13 10 VDD = 32 Vdc, IDQ = 50 mA, f = 3300 MHz Pulse Width = 100 μsec, Duty Cycle = 20% 12 ηD, DRAIN EFFICIENCY (%) 0 ηD, DRAIN EFFICIENCY (%) 25 Gps, POWER GAIN (dB) Pout, OUTPUT POWER (WATTS) PULSED 30 0 10 1 30 Pout, OUTPUT POWER (WATTS) PULSED Figure 11. Pulsed Power Gain and Drain Efficiency versus Output Power — 3300 MHz 50 Gps −30_C Gps, POWER GAIN (dB) 18 45 TC = −30_C 17 40 85_C 16 35 25_C 30 15 14 85_C 25 ηD 13 20 12 15 VDD = 32 Vdc, IDQ = 50 mA, f = 3500 MHz Pulse Width = 100 μsec, Duty Cycle = 20% 11 1 10 ηD, DRAIN EFFICIENCY (%) 19 10 30 Pout, OUTPUT POWER (WATTS) PULSED Figure 12. Pulsed Power Gain and Drain Efficiency versus Output Power — 3500 MHz MRF7S35015HSR3 6 RF Device Data Freescale Semiconductor TYPICAL CHARACTERISTICS 44 ηD 43 42 16.75 Gps 41 16.5 16.25 IRL 16 −9 −18 15.75 15.5 15.25 3100 −27 VDD = 32 Vdc, IDQ = 50 mA, Pout = 15 W Pulse Width = 100 μsec, Duty Cycle = 20% 3150 3200 3250 3300 3350 3400 3450 −36 3500 IRL, INPUT RETURN LOSS (dB) Gps, POWER GAIN (dB) 17 ηD, DRAIN EFFICIENCY (%) 17.25 f, FREQUENCY (MHz) −25 24 VDD = 32 Vdc, IDQ = 150 mA, f = 3500 MHz, Single−Carrier −27 OFDM 802.16d, 64 QAM 3/ , 4 Bursts, 10 MHz 4 −29 Channel Bandwidth, Input Signal PAR = 9.5 dB @ 0.01% Probability on CCDF −31 20 18 16 ηD −35 14 12 RCE −37 10 Gps −39 18.3 18.2 18.1 −41 8 −43 6 17.9 4 17.8 −45 28 29 30 31 32 33 34 35 18 GAIN (dB) −33 22 ηD, DRAIN EFFICIENCY (%) RCE (RELATIVE CONSTELLATION ERROR (dB) Figure 13. Pulsed Power Gain, Drain Efficiency and IRL versus Frequency 36 Pout, OUTPUT POWER (dBm) Figure 14. Single - Channel OFDM Relative Constellation Error, Drain Efficiency and Gain versus Output Power MTTF (HOURS) 108 107 106 105 90 110 130 150 170 190 210 230 250 TJ, JUNCTION TEMPERATURE (°C) This above graph displays calculated MTTF in hours when the device is operated at VDD = 32 Vdc, Pout = 15 W Peak, Pulse Width = 100 μsec, Duty Cycle = 20%, and ηD = 41%. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access MTTF calculators by product. Figure 15. MTTF versus Junction Temperature MRF7S35015HSR3 RF Device Data Freescale Semiconductor 7 f = 3100 MHz Zsource f = 3100 MHz f = 3500 MHz Zo = 50 Ω Zload f = 3500 MHz VDD = 32 Vdc, IDQ = 50 mA, Pout = 15 W Peak f MHz Zsource W Zload W 3100 48.6 + j16.1 5.6 - j5.2 3300 11.8 + j3.15 6.36 - j6.83 3500 6.43 - j6.79 7.41 - j15.5 Zsource = Test circuit impedance as measured from gate to ground. Zload = Test circuit impedance as measured from drain to ground. Output Matching Network Device Under Test Input Matching Network Z source Z load Figure 16. Series Equivalent Source and Load Impedance MRF7S35015HSR3 8 RF Device Data Freescale Semiconductor PACKAGE DIMENSIONS MRF7S35015HSR3 RF Device Data Freescale Semiconductor 9 MRF7S35015HSR3 10 RF Device Data Freescale Semiconductor PRODUCT DOCUMENTATION Refer to the following documents to aid your design process. Application Notes • AN1955: Thermal Measurement Methodology of RF Power Amplifiers Engineering Bulletins • EB212: Using Data Sheet Impedances for RF LDMOS Devices REVISION HISTORY The following table summarizes revisions to this document. Revision Date Description 0 June 2008 • Initial Release of Data Sheet 1 Aug. 2008 • Added p. 1 of Case 465J - 02 Mechanical Outline drawing, p. 9 MRF7S35015HSR3 RF Device Data Freescale Semiconductor 11 How to Reach Us: Home Page: www.freescale.com Web Support: http://www.freescale.com/support USA/Europe or Locations Not Listed: Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1 - 800 - 521 - 6274 or +1 - 480 - 768 - 2130 www.freescale.com/support Europe, Middle East, and Africa: Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support Japan: Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1 - 8 - 1, Shimo - Meguro, Meguro - ku, Tokyo 153 - 0064 Japan 0120 191014 or +81 3 5437 9125 [email protected] Asia/Pacific: Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 [email protected] For Literature Requests Only: Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1 - 800 - 441 - 2447 or +1 - 303 - 675 - 2140 Fax: +1 - 303 - 675 - 2150 [email protected] Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document. Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by customer’s technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part. Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2008. All rights reserved. MRF7S35015HSR3 Document Number: MRF7S35015HS Rev. 1, 8/2008 12 RF Device Data Freescale Semiconductor