PD - 94626 IRGP20B60PD SMPS IGBT WARP2 SERIES IGBT WITH ULTRAFAST SOFT RECOVERY DIODE VCES = 600V VCE(on) typ. = 2.05V @ VGE = 15V IC = 13.0A C Applications • • • • Telecom and Server SMPS PFC and ZVS SMPS Circuits Uninterruptable Power Supplies Consumer Electronics Power Supplies Features • • • • • • • Equivalent MOSFET Parameters RCE(on) typ. = 158mΩ ID (FET equivalent) = 20A G NPT Technology, Positive Temperature Coefficient Lower VCE(SAT) Lower Parasitic Capacitances Minimal Tail Current HEXFRED Ultra Fast Soft-Recovery Co-Pack Diode Tighter Distribution of Parameters Higher Reliability E n-channel E C G Benefits • Parallel Operation for Higher Current Applications • Lower Conduction Losses and Switching Losses • Higher Switching Frequency up to 150kHz TO-247AC Absolute Maximum Ratings Max. Units VCES Collector-to-Emitter Voltage Parameter 600 V IC @ TC = 25°C Continuous Collector Current 40 IC @ TC = 100°C Continuous Collector Current 22 ICM 80 ILM Pulse Collector Current (Ref. Fig. C.T.4) Clamped Inductive Load Current IF @ TC = 25°C Diode Continous Forward Current 31 IF @ TC = 100°C IFRM Diode Continous Forward Current Maximum Repetitive Forward Current VGE Gate-to-Emitter Voltage ±20 V 220 W d PD @ TC = 25°C Maximum Power Dissipation PD @ TC = 100°C Maximum Power Dissipation TJ Operating Junction and TSTG Storage Temperature Range 80 A 12 e 42 86 -55 to +150 °C Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Thermal Resistance Min. Typ. Max. Units Thermal Resistance Junction-to-Case-(each IGBT) Parameter ––– ––– 0.58 °C/W RθJC (Diode) Thermal Resistance Junction-to-Case-(each Diode) ––– ––– 2.5 RθCS Thermal Resistance, Case-to-Sink (flat, greased surface) ––– 0.24 ––– RθJA Thermal Resistance, Junction-to-Ambient (typical socket mount) ––– ––– 40 Weight ––– 6 (0.21) ––– RθJC (IGBT) 1 g (oz) www.irf.com 02/06/03 IRGP20B60PD Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. V(BR)CES Collector-to-Emitter Breakdown Voltage Parameter 600 — — ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — 0.32 — RG Internal Gate Resistance — 4.3 — — 2.05 2.35 — 2.50 2.80 — 2.65 3.00 — 3.30 3.70 VCE(on) Collector-to-Emitter Saturation Voltage Max. Units VGE(th) Gate Threshold Voltage 3.0 4.0 5.0 ∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — -11 — gfe ICES Forward Transconductance — 19 — Collector-to-Emitter Leakage Current — 1.0 250 VFM IGES Diode Forward Voltage Drop Gate-to-Emitter Leakage Current V Conditions Ref.Fig VGE = 0V, IC = 500µA V/°C VGE = 0V, IC = 1mA (25°C-125°C) Ω 1MHz, Open Collector IC = 13A, VGE = 15V V IC = 20A, VGE = 15V 4, 5,6,8,9 IC = 13A, VGE = 15V, TJ = 125°C IC = 20A, VGE = 15V, TJ = 125°C V IC = 250µA 7,8,9 mV/°C VCE = VGE, IC = 1.0mA S VCE = 50V, IC = 40A, PW = 80µs µA VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 125°C — 0.1 — mA — 1.4 1.7 V — 1.3 1.6 — — ±100 IF = 12A, VGE = 0V 10 IF = 12A, VGE = 0V, TJ = 125°C nA VGE = ±20V, VCE = 0V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. Qg Qgc Total Gate Charge (turn-on) Parameter — 68 Max. Units 102 Gate-to-Collector Charge (turn-on) — 24 36 Conditions nC 17 VCC = 400V CT1 Qge Gate-to-Emitter Charge (turn-on) — 10 15 Eon Turn-On Switching Loss — 95 140 Eoff Turn-Off Switching Loss — 100 145 Etotal Total Switching Loss — 195 285 TJ = 25°C td(on) Turn-On delay time — 20 26 IC = 13A, VCC = 390V tr Rise time — 5.0 7.0 td(off) Turn-Off delay time — 115 135 tf Fall time — 6.0 8.0 Eon Turn-On Switching Loss — 165 215 Eoff Turn-Off Switching Loss — 150 195 Etotal Total Switching Loss — 315 410 TJ = 125°C td(on) Turn-On delay time — 19 25 IC = 13A, VCC = 390V tr Rise time — 6.0 8.0 td(off) Turn-Off delay time — 125 140 tf Fall time — 13 17 VGE = 15V IC = 13A, VCC = 390V µJ ns f CT3 VGE = +15V, RG = 10Ω, L = 200µH TJ = 25°C f IC = 13A, VCC = 390V µJ ns f 11,13 WF1,WF2 CT3 VGE = +15V, RG = 10Ω, L = 200µH TJ = 125°C Input Capacitance — 1570 — VGE = 0V Output Capacitance — 130 — VCC = 30V Cres Reverse Transfer Capacitance Effective Output Capacitance (Time Related) — 20 — Coes eff. — 94 — Coes eff. (ER) Effective Output Capacitance (Energy Related) — 76 — RBSOA Reverse Bias Safe Operating Area FULL SQUARE trr Diode Reverse Recovery Time — 42 60 — 80 120 — 80 180 — 220 600 — 3.5 6.0 — 5.6 10 pF CT3 VGE = +15V, RG = 10Ω, L = 200µH Cies g CT3 VGE = +15V, RG = 10Ω, L = 200µH Coes g Ref.Fig IC = 13A f 12,14 WF1,WF2 16 f = 1Mhz VGE = 0V, VCE = 0V to 480V 15 TJ = 150°C, IC = 80A 3 VCC = 480V, Vp =600V CT2 Rg = 22Ω, VGE = +15V to 0V Qrr Diode Reverse Recovery Charge Irr Peak Reverse Recovery Current Notes: RCE(on) typ. = equivalent on-resistance = VCE(on) typ. / IC, where VCE(on) typ. = 2.05V and IC = 13A. ns nC TJ = 25°C IF = 12A, VR = 200V, 19 TJ = 125°C di/dt = 200A/µs IF = 12A, VR = 200V, 21 TJ = 25°C di/dt = 200A/µs IF = 12A, VR = 200V, 19,20,21,22 TJ = 125°C di/dt = 200A/µs TJ = 25°C TJ = 125°C A CT5 ID (FET Equivalent) is the equivalent MOSFET ID rating @ 25°C for applications up to 150kHz. These are provided for comparison purposes (only) with equivalent MOSFET solutions. VCC = 80% (VCES), VGE = 15V, L = 28µH, RG = 22Ω. Pulse width limited by max. junction temperature. Energy losses include "tail" and diode reverse recovery. Data generated with use of Diode 8ETH06. Coes eff. is a fixed capacitance that gives the same charging time as Coes while VCE is rising from 0 to 80% VCES . Coes eff.(ER) is a fixed capacitance that stores the same energy as Coes while VCE is rising from 0 to 80% VCES. 2 www.irf.com IRGP20B60PD 250 45 40 200 35 Ptot (W) 30 IC (A) 25 20 150 100 15 10 50 5 0 0 0 20 40 60 80 0 100 120 140 160 20 40 60 80 100 120 140 160 T C (°C) T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 100 40 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V 35 30 10 IC A) ICE (A) 25 20 15 1 10 5 0 0 10 100 1000 0 1 2 VCE (V) Fig. 3 - Reverse Bias SOA TJ = 150°C; VGE =15V 5 6 40 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V 35 30 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 35 30 25 ICE (A) 25 ICE (A) 4 Fig. 4 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs 40 20 20 15 15 10 10 5 5 0 0 0 1 2 3 4 5 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs www.irf.com 3 VCE (V) 6 0 1 2 3 4 5 6 VCE (V) Fig. 6 - Typ. IGBT Output Characteristics TJ = 125°C; tp = 80µs 3 IRGP20B60PD 450 10 400 9 8 350 7 TJ = 125°C ICE = 20A ICE = 13A 6 ICE = 8.0A VCE (V) ICE (A) 300 T J = 25°C 250 200 150 5 4 3 100 2 50 1 0 0 0 5 10 15 0 20 5 10 15 20 VGE (V) VGE (V) Fig. 7 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs Fig. 8 - Typical VCE vs. VGE TJ = 25°C 10 100 7 ICE = 13A 6 ICE = 8.0A (A) ICE = 20A F 8 InstantaneousForw ardC urrent - I VCE (V) 9 5 4 3 2 1 TJ = 150°C TJ = 125°C 10 TJ = 25°C 0 0 5 10 15 20 1 0.4 VGE (V) 0.8 1.2 1.6 2.0 2.4 Forward Voltage Drop - V FM (V) Fig. 9 - Typical VCE vs. VGE TJ = 125°C Fig. 10 - Typ. Diode Forward Characteristics tp = 80µs 350 1000 300 EON tdOFF Swiching Time (ns) Energy (µJ) 250 200 EOFF 150 100 100 tdON tF 10 tR 50 0 1 0 5 10 15 20 25 IC (A) Fig. 11 - Typ. Energy Loss vs. IC TJ = 125°C; L = 200µH; VCE = 390V, RG = 10Ω; VGE = 15V. Diode clamp used: 8ETH06 (See C.T.3) 4 0 5 10 15 20 25 IC (A) Fig. 12 - Typ. Switching Time vs. IC TJ = 125°C; L = 200µH; VCE = 390V, RG = 10Ω; VGE = 15V. Diode clamp used: 8ETH06 (See C.T.3) www.irf.com IRGP20B60PD 1000 250 td OFF EON Swiching Time (ns) Energy (µJ) 200 EOFF 150 100 tdON 10 tF 100 tR 1 50 0 5 10 15 20 25 30 0 35 10 20 30 40 RG ( Ω) RG ( Ω) Fig. 13 - Typ. Energy Loss vs. RG TJ = 125°C; L = 200µH; VCE = 390V, ICE = 13A; VGE = 15V Diode clamp used: 8ETH06 (See C.T.3) Fig. 14 - Typ. Switching Time vs. RG TJ = 125°C; L = 200µH; VCE = 390V, ICE = 13A; VGE = 15V Diode clamp used: 8ETH06 (See C.T.3) 18 10000 16 Cies 14 1000 Capacitance (pF) Eoes (µJ) 12 10 8 6 Coes 100 Cres 10 4 2 0 1 0 100 200 300 400 500 600 700 0 20 60 80 100 VCE (V) VCE (V) Fig. 16- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz Fig. 15- Typ. Output Capacitance Stored Energy vs. VCE 16 1.6 14 1.5 Normalized V CE(on) (V) 400V 12 10 VGE (V) 40 8 6 4 1.4 1.3 1.2 1.1 1 0.9 0.8 2 0.7 0 0.6 0 10 20 30 40 50 60 70 80 Q G , Total Gate Charge (nC) Fig. 17 - Typical Gate Charge vs. VGE ICE = 13A www.irf.com -50 0 50 100 150 200 T J , Junction Temperature (°C) Fig. 18 - Normalized Typical VCE(on) vs. Junction Temperature ICE = 13A, VGE = 15V 5 IRGP20B60PD 80 20 VR = 200V TJ = 125°C TJ = 25°C I F = 16A IF F = 8.0A I F = 4.0A 16 60 I F = 16A I F = 8.0A Irr- ( A) trr- (nC) I F = 4.0A 40 12 8 20 4 VR = 200V TJ = 125°C TJ = 25°C 0 100 0 100 1000 di f /dt - (A/µs) Fig. 20 - Typical Recovery Current vs. dif/dt Fig. 19 - Typical Reverse Recovery vs. dif/dt 500 10000 VR = 200V TJ = 125°C TJ = 25°C 400 VR = 200V TJ = 125°C TJ = 25°C I F = 16A IF = 8.0A IF = 16A di (rec) M/dt- (A /µs) Qrr- (nC) 1000 di f /dt - (A/µs) IF = 4.0A 300 200 I F = 8.0A IF = 4.0A 1000 100 0 100 di f /dt - (A/µs) Fig. 21 - Typical Stored Charge vs. dif/dt 6 1000 100 100 1000 di f /dt - (A/µs) Fig. 22 - Typical di(rec)M/dt vs. dif/dt, www.irf.com IRGP20B60PD 1 Thermal Response ( Z thJC ) D = 0.50 0.20 0.1 0.10 τJ 0.05 0.02 0.01 R1 R1 τJ τ1 R2 R2 R3 R3 R4 R4 τC τ τ2 τ1 τ2 τ3 τ3 τ4 Ci= τi/Ri Ci i/Ri 0.01 SINGLE PULSE ( THERMAL RESPONSE ) τ4 Ri (°C/W) τi (sec) 0.12003 0.000034 0.05001 0.000034 0.23292 0.000970 0.17719 0.011265 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.05 0.1 τJ 0.02 0.01 R1 R1 τJ τ1 R2 R2 τC τ1 τ2 τ2 τ Ri (°C/W) τi (sec) 0.8667 0.000121 1.6349 0.001726 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 7 IRGP20B60PD L L VCC DUT 80 V DUT 0 480V Rg 1K Fig.C.T.2 - RBSOA Circuit Fig.C.T.1 - Gate Charge Circuit (turn-off) R= L PFC diode DUT / DRIVER VCC DUT Rg VCC ICM VCC Rg Fig.C.T.4 - Resistive Load Circuit Fig.C.T.3 - Switching Loss Circuit REVERSE RECOVERY CIRCUIT VR = 200V 0.01 Ω L = 70µH D.U.T. dif/dt ADJUST D G IRFP250 S Fig. C.T.5 - Reverse Recovery Parameter Test Circuit 8 www.irf.com IRGP20B60PD 450 18 450 400 16 400 300 90% ICE 14 350 12 300 10 8 5% V CE 150 VCE (V) 200 6 100 5% ICE 50 0 -50 -0.20 Eoff Loss 0.00 0.20 0.40 30 tr 25 90% test current 200 10% test current 150 4 100 2 50 0 0 20 15 10 5% V CE Eon Loss -50 7.75 -2 0.80 0.60 35 250 ICE (A) VCE (V) 250 40 TEST CURRENT I CE (A) tf 350 45 7.85 7.95 8.05 5 0 -5 8.15 Time (µs) Time(µs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 125°C using Fig. CT.3 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 125°C using Fig. CT.3 3 trr IF tb ta 0 Q rr 2 I RRM 4 0.5 I RRM di(rec)M/dt 5 0.75 I RRM 1 di f /dt 1. dif/dt - Rate of change of current through zero crossing 2. I RRM - Peak reverse recovery current 3. trr - Reverse recovery time measured from zero crossing point of negative going IF to point where a line passing through 0.75 IRRM and 0.50 IRRM extrapolated to zero current 4. Qrr - Area under curve defined by trr and IRRM trr X IRRM Qrr = 2 5. di(rec)M/dt - Peak rate of change of current during tb portion of trr Fig. WF3 - Reverse Recovery Waveform and Definitions www.irf.com 9 IRGP20B60PD TO-247AC Package Outline Dimensions are shown in millimeters (inches) 3.65 (.143) 3.55 (.140) 0.25 (.010) M D B M 15.90 (.626) 15.30 (.602) -B- -A5.50 (.217) 20.30 (.800) 19.70 (.775) 2X 1 2 -D- 5.30 (.209) 4.70 (.185) 2.50 (.089) 1.50 (.059) 4 5.50 (.217) 4.50 (.177) LEAD ASSIGNMENTS 1 - GATE 2 - COLLECTOR 3 - EMITTER 4 - COLLECTOR 3 -C- * 14.80 (.583) 14.20 (.559) 2.40 (.094) 2.00 (.079) 2X 5.45 (.215) 2X NOTES: 1 DIMENSIONS & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH. 3 DIMENSIONS ARE SHOWN MILLIMETERS (INCHES). 4 CONFORMS TO JEDEC OUTLINE TO-247AC. 4.30 (.170) 3.70 (.145) LEADED (20mm) * LONGER VERSION AVAILABLE (TO-247AD) TO ORDER ADD "-E" SUFFIX TO PART NUMBER 1.40 (.056) 3X 1.00 (.039) 0.25 (.010) M C AS 3.40 (.133) 3.00 (.118) 0.80 (.031) 3X 0.40 (.016) 2.60 (.102) 2.20 (.087) CONFORMS TO JEDEC OUTLINE TO-247AC (TO-3P) Dimensions in Millimeters and (Inches) TO-247AC Part Marking Information 1RWHV7KLVSDUWPDUNLQJLQIRUPDWLRQDSSOLHVWRGHYLFHVSURGXFHGEHIRUHRUIRU SDUWVPDQXIDFWXUHGLQ*% (;$03/( 7+,6,6$1,5)3( :,7+$66(0%/< /27&2'($4 ,17(51$7,21$/ 5(&7,),(5 /2*2 3$57180%(5 ,5)3( $4 '$7(&2'( <<:: << <($5 :: :((. $66(0%/< /27&2'( 1RWHV7KLVSDUWPDUNLQJLQIRUPDWLRQDSSOLHVWRGHYLFHVSURGXFHGDIWHU (;$03/( 7+,6,6$1,5)3( :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(+ ,17(51$7,21$/ 5(&7,),(5 /2*2 3$57180%(5 ,5)3( + $66(0%/< /27&2'( '$7(&2'( <($5 :((. /,1(+ TO-247AC package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 02/03 10 www.irf.com