ISSI IS61LF51218A 256k x 36, 512k x 18 9 mb synchronous flow-through static ram Datasheet

IS61LF25636A IS61VF25636A is64lf25636a
IS61LF51218A IS61VF51218A
256K x 36, 512K x 18
9 Mb SYNCHRONOUS FLOW-THROUGH
SEPTEMBER 2010
STATIC RAM
FEATURES
• Internal self-timed write cycle
• Individual Byte Write Control and Global Write
• Clock controlled, registered address, data and
control
• Burst sequence control using MODE input • Three chip enable option for simple depth expansion and address pipelining
• Common data inputs and data outputs
• Auto Power-down during deselect
• Single cycle deselect
• Snooze MODE for reduced-power standby
• JTAG Boundary Scan for PBGA package
• Power Supply
LF: Vdd 3.3V + 5%, Vddq 3.3V/2.5V + 5%
VF: Vdd 2.5V + 5%, Vddq 2.5V + 5%
• JEDEC 100-Pin TQFP, 119-pin PBGA, and 165pin PBGA packages
• Lead-free available
• Automotive temperature available
DESCRIPTION
The ISSI IS61LF/VF25636A, IS64LF25636A and IS61LF/
VF51218A are high-speed, low-power synchronous
static RAMs designed to provide burstable, high-performance
memory for communication and networking applications.
The IS61LF/VF25636A and IS64LF25636A are organized
as 262,144 words by 36 bits. The IS61LF/VF51218A is
organized as 524,288 words by 18 bits. Fabricated with
ISSI's advanced CMOS technology, the device integrates
a 2-bit burst counter, high-speed SRAM core, and highdrive capability outputs into a single monolithic circuit. All
synchronous inputs pass through registers controlled by
a positive-edge-triggered single clock input.
Write cycles are internally self-timed and are initiated by the
rising edge of the clock input. Write cycles can be one to
four bytes wide as controlled by the write control inputs.
Separate byte enables allow individual bytes to be written.
Byte write operation is performed by using byte write enable (BWE) input combined with one or more individual
byte write signals (BWx). In addition, Global Write (GW)
is available for writing all bytes at one time, regardless of
the byte write controls.
Bursts can be initiated with either ADSP (Address Status
Processor) or ADSC (Address Status Cache Controller)
input pins. Subsequent burst addresses can be generated internally and controlled by the ADV (burst address
advance) input pin.
The mode pin is used to select the burst sequence order,
Linear burst is achieved when this pin is tied LOW. Interleave burst is achieved when this pin is tied HIGH or left
floating.
FAST ACCESS TIME
Symbol
tkq
tkc
Parameter
Clock Access Time
Cycle Time
Frequency
-6.5
6.5
7.5
133
-7.5
7.5
8.5
117
Units
ns
ns
MHz
Copyright © 2010 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without
notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products.
Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications
unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that:
a.) the risk of injury or damage has been minimized;
b.) the user assume all such risks; and
c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances
Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
1
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
BLOCK DIAGRAM
MODE
Q0
CLK
CLK
A0
BINARY
COUNTER
ADSC
ADSP
A
Q1
CE
ADV
A1
A0'
A1'
256Kx36;
512Kx18;
MEMORY ARRAY
CLR
18/19
D
Q
16/17
18/19
ADDRESS
REGISTER
CE
CLK
36,
or 18
D
GW
BWE
BW(a-d)
x18: a,b
x36: a-d
36,
or 18
Q
DQ(a-d)
BYTE WRITE
REGISTERS
CLK
CE
2/4/8
CE2
D
Q
ENABLE
REGISTER
CE2
INPUT
REGISTERS
CLK
36,
or 18
DQa - DQd
OE
CE
CLK
ZZ
POWER
DOWN
OE
2
Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
165-pin BGA
119-pin BGA
165-Ball, 13x15 mm BGA
119-Ball, 14x22 mm BGA
Bottom view
Bottom View
Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
3
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
119 BGA PACKAGE PIN CONFIGURATION-256K x 36 (TOP VIEW)
1
2
3
4
5
6
7
A
VDDQ
A
A
ADSP
A
A
VDDQ
B
NC
CE2
A
ADSC
A
A
NC
C
NC
A
A
VDD
A
A
NC
D
DQc
DQPc
Vss
NC
Vss
DQPb
E
DQc
DQc
Vss
CE
Vss
DQb
DQb
F
VDDQ
DQc
Vss
OE
Vss
DQb
VDDQ
G
DQc
DQc
BWc
ADV
BWb
DQb
DQb
H
DQc
DQc
Vss
GW
Vss
DQb
DQb
J
VDDQ
VDD
NC
VDD
NC
VDD
VDDQ
K
DQd
DQd
Vss
CLK
Vss
DQa
DQa
L
DQd
DQd
BWd
NC
BWa
DQa
DQa
M
VDDQ
DQd
Vss
BWE
Vss
DQa
VDDQ
N
DQd
DQd
Vss
A 1*
Vss
DQa
DQa
P
DQd
DQPd
Vss
A0*
Vss
DQPa
DQa
R
NC
A
MODE
VDD
NC
A
NC
T
NC
NC
A
A
A
NC
ZZ
U
VDDQ
TMS
TDI
TCK
TDO
NC
VDDQ
DQb Note: * A0 and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired.
PIN DESCRIPTIONS
4
Symbol
A
Pin Name
Address Inputs
Symbol
OE
Pin Name
Output Enable
A0, A1
Synchronous Burst Address Inputs
ZZ
Power Sleep Mode
ADV
Synchronous Burst Address
Advance
MODE
Burst Sequence Selection
TCK, TDO
JTAG Pins
ADSP
Address Status Processor
ADSC
Address Status Controller
NC
No Connect
GW
Global Write Enable
DQa-DQd
Data Inputs/Outputs
CLK
Synchronous Clock
DQPa-Pd
Output Power Supply
CE, CE2
Synchronous Chip Select
Vdd
Power Supply
BWx (x=a-d)
Synchronous Byte Write Controls
Vddq
Output Power Supply
BWE
Byte Write Enable
Vss
Ground
TMS, TDI
Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
119 BGA PACKAGE PIN CONFIGURATION
512Kx18 (TOP VIEW)
1
2
3
4
5
6
7 A
VDDQ
A
A
ADSP
A
A
B
NC
CE2
A
ADSC
A
A
NC C
NC
A
A
VDD
A
A
NC
D
DQb
NC
Vss
NC
Vss
DQPa
E
NC
DQb
Vss
CE
Vss
NC
DQa
F
VDDQ
NC
Vss
OE
Vss
DQa
VDDQ
G
NC
DQb
BWb
ADV
Vss
NC
DQa
H
DQb
NC
Vss
GW
Vss
DQa
NC
J
VDDQ
VDD
NC
VDD
NC
VDD
VDDQ
K
NC
DQb
Vss
CLK
Vss
NC
DQa
L
DQb
NC
Vss
NC
BWa
DQa
NC
M
VDDQ
DQb
Vss
BWE
Vss
NC
VDDQ
N
DQb
NC
Vss
A1*
Vss
DQa
NC
P
NC
DQPb
Vss
A0*
Vss
NC
DQa
R
NC
A
MODE
VDD
NC
A
NC
T
NC
A
A
NC
A
A
ZZ
U
VDDQ
TMS
TDI
TCK
TDO
NC
VDDQ
VDDQ
NC Note: * A0 and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired.
PIN DESCRIPTIONS
Symbol
A
Pin Name
Address Inputs
Symbol
OE
Pin Name
Output Enable
A0, A1
ADV
ZZ
Power Sleep Mode
MODE
Burst Sequence Selection
ADSP
Synchronous Burst Address Inputs
Synchronous Burst Address
Advance
Address Status Processor
TCK, TDO
JTAG Pins
ADSC
GW
Address Status Controller
Global Write Enable
CLK
CE, CE2
Synchronous Clock
Synchronous Chip Select
BWx (x=a,b)
Synchronous Byte Write Controls
BWE
Byte Write Enable
Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
TMS, TDI
NC
No Connect
DQa-DQb
Data Inputs/Outputs
DQPa-Pb
Output Power Supply
Vdd
Power Supply
Vddq
Output Power Supply
Vss
Ground
5
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
165 PBGA PACKAGE PIN CONFIGURATION
256K x 36 (TOP VIEW)
1
2
3
4
5
6
7
8
9
10
11
A
NC
A
CE
BWc
BWb
CE2
BWE
ADSC
ADV
A
NC
B
NC
A
CE2
BWd
BWa
CLK
GW
OE
ADSP
A
NC
C
DQPc
NC
Vddq
Vss
Vss
Vss
Vss
Vss
Vddq
NC
DQPb
D
DQc
DQc
Vddq
Vdd
Vss
Vss
Vss
Vdd
Vddq DQb
DQb
E
DQc
DQc
Vddq
Vdd
Vss
Vss
Vss
Vdd
Vddq
DQb
DQb
F
DQc
DQc
Vddq
Vdd
Vss
Vss
Vss
Vdd
Vddq
DQb
DQb
G
DQc
DQc
Vddq
Vdd
Vss
Vss
Vss
Vdd
Vddq
DQb
DQb
H
NC
Vss
NC
Vdd
Vss
Vss
Vss
Vdd
NC
NC
ZZ
J
DQd
DQd
Vddq
Vdd
Vss
Vss
Vss
Vdd
Vddq
DQa
DQa
K
DQd
DQd
Vddq
Vdd
Vss
Vss
Vss
Vdd
Vddq
DQa
DQa
L
DQd
DQd
Vddq
Vdd
Vss
Vss
Vss
Vdd
Vddq
DQa
DQa
M
DQd
DQd
Vddq
Vdd
Vss
Vss
Vss
Vdd
Vddq
DQa
DQa
N
DQPd
NC
Vddq
Vss
NC
NC
NC
Vss
Vddq
P
NC
NC
A
A
TDI
A1*
TDO
A
A
A
A
R
MODE
NC
A
A
TMS
A0*
TCK
A
A
A
A
NC DQPa
Note: * A0 and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired.
PIN DESCRIPTIONS
Symbol
A
Pin Name
Address Inputs
Symbol
Pin Name
BWE
Byte Write Enable
A0, A1
ADV
OE
Output Enable
ZZ
Power Sleep Mode
ADSP
Synchronous Burst Address Inputs
Synchronous Burst Address
Advance
Address Status Processor
MODE
Burst Sequence Selection
ADSC
GW
Address Status Controller
Global Write Enable
JTAG Pins
CLK
CE, CE2, CE2
Synchronous Clock
Synchronous Chip Select
BWx (x=a,b,c,d)
Synchronous Byte Write
Controls
TCK, TDO
TMS, TDI
NC
DQx
DQPx
Vdd
Vddq
Vss
6
No Connect
Data Inputs/Outputs
Data Inputs/Outputs
3.3V/2.5V Power Supply
Isolated Output Power Supply 3.3V/2.5V
Ground
Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
165 PBGA PACKAGE PIN CONFIGURATION
512K x 18 (TOP VIEW)
1
2
3
4
5
6
7
8
9
10
11
A
NC
A
CE
BWb
NC
CE2
BWE
ADSC
ADV
A
A
B
NC
A
CE2
NC
BWa
CLK
GW
OE
ADSP
A
NC
C
NC
NC
Vddq
Vss
Vss
Vss
Vss
Vss
Vddq
NC
DQPa
D
NC
DQb
Vddq
Vdd
Vss
Vss
Vss
Vdd
Vddq NC
DQa
E
NC
DQb
Vddq
Vdd
Vss
Vss
Vss
Vdd
Vddq NC
DQa
F
NC
DQb
Vddq
Vdd
Vss
Vss
Vss
Vdd
Vddq NC
DQa
G
NC
DQb
Vddq
Vdd
Vss
Vss
Vss
Vdd
Vddq NC
DQa
H
NC
Vss
NC
Vdd
Vss
Vss
Vss
Vdd
NC
NC
ZZ
J
DQb
NC
Vddq
Vdd
Vss
Vss
Vss
Vdd
Vddq
DQa
NC
K
DQb
NC
Vddq
Vdd
Vss
Vss
Vss
Vdd
Vddq
DQa
NC
L
DQb
NC
Vddq
Vdd
Vss
Vss
Vss
Vdd
Vddq
DQa
NC
M
DQb
NC
Vddq
Vdd
Vss
Vss
Vss
Vdd
Vddq
DQa
NC
N
DQPb
NC
Vddq
Vss
NC
NC
NC
Vss
Vddq
NC
NC
P
NC
NC
A
A
TDI
A1*
TDO
A
A
A
A
R
MODE
NC
A
A
TMS
A0*
TCK
A
A
A
A
Note: * A0 and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired.
PIN DESCRIPTIONS
Symbol
A
Pin Name
Address Inputs
Symbol
BWE
Byte Write Enable
A0, A1
ADV
OE
Output Enable
ZZ
Power Sleep Mode
ADSP
Synchronous Burst Address Inputs
Synchronous Burst Address
Advance
Address Status Processor
MODE
Burst Sequence Selection
ADSC
GW
Address Status Controller
Global Write Enable
JTAG Pins
CLK
CE, CE2, CE2
Synchronous Clock
Synchronous Chip Select
BWx (x=a,b)
Synchronous Byte Write
Controls
TCK, TDO
TMS, TDI
NC
DQx
DQPx
Vdd
Vddq
Vss
Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
Pin Name
No Connect
Data Inputs/Outputs
Data Inputs/Outputs
3.3V/2.5V Power Supply
Isolated Output Power Supply 3.3V/2.5V
Ground
7
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
PIN CONFIGURATION
DQPc
DQPb
DQb
DQb
VDDQ
VSS
DQb
DQb
DQb
DQb
VSS
VDDQ
DQb
DQb
VSS
NC
VDD
ZZ
DQa
DQa
VDDQ
VSS
DQa
DQa
DQa
DQa
VSS
VDDQ
DQa
DQa
DQPa
DQPc
DQc
DQc
VDDQ
VSS
DQc
DQc
DQc
DQc
VSS
VDDQ
DQc
DQc
NC
VDD
NC
VSS
DQd
DQd
VDDQ
VSS
DQd
DQd
DQd
DQd
VSS
VDDQ
DQd
DQd
DQPd
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81
1
80
2
79
3
78
4
77
5
76
6
75
7
74
8
73
9
72
10
71
11
70
12
69
13
68
14
67
15
66
16
65
17
64
18
63
19
62
20
61
21
60
22
59
23
58
24
57
25
56
26
55
27
54
28
53
29
52
30
51
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
DQPb
DQb
DQb
VDDQ
VSS
DQb
DQb
DQb
DQb
VSS
VDDQ
DQb
DQb
VSS
NC
VDD
ZZ
DQa
DQa
VDDQ
VSS
DQa
DQa
DQa
DQa
VSS
VDDQ
DQa
DQa
DQPa
MODE
A
A
A
A
A1
A0
NC
NC
VSS
VDD
NC
NC
A
A
A
A
A
A
A
MODE
A
A
A
A
A1
A0
NC
NC
VSS
VDD
NC
A
A
A
A
A
A
A
A
DQc
DQc
VDDQ
VSS
DQc
DQc
DQc
DQc
VSS
VDDQ
DQc
DQc
NC
VDD
NC
VSS
DQd
DQd
VDDQ
VSS
DQd
DQd
DQd
DQd
VSS
VDDQ
DQd
DQd
DQPd
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81
1
80
2
79
3
78
4
77
5
76
6
75
7
74
8
73
9
72
10
71
11
70
12
69
13
68
14
67
15
66
16
65
17
64
18
63
19
62
20
61
21
60
22
59
23
58
24
57
25
56
26
55
27
54
28
53
29
52
30
51
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
A
A
CE
CE2
BWd
BWc
BWb
BWa
A
VDD
VSS
CLK
GW
BWE
OE
ADSC
ADSP
ADV
A
A
A
A
CE
CE2
BWd
BWc
BWb
BWa
CE2
VDD
VSS
CLK
GW
BWE
OE
ADSC
ADSP
ADV
A
A
100-Pin TQFP (256K x 36)
(2 Chip-Enable option)
(3 Chip-Enable option)
PIN DESCRIPTIONS
A0, A1
A
Synchronous Address Inputs. These
pins must tied to the two LSBs of the
address bus.
Synchronous Address Inputs
ADSC
Synchronous Controller Address Status
ADSP
Synchronous Processor Address Status
ADV
Synchronous Burst Address Advance
BWa-BWd
Synchronous Byte Write Enable
BWE
Synchronous Byte Write Enable
CE, CE2, CE2 Synchronous Chip Enable
CLK
8
DQa-DQd
Synchronous Data Input/Output
DQPa-DQPd
Parity Data Input/Output
GW
Synchronous Global Write Enable
MODE
Burst Sequence Mode Selection
OE
Output Enable
Vdd
3.3V/2.5V Power Supply
Vddq
Isolated Output Buffer Supply:
3.3V/2.5V
Ground
Snooze Enable
Vss
ZZ
Synchronous Clock
Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
PIN CONFIGURATION
A
NC
NC
VDDQ
VSS
NC
DQPa
DQa
DQa
VSS
VDDQ
DQa
DQa
VSS
NC
VDD
ZZ
DQa
DQa
VDDQ
VSS
DQa
DQa
NC
NC
VSS
VDDQ
NC
NC
NC
NC
NC
NC
VDDQ
VSS
NC
NC
DQb
DQb
VSS
VDDQ
DQb
DQb
NC
VDD
NC
VSS
DQb
DQb
VDDQ
VSS
DQb
DQb
DQPb
NC
VSS
VDDQ
NC
NC
NC
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81
1
80
2
79
3
78
4
77
5
76
6
75
7
74
8
73
9
72
10
71
11
70
12
69
13
68
14
67
15
66
16
65
17
64
18
63
19
62
20
61
21
60
22
59
23
58
24
57
25
56
26
55
27
54
28
53
29
52
30
51
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
A
NC
NC
VDDQ
VSS
NC
DQPa
DQa
DQa
VSS
VDDQ
DQa
DQa
VSS
NC
VDD
ZZ
DQa
DQa
VDDQ
VSS
DQa
DQa
NC
NC
VSS
VDDQ
NC
NC
NC
MODE
A
A
A
A
A1
A0
NC
NC
VSS
VDD
NC
NC
A
A
A
A
A
A
A
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81
1
80
2
79
3
78
4
77
5
76
6
75
7
74
8
73
9
72
10
71
11
70
12
69
13
68
14
67
15
66
16
65
17
64
18
63
19
62
20
61
21
60
22
59
23
58
24
57
25
56
26
55
27
54
28
53
29
52
30
51
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
MODE
A
A
A
A
A1
A0
NC
NC
VSS
VDD
NC
A
A
A
A
A
A
A
A
NC
NC
NC
VDDQ
VSS
NC
NC
DQb
DQb
VSS
VDDQ
DQb
DQb
NC
VDD
NC
VSS
DQb
DQb
VDDQ
VSS
DQb
DQb
DQPb
NC
VSS
VDDQ
NC
NC
NC
A
A
CE
CE2
NC
NC
BWb
BWa
A
VDD
VSS
CLK
GW
BWE
OE
ADSC
ADSP
ADV
A
A
A
A
CE
CE2
NC
NC
BWb
BWa
CE2
VDD
VSS
CLK
GW
BWE
OE
ADSC
ADSP
ADV
A
A
100-Pin TQFP (512K x 18)
(3 Chip-Enable Option)
(2 Chip-Enable Option)
PIN DESCRIPTIONS
A0, A1
Synchronous Address Inputs. These
pins must tied to the two LSBs of the
address bus.
A
Synchronous Address Inputs
Synchronous Controller Address Status
ADSC
ADSP
Synchronous Processor Address Status
ADV
Synchronous Burst Address Advance
BWa-BWb
Synchronous Byte Write Enable
BWE
Synchronous Byte Write Enable
CE, CE2, CE2 Synchronous Chip Enable
CLK
Synchronous Clock
DQa-DQb
Synchronous Data Input/Output
Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
DQPa-DQPb
Parity Data I/O; DQPa is parity for
DQa1-8; DQPb is parity for DQb1-8
GW
MODE
Synchronous Global Write Enable
Burst Sequence Mode Selection
OE
Vdd
Vddq
Output Enable
3.3V/2.5V Power Supply
Isolated Output Buffer Supply:
3.3V/2.5V
Ground
Snooze Enable
Vss
ZZ
9
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
TRUTH TABLE(1-8)
OPERATION
Deselect Cycle, Power-Down
Deselect Cycle, Power-Down
Deselect Cycle, Power-Down
Deselect Cycle, Power-Down
Deselect Cycle, Power-Down
Snooze Mode, Power-Down
Read Cycle, Begin Burst
Read Cycle, Begin Burst
Write Cycle, Begin Burst
Read Cycle, Begin Burst
Read Cycle, Begin Burst
Read Cycle, Continue Burst
Read Cycle, Continue Burst
Read Cycle, Continue Burst
Read Cycle, Continue Burst
Write Cycle, Continue Burst
Write Cycle, Continue Burst
Read Cycle, Suspend Burst
Read Cycle, Suspend Burst
Read Cycle, Suspend Burst
Read Cycle, Suspend Burst
Write Cycle, Suspend Burst
Write Cycle, Suspend Burst
ADDRESS CE
None
H
None
L
None
L
None
L
None
L
None
X
External
L
External
L
External
L
External
L
External
L
Next
X
Next
X
Next
H
Next
H
Next
X
Next
H
Current
X
Current
X
Current
H
Current
H
Current
X
Current
H
CE2
X
X
H
X
H
X
L
L
L
L
L
X
X
X
X
X
X
X
X
X
X
X
X
CE2
X
L
X
L
X
X
H
H
H
H
H
X
X
X
X
X
X
X
X
X
X
X
X
ZZ ADSP ADSC ADV WRITE OE
L
X
L
X
X
X
L
L
X
X
X
X
L
L
X
X
X
X
L
H
L
X
X
X
L
H
L
X
X
X
H
X
X
X
X
X
L
L
X
X
X
L
L
L
X
X
X
H
L
H
L
X
L
X
L
H
L
X
H
L
L
H
L
X
H
H
L
H
H
L
H
L
L
H
H
L
H
H
L
X
H
L
H
L
L
X
H
L
H
H
L
H
H
L
L
X
L
X
H
L
L
X
L
H
H
H
H
L
L
H
H
H
H
H
L
X
H
H
H
L
L
X
H
H
H
H
L
H
H
H
L
X
L
X
H
H
L
X
CLK
L-H
L-H
L-H
L-H
L-H
X
L-H
L-H
L-H
L-H
L-H
L-H
L-H
L-H
L-H
L-H
L-H
L-H
L-H
L-H
L-H
L-H
L-H
DQ
High-Z
High-Z
High-Z
High-Z
High-Z
High-Z
Q
High-Z
D
Q
High-Z
Q
High-Z
Q
High-Z
D
D
Q
High-Z
Q
High-Z
D
D
NOTE:
1. X means “Don’t Care.” H means logic HIGH. L means logic LOW.
2. For WRITE, L means one or more byte write enable signals (BWa-d) and BWE are LOW or GW is LOW. WRITE = H for all
BWx, BWE, GW HIGH.
3. BWa enables WRITEs to DQa’s and DQPa. BWb enables WRITEs to DQb’s and DQPb. BWc enables WRITEs to DQc’s and
DQPc. BWd enables WRITEs to DQd’s and DQPd. DQPa and DQPb are available on the x18 version. DQPa-DQPd are available on the x36 version.
4. All inputs except OE and ZZ must meet setup and hold times around the rising edge (LOW to HIGH) of CLK.
5. Wait states are inserted by suspending burst.
6. For a WRITE operation following a READ operation, OE must be HIGH before the input data setup time and held HIGH during
the input data hold time.
7. This device contains circuitry that will ensure the outputs will be in High-Z during power-up.
8. ADSP LOW always initiates an internal READ at the L-H edge of CLK. A WRITE is performed by setting one or more byte write
enable signals and BWE LOW or GW LOW for the subsequent L-H edge of CLK. See WRITE timing diagram for clarification.
PARTIAL TRUTH TABLE
Function
Read
Read
Write Byte 1
Write All Bytes
Write All Bytes
10
GW
H
H
H
H
L
BWE
H
L
L
L
X
BWa
X
H
L
L
X
BWb
X
H
H
L
X
BWc
X
H
H
L
X
BWd
X
H
H
L
X
Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
INTERLEAVED BURST ADDRESS TABLE (MODE = Vdd or No Connect)
External Address
A1 A0
00
01
10
11
1st Burst Address
A1 A0
01
00
11
10
2nd Burst Address
A1 A0
10
11
00
01
3rd Burst Address
A1 A0
11
10
01
00
LINEAR BURST ADDRESS TABLE (MODE = Vss)
0,0
A1', A0' = 1,1
0,1
1,0
ABSOLUTE MAXIMUM RATINGS(1)
Symbol
Tstg
Pd
Iout
Vin, Vout
Vin
Vdd
Parameter
Storage Temperature
Power Dissipation
Output Current (per I/O)
Voltage Relative to Vss for I/O Pins
Voltage Relative to Vss for
for Address and Control Inputs
Voltage on Vdd Supply Relative to Vss
Value
–55 to +150
1.6
100
–0.5 to Vddq + 0.5
–0.5 to Vdd + 0.5
Unit
°C
W
mA
V
V
–0.5 to 4.6
V
Notes:
1. Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device
at these or any other conditions above those indicated in the operational sections of this
specification is not implied. Exposure to absolute maximum rating conditions for extended
periods may affect reliability.
2. This device contains circuity to protect the inputs against damage due to high static voltages
or electric fields; however, precautions may be taken to avoid application of any voltage
higher than maximum rated voltages to this high-impedance circuit.
3. This device contains circuitry that will ensure the output devices are in High-Z at power up.
Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
11
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
OPERATING RANGE (IS61LFxxxxx)
Range
Commercial
Industrial
Ambient Temperature
0°C to +70°C
-40°C to +85°C
Vdd
3.3V ± 5%
3.3V ± 5%
Vddq
3.3V/2.5V ± 5%
3.3V/2.5V ± 5%
Vdd
3.3V ± 5%
Vddq
3.3V/2.5V ± 5%
Vdd
2.5V ± 5%
2.5V ± 5%
Vddq
2.5V ± 5%
2.5V ± 5%
OPERATING RANGE (IS64LFxxxxx)
Range
Automotive
Ambient Temperature
-40°C to +125°C
OPERATING RANGE (IS61VFxxxxx)
Range
Commercial
Industrial
Ambient Temperature
0°C to +70°C
-40°C to +85°C
DC ELECTRICAL CHARACTERISTICS (Over Operating Range)
3.3V
Symbol
Voh
Parameter
Output HIGH Voltage
Vol
Output LOW Voltage
Vih
Vil
Ili
Ilo
Input HIGH Voltage
Input LOW Voltage
Input Leakage Current
Output Leakage Current
Test Conditions
Ioh = –4.0 mA (3.3V)
Ioh = –1.0 mA (2.5V)
Iol = 8.0 mA (3.3V)
Iol = 1.0 mA (2.5V)
Vss ≤ Vin ≤ Vdd(1)
Vss ≤ Vout ≤ Vddq, OE = Vih
2.5V
Min.
2.4
Max.
—
Min.
2.0
Max.
—
Unit
V
—
0.4
—
0.4
V
2.0
–0.3
–5
–5
Vdd + 0.3
0.8
5
5
1.7
–0.3
–5
–5
Vdd + 0.3
0.7
5
5
V
V
µA
µA
POWER SUPPLY CHARACTERISTICS(1) (Over Operating Range)
6.5
MAX Symbol Parameter
Test Conditions
Temp. range x18
x36
Icc
AC Operating
Device Selected,
Com.
185 185
Supply Current
OE = Vih, ZZ ≤ Vil,
Ind.
190 190
All Inputs ≤ 0.2V or ≥ Vdd – 0.2V, Auto.
Cycle Time ≥ tkc min.
Isb
Standby Current
Device Deselected,
Com.
140 140
TTL Input
Vdd = Max.,
Ind.
150 150
All Inputs ≤ Vil or ≥ Vih,
Auto.
ZZ ≤ Vil, f = Max.
Isbi
Standby Current
Device Deselected,
Com.
80
80
CMOS Input
Vdd = Max.,
Ind.
85
85
Vin ≤ Vss + 0.2V or ≥Vdd – 0.2V Auto.
f=0
7.5
MAX
x18
x36
175 175
185 185
225 225
Unit
mA
140
150
150
140
150
150
mA
80
85
130
80
85
130
mA
Note:
1. MODE pin has an internal pullup and should be tied to Vdd or Vss. It exhibits ±100 µA maximum leakage current when tied to ≤ Vss + 0.2V or ≥ Vdd – 0.2V.
12
Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
CAPACITANCE(1,2)
Symbol
Cin
Cout
Parameter
Input Capacitance
Input/Output Capacitance
Conditions
Vin = 0V
Vout = 0V
Max.
6
8
Unit
pF
pF
Notes:
1. Tested initially and after any design or process changes that may affect these parameters.
2. Test conditions: Ta = 25°C, f = 1 MHz, Vdd = 3.3V.
3.3V I/O AC TEST CONDITIONS
Parameter
Input Pulse Level
Input Rise and Fall Times
Input and Output Timing
and Reference Level
Output Load
Unit
0V to 3.0V
1.5 ns
1.5V
See Figures 1 and 2
AC TEST LOADS
317 Ω
3.3V
ZO = 50Ω
OUTPUT
50Ω
1.5V
Figure 1
Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
OUTPUT
5 pF
Including
jig and
scope
351 Ω
Figure 2
13
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
2.5V I/O AC TEST CONDITIONS
Parameter
Input Pulse Level
Input Rise and Fall Times
Input and Output Timing
and Reference Level
Output Load
Unit
0V to 2.5V
1.5 ns
1.25V
See Figures 3 and 4
2.5V I/O OUTPUT LOAD EQUIVALENT
1,667 Ω
+2.5V
ZO = 50Ω
OUTPUT
OUTPUT
50Ω
5 pF
Including
jig and
scope
1,538 Ω
1.25V
Figure 3
14
Figure 4
Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
READ/WRITE CYCLE SWITCHING CHARACTERISTICS(1) (Over Operating Range)
Symbol
fmax
tkc
tkh
tkl
tkq
tkqx(2)
tkqlz(2,3)
tkqhz(2,3)
toeq
toelz(2,3)
toehz(2,3)
tas
tss
tws
tces
tavs
tds
tah
tsh
twh
tceh
tavh
tdh
Notes:
Parameter
Clock Frequency
Cycle Time
Clock High Time
Clock Low Time
Clock Access Time
Clock High to Output Invalid
Clock High to Output Low-Z
Clock High to Output High-Z
Output Enable to Output Valid
Output Enable to Output Low-Z
Output Disable to Output High-Z
Address Setup Time
Address Status Setup Time
Read/Write Setup Time
Chip Enable Setup Time
Address Advance Setup Time
Data Setup Time
Address Hold Time
Address Status Hold Time
Write Hold Time
Chip Enable Hold Time
Address Advance Hold Time
Data Hold Time
6.5 7.5
Min.
Max.
Min. Max.
—
133
—
117
7.5
—
8.5
—
2.2
—
2.5
—
2.2
—
2.5
—
—
6.5
—
7.5
2.5
—
2.5
—
2.5
—
2.5
—
—
3.8
—
4.0
—
3.2
—
3.4
0
—
0
—
—
3.5
—
3.5
1.5
—
1.5
—
1.5
—
1.5
—
1.5
—
1.5
—
1.5
—
1.5
—
1.5
—
1.5
—
1.5
—
1.5
—
0.5
—
0.5
—
0.5
—
0.5
—
0.5
—
0.5
—
0.5
—
0.5
—
0.5
—
0.5
—
0.5
—
0.5
—
Unit
MHz
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
1. Configuration signal MODE is static and must not change during normal operation.
2. Guaranteed but not 100% tested. This parameter is periodically sampled.
3. Tested with load in Figure 2.
Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
15
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
READ/WRITE CYCLE TIMING
tKC
CLK
tSS
tSH
tKH
tKL
ADSP is blocked by CE inactive
ADSP
tSS
tSH
ADSC
ADV
tAS
Address
tAH
RD1
WR1
tWS
tWH
tWS
tWH
RD2
RD3
GW
BWE
tWS
tWH
WR1
BWd-BWa
tCES
tCEH
tCES
tCEH
tCES
tCEH
CE Masks ADSP
CE
CE2 and CE2 only sampled with ADSP or ADSC
CE2
Unselected with CE2
CE2
tOELZ
tOEHZ
tOEQ
OE
tKQX
DATAOUT
High-Z
High-Z
tKQLZ
tKQ
1a
tKQLZ
tKQ
DATAIN
2b
2c
2d
tKQHZ
tKQX
1a
High-Z
tDS
Single Read
Flow-through
16
2a
tDH
Single Write
Burst Read
Unselected
Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
WRITE CYCLE TIMING
tKC
CLK
tSS
tSH
tKH
tKL
ADSP is blocked by CE1 inactive
ADSP
ADSC initiate Write
ADSC
ADV must be inactive for ADSP Write tAVS
tAVH
ADV
tAS
Address
tAH
WR1
WR2
tWS
tWH
tWS
tWH
tWS
tWH
WR3
GW
BWE
BWd-BWa
WR1
tCES
tCEH
tCES
tCEH
tCES
tCEH
tWS
tWH
WR2
WR3
CE1 Masks ADSP
CE
Unselected with CE2
CE2 and CE3 only sampled with ADSP or ADSC
CE2
CE2
OE
DATAOUT
High-Z
tDS
DATAIN
High-Z
tDH
1a
Single Write
Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
BW4-BW1 only are applied to first cycle of WR2
2a
2b
2c
2d
Burst Write
3a
Write
Unselected
17
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
SNOOZE MODE ELECTRICAL CHARACTERISTICS
Symbol
Isb2
Parameter
Current during SNOOZE MODE
tpds
tpus
tzzi
trzzi
ZZ active to input ignored
ZZ inactive to input sampled
ZZ active to SNOOZE current
ZZ inactive to exit SNOOZE current
Conditions
ZZ ≥ Vih
Temp. Range
Com.
Ind.
Auto.
Min.
—
—
—
—
2
—
0
Max.
55
60
95
2
—
2
—
Unit
mA
cycle
cycle
cycle
ns
SNOOZE MODE TIMING
CLK
tPDS
ZZ setup cycle
tPUS
ZZ recovery cycle
ZZ
tZZI
Isupply
ISB2
tRZZI
All Inputs
(except ZZ)
Deselect or Read Only
Deselect or Read Only
Normal
operation
cycle
Outputs
(Q)
High-Z
Don't Care
18
Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
IEEE 1149.1 Serial Boundary Scan (JTAG)
Test Access Port (TAP) - Test Clock
The IS61LF/VF25636A and IS61LF/VF51218A have a
serial boundary scan Test Access Port (TAP) in the PBGA
package only. This port operates in accordance with IEEE
Standard 1149.1-1900, but does not include all functions
required for full 1149.1 compliance. These functions from
the IEEE specification are excluded because they place
added delay in the critical speed path of the SRAM. The
TAP controller operates in a manner that does not conflict
with the performance of other devices using 1149.1 fully
compliant TAPs. The TAP operates using JEDEC standard
2.5V I/O logic levels.
The test clock is only used with the TAP controller. All inputs
are captured on the rising edge of TCK and outputs are
driven from the falling edge of TCK.
Disabling the JTAG Feature
The SRAM can operate without using the JTAG feature.
To disable the TAP controller, TCK must be tied LOW
(Vss) to prevent clocking of the device. TDI and TMS are
internally pulled up and may be disconnected. They may
alternately be connected to Vdd through a pull-up resistor.
TDO should be left disconnected. On power-up, the device
will start in a reset state which will not interfere with the
device operation.
Test Mode Select (TMS)
The TMS input is used to send commands to the TAP
controller and is sampled on the rising edge of TCK. This
pin may be left disconnected if the TAP is not used. The pin
is internally pulled up, resulting in a logic HIGH level.
Test Data-In (TDI)
The TDI pin is used to serially input information to the
registers and can be connected to the input of any register. The register between TDI and TDO is chosen by the
instruction loaded into the TAP instruction register. For
information on instruction register loading, see the TAP
Controller State Diagram. TDI is internally pulled up and
can be disconnected if the TAP is unused in an application. TDI is connected to the Most Significant Bit (MSB)
on any register.
tap controller block diagram
0
Bypass Register
2
1
0
Instruction Register
TDI
Selection Circuitry
31 30 29
. . .
Selection Circuitry
2
1
0
2
1
0
TDO
Identification Register
x
. . . . .
Boundary Scan Register*
TCK
TMS
TAP CONTROLLER
Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
19
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
Test Data Out (TDO)
The TDO output pin is used to serially clock data-out from
the registers. The output is active depending on the current
state of the TAP state machine (see TAP Controller State
Diagram). The output changes on the falling edge of TCK
and TDO is connected to the Least Significant Bit (LSB)
of any register.
Performing a TAP Reset
A Reset is performed by forcing TMS HIGH (Vdd) for five
rising edges of TCK. RESET may be performed while the
SRAM is operating and does not affect its operation. At
power-up, the TAP is internally reset to ensure that TDO
comes up in a high-Z state.
TAP Registers
Registers are connected between the TDI and TDO pins
and allow data to be scanned into and out of the SRAM
test circuitry. Only one register can be selected at a time
through the instruction registers. Data is serially loaded
into the TDI pin on the rising edge of TCK and output on
the TDO pin on the falling edge of TCK.
Instruction Register
Three-bit instructions can be serially loaded into the instruction register. This register is loaded when it is placed
between the TDI and TDO pins. (See TAP Controller Block
Diagram) At power-up, the instruction register is loaded
with the IDCODE instruction. It is also loaded with the
IDCODE instruction if the controller is placed in a reset
state as previously described.
When the TAP controller is in the CaptureIR state, the two
least significant bits are loaded with a binary “01” pattern to
allow for fault isolation of the board level serial test path.
Bypass Register
To save time when serially shifting data through registers,
it is sometimes advantageous to skip certain states. The
bypass register is a single-bit register that can be placed
between TDI and TDO pins. This allows data to be shifted
through the SRAM with minimal delay. The bypass register is set LOW (Vss) when the BYPASS instruction is
executed.
Boundary Scan Register
The boundary scan register is connected to all input and
output pins on the SRAM. Several no connect (NC) pins are
also included in the scan register to reserve pins for higher
density devices. The x36 configuration has a 75-bit-long
register and the x18 configuration also has a 75-bit-long
register. The boundary scan register is loaded with the
contents of the RAM Input and Output ring when the TAP
controller is in the Capture-DR state and then placed between the TDI and TDO pins when the controller is moved
to the Shift-DR state. The EXTEST, SAMPLE/PRELOAD
and SAMPLE-Z instructions can be used to capture the
contents of the Input and Output ring.
The Boundary Scan Order tables show the order in which
the bits are connected. Each bit corresponds to one of the
bumps on the SRAM package. The MSB of the register is
connected to TDI, and the LSB is connected to TDO.
Scan Register Sizes
Register Name
Instruction
Bypass
ID
Boundary Scan
Bit Size Bit Size (x18)
(x36)
3
3
1
1
32
32
75
75
Identification (ID) Register
The ID register is loaded with a vendor-specific, 32-bit
code during the Capture-DR state when the IDCODE command is loaded to the instruction register. The IDCODE
is hardwired into the SRAM and can be shifted out when
the TAP controller is in the Shift-DR state. The ID register
has vendor code and other information described in the
Identification Register Definitions table.
Identification Register Definitions
Instruction Field
Revision Number (31:28)
Device Depth (27:23)
Device Width (22:18)
ISSI Device ID (17:12)
ISSI JEDEC ID (11:1)
ID Register Presence (0)
20
Description
Reserved for version number.
Defines depth of SRAM. 256K or 512K
Defines with of the SRAM. x36 or x18
Reserved for future use.
Allows unique identification of SRAM vendor.
Indicate the presence of an ID register.
256K x 36
xxxx
00111
00100
xxxxx
00011010101
1
512K x 18
xxxx
01000
00011
xxxxx
00011010101
1
Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
TAP Instruction Set
SAMPLE/PRELOAD
Eight instructions are possible with the three-bit instruction
register and all combinations are listed in the Instruction
Code table. Three instructions are listed as RESERVED
and should not be used and the other five instructions are
described below. The TAP controller used in this SRAM
is not fully compliant with the 1149.1 convention because
some mandatory instructions are not fully implemented.
The TAP controller cannot be used to load address, data or
control signals and cannot preload the Input or Output buffers. The SRAM does not implement the 1149.1 commands
EXTEST or INTEST or the PRELOAD portion of SAMPLE/
PRELOAD; instead it performs a capture of the Inputs and
Output ring when these instructions are executed. Instructions are loaded into the TAP controller during the Shift-IR
state when the instruction register is placed between TDI
and TDO. During this state, instructions are shifted from
the instruction register through the TDI and TDO pins. To
execute an instruction once it is shifted in, the TAP controller must be moved into the Update-IR state.
SAMPLE/PRELOAD is a 1149.1 mandatory instruction.The
PRELOAD portion of this instruction is not implemented, so
the TAP controller is not fully 1149.1 compliant. When the
SAMPLE/PRELOAD instruction is loaded to the instruction register and the TAP controller is in the Capture-DR
state, a snapshot of data on the inputs and output pins is
captured in the boundary scan register.
It is important to realize that the TAP controller clock operates at a frequency up to 10 MHz, while the SRAM clock
runs more than an order of magnitude faster. Because of
the clock frequency differences, it is possible that during
the Capture-DR state, an input or output will under-go a
transition. The TAP may attempt a signal capture while in
transition (metastable state).The device will not be harmed,
but there is no guarantee of the value that will be captured
or repeatable results.
To guarantee that the boundary scan register will capture
the correct signal value, the SRAM signal must be stabilized
long enough to meet the TAP controller’s capture set-up
plus hold times (tcs and tch). To insure that the SRAM clock
input is captured correctly, designs need a way to stop (or
slow) the clock during a SAMPLE/PRELOAD instruction.
If this is not an issue, it is possible to capture all other
signals and simply ignore the value of the CLK and CLK
captured in the boundary scan register.
Once the data is captured, it is possible to shift out the data
by putting the TAP into the Shift-DR state. This places the
boundary scan register between the TDI and TDO pins.
Note that since the PRELOAD part of the command is not
implemented, putting the TAP into the Update to the UpdateDR state while performing a SAMPLE/PRELOAD instruction
will have the same effect as the Pause-DR command.
EXTEST
EXTEST is a mandatory 1149.1 instruction which is to be
executed whenever the instruction register is loaded with
all 0s. Because EXTEST is not implemented in the TAP
controller, this device is not 1149.1 standard compliant.
The TAP controller recognizes an all-0 instruction. When an
EXTEST instruction is loaded into the instruction register,
the SRAM responds as if a SAMPLE/PRELOAD instruction
has been loaded. There is a difference between the instructions, unlike the SAMPLE/PRELOAD instruction, EXTEST
places the SRAM outputs in a High-Z state.
IDCODE
The IDCODE instruction causes a vendor-specific, 32bit code to be loaded into the instruction register. It also
places the instruction register between the TDI and TDO
pins and allows the IDCODE to be shifted out of the device
when the TAP controller enters the Shift-DR state. The
IDCODE instruction is loaded into the instruction register
upon power-up or whenever the TAP controller is given a
test logic reset state.
Bypass
When the BYPASS instruction is loaded in the instruction register and the TAP is placed in a Shift-DR state,
the bypass register is placed between the TDI and TDO
pins. The advantage of the BYPASS instruction is that it
shortens the boundary scan path when multiple devices
are connected together on a board.
SAMPLE-Z
Reserved
The SAMPLE-Z instruction causes the boundary scan
register to be connected between the TDI and TDO pins
when the TAP controller is in a Shift-DR state. It also places
all SRAM outputs into a High-Z state.
These instructions are not implemented but are reserved
for future use. Do not use these instructions.
Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
21
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
Instruction Codes Code
000
Instruction
EXTEST
001
IDCODE
010
SAMPLE-Z
011
100
RESERVED
SAMPLE/PRELOAD
101
110
111
RESERVED
RESERVED
BYPASS
Description
Captures the Input/Output ring contents. Places the boundary scan register between the TDI and TDO. Forces all SRAM outputs to High-Z state. This
instruction is not 1149.1 compliant.
Loads the ID register with the vendor ID code and places the register between TDI
and TDO. This operation does not affect SRAM operation.
Captures the Input/Output contents. Places the boundary scan register between
TDI and TDO. Forces all SRAM output drivers to a High-Z state.
Do Not Use: This instruction is reserved for future use.
Captures the Input/Output ring contents. Places the boundary scan register
between TDI and TDO. Does not affect the SRAM operation. This instruction does not
implement 1149.1 preload function and is therefore not 1149.1 compliant.
Do Not Use: This instruction is reserved for future use.
Do Not Use: This instruction is reserved for future use.
Places the bypass register between TDI and TDO. This operation does not
affect SRAM operation.
TAP CONTROLLER STATE DIAGRAM
Test Logic Reset
1
0
Run Test/Idle
1
Select DR
0
0
1
1
1
Capture DR
0
Shift DR
1
Exit1 DR
0
Select IR
0
1
Exit1 IR
0
Pause DR
0
1
0
1
22
Exit2 DR
1
Update DR
0
Capture IR
0
Shift IR
1
0
Pause IR
1
0
1
1
0
1
0
Exit2 IR
1
Update IR
0
Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
TAP Electrical Characteristics Over the Operating Range(1,2)
Symbol
Voh1
Voh2
Vol1
Vol2
Vih
Vil
Ix
Parameter
Output HIGH Voltage
Output HIGH Voltage
Output LOW Voltage
Output LOW Voltage
Input HIGH Voltage
Input LOW Voltage
Input Load Current
Test Conditions
Ioh = –2.0 mA
Ioh = –100 µA
Iol = 2.0 mA
Iol = 100 µA
Iolt = 2mA
Vss ≤ V I ≤ Vddq
Min.
1.7
2.1
—
—
1.7
–0.3
–5
Max.
—
—
0.7
0.2
Vdd +0.3
0.7
5
Units
V
V
V
V
V
V
mA
Max.
—
10
—
—
—
—
—
—
—
—
20
—
Unit
ns
MHz
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Notes:
1. All Voltage referenced to Ground.
2. Overshoot: Vih (AC) ≤ Vdd +1.5V for t ≤ ttcyc/2,
Undershoot: Vil (AC) ≤ 0.5V for t ≤ ttcyc/2,
Power-up: Vih < 2.6V and Vdd < 2.4V and Vddq < 1.4V for t < 200 ms.
TAP AC ELECTRICAL CHARACTERISTICS(1,2) (Over Operating Range)
Symbol
ttcyc
ftf
tth
ttl
ttmss
ttdis
tcs
ttmsh
ttdih
tch
ttdov
ttdox
Parameter
TCK Clock cycle time
TCK Clock frequency
TCK Clock HIGH
TCK Clock LOW
TMS setup to TCK Clock Rise
TDI setup to TCK Clock Rise
Capture setup to TCK Rise
TMS hold after TCK Clock Rise
TDI Hold after Clock Rise
Capture hold after Clock Rise
TCK LOW to TDO valid
TCK LOW to TDO invalid
Min.
100
—
40
40
10
10
10
10
10
10
—
0
Notes:
1. Both tcs and tch refer to the set-up and hold time requirements of latching data from the boundary scan register.
2. Test conditions are specified using the load in TAP AC test conditions. tr/tf = 1 ns.
Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
23
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
TAP Output Load Equivalent
TAP AC TEST CONDITIONS
Input pulse levels
0 to 2.5V/0 to 3.0V
Input rise and fall times
1ns
Input timing reference levels
1.25V/1.5V
Output reference levels
1.25V/1.5V
Test load termination supply voltage
1.25V/1.5V
50Ω
1.25V/1.5V
TDO
20 pF
Z0 = 50Ω
GND
Tap timing
1
2
tTHTH
3
4
5
6
tTLTH
TCK
tTHTL
tMVTH tTHMX
TMS
tDVTH tTHDX
TDI
tTLOV
TDO
tTLOX
DON'T CARE
UNDEFINED
24
Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
119 BGA Boundary Scan Order (256K X 36)
Bit #
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
Signal Bump
Name
ID
A
2R
A
3T
A
4T
A
5T
A
6R
A
3B
A
5B
DQa
6P
DQa
7N
DQa
6M
DQa
7L
DQa
6K
DQa
7P
DQa
6N
DQa
6L
DQa
7K
ZZ
7T
DQb
6H
Bit #
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
Signal Bump
Name
ID
Bit #
DQb
7G
37
DQb
6F
38
DQb
7E
39
DQb
7D
40
DQb
7H
41
DQb
6G
42
DQb
6E
43
DQb
6D
44
A
6A
45
A
5A
46
ADV
4G
47
ADSP
4A
48
ADSC
4B
49
OE
4F
50
BWE
4M
51
GW
4H
52
CLK
4K
53
A
6B
54
Signal Bump
Name
ID
BWa
5L
BWb
5G
BWc
3G
BWd
3L
CE2
2B
CE
4E
A
3A
A
2A
DQc
2D
DQc
1E
DQc
2F
DQc
1G
DQc
2H
DQc
1D
DQc
2E
DQc
2G
DQc
1H
NC
5R
Bit #
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
Signal Bump
Name
ID
DQd
2K
DQd
1L
DQd
2M
DQd
1N
DQd
1P
DQd
1K
DQd
2L
DQd
2N
DQd
2P
MODE 3R
A
2C
A
3C
A
5C
A
6C
A1
4N
A0
4P
Bit #
40
41
42
43
44
45
46
47
48
49
50
51
Signal Bump
Name
ID
DQb
2K
DQb
1L
DQb
2M
DQb
1N
DQb
2P
MODE 3R
A
2C
A
3C
A
5C
A
6C
A1
4N
A0
4P
119 BGA Boundary Scan Order (512k X 18)
Bit #
1
2
3
4
5
6
7
8
9
10
11
12
13
Signal Bump
Name
ID
A
2R
A
2T
A
3T
A
5T
A
6R
A
3B
A
5B
DQa
7P
DQa
6N
DQa
6L
DQa
7K
ZZ
7T
DQa
6H
Bit #
14
15
16
17
18
19
20
21
22
23
24
25
26
Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
Signal Bump
Name
ID
Bit #
DQa
7G
27
DQa
6F
28
DQa
7E
29
DQa
6D
30
A
6T
31
A
6A
32
A
5A
33
ADV
4G
34
ADSP
4A
35
ADSC
4B
36
OE
4F
37
BWE
4M
38
GW
4H
39
Signal Bump
Name
ID
CLK
4K
A
6B
BWa
5L
BWb
3G
CE2
2B
CE
4E
A
3A
A
2A
DQb
1D
DQb
2E
DQb
2G
DQb
1H
NC
5R
25
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
165 PBGA Boundary Scan Order (x 36)
Signal Bump
Bit # Name
ID
1
MODE 1R
2
NC
6N
3
A
11P
4
A
8P
5
A
8R
6
A
9R
7
A
9P
8
A
10P
9
A
10R
10
A
11R
11
ZZ
11H
12
DQa
11N
13
DQa
11M
14
DQa
11L
15
DQa
11K
16
DQa
11J
17
DQa
10M
18
DQa
10L
19
DQa
10K
20
DQa
10J
26
Bit #
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Signal Bump
Name
ID
Bit #
DQb
11G
41
DQb
11F
42
DQb
11E
43
DQb
11D
44
DQb
10G
45
DQb
10F
46
DQb
10E
47
DQb
10D
48
DQb
11C
49
NC
11A
50
A
10A
51
A
10B
52
ADV
9A
53
ADSP
9B
54
ADSC
8A
55
OE
8B
56
BWE
7A
57
GW
7B
58
CLK
6B
59
NC
11B
60
Signal
Name
NC
CE2
BWa
BWb
BWc
BWd
CE2
CE
A
A
NC
DQc
DQc
DQc
DQc
DQc
DQc
DQc
DQc
DQc
Bump
ID
1A
6A
5B
5A
4A
4B
3B
3A
2A
2B
1B
1C
1D
1E
1F
1G
2D
2E
2F
2G
Bit #
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
Signal
Name
DQd
DQd
DQd
DQd
DQd
DQd
DQd
DQd
DQd
A
A
A
A
A1
A0
Bump
ID
1J
1K
1L
1M
2J
2K
2L
2M
1N
3P
3R
4R
4P
6P
6R
Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
165 PBGA Boundary Scan Order (x 18)
Signal Bump
Bit # Name
ID
1
MODE 1R
2
NC
6N
3
A
11P
4
A
8P
5
A
8R
6
A
9R
7
A
9P
8
A
10P
9
A
10R
10
A
11R
11
ZZ
11H
12
NC
11N
13
NC
11M
14
NC
11L
15
NC
11K
16
NC
11J
17
DQa
10M
18
DQa
10L
19
DQa
10K
20
DQa
10J
Bit #
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
Signal Bump
Name
ID
Bit #
DQa
11G
41
DQa
11F
42
DQa
11E
43
DQa
11D
44
DQa
11C
45
NC
10F
46
NC
10E
47
NC
10D
48
NC
10G
49
A
11A
50
A
10A
51
A
10B
52
ADV
9A
53
ADSP
9B
54
ADSC
8A
55
OE
8B
56
BWE
7A
57
GW
7B
58
CLK
6B
59
NC
11B
60
Signal
Name
NC
CE2
BWa
NC
BWb
NC
CE2
CE
A
A
NC
NC
NC
NC
NC
NC
DQb
DQb
DQb
DQb
Bump
ID
1A
6A
5B
5A
4A
4B
3B
3A
2A
2B
1B
1C
1D
1E
1F
1G
2D
2E
2F
2G
Bit #
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
Signal
Name
DQb
DQb
DQb
DQb
DQb
NC
NC
NC
NC
A
A
A
A
A1
A0
Bump
ID
1J
1K
1L
1M
1N
2K
2L
2M
2J
3P
3R
4R
4P
6P
6R
27
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
ORDERING INFORMATION (Vdd = 3.3V/Vddq = 2.5V/3.3V)
Commercial Range: 0°C to +70°C
Configuration
256Kx36
Access Time
6.5
256Kx36
7.5
512Kx18
6.5
512Kx18
7.5
Order Part Number
IS61LF25636A-6.5TQ
IS61LF25636A-6.5B2
IS61LF25636A-6.5B3
IS61LF25636A-7.5TQ
IS61LF25636A-7.5B2
IS61LF25636A-7.5B3
IS61LF51218A-6.5TQ
IS61LF51218A-6.5TQL
IS61LF51218A-6.5B2
IS61LF51218A-6.5B3
IS61LF51218A-7.5TQ
IS61LF51218A-7.5B2
IS61LF51218A-7.5B3
Package(1)
100 TQFP, 3CE
119 PBGA
165 PBGA
100 TQFP, 3CE
119 PBGA
165 PBGA
100 TQFP, 3CE
100 TQFP, 3CE, Lead-free
119 PBGA
165 PBGA
100 TQFP, 3CE
119 PBGA
165 PBGA
Industrial Range: -40°C to +85°C
Configuration
256Kx36
Access Time
6.5
256Kx36
7.5
512Kx18
6.5
512Kx18
7.5
Order Part Number
IS61LF25636A-6.5TQI
IS61LF25636A-6.5B2I
IS61LF25636A-6.5B3I
IS61LF25636A-7.5TQI
IS61LF25636A-7.5TQLI
IS61LF25636A-7.5B2I
IS61LF25636A-7.5B3I
IS61LF51218A-6.5TQI
IS61LF51218A-6.5B2I
IS61LF51218A-6.5B3I
IS61LF51218A-7.5TQI
IS61LF51218A-7.5TQLI
IS61LF51218A-7.5B2I
IS61LF51218A-7.5B3I
Package(1)
100 TQFP, 3CE
119 PBGA
165 PBGA
100 TQFP, 3CE
100 TQFP, 3CE, Lead-free
119 PBGA
165 PBGA
100 TQFP, 3CE
119 PBGA
165 PBGA
100 TQFP, 3CE
100 TQFP, 3CE, Lead-free
119 PBGA
165 PBGA
Note:
1. For 100 TQFP, 2CE option contact SRAM Marketing at [email protected]
Automotive Range: -40°C to +125°C
Configuration
256Kx36
512Kx18
28
Access Time
7.5
Order Part Number
IS64LF25636A-7.5TQLA3
IS64LF25636A-7.5B3LA3
Package(1)
100 TQFP, 3CE, Lead-free
165 PBGA, Lead-free
7.5
IS64LF51218A-7.5TQLA3
100 TQFP, 3CE, Lead-free
Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
ORDERING INFORMATION (Vdd = 2.5V /Vddq = 2.5V)
Commercial Range: 0°C to +70°C
Configuration
256Kx36
Access Time
6.5
256Kx36
7.5
512Kx18
6.5
512Kx18
7.5
Order Part Number
IS61VF25636A-6.5TQ
IS61VF25636A-6.5B2
IS61VF25636A-6.5B3
IS61VF25636A-7.5TQ
IS61VF25636A-7.5B2
IS61VF25636A-7.5B3
IS61VF51218A-6.5TQ
IS61VF51218A-6.5B2
IS61VF51218A-6.5B3
IS61VF51218A-7.5TQ
IS61VF51218A-7.5B2
IS61VF51218A-7.5B3
Package(1)
100 TQFP, 3CE
119 PBGA
165 PBGA
100 TQFP, 3CE
119 PBGA
165 PBGA
100 TQFP, 3CE
119 PBGA
165 PBGA
100 TQFP, 3CE
119 PBGA
165 PBGA
Order Part Number
IS61VF25636A-6.5TQI
IS61VF25636A-6.5B2I
IS61VF25636A-6.5B3I
IS61VF25636A-7.5TQI
IS61VF25636A-7.5B2I
IS61VF25636A-7.5B3I
IS61VF51218A-6.5TQI
IS61VF51218A-6.5B2I
IS61VF51218A-6.5B3I
IS61VF51218A-7.5TQI
IS61VF51218A-7.5B2I
IS61VF51218A-7.5B3I
Package(1)
100 TQFP, 3CE
119 PBGA
165 PBGA
100 TQFP, 3CE
119 PBGA
165 PBGA
100 TQFP, 3CE
119 PBGA
165 PBGA
100 TQFP, 3CE
119 PBGA
165 PBGA
Industrial Range: -40°C to +85°C
Configuration
256Kx36
Access Time
6.5
256Kx36
7.5
512Kx18
6.5
512Kx18
7.5
Note:
1. For 100 TQFP, 2CE option contact SRAM Marketing at [email protected]
Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
29
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
30
Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
1. CONTROLLING DIMENSION : MM .
2. Reference document : JEDEC MS-028
NOTE :
Package Outline
10/02/2008
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
31
32
Package Outline
1. CONTROLLING DIMENSION : MM .
NOTE :
08/28/2008
IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A
Integrated Silicon Solution, Inc.
Rev. H
07/22/2010
Similar pages