IS61LF25636A IS61VF25636A is64lf25636a IS61LF51218A IS61VF51218A 256K x 36, 512K x 18 9 Mb SYNCHRONOUS FLOW-THROUGH SEPTEMBER 2010 STATIC RAM FEATURES • Internal self-timed write cycle • Individual Byte Write Control and Global Write • Clock controlled, registered address, data and control • Burst sequence control using MODE input • Three chip enable option for simple depth expansion and address pipelining • Common data inputs and data outputs • Auto Power-down during deselect • Single cycle deselect • Snooze MODE for reduced-power standby • JTAG Boundary Scan for PBGA package • Power Supply LF: Vdd 3.3V + 5%, Vddq 3.3V/2.5V + 5% VF: Vdd 2.5V + 5%, Vddq 2.5V + 5% • JEDEC 100-Pin TQFP, 119-pin PBGA, and 165pin PBGA packages • Lead-free available • Automotive temperature available DESCRIPTION The ISSI IS61LF/VF25636A, IS64LF25636A and IS61LF/ VF51218A are high-speed, low-power synchronous static RAMs designed to provide burstable, high-performance memory for communication and networking applications. The IS61LF/VF25636A and IS64LF25636A are organized as 262,144 words by 36 bits. The IS61LF/VF51218A is organized as 524,288 words by 18 bits. Fabricated with ISSI's advanced CMOS technology, the device integrates a 2-bit burst counter, high-speed SRAM core, and highdrive capability outputs into a single monolithic circuit. All synchronous inputs pass through registers controlled by a positive-edge-triggered single clock input. Write cycles are internally self-timed and are initiated by the rising edge of the clock input. Write cycles can be one to four bytes wide as controlled by the write control inputs. Separate byte enables allow individual bytes to be written. Byte write operation is performed by using byte write enable (BWE) input combined with one or more individual byte write signals (BWx). In addition, Global Write (GW) is available for writing all bytes at one time, regardless of the byte write controls. Bursts can be initiated with either ADSP (Address Status Processor) or ADSC (Address Status Cache Controller) input pins. Subsequent burst addresses can be generated internally and controlled by the ADV (burst address advance) input pin. The mode pin is used to select the burst sequence order, Linear burst is achieved when this pin is tied LOW. Interleave burst is achieved when this pin is tied HIGH or left floating. FAST ACCESS TIME Symbol tkq tkc Parameter Clock Access Time Cycle Time Frequency -6.5 6.5 7.5 133 -7.5 7.5 8.5 117 Units ns ns MHz Copyright © 2010 Integrated Silicon Solution, Inc. All rights reserved. ISSI reserves the right to make changes to this specification and its products at any time without notice. ISSI assumes no liability arising out of the application or use of any information, products or services described herein. Customers are advised to obtain the latest version of this device specification before relying on any published information and before placing orders for products. Integrated Silicon Solution, Inc. does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless Integrated Silicon Solution, Inc. receives written assurance to its satisfaction, that: a.) the risk of injury or damage has been minimized; b.) the user assume all such risks; and c.) potential liability of Integrated Silicon Solution, Inc is adequately protected under the circumstances Integrated Silicon Solution, Inc. Rev. H 07/22/2010 1 IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A BLOCK DIAGRAM MODE Q0 CLK CLK A0 BINARY COUNTER ADSC ADSP A Q1 CE ADV A1 A0' A1' 256Kx36; 512Kx18; MEMORY ARRAY CLR 18/19 D Q 16/17 18/19 ADDRESS REGISTER CE CLK 36, or 18 D GW BWE BW(a-d) x18: a,b x36: a-d 36, or 18 Q DQ(a-d) BYTE WRITE REGISTERS CLK CE 2/4/8 CE2 D Q ENABLE REGISTER CE2 INPUT REGISTERS CLK 36, or 18 DQa - DQd OE CE CLK ZZ POWER DOWN OE 2 Integrated Silicon Solution, Inc. Rev. H 07/22/2010 IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A 165-pin BGA 119-pin BGA 165-Ball, 13x15 mm BGA 119-Ball, 14x22 mm BGA Bottom view Bottom View Integrated Silicon Solution, Inc. Rev. H 07/22/2010 3 IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A 119 BGA PACKAGE PIN CONFIGURATION-256K x 36 (TOP VIEW) 1 2 3 4 5 6 7 A VDDQ A A ADSP A A VDDQ B NC CE2 A ADSC A A NC C NC A A VDD A A NC D DQc DQPc Vss NC Vss DQPb E DQc DQc Vss CE Vss DQb DQb F VDDQ DQc Vss OE Vss DQb VDDQ G DQc DQc BWc ADV BWb DQb DQb H DQc DQc Vss GW Vss DQb DQb J VDDQ VDD NC VDD NC VDD VDDQ K DQd DQd Vss CLK Vss DQa DQa L DQd DQd BWd NC BWa DQa DQa M VDDQ DQd Vss BWE Vss DQa VDDQ N DQd DQd Vss A 1* Vss DQa DQa P DQd DQPd Vss A0* Vss DQPa DQa R NC A MODE VDD NC A NC T NC NC A A A NC ZZ U VDDQ TMS TDI TCK TDO NC VDDQ DQb Note: * A0 and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired. PIN DESCRIPTIONS 4 Symbol A Pin Name Address Inputs Symbol OE Pin Name Output Enable A0, A1 Synchronous Burst Address Inputs ZZ Power Sleep Mode ADV Synchronous Burst Address Advance MODE Burst Sequence Selection TCK, TDO JTAG Pins ADSP Address Status Processor ADSC Address Status Controller NC No Connect GW Global Write Enable DQa-DQd Data Inputs/Outputs CLK Synchronous Clock DQPa-Pd Output Power Supply CE, CE2 Synchronous Chip Select Vdd Power Supply BWx (x=a-d) Synchronous Byte Write Controls Vddq Output Power Supply BWE Byte Write Enable Vss Ground TMS, TDI Integrated Silicon Solution, Inc. Rev. H 07/22/2010 IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A 119 BGA PACKAGE PIN CONFIGURATION 512Kx18 (TOP VIEW) 1 2 3 4 5 6 7 A VDDQ A A ADSP A A B NC CE2 A ADSC A A NC C NC A A VDD A A NC D DQb NC Vss NC Vss DQPa E NC DQb Vss CE Vss NC DQa F VDDQ NC Vss OE Vss DQa VDDQ G NC DQb BWb ADV Vss NC DQa H DQb NC Vss GW Vss DQa NC J VDDQ VDD NC VDD NC VDD VDDQ K NC DQb Vss CLK Vss NC DQa L DQb NC Vss NC BWa DQa NC M VDDQ DQb Vss BWE Vss NC VDDQ N DQb NC Vss A1* Vss DQa NC P NC DQPb Vss A0* Vss NC DQa R NC A MODE VDD NC A NC T NC A A NC A A ZZ U VDDQ TMS TDI TCK TDO NC VDDQ VDDQ NC Note: * A0 and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired. PIN DESCRIPTIONS Symbol A Pin Name Address Inputs Symbol OE Pin Name Output Enable A0, A1 ADV ZZ Power Sleep Mode MODE Burst Sequence Selection ADSP Synchronous Burst Address Inputs Synchronous Burst Address Advance Address Status Processor TCK, TDO JTAG Pins ADSC GW Address Status Controller Global Write Enable CLK CE, CE2 Synchronous Clock Synchronous Chip Select BWx (x=a,b) Synchronous Byte Write Controls BWE Byte Write Enable Integrated Silicon Solution, Inc. Rev. H 07/22/2010 TMS, TDI NC No Connect DQa-DQb Data Inputs/Outputs DQPa-Pb Output Power Supply Vdd Power Supply Vddq Output Power Supply Vss Ground 5 IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A 165 PBGA PACKAGE PIN CONFIGURATION 256K x 36 (TOP VIEW) 1 2 3 4 5 6 7 8 9 10 11 A NC A CE BWc BWb CE2 BWE ADSC ADV A NC B NC A CE2 BWd BWa CLK GW OE ADSP A NC C DQPc NC Vddq Vss Vss Vss Vss Vss Vddq NC DQPb D DQc DQc Vddq Vdd Vss Vss Vss Vdd Vddq DQb DQb E DQc DQc Vddq Vdd Vss Vss Vss Vdd Vddq DQb DQb F DQc DQc Vddq Vdd Vss Vss Vss Vdd Vddq DQb DQb G DQc DQc Vddq Vdd Vss Vss Vss Vdd Vddq DQb DQb H NC Vss NC Vdd Vss Vss Vss Vdd NC NC ZZ J DQd DQd Vddq Vdd Vss Vss Vss Vdd Vddq DQa DQa K DQd DQd Vddq Vdd Vss Vss Vss Vdd Vddq DQa DQa L DQd DQd Vddq Vdd Vss Vss Vss Vdd Vddq DQa DQa M DQd DQd Vddq Vdd Vss Vss Vss Vdd Vddq DQa DQa N DQPd NC Vddq Vss NC NC NC Vss Vddq P NC NC A A TDI A1* TDO A A A A R MODE NC A A TMS A0* TCK A A A A NC DQPa Note: * A0 and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired. PIN DESCRIPTIONS Symbol A Pin Name Address Inputs Symbol Pin Name BWE Byte Write Enable A0, A1 ADV OE Output Enable ZZ Power Sleep Mode ADSP Synchronous Burst Address Inputs Synchronous Burst Address Advance Address Status Processor MODE Burst Sequence Selection ADSC GW Address Status Controller Global Write Enable JTAG Pins CLK CE, CE2, CE2 Synchronous Clock Synchronous Chip Select BWx (x=a,b,c,d) Synchronous Byte Write Controls TCK, TDO TMS, TDI NC DQx DQPx Vdd Vddq Vss 6 No Connect Data Inputs/Outputs Data Inputs/Outputs 3.3V/2.5V Power Supply Isolated Output Power Supply 3.3V/2.5V Ground Integrated Silicon Solution, Inc. Rev. H 07/22/2010 IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A 165 PBGA PACKAGE PIN CONFIGURATION 512K x 18 (TOP VIEW) 1 2 3 4 5 6 7 8 9 10 11 A NC A CE BWb NC CE2 BWE ADSC ADV A A B NC A CE2 NC BWa CLK GW OE ADSP A NC C NC NC Vddq Vss Vss Vss Vss Vss Vddq NC DQPa D NC DQb Vddq Vdd Vss Vss Vss Vdd Vddq NC DQa E NC DQb Vddq Vdd Vss Vss Vss Vdd Vddq NC DQa F NC DQb Vddq Vdd Vss Vss Vss Vdd Vddq NC DQa G NC DQb Vddq Vdd Vss Vss Vss Vdd Vddq NC DQa H NC Vss NC Vdd Vss Vss Vss Vdd NC NC ZZ J DQb NC Vddq Vdd Vss Vss Vss Vdd Vddq DQa NC K DQb NC Vddq Vdd Vss Vss Vss Vdd Vddq DQa NC L DQb NC Vddq Vdd Vss Vss Vss Vdd Vddq DQa NC M DQb NC Vddq Vdd Vss Vss Vss Vdd Vddq DQa NC N DQPb NC Vddq Vss NC NC NC Vss Vddq NC NC P NC NC A A TDI A1* TDO A A A A R MODE NC A A TMS A0* TCK A A A A Note: * A0 and A1 are the two least significant bits (LSB) of the address field and set the internal burst counter if burst is desired. PIN DESCRIPTIONS Symbol A Pin Name Address Inputs Symbol BWE Byte Write Enable A0, A1 ADV OE Output Enable ZZ Power Sleep Mode ADSP Synchronous Burst Address Inputs Synchronous Burst Address Advance Address Status Processor MODE Burst Sequence Selection ADSC GW Address Status Controller Global Write Enable JTAG Pins CLK CE, CE2, CE2 Synchronous Clock Synchronous Chip Select BWx (x=a,b) Synchronous Byte Write Controls TCK, TDO TMS, TDI NC DQx DQPx Vdd Vddq Vss Integrated Silicon Solution, Inc. Rev. H 07/22/2010 Pin Name No Connect Data Inputs/Outputs Data Inputs/Outputs 3.3V/2.5V Power Supply Isolated Output Power Supply 3.3V/2.5V Ground 7 IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A PIN CONFIGURATION DQPc DQPb DQb DQb VDDQ VSS DQb DQb DQb DQb VSS VDDQ DQb DQb VSS NC VDD ZZ DQa DQa VDDQ VSS DQa DQa DQa DQa VSS VDDQ DQa DQa DQPa DQPc DQc DQc VDDQ VSS DQc DQc DQc DQc VSS VDDQ DQc DQc NC VDD NC VSS DQd DQd VDDQ VSS DQd DQd DQd DQd VSS VDDQ DQd DQd DQPd 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 1 80 2 79 3 78 4 77 5 76 6 75 7 74 8 73 9 72 10 71 11 70 12 69 13 68 14 67 15 66 16 65 17 64 18 63 19 62 20 61 21 60 22 59 23 58 24 57 25 56 26 55 27 54 28 53 29 52 30 51 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 DQPb DQb DQb VDDQ VSS DQb DQb DQb DQb VSS VDDQ DQb DQb VSS NC VDD ZZ DQa DQa VDDQ VSS DQa DQa DQa DQa VSS VDDQ DQa DQa DQPa MODE A A A A A1 A0 NC NC VSS VDD NC NC A A A A A A A MODE A A A A A1 A0 NC NC VSS VDD NC A A A A A A A A DQc DQc VDDQ VSS DQc DQc DQc DQc VSS VDDQ DQc DQc NC VDD NC VSS DQd DQd VDDQ VSS DQd DQd DQd DQd VSS VDDQ DQd DQd DQPd 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 1 80 2 79 3 78 4 77 5 76 6 75 7 74 8 73 9 72 10 71 11 70 12 69 13 68 14 67 15 66 16 65 17 64 18 63 19 62 20 61 21 60 22 59 23 58 24 57 25 56 26 55 27 54 28 53 29 52 30 51 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 A A CE CE2 BWd BWc BWb BWa A VDD VSS CLK GW BWE OE ADSC ADSP ADV A A A A CE CE2 BWd BWc BWb BWa CE2 VDD VSS CLK GW BWE OE ADSC ADSP ADV A A 100-Pin TQFP (256K x 36) (2 Chip-Enable option) (3 Chip-Enable option) PIN DESCRIPTIONS A0, A1 A Synchronous Address Inputs. These pins must tied to the two LSBs of the address bus. Synchronous Address Inputs ADSC Synchronous Controller Address Status ADSP Synchronous Processor Address Status ADV Synchronous Burst Address Advance BWa-BWd Synchronous Byte Write Enable BWE Synchronous Byte Write Enable CE, CE2, CE2 Synchronous Chip Enable CLK 8 DQa-DQd Synchronous Data Input/Output DQPa-DQPd Parity Data Input/Output GW Synchronous Global Write Enable MODE Burst Sequence Mode Selection OE Output Enable Vdd 3.3V/2.5V Power Supply Vddq Isolated Output Buffer Supply: 3.3V/2.5V Ground Snooze Enable Vss ZZ Synchronous Clock Integrated Silicon Solution, Inc. Rev. H 07/22/2010 IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A PIN CONFIGURATION A NC NC VDDQ VSS NC DQPa DQa DQa VSS VDDQ DQa DQa VSS NC VDD ZZ DQa DQa VDDQ VSS DQa DQa NC NC VSS VDDQ NC NC NC NC NC NC VDDQ VSS NC NC DQb DQb VSS VDDQ DQb DQb NC VDD NC VSS DQb DQb VDDQ VSS DQb DQb DQPb NC VSS VDDQ NC NC NC 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 1 80 2 79 3 78 4 77 5 76 6 75 7 74 8 73 9 72 10 71 11 70 12 69 13 68 14 67 15 66 16 65 17 64 18 63 19 62 20 61 21 60 22 59 23 58 24 57 25 56 26 55 27 54 28 53 29 52 30 51 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 A NC NC VDDQ VSS NC DQPa DQa DQa VSS VDDQ DQa DQa VSS NC VDD ZZ DQa DQa VDDQ VSS DQa DQa NC NC VSS VDDQ NC NC NC MODE A A A A A1 A0 NC NC VSS VDD NC NC A A A A A A A 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 1 80 2 79 3 78 4 77 5 76 6 75 7 74 8 73 9 72 10 71 11 70 12 69 13 68 14 67 15 66 16 65 17 64 18 63 19 62 20 61 21 60 22 59 23 58 24 57 25 56 26 55 27 54 28 53 29 52 30 51 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 MODE A A A A A1 A0 NC NC VSS VDD NC A A A A A A A A NC NC NC VDDQ VSS NC NC DQb DQb VSS VDDQ DQb DQb NC VDD NC VSS DQb DQb VDDQ VSS DQb DQb DQPb NC VSS VDDQ NC NC NC A A CE CE2 NC NC BWb BWa A VDD VSS CLK GW BWE OE ADSC ADSP ADV A A A A CE CE2 NC NC BWb BWa CE2 VDD VSS CLK GW BWE OE ADSC ADSP ADV A A 100-Pin TQFP (512K x 18) (3 Chip-Enable Option) (2 Chip-Enable Option) PIN DESCRIPTIONS A0, A1 Synchronous Address Inputs. These pins must tied to the two LSBs of the address bus. A Synchronous Address Inputs Synchronous Controller Address Status ADSC ADSP Synchronous Processor Address Status ADV Synchronous Burst Address Advance BWa-BWb Synchronous Byte Write Enable BWE Synchronous Byte Write Enable CE, CE2, CE2 Synchronous Chip Enable CLK Synchronous Clock DQa-DQb Synchronous Data Input/Output Integrated Silicon Solution, Inc. Rev. H 07/22/2010 DQPa-DQPb Parity Data I/O; DQPa is parity for DQa1-8; DQPb is parity for DQb1-8 GW MODE Synchronous Global Write Enable Burst Sequence Mode Selection OE Vdd Vddq Output Enable 3.3V/2.5V Power Supply Isolated Output Buffer Supply: 3.3V/2.5V Ground Snooze Enable Vss ZZ 9 IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A TRUTH TABLE(1-8) OPERATION Deselect Cycle, Power-Down Deselect Cycle, Power-Down Deselect Cycle, Power-Down Deselect Cycle, Power-Down Deselect Cycle, Power-Down Snooze Mode, Power-Down Read Cycle, Begin Burst Read Cycle, Begin Burst Write Cycle, Begin Burst Read Cycle, Begin Burst Read Cycle, Begin Burst Read Cycle, Continue Burst Read Cycle, Continue Burst Read Cycle, Continue Burst Read Cycle, Continue Burst Write Cycle, Continue Burst Write Cycle, Continue Burst Read Cycle, Suspend Burst Read Cycle, Suspend Burst Read Cycle, Suspend Burst Read Cycle, Suspend Burst Write Cycle, Suspend Burst Write Cycle, Suspend Burst ADDRESS CE None H None L None L None L None L None X External L External L External L External L External L Next X Next X Next H Next H Next X Next H Current X Current X Current H Current H Current X Current H CE2 X X H X H X L L L L L X X X X X X X X X X X X CE2 X L X L X X H H H H H X X X X X X X X X X X X ZZ ADSP ADSC ADV WRITE OE L X L X X X L L X X X X L L X X X X L H L X X X L H L X X X H X X X X X L L X X X L L L X X X H L H L X L X L H L X H L L H L X H H L H H L H L L H H L H H L X H L H L L X H L H H L H H L L X L X H L L X L H H H H L L H H H H H L X H H H L L X H H H H L H H H L X L X H H L X CLK L-H L-H L-H L-H L-H X L-H L-H L-H L-H L-H L-H L-H L-H L-H L-H L-H L-H L-H L-H L-H L-H L-H DQ High-Z High-Z High-Z High-Z High-Z High-Z Q High-Z D Q High-Z Q High-Z Q High-Z D D Q High-Z Q High-Z D D NOTE: 1. X means “Don’t Care.” H means logic HIGH. L means logic LOW. 2. For WRITE, L means one or more byte write enable signals (BWa-d) and BWE are LOW or GW is LOW. WRITE = H for all BWx, BWE, GW HIGH. 3. BWa enables WRITEs to DQa’s and DQPa. BWb enables WRITEs to DQb’s and DQPb. BWc enables WRITEs to DQc’s and DQPc. BWd enables WRITEs to DQd’s and DQPd. DQPa and DQPb are available on the x18 version. DQPa-DQPd are available on the x36 version. 4. All inputs except OE and ZZ must meet setup and hold times around the rising edge (LOW to HIGH) of CLK. 5. Wait states are inserted by suspending burst. 6. For a WRITE operation following a READ operation, OE must be HIGH before the input data setup time and held HIGH during the input data hold time. 7. This device contains circuitry that will ensure the outputs will be in High-Z during power-up. 8. ADSP LOW always initiates an internal READ at the L-H edge of CLK. A WRITE is performed by setting one or more byte write enable signals and BWE LOW or GW LOW for the subsequent L-H edge of CLK. See WRITE timing diagram for clarification. PARTIAL TRUTH TABLE Function Read Read Write Byte 1 Write All Bytes Write All Bytes 10 GW H H H H L BWE H L L L X BWa X H L L X BWb X H H L X BWc X H H L X BWd X H H L X Integrated Silicon Solution, Inc. Rev. H 07/22/2010 IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A INTERLEAVED BURST ADDRESS TABLE (MODE = Vdd or No Connect) External Address A1 A0 00 01 10 11 1st Burst Address A1 A0 01 00 11 10 2nd Burst Address A1 A0 10 11 00 01 3rd Burst Address A1 A0 11 10 01 00 LINEAR BURST ADDRESS TABLE (MODE = Vss) 0,0 A1', A0' = 1,1 0,1 1,0 ABSOLUTE MAXIMUM RATINGS(1) Symbol Tstg Pd Iout Vin, Vout Vin Vdd Parameter Storage Temperature Power Dissipation Output Current (per I/O) Voltage Relative to Vss for I/O Pins Voltage Relative to Vss for for Address and Control Inputs Voltage on Vdd Supply Relative to Vss Value –55 to +150 1.6 100 –0.5 to Vddq + 0.5 –0.5 to Vdd + 0.5 Unit °C W mA V V –0.5 to 4.6 V Notes: 1. Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. 2. This device contains circuity to protect the inputs against damage due to high static voltages or electric fields; however, precautions may be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit. 3. This device contains circuitry that will ensure the output devices are in High-Z at power up. Integrated Silicon Solution, Inc. Rev. H 07/22/2010 11 IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A OPERATING RANGE (IS61LFxxxxx) Range Commercial Industrial Ambient Temperature 0°C to +70°C -40°C to +85°C Vdd 3.3V ± 5% 3.3V ± 5% Vddq 3.3V/2.5V ± 5% 3.3V/2.5V ± 5% Vdd 3.3V ± 5% Vddq 3.3V/2.5V ± 5% Vdd 2.5V ± 5% 2.5V ± 5% Vddq 2.5V ± 5% 2.5V ± 5% OPERATING RANGE (IS64LFxxxxx) Range Automotive Ambient Temperature -40°C to +125°C OPERATING RANGE (IS61VFxxxxx) Range Commercial Industrial Ambient Temperature 0°C to +70°C -40°C to +85°C DC ELECTRICAL CHARACTERISTICS (Over Operating Range) 3.3V Symbol Voh Parameter Output HIGH Voltage Vol Output LOW Voltage Vih Vil Ili Ilo Input HIGH Voltage Input LOW Voltage Input Leakage Current Output Leakage Current Test Conditions Ioh = –4.0 mA (3.3V) Ioh = –1.0 mA (2.5V) Iol = 8.0 mA (3.3V) Iol = 1.0 mA (2.5V) Vss ≤ Vin ≤ Vdd(1) Vss ≤ Vout ≤ Vddq, OE = Vih 2.5V Min. 2.4 Max. — Min. 2.0 Max. — Unit V — 0.4 — 0.4 V 2.0 –0.3 –5 –5 Vdd + 0.3 0.8 5 5 1.7 –0.3 –5 –5 Vdd + 0.3 0.7 5 5 V V µA µA POWER SUPPLY CHARACTERISTICS(1) (Over Operating Range) 6.5 MAX Symbol Parameter Test Conditions Temp. range x18 x36 Icc AC Operating Device Selected, Com. 185 185 Supply Current OE = Vih, ZZ ≤ Vil, Ind. 190 190 All Inputs ≤ 0.2V or ≥ Vdd – 0.2V, Auto. Cycle Time ≥ tkc min. Isb Standby Current Device Deselected, Com. 140 140 TTL Input Vdd = Max., Ind. 150 150 All Inputs ≤ Vil or ≥ Vih, Auto. ZZ ≤ Vil, f = Max. Isbi Standby Current Device Deselected, Com. 80 80 CMOS Input Vdd = Max., Ind. 85 85 Vin ≤ Vss + 0.2V or ≥Vdd – 0.2V Auto. f=0 7.5 MAX x18 x36 175 175 185 185 225 225 Unit mA 140 150 150 140 150 150 mA 80 85 130 80 85 130 mA Note: 1. MODE pin has an internal pullup and should be tied to Vdd or Vss. It exhibits ±100 µA maximum leakage current when tied to ≤ Vss + 0.2V or ≥ Vdd – 0.2V. 12 Integrated Silicon Solution, Inc. Rev. H 07/22/2010 IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A CAPACITANCE(1,2) Symbol Cin Cout Parameter Input Capacitance Input/Output Capacitance Conditions Vin = 0V Vout = 0V Max. 6 8 Unit pF pF Notes: 1. Tested initially and after any design or process changes that may affect these parameters. 2. Test conditions: Ta = 25°C, f = 1 MHz, Vdd = 3.3V. 3.3V I/O AC TEST CONDITIONS Parameter Input Pulse Level Input Rise and Fall Times Input and Output Timing and Reference Level Output Load Unit 0V to 3.0V 1.5 ns 1.5V See Figures 1 and 2 AC TEST LOADS 317 Ω 3.3V ZO = 50Ω OUTPUT 50Ω 1.5V Figure 1 Integrated Silicon Solution, Inc. Rev. H 07/22/2010 OUTPUT 5 pF Including jig and scope 351 Ω Figure 2 13 IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A 2.5V I/O AC TEST CONDITIONS Parameter Input Pulse Level Input Rise and Fall Times Input and Output Timing and Reference Level Output Load Unit 0V to 2.5V 1.5 ns 1.25V See Figures 3 and 4 2.5V I/O OUTPUT LOAD EQUIVALENT 1,667 Ω +2.5V ZO = 50Ω OUTPUT OUTPUT 50Ω 5 pF Including jig and scope 1,538 Ω 1.25V Figure 3 14 Figure 4 Integrated Silicon Solution, Inc. Rev. H 07/22/2010 IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A READ/WRITE CYCLE SWITCHING CHARACTERISTICS(1) (Over Operating Range) Symbol fmax tkc tkh tkl tkq tkqx(2) tkqlz(2,3) tkqhz(2,3) toeq toelz(2,3) toehz(2,3) tas tss tws tces tavs tds tah tsh twh tceh tavh tdh Notes: Parameter Clock Frequency Cycle Time Clock High Time Clock Low Time Clock Access Time Clock High to Output Invalid Clock High to Output Low-Z Clock High to Output High-Z Output Enable to Output Valid Output Enable to Output Low-Z Output Disable to Output High-Z Address Setup Time Address Status Setup Time Read/Write Setup Time Chip Enable Setup Time Address Advance Setup Time Data Setup Time Address Hold Time Address Status Hold Time Write Hold Time Chip Enable Hold Time Address Advance Hold Time Data Hold Time 6.5 7.5 Min. Max. Min. Max. — 133 — 117 7.5 — 8.5 — 2.2 — 2.5 — 2.2 — 2.5 — — 6.5 — 7.5 2.5 — 2.5 — 2.5 — 2.5 — — 3.8 — 4.0 — 3.2 — 3.4 0 — 0 — — 3.5 — 3.5 1.5 — 1.5 — 1.5 — 1.5 — 1.5 — 1.5 — 1.5 — 1.5 — 1.5 — 1.5 — 1.5 — 1.5 — 0.5 — 0.5 — 0.5 — 0.5 — 0.5 — 0.5 — 0.5 — 0.5 — 0.5 — 0.5 — 0.5 — 0.5 — Unit MHz ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns ns 1. Configuration signal MODE is static and must not change during normal operation. 2. Guaranteed but not 100% tested. This parameter is periodically sampled. 3. Tested with load in Figure 2. Integrated Silicon Solution, Inc. Rev. H 07/22/2010 15 IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A READ/WRITE CYCLE TIMING tKC CLK tSS tSH tKH tKL ADSP is blocked by CE inactive ADSP tSS tSH ADSC ADV tAS Address tAH RD1 WR1 tWS tWH tWS tWH RD2 RD3 GW BWE tWS tWH WR1 BWd-BWa tCES tCEH tCES tCEH tCES tCEH CE Masks ADSP CE CE2 and CE2 only sampled with ADSP or ADSC CE2 Unselected with CE2 CE2 tOELZ tOEHZ tOEQ OE tKQX DATAOUT High-Z High-Z tKQLZ tKQ 1a tKQLZ tKQ DATAIN 2b 2c 2d tKQHZ tKQX 1a High-Z tDS Single Read Flow-through 16 2a tDH Single Write Burst Read Unselected Integrated Silicon Solution, Inc. Rev. H 07/22/2010 IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A WRITE CYCLE TIMING tKC CLK tSS tSH tKH tKL ADSP is blocked by CE1 inactive ADSP ADSC initiate Write ADSC ADV must be inactive for ADSP Write tAVS tAVH ADV tAS Address tAH WR1 WR2 tWS tWH tWS tWH tWS tWH WR3 GW BWE BWd-BWa WR1 tCES tCEH tCES tCEH tCES tCEH tWS tWH WR2 WR3 CE1 Masks ADSP CE Unselected with CE2 CE2 and CE3 only sampled with ADSP or ADSC CE2 CE2 OE DATAOUT High-Z tDS DATAIN High-Z tDH 1a Single Write Integrated Silicon Solution, Inc. Rev. H 07/22/2010 BW4-BW1 only are applied to first cycle of WR2 2a 2b 2c 2d Burst Write 3a Write Unselected 17 IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A SNOOZE MODE ELECTRICAL CHARACTERISTICS Symbol Isb2 Parameter Current during SNOOZE MODE tpds tpus tzzi trzzi ZZ active to input ignored ZZ inactive to input sampled ZZ active to SNOOZE current ZZ inactive to exit SNOOZE current Conditions ZZ ≥ Vih Temp. Range Com. Ind. Auto. Min. — — — — 2 — 0 Max. 55 60 95 2 — 2 — Unit mA cycle cycle cycle ns SNOOZE MODE TIMING CLK tPDS ZZ setup cycle tPUS ZZ recovery cycle ZZ tZZI Isupply ISB2 tRZZI All Inputs (except ZZ) Deselect or Read Only Deselect or Read Only Normal operation cycle Outputs (Q) High-Z Don't Care 18 Integrated Silicon Solution, Inc. Rev. H 07/22/2010 IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A IEEE 1149.1 Serial Boundary Scan (JTAG) Test Access Port (TAP) - Test Clock The IS61LF/VF25636A and IS61LF/VF51218A have a serial boundary scan Test Access Port (TAP) in the PBGA package only. This port operates in accordance with IEEE Standard 1149.1-1900, but does not include all functions required for full 1149.1 compliance. These functions from the IEEE specification are excluded because they place added delay in the critical speed path of the SRAM. The TAP controller operates in a manner that does not conflict with the performance of other devices using 1149.1 fully compliant TAPs. The TAP operates using JEDEC standard 2.5V I/O logic levels. The test clock is only used with the TAP controller. All inputs are captured on the rising edge of TCK and outputs are driven from the falling edge of TCK. Disabling the JTAG Feature The SRAM can operate without using the JTAG feature. To disable the TAP controller, TCK must be tied LOW (Vss) to prevent clocking of the device. TDI and TMS are internally pulled up and may be disconnected. They may alternately be connected to Vdd through a pull-up resistor. TDO should be left disconnected. On power-up, the device will start in a reset state which will not interfere with the device operation. Test Mode Select (TMS) The TMS input is used to send commands to the TAP controller and is sampled on the rising edge of TCK. This pin may be left disconnected if the TAP is not used. The pin is internally pulled up, resulting in a logic HIGH level. Test Data-In (TDI) The TDI pin is used to serially input information to the registers and can be connected to the input of any register. The register between TDI and TDO is chosen by the instruction loaded into the TAP instruction register. For information on instruction register loading, see the TAP Controller State Diagram. TDI is internally pulled up and can be disconnected if the TAP is unused in an application. TDI is connected to the Most Significant Bit (MSB) on any register. tap controller block diagram 0 Bypass Register 2 1 0 Instruction Register TDI Selection Circuitry 31 30 29 . . . Selection Circuitry 2 1 0 2 1 0 TDO Identification Register x . . . . . Boundary Scan Register* TCK TMS TAP CONTROLLER Integrated Silicon Solution, Inc. Rev. H 07/22/2010 19 IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A Test Data Out (TDO) The TDO output pin is used to serially clock data-out from the registers. The output is active depending on the current state of the TAP state machine (see TAP Controller State Diagram). The output changes on the falling edge of TCK and TDO is connected to the Least Significant Bit (LSB) of any register. Performing a TAP Reset A Reset is performed by forcing TMS HIGH (Vdd) for five rising edges of TCK. RESET may be performed while the SRAM is operating and does not affect its operation. At power-up, the TAP is internally reset to ensure that TDO comes up in a high-Z state. TAP Registers Registers are connected between the TDI and TDO pins and allow data to be scanned into and out of the SRAM test circuitry. Only one register can be selected at a time through the instruction registers. Data is serially loaded into the TDI pin on the rising edge of TCK and output on the TDO pin on the falling edge of TCK. Instruction Register Three-bit instructions can be serially loaded into the instruction register. This register is loaded when it is placed between the TDI and TDO pins. (See TAP Controller Block Diagram) At power-up, the instruction register is loaded with the IDCODE instruction. It is also loaded with the IDCODE instruction if the controller is placed in a reset state as previously described. When the TAP controller is in the CaptureIR state, the two least significant bits are loaded with a binary “01” pattern to allow for fault isolation of the board level serial test path. Bypass Register To save time when serially shifting data through registers, it is sometimes advantageous to skip certain states. The bypass register is a single-bit register that can be placed between TDI and TDO pins. This allows data to be shifted through the SRAM with minimal delay. The bypass register is set LOW (Vss) when the BYPASS instruction is executed. Boundary Scan Register The boundary scan register is connected to all input and output pins on the SRAM. Several no connect (NC) pins are also included in the scan register to reserve pins for higher density devices. The x36 configuration has a 75-bit-long register and the x18 configuration also has a 75-bit-long register. The boundary scan register is loaded with the contents of the RAM Input and Output ring when the TAP controller is in the Capture-DR state and then placed between the TDI and TDO pins when the controller is moved to the Shift-DR state. The EXTEST, SAMPLE/PRELOAD and SAMPLE-Z instructions can be used to capture the contents of the Input and Output ring. The Boundary Scan Order tables show the order in which the bits are connected. Each bit corresponds to one of the bumps on the SRAM package. The MSB of the register is connected to TDI, and the LSB is connected to TDO. Scan Register Sizes Register Name Instruction Bypass ID Boundary Scan Bit Size Bit Size (x18) (x36) 3 3 1 1 32 32 75 75 Identification (ID) Register The ID register is loaded with a vendor-specific, 32-bit code during the Capture-DR state when the IDCODE command is loaded to the instruction register. The IDCODE is hardwired into the SRAM and can be shifted out when the TAP controller is in the Shift-DR state. The ID register has vendor code and other information described in the Identification Register Definitions table. Identification Register Definitions Instruction Field Revision Number (31:28) Device Depth (27:23) Device Width (22:18) ISSI Device ID (17:12) ISSI JEDEC ID (11:1) ID Register Presence (0) 20 Description Reserved for version number. Defines depth of SRAM. 256K or 512K Defines with of the SRAM. x36 or x18 Reserved for future use. Allows unique identification of SRAM vendor. Indicate the presence of an ID register. 256K x 36 xxxx 00111 00100 xxxxx 00011010101 1 512K x 18 xxxx 01000 00011 xxxxx 00011010101 1 Integrated Silicon Solution, Inc. Rev. H 07/22/2010 IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A TAP Instruction Set SAMPLE/PRELOAD Eight instructions are possible with the three-bit instruction register and all combinations are listed in the Instruction Code table. Three instructions are listed as RESERVED and should not be used and the other five instructions are described below. The TAP controller used in this SRAM is not fully compliant with the 1149.1 convention because some mandatory instructions are not fully implemented. The TAP controller cannot be used to load address, data or control signals and cannot preload the Input or Output buffers. The SRAM does not implement the 1149.1 commands EXTEST or INTEST or the PRELOAD portion of SAMPLE/ PRELOAD; instead it performs a capture of the Inputs and Output ring when these instructions are executed. Instructions are loaded into the TAP controller during the Shift-IR state when the instruction register is placed between TDI and TDO. During this state, instructions are shifted from the instruction register through the TDI and TDO pins. To execute an instruction once it is shifted in, the TAP controller must be moved into the Update-IR state. SAMPLE/PRELOAD is a 1149.1 mandatory instruction.The PRELOAD portion of this instruction is not implemented, so the TAP controller is not fully 1149.1 compliant. When the SAMPLE/PRELOAD instruction is loaded to the instruction register and the TAP controller is in the Capture-DR state, a snapshot of data on the inputs and output pins is captured in the boundary scan register. It is important to realize that the TAP controller clock operates at a frequency up to 10 MHz, while the SRAM clock runs more than an order of magnitude faster. Because of the clock frequency differences, it is possible that during the Capture-DR state, an input or output will under-go a transition. The TAP may attempt a signal capture while in transition (metastable state).The device will not be harmed, but there is no guarantee of the value that will be captured or repeatable results. To guarantee that the boundary scan register will capture the correct signal value, the SRAM signal must be stabilized long enough to meet the TAP controller’s capture set-up plus hold times (tcs and tch). To insure that the SRAM clock input is captured correctly, designs need a way to stop (or slow) the clock during a SAMPLE/PRELOAD instruction. If this is not an issue, it is possible to capture all other signals and simply ignore the value of the CLK and CLK captured in the boundary scan register. Once the data is captured, it is possible to shift out the data by putting the TAP into the Shift-DR state. This places the boundary scan register between the TDI and TDO pins. Note that since the PRELOAD part of the command is not implemented, putting the TAP into the Update to the UpdateDR state while performing a SAMPLE/PRELOAD instruction will have the same effect as the Pause-DR command. EXTEST EXTEST is a mandatory 1149.1 instruction which is to be executed whenever the instruction register is loaded with all 0s. Because EXTEST is not implemented in the TAP controller, this device is not 1149.1 standard compliant. The TAP controller recognizes an all-0 instruction. When an EXTEST instruction is loaded into the instruction register, the SRAM responds as if a SAMPLE/PRELOAD instruction has been loaded. There is a difference between the instructions, unlike the SAMPLE/PRELOAD instruction, EXTEST places the SRAM outputs in a High-Z state. IDCODE The IDCODE instruction causes a vendor-specific, 32bit code to be loaded into the instruction register. It also places the instruction register between the TDI and TDO pins and allows the IDCODE to be shifted out of the device when the TAP controller enters the Shift-DR state. The IDCODE instruction is loaded into the instruction register upon power-up or whenever the TAP controller is given a test logic reset state. Bypass When the BYPASS instruction is loaded in the instruction register and the TAP is placed in a Shift-DR state, the bypass register is placed between the TDI and TDO pins. The advantage of the BYPASS instruction is that it shortens the boundary scan path when multiple devices are connected together on a board. SAMPLE-Z Reserved The SAMPLE-Z instruction causes the boundary scan register to be connected between the TDI and TDO pins when the TAP controller is in a Shift-DR state. It also places all SRAM outputs into a High-Z state. These instructions are not implemented but are reserved for future use. Do not use these instructions. Integrated Silicon Solution, Inc. Rev. H 07/22/2010 21 IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A Instruction Codes Code 000 Instruction EXTEST 001 IDCODE 010 SAMPLE-Z 011 100 RESERVED SAMPLE/PRELOAD 101 110 111 RESERVED RESERVED BYPASS Description Captures the Input/Output ring contents. Places the boundary scan register between the TDI and TDO. Forces all SRAM outputs to High-Z state. This instruction is not 1149.1 compliant. Loads the ID register with the vendor ID code and places the register between TDI and TDO. This operation does not affect SRAM operation. Captures the Input/Output contents. Places the boundary scan register between TDI and TDO. Forces all SRAM output drivers to a High-Z state. Do Not Use: This instruction is reserved for future use. Captures the Input/Output ring contents. Places the boundary scan register between TDI and TDO. Does not affect the SRAM operation. This instruction does not implement 1149.1 preload function and is therefore not 1149.1 compliant. Do Not Use: This instruction is reserved for future use. Do Not Use: This instruction is reserved for future use. Places the bypass register between TDI and TDO. This operation does not affect SRAM operation. TAP CONTROLLER STATE DIAGRAM Test Logic Reset 1 0 Run Test/Idle 1 Select DR 0 0 1 1 1 Capture DR 0 Shift DR 1 Exit1 DR 0 Select IR 0 1 Exit1 IR 0 Pause DR 0 1 0 1 22 Exit2 DR 1 Update DR 0 Capture IR 0 Shift IR 1 0 Pause IR 1 0 1 1 0 1 0 Exit2 IR 1 Update IR 0 Integrated Silicon Solution, Inc. Rev. H 07/22/2010 IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A TAP Electrical Characteristics Over the Operating Range(1,2) Symbol Voh1 Voh2 Vol1 Vol2 Vih Vil Ix Parameter Output HIGH Voltage Output HIGH Voltage Output LOW Voltage Output LOW Voltage Input HIGH Voltage Input LOW Voltage Input Load Current Test Conditions Ioh = –2.0 mA Ioh = –100 µA Iol = 2.0 mA Iol = 100 µA Iolt = 2mA Vss ≤ V I ≤ Vddq Min. 1.7 2.1 — — 1.7 –0.3 –5 Max. — — 0.7 0.2 Vdd +0.3 0.7 5 Units V V V V V V mA Max. — 10 — — — — — — — — 20 — Unit ns MHz ns ns ns ns ns ns ns ns ns ns Notes: 1. All Voltage referenced to Ground. 2. Overshoot: Vih (AC) ≤ Vdd +1.5V for t ≤ ttcyc/2, Undershoot: Vil (AC) ≤ 0.5V for t ≤ ttcyc/2, Power-up: Vih < 2.6V and Vdd < 2.4V and Vddq < 1.4V for t < 200 ms. TAP AC ELECTRICAL CHARACTERISTICS(1,2) (Over Operating Range) Symbol ttcyc ftf tth ttl ttmss ttdis tcs ttmsh ttdih tch ttdov ttdox Parameter TCK Clock cycle time TCK Clock frequency TCK Clock HIGH TCK Clock LOW TMS setup to TCK Clock Rise TDI setup to TCK Clock Rise Capture setup to TCK Rise TMS hold after TCK Clock Rise TDI Hold after Clock Rise Capture hold after Clock Rise TCK LOW to TDO valid TCK LOW to TDO invalid Min. 100 — 40 40 10 10 10 10 10 10 — 0 Notes: 1. Both tcs and tch refer to the set-up and hold time requirements of latching data from the boundary scan register. 2. Test conditions are specified using the load in TAP AC test conditions. tr/tf = 1 ns. Integrated Silicon Solution, Inc. Rev. H 07/22/2010 23 IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A TAP Output Load Equivalent TAP AC TEST CONDITIONS Input pulse levels 0 to 2.5V/0 to 3.0V Input rise and fall times 1ns Input timing reference levels 1.25V/1.5V Output reference levels 1.25V/1.5V Test load termination supply voltage 1.25V/1.5V 50Ω 1.25V/1.5V TDO 20 pF Z0 = 50Ω GND Tap timing 1 2 tTHTH 3 4 5 6 tTLTH TCK tTHTL tMVTH tTHMX TMS tDVTH tTHDX TDI tTLOV TDO tTLOX DON'T CARE UNDEFINED 24 Integrated Silicon Solution, Inc. Rev. H 07/22/2010 IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A 119 BGA Boundary Scan Order (256K X 36) Bit # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Signal Bump Name ID A 2R A 3T A 4T A 5T A 6R A 3B A 5B DQa 6P DQa 7N DQa 6M DQa 7L DQa 6K DQa 7P DQa 6N DQa 6L DQa 7K ZZ 7T DQb 6H Bit # 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Signal Bump Name ID Bit # DQb 7G 37 DQb 6F 38 DQb 7E 39 DQb 7D 40 DQb 7H 41 DQb 6G 42 DQb 6E 43 DQb 6D 44 A 6A 45 A 5A 46 ADV 4G 47 ADSP 4A 48 ADSC 4B 49 OE 4F 50 BWE 4M 51 GW 4H 52 CLK 4K 53 A 6B 54 Signal Bump Name ID BWa 5L BWb 5G BWc 3G BWd 3L CE2 2B CE 4E A 3A A 2A DQc 2D DQc 1E DQc 2F DQc 1G DQc 2H DQc 1D DQc 2E DQc 2G DQc 1H NC 5R Bit # 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 Signal Bump Name ID DQd 2K DQd 1L DQd 2M DQd 1N DQd 1P DQd 1K DQd 2L DQd 2N DQd 2P MODE 3R A 2C A 3C A 5C A 6C A1 4N A0 4P Bit # 40 41 42 43 44 45 46 47 48 49 50 51 Signal Bump Name ID DQb 2K DQb 1L DQb 2M DQb 1N DQb 2P MODE 3R A 2C A 3C A 5C A 6C A1 4N A0 4P 119 BGA Boundary Scan Order (512k X 18) Bit # 1 2 3 4 5 6 7 8 9 10 11 12 13 Signal Bump Name ID A 2R A 2T A 3T A 5T A 6R A 3B A 5B DQa 7P DQa 6N DQa 6L DQa 7K ZZ 7T DQa 6H Bit # 14 15 16 17 18 19 20 21 22 23 24 25 26 Integrated Silicon Solution, Inc. Rev. H 07/22/2010 Signal Bump Name ID Bit # DQa 7G 27 DQa 6F 28 DQa 7E 29 DQa 6D 30 A 6T 31 A 6A 32 A 5A 33 ADV 4G 34 ADSP 4A 35 ADSC 4B 36 OE 4F 37 BWE 4M 38 GW 4H 39 Signal Bump Name ID CLK 4K A 6B BWa 5L BWb 3G CE2 2B CE 4E A 3A A 2A DQb 1D DQb 2E DQb 2G DQb 1H NC 5R 25 IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A 165 PBGA Boundary Scan Order (x 36) Signal Bump Bit # Name ID 1 MODE 1R 2 NC 6N 3 A 11P 4 A 8P 5 A 8R 6 A 9R 7 A 9P 8 A 10P 9 A 10R 10 A 11R 11 ZZ 11H 12 DQa 11N 13 DQa 11M 14 DQa 11L 15 DQa 11K 16 DQa 11J 17 DQa 10M 18 DQa 10L 19 DQa 10K 20 DQa 10J 26 Bit # 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Signal Bump Name ID Bit # DQb 11G 41 DQb 11F 42 DQb 11E 43 DQb 11D 44 DQb 10G 45 DQb 10F 46 DQb 10E 47 DQb 10D 48 DQb 11C 49 NC 11A 50 A 10A 51 A 10B 52 ADV 9A 53 ADSP 9B 54 ADSC 8A 55 OE 8B 56 BWE 7A 57 GW 7B 58 CLK 6B 59 NC 11B 60 Signal Name NC CE2 BWa BWb BWc BWd CE2 CE A A NC DQc DQc DQc DQc DQc DQc DQc DQc DQc Bump ID 1A 6A 5B 5A 4A 4B 3B 3A 2A 2B 1B 1C 1D 1E 1F 1G 2D 2E 2F 2G Bit # 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 Signal Name DQd DQd DQd DQd DQd DQd DQd DQd DQd A A A A A1 A0 Bump ID 1J 1K 1L 1M 2J 2K 2L 2M 1N 3P 3R 4R 4P 6P 6R Integrated Silicon Solution, Inc. Rev. H 07/22/2010 IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A 165 PBGA Boundary Scan Order (x 18) Signal Bump Bit # Name ID 1 MODE 1R 2 NC 6N 3 A 11P 4 A 8P 5 A 8R 6 A 9R 7 A 9P 8 A 10P 9 A 10R 10 A 11R 11 ZZ 11H 12 NC 11N 13 NC 11M 14 NC 11L 15 NC 11K 16 NC 11J 17 DQa 10M 18 DQa 10L 19 DQa 10K 20 DQa 10J Bit # 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Integrated Silicon Solution, Inc. Rev. H 07/22/2010 Signal Bump Name ID Bit # DQa 11G 41 DQa 11F 42 DQa 11E 43 DQa 11D 44 DQa 11C 45 NC 10F 46 NC 10E 47 NC 10D 48 NC 10G 49 A 11A 50 A 10A 51 A 10B 52 ADV 9A 53 ADSP 9B 54 ADSC 8A 55 OE 8B 56 BWE 7A 57 GW 7B 58 CLK 6B 59 NC 11B 60 Signal Name NC CE2 BWa NC BWb NC CE2 CE A A NC NC NC NC NC NC DQb DQb DQb DQb Bump ID 1A 6A 5B 5A 4A 4B 3B 3A 2A 2B 1B 1C 1D 1E 1F 1G 2D 2E 2F 2G Bit # 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 Signal Name DQb DQb DQb DQb DQb NC NC NC NC A A A A A1 A0 Bump ID 1J 1K 1L 1M 1N 2K 2L 2M 2J 3P 3R 4R 4P 6P 6R 27 IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A ORDERING INFORMATION (Vdd = 3.3V/Vddq = 2.5V/3.3V) Commercial Range: 0°C to +70°C Configuration 256Kx36 Access Time 6.5 256Kx36 7.5 512Kx18 6.5 512Kx18 7.5 Order Part Number IS61LF25636A-6.5TQ IS61LF25636A-6.5B2 IS61LF25636A-6.5B3 IS61LF25636A-7.5TQ IS61LF25636A-7.5B2 IS61LF25636A-7.5B3 IS61LF51218A-6.5TQ IS61LF51218A-6.5TQL IS61LF51218A-6.5B2 IS61LF51218A-6.5B3 IS61LF51218A-7.5TQ IS61LF51218A-7.5B2 IS61LF51218A-7.5B3 Package(1) 100 TQFP, 3CE 119 PBGA 165 PBGA 100 TQFP, 3CE 119 PBGA 165 PBGA 100 TQFP, 3CE 100 TQFP, 3CE, Lead-free 119 PBGA 165 PBGA 100 TQFP, 3CE 119 PBGA 165 PBGA Industrial Range: -40°C to +85°C Configuration 256Kx36 Access Time 6.5 256Kx36 7.5 512Kx18 6.5 512Kx18 7.5 Order Part Number IS61LF25636A-6.5TQI IS61LF25636A-6.5B2I IS61LF25636A-6.5B3I IS61LF25636A-7.5TQI IS61LF25636A-7.5TQLI IS61LF25636A-7.5B2I IS61LF25636A-7.5B3I IS61LF51218A-6.5TQI IS61LF51218A-6.5B2I IS61LF51218A-6.5B3I IS61LF51218A-7.5TQI IS61LF51218A-7.5TQLI IS61LF51218A-7.5B2I IS61LF51218A-7.5B3I Package(1) 100 TQFP, 3CE 119 PBGA 165 PBGA 100 TQFP, 3CE 100 TQFP, 3CE, Lead-free 119 PBGA 165 PBGA 100 TQFP, 3CE 119 PBGA 165 PBGA 100 TQFP, 3CE 100 TQFP, 3CE, Lead-free 119 PBGA 165 PBGA Note: 1. For 100 TQFP, 2CE option contact SRAM Marketing at [email protected] Automotive Range: -40°C to +125°C Configuration 256Kx36 512Kx18 28 Access Time 7.5 Order Part Number IS64LF25636A-7.5TQLA3 IS64LF25636A-7.5B3LA3 Package(1) 100 TQFP, 3CE, Lead-free 165 PBGA, Lead-free 7.5 IS64LF51218A-7.5TQLA3 100 TQFP, 3CE, Lead-free Integrated Silicon Solution, Inc. Rev. H 07/22/2010 IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A ORDERING INFORMATION (Vdd = 2.5V /Vddq = 2.5V) Commercial Range: 0°C to +70°C Configuration 256Kx36 Access Time 6.5 256Kx36 7.5 512Kx18 6.5 512Kx18 7.5 Order Part Number IS61VF25636A-6.5TQ IS61VF25636A-6.5B2 IS61VF25636A-6.5B3 IS61VF25636A-7.5TQ IS61VF25636A-7.5B2 IS61VF25636A-7.5B3 IS61VF51218A-6.5TQ IS61VF51218A-6.5B2 IS61VF51218A-6.5B3 IS61VF51218A-7.5TQ IS61VF51218A-7.5B2 IS61VF51218A-7.5B3 Package(1) 100 TQFP, 3CE 119 PBGA 165 PBGA 100 TQFP, 3CE 119 PBGA 165 PBGA 100 TQFP, 3CE 119 PBGA 165 PBGA 100 TQFP, 3CE 119 PBGA 165 PBGA Order Part Number IS61VF25636A-6.5TQI IS61VF25636A-6.5B2I IS61VF25636A-6.5B3I IS61VF25636A-7.5TQI IS61VF25636A-7.5B2I IS61VF25636A-7.5B3I IS61VF51218A-6.5TQI IS61VF51218A-6.5B2I IS61VF51218A-6.5B3I IS61VF51218A-7.5TQI IS61VF51218A-7.5B2I IS61VF51218A-7.5B3I Package(1) 100 TQFP, 3CE 119 PBGA 165 PBGA 100 TQFP, 3CE 119 PBGA 165 PBGA 100 TQFP, 3CE 119 PBGA 165 PBGA 100 TQFP, 3CE 119 PBGA 165 PBGA Industrial Range: -40°C to +85°C Configuration 256Kx36 Access Time 6.5 256Kx36 7.5 512Kx18 6.5 512Kx18 7.5 Note: 1. For 100 TQFP, 2CE option contact SRAM Marketing at [email protected] Integrated Silicon Solution, Inc. Rev. H 07/22/2010 29 IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A 30 Integrated Silicon Solution, Inc. Rev. H 07/22/2010 Integrated Silicon Solution, Inc. Rev. H 07/22/2010 1. CONTROLLING DIMENSION : MM . 2. Reference document : JEDEC MS-028 NOTE : Package Outline 10/02/2008 IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A 31 32 Package Outline 1. CONTROLLING DIMENSION : MM . NOTE : 08/28/2008 IS61/64LF25636A IS61LF51218A IS61VF25636A IS61VF51218A Integrated Silicon Solution, Inc. Rev. H 07/22/2010