CEP83A3/CEB83A3 N-Channel Enhancement Mode Field Effect Transistor FEATURES 30V, 100A, RDS(ON) = 5.3mΩ @VGS = 10V. RDS(ON) = 8.0mΩ @VGS = 4.5V. Super high dense cell design for extremely low RDS(ON). High power and current handing capability. D Lead free product is acquired. TO-220 & TO-263 package. D G G S CEB SERIES TO-263(DD-PAK) G D S ABSOLUTE MAXIMUM RATINGS Parameter CEP SERIES TO-220 Tc = 25 C unless otherwise noted Symbol Limit 30 Units V VGS ±20 V ID 100 A IDM 400 A 100 W Drain-Source Voltage VDS Gate-Source Voltage Drain Current-Continuous Drain Current-Pulsed a Maximum Power Dissipation @ TC = 25 C - Derate above 25 C S PD 0.67 W/ C Single Pulsed Avalanche Energy d EAS 875 mJ Single Pulsed Avalanche Current d IAS 35 A TJ,Tstg -55 to 175 C Symbol Limit Units Operating and Store Temperature Range Thermal Characteristics Parameter Thermal Resistance, Junction-to-Case RθJC 1.5 C/W Thermal Resistance, Junction-to-Ambient RθJA 62.5 C/W Rev 1. 2005.August http://www.cetsemi.com 4 - 178 CEP83A3/CEB83A3 Electrical Characteristics Parameter Tc = 25 C unless otherwise noted Symbol Test Condition Min Drain-Source Breakdown Voltage BVDSS VGS = 0V, ID = 250µA 30 Zero Gate Voltage Drain Current IDSS Gate Body Leakage Current, Forward Gate Body Leakage Current, Reverse Typ Max Units VDS = 30V, VGS = 0V 1 µA IGSSF VGS = 20V, VDS = 0V 100 nA IGSSR VGS = -20V, VDS = 0V -100 nA Off Characteristics V On Characteristics b Gate Threshold Voltage VGS(th) Static Drain-Source RDS(on) On-Resistance Forward Transconductance Dynamic Characteristics gFS VGS = VDS, ID = 250µA 3 V VGS = 10V, ID = 50A 1 4.2 5.3 mΩ VGS = 4.5V, ID = 40A 6.0 8.0 mΩ VDS = 10V, ID = 15A 27 S 9500 pF 800 pF 300 pF c Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss VDS = 15V, VGS = 0V, f = 1.0 MHz Switching Characteristics c Turn-On Delay Time td(on) Turn-On Rise Time tr Turn-Off Delay Time td(off) 25.7 VDD = 15V, ID = 1A, VGS = 10V, RGEN = 6Ω 50 ns 10 20 ns 128 200 ns Turn-Off Fall Time tf 34 70 ns Total Gate Charge Qg 50 65 nC Gate-Source Charge Qgs Gate-Drain Charge Qgd VDS = 15V, ID = 16A, VGS = 5V 20.8 nC 19 nC Drain-Source Diode Characteristics and Maximun Ratings Drain-Source Diode Forward Current IS Drain-Source Diode Forward Voltage b VSD VGS = 0V, IS = 20A Notes : a.Repetitive Rating : Pulse width limited by maximum junction temperature b.Pulse Test : Pulse Width < 300µs, Duty Cycle < 2%. c.Guaranteed by design, not subject to production testing. d.L = 0.5mH, IAS = 35A, VDD = 25V, RG = 25Ω, Starting TJ = 25 C 4 - 179 90 A 1.5 V 4 CEP83A3/CEB83A3 50 100 80 ID, Drain Current (A) ID, Drain Current (A) VGS=10,8,6,4V 60 VGS=3V 40 20 40 30 20 25 C 10 TJ=125 C 0 0 1 2 3 4 0 RDS(ON), Normalized RDS(ON), On-Resistance(Ohms) 8000 6000 4000 Coss Crss 0 0 5 10 15 20 25 5 2.2 1.9 ID=50A VGS=10V 1.6 1.3 1.0 0.7 0.4 -100 -50 0 50 100 150 200 VDS, Drain-to-Source Voltage (V) TJ, Junction Temperature( C) Figure 3. Capacitance Figure 4. On-Resistance Variation with Temperature VDS=VGS IS, Source-drain current (A) C, Capacitance (pF) 4 Figure 2. Transfer Characteristics 2000 VTH, Normalized Gate-Source Threshold Voltage 3 Figure 1. Output Characteristics Ciss ID=250µA 1.1 1.0 0.9 0.8 0.7 0.6 -50 2 VGS, Gate-to-Source Voltage (V) 10000 1.2 1 VDS, Drain-to-Source Voltage (V) 12000 1.3 -55 C 0 VGS=0V 10 10 10 -25 0 25 50 75 100 125 2 1 0 0.4 150 0.6 0.8 1.0 1.2 1.4 TJ, Junction Temperature( C) VSD, Body Diode Forward Voltage (V) Figure 5. Gate Threshold Variation with Temperature Figure 6. Body Diode Forward Voltage Variation with Source Current 4 - 180 10 10 VDS=15V ID=16A 6 4 2 0 0 3 4 RDS(ON)Limit 8 ID, Drain Current (A) VGS, Gate to Source Voltage (V) CEP83A3/CEB83A3 20 40 60 80 10 DC 10 10 100 100µs 1ms 10ms 2 1 TC=25 C TJ=150 C Single Pulse 0 10 -1 10 0 10 1 10 Qg, Total Gate Charge (nC) VDS, Drain-Source Voltage (V) Figure 7. Gate Charge Figure 8. Maximum Safe Operating Area VDD t on RL V IN D td(off) tf 90% 90% VOUT VOUT VGS RGEN toff tr td(on) 10% INVERTED 10% G 90% S VIN 50% 50% 10% PULSE WIDTH Figure 10. Switching Waveforms r(t),Normalized Effective Transient Thermal Impedance Figure 9. Switching Test Circuit 10 0 D=0.5 0.2 10 -1 PDM 0.1 t1 0.05 t2 0.02 0.01 Single Pulse 10 1. RθJC (t)=r (t) * RθJC 2. RθJC=See Datasheet 3. TJM-TC = P* RθJC (t) 4. Duty Cycle, D=t1/t2 -2 10 -5 10 -4 10 -3 10 -2 10 -1 Square Wave Pulse Duration (sec) Figure 11. Normalized Thermal Transient Impedance Curve 4 - 181 10 0 10 1 2