PHILIPS HEF4066BF Quadruple bilateral switch Datasheet

INTEGRATED CIRCUITS
DATA SHEET
For a complete data sheet, please also download:
• The IC04 LOCMOS HE4000B Logic
Family Specifications HEF, HEC
• The IC04 LOCMOS HE4000B Logic
Package Outlines/Information HEF, HEC
HEF4066B
gates
Quadruple bilateral switches
Product specification
File under Integrated Circuits, IC04
January 1995
Philips Semiconductors
Product specification
HEF4066B
gates
Quadruple bilateral switches
disabled and a high impedance between Y and Z is
established (OFF condition).
DESCRIPTION
The HEF4066B has four independent bilateral analogue
switches (transmission gates). Each switch has two
input/output terminals (Y/Z) and an active HIGH enable
input (E). When E is connected to VDD a low impedance
bidirectional path between Y and Z is established (ON
condition). When E is connected to VSS the switch is
The HEF4066B is pin compatible with the HEF4016B but
exhibits a much lower ON resistance. In addition the ON
resistance is relatively constant over the full input signal
range.
Fig.1 Functional diagram.
Fig.2 Pinning diagram.
PINNING
HEF4066BP(N): 14-lead DIL; plastic (SOT27-1)
E0 to E3
enable inputs
HEF4066BD(F): 14-lead DIL; ceramic (cerdip)
(SOT73))
Y0 to Y3
input/output terminals
Z0 to Z3
input/output terminals
HEF4066BT(D): 14-lead SO; plastic (SOT108-1)
( ): Package Designator North America
APPLICATION INFORMATION
An example of application for the HEF4066B is:
• Analogue and digital switching
Fig.3 Schematic diagram (one switch).
January 1995
2
Philips Semiconductors
Product specification
HEF4066B
gates
Quadruple bilateral switches
RATINGS
Limiting values in accordance with the Absolute Maximum System (IEC 134)
Power dissipation per switch
P
max.
100
mW
For other RATINGS see Family Specifications
DC CHARACTERISTICS
Tamb = 25 °C
VDD
V
SYMBOL
5
ON resistance
ON resistance
MIN.
TYP. MAX.
CONDITIONS
−
350
2500 Ω
En at VDD
−
80
245 Ω
Vis = VSS to VDD
15
−
60
175 Ω
see Fig.4
5
−
115
340 Ω
En at VDD
10
RON
−
50
160 Ω
Vis = VSS
15
−
40
115 Ω
see Fig.4
5
−
120
365 Ω
En at VDD
10
RON
−
65
200 Ω
Vis = VDD
15
−
50
155 Ω
see Fig.4
‘∆’ ON resistance
5
−
25
−
En at VDD
between any two
10
−
10
−
Ω
Vis = VSS to VDD
channels
15
−
5
−
Ω
see Fig.4
5
−
−
−
nA
−
−
−
nA
ON resistance
OFF state leakage
10
RON
∆RON
IOZ
Ω
current, any
10
channel OFF
15
−
−
200 nA
5
−
2,25
1 V
−
4,50
2 V
−
6,75
2 V
En input voltage
LOW
VIL
10
15
VDD
V
SYMBOL
+25
MAX. MAX.
Quiescent device
current
5
10
IDD
15
Input leakage current at En
January 1995
15
± IIN
Iis = 10 µA
see Fig.9
Tamb (°c)
−40
En at VSS
CONDITIONS
+85
MAX.
1,0
1,0
7,5 µA
2,0
2,0
15,0 µA
input combinations;
4,0
4,0
30,0 µA
VI = VSS or VDD
−
300
1000 nA
En at VSS or VDD
3
VSS = 0; all valid
Philips Semiconductors
Product specification
HEF4066B
gates
Quadruple bilateral switches
Fig.4 Test set-up for measuring RON.
En at VDD
Iis = 200 µA
VSS = 0 V
Fig.5 Typical RON as a function of input voltage.
NOTE
To avoid drawing VDD current out of terminal Z, when switch current flows into terminals Y, the voltage drop across the
bidirectional switch must not exceed 0,4 V. If the switch current flows into terminal Z, no VDD current will flow out of
terminals Y, in this case there is no limit for the voltage drop across the switch, but the voltages at Y and Z may not
exceed VDD or VSS.
January 1995
4
Philips Semiconductors
Product specification
HEF4066B
gates
Quadruple bilateral switches
AC CHARACTERISTICS (1), (2)
VSS = 0 V; Tamb = 25 °C; input transition times ≤ 20 ns
VDD
V
SYMBOL
TYP.
MAX.
Propagation delays
Vis → Vos
HIGH to LOW
5
10
tPHL
15
5
LOW to HIGH
10
tPLH
15
10
20
ns
5
10
ns
5
10
ns
10
20
ns
5
10
ns
5
10
ns
note 3
note 3
Output disable times
En → Vos
5
HIGH
10
80
160
ns
65
130
ns
60
120
ns
80
160
ns
70
140
ns
15
70
140
ns
En → Vos
5
40
80
ns
HIGH
10
20
40
ns
15
15
30
ns
5
45
90
ns
20
40
ns
15
15
30
ns
5
0,25
%
10
0,04
%
15
0,04
%
tPHZ
15
5
LOW
10
tPLZ
note 4
note 4
Output enable times
LOW
Distortion, sine-wave
response
Crosstalk between
any two channels
Crosstalk; enable
input to output
OFF-state
feed-through
ON-state frequency
response
January 1995
10
tPZH
tPZL
5
−
MHz
10
1
MHz
15
−
MHz
5
−
mV
10
50
mV
15
−
mV
5
−
MHz
10
1
MHz
15
−
MHz
5
−
MHz
10
90
MHz
15
−
MHz
5
note 4
note 4
note 5
note 6
note 7
note 8
note 9
Philips Semiconductors
Product specification
HEF4066B
gates
Quadruple bilateral switches
VDD
V
Dynamic power
5
dissipation per
package (P)
TYPICAL FORMULA FOR P (µW)
800 fi + ∑ (foCL) × VDD 2
10
3 500 fi + ∑ (foCL) × VDD
2
15
10 100 fi + ∑ (foCL) × VDD
2
where
fi = input freq. (MHz)
fo = output freq. (MHz)
CL = load capacitance (pF)
∑ (foCL) = sum of outputs
VDD = supply voltage (V)
Notes
1. Vis is the input voltage at a Y or Z terminal, whichever is assigned as input.
2. Vos is the output voltage at a Y or Z terminal, whichever is assigned as output.
3. RL = 10 kΩ to VSS; CL = 50 pF to VSS; En = VDD; Vis = VDD (square-wave); see Figs 6 and 10.
4. RL = 10 kΩ; CL = 50 pF to VSS; En = VDD (square-wave);
Vis = VDD and RL to VSS for tPHZ and tPZH;
Vis = VSS and RL to VDD for tPLZ and tPZL; see Figs 6 and 11.
5. RL = 10 kΩ; CL = 15 pF; En = VDD; Vis = 1⁄2 VDD(p-p) (sine-wave, symmetrical about 1⁄2 VDD); fis = 1 kHz; see Fig.7.
6. RL = 1 kΩ; Vis = 1⁄2 VDD(p-p) (sine-wave, symmetrical about 1⁄2 VDD);
V os (B)
20 log ------------------- = -50 dB; E n (A) = V SS ; E n ( B ) = V DD ; see Fig. 8.
V is ( A )
7. RL = 10 kΩ to VSS; CL = 15 pF to VSS; En = VDD (square-wave); crosstalk is Vos  (peak value); see Fig.6.
8. RL = 1 kΩ; CL = 5 pF; En = VSS; Vis = 1⁄2 VDD(p-p) (sine-wave, symmetrical about 1⁄2 VDD);
V os
20 log --------- = -50 dB; see Fig. 7.
V is
9. RL = 1 kΩ; CL = 5 pF; En = VDD; Vis = 1⁄2 VDD(p-p) (sine-wave, symmetrical about 1⁄2 VDD);
V os
20 log --------- = -3 dB; see Fig. 7.
V is
Fig.6
January 1995
Fig.7
6
Philips Semiconductors
Product specification
HEF4066B
gates
Quadruple bilateral switches
Fig.8
Fig.9
January 1995
7
Philips Semiconductors
Product specification
HEF4066B
gates
Quadruple bilateral switches
Fig.10 Waveforms showing propagation delays from Vis to Vos.
(1) Vis at VDD
(2) Vis at VSS.
Fig.11 Waveforms showing output disable and enable times.
January 1995
8
Similar pages