Siemens HYM64V8005GU-50 3.3v 8m x 64-bit edo-dram module 3.3v 8m x 72-bit edo-dram module Datasheet

3.3V 8M × 64-Bit EDO-DRAM Module
3.3V 8M x 72-Bit EDO-DRAM Module
HYM64V8005GU-50/-60
HYM64V8045GU-50/-60
HYM72V8005GU-50/-60
HYM72V8045GU-50/-60
168pin unbuffered DIMM Module
with serial presence detect
•
168 Pin JEDEC Standard, Unbuffered 8 Byte Dual In-Line Memory Module
for PC main memory applications
•
1 bank 8M x 64, 8M x 72 in 4k and 8k refresh organisation
•
Optimized for byte-write non-parity or ECC applications
•
Extended Data Out (EDO)
•
Performance:
-50
-60
tRAC
RAS Access Time
50 ns
60 ns
tCAC
CAS Access Time
13 ns
15 ns
tAA
Access Time from Address
25 ns
30 ns
tRC
Cycle Time
84 ns
104 ns
tHPC
EDO Mode Cycle Time
20 ns
25 ns
•
Single +3.3 V ± 0.3 V Power Supply
•
CAS-before-RAS refresh, RAS-only-refresh
•
Decoupling capacitors mounted on substrate
•
All inputs, outputs and clocks are fully LV-TTL compatible
•
Serial presence detects (optional)
•
Utilizes 8M × 8 -DRAMs in TSOPII packages
•
4096 refresh cycles / 64 ms with 12 / 11 addressing (Row / Column) for HYM64/72V8005GU
•
8192 refresh cycles / 128 ms with 13 / 10 addressing (Row / Column) for HYM64/72V8045GU
•
Gold contact pad
•
Card Size: 133,35mm x 25,40 mm x 4,00 mm
•
This DRAM product module family is intended to be fully pin and architecture compatible
with the 168pin unbuffered SDRAM DIMM module family
Semiconductor Group
1
2.97
HYM 64(72)V8005/45GU-50/-60
8M x 64/72 DRAM Module
The HYM64(72)V2005/45GU-50/-60 are industry standard 168-pin 8-byte Dual In-Line Memory
Modules (DIMMs) which are organized as 8M x 64 and 8M x 72 high speed memory arrays
designed with EDO DRAMs for non-parity and ECC applications. 4k refresh with 12 / 11 addressing
and 8k refresh modules with 13 / 10 addressing are available.The DIMMs use eight 8M x 8 EDO
DRAMs for the 8M x 64 organisation and nine 8M x 8 DRAMs for the 8M x 72 organisation, both in
TSOPII packages. Decoupling capacitors are mounted on the PC board.
The DIMMs use optional serial presence detects implemented via a serial E 2PROM using the two
pin I2C protocol. The first 128 bytes are utilized by the DIMM manufacturer and the second 128
bytes of serial PD data are available to the customer.
All 168-pin DIMMs provide a high performance, flexible 8-byte interface in a 133,35 mm long spacesaving footprint.
Ordering Information
Type
Ordering
Code
Package
Descriptions
HYM 64V8005GU-50
Q67100-Q2188
L-DIM-168-13
8M x 64 DRAM module (access time 50 ns)
HYM 64V8005GU-60
Q67100-Q2189
L-DIM-168-13
8M x 64 DRAM module (access time 60 ns)
HYM 72V8005GU-50
L-DIM-168-13
8M x 72 DRAM module (access time 50 ns)
HYM 72V8005GU-60
L-DIM-168-13
8M x 72 DRAM module (access time 60 ns)
HYM 64V8045GU-50
L-DIM-168-13
8M x 64 DRAM module (access time 50 ns)
HYM 64V8045GU-60
L-DIM-168-13
8M x 64 DRAM module (access time 60 ns)
HYM 72V8045GU-50
L-DIM-168-13
8M x 72 DRAM module (access time 50 ns)
HYM 72V8045GU-60
L-DIM-168-13
8M x 72 DRAM module (access time 60 ns)
4k-Refresh:
8k-Refresh:
Semiconductor Group
2
HYM 64(72)V8005/45GU-50/-60
8M x 64/72 DRAM Module
Pin Names
A0-A11
A0-A10
A0-A12
A0-A9
DQ0 - DQ63
CB0-CB7
RAS0, RAS2
CAS0 - CAS7
WE0, WE2
OE0, OE2
Vcc
Vss
SCL
SDA
SA0-SA2
N.C.
DU
Semiconductor Group
Row Address Input for HYM64/72V8005
Column Address Input for HYM64/72V8005
Row Address Input for HYM64/72V8045
Column Address Input for HYM64/72V8045
Data Input/Output
Check Bit Data Input/Output ( x72 only)
Row Address Strobe
Column Address Strobe
Read / Write Input
Output Enable
Power (+3.3 Volt)
Ground
Clock for Presence Detect
Serial Data Out for Presence Detect
Serial Presence Detect Addresses
No Connection
Don’t use
3
HYM 64(72)V8005/45GU-50/-60
8M x 64/72 DRAM Module
Pin Configuration
PIN #
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
Symbol
VSS
DQ0
DQ1
DQ2
DQ3
VCC
DQ4
DQ5
DQ6
DQ7
DQ8
VSS
DQ9
DQ10
DQ11
DQ12
DQ13
VCC
DQ14
DQ15
CB0
CB1
VSS
NC
NC
VCC
WE0
CAS0
CAS1
RAS0
OE0
VSS
A0
A2
A4
A6
A8
A10
A12
VCC
VCC
DU
Semiconductor Group
PIN #
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
Symbol
PIN #
VSS
OE2
RAS2
CAS2
CAS3
WE2
VCC
NC
NC
CB3
CB3
VSS
DQ16
DQ17
DQ18
DQ19
VCC
DQ20
NC
DU
NC
VSS
DQ21
DQ22
DQ23
VSS
DQ24
DQ25
DQ26
DQ27
VCC
DQ28
DQ29
DQ30
DQ31
VSS
NC
NC
NC
SDA
SCL
VCC
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
4
Symbol
VSS
DQ32
DQ33
DQ34
DQ35
VCC
DQ36
DQ37
DQ38
DQ39
DQ40
VSS
DQ41
DQ42
DQ43
DQ44
DQ45
VCC
DQ46
DQ47
CB4
CB5
VSS
NC
NC
VCC
DU
CAS4
CAS5
NC
DU
VSS
A1
A3
A5
A7
A9
A11
NC
VCC
DU
DU
PIN #
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
Symbol
VSS
DU
NC
CAS6
CAS7
DU
VCC
NC
NC
CB6
CB7
VSS
DQ48
DQ49
DQ50
DQ51
VCC
DQ52
NC
DU
NC
VSS
DQ53
DQ54
DQ55
VSS
DQ56
DQ57
DQ58
DQ59
VCC
DQ60
DQ61
DQ62
DQ63
VSS
NC
NC
SA0
SA1
SA2
VCC
HYM 64(72)V8005/45GU-50/-60
8M x 64/72 DRAM Module
RAS2
RAS0
WE0
WE2
OE2
OE0
CAS0
DQ0-DQ7
CAS4
DQ32-DQ39
I/O1-I/O8
I/O1-I/O8
D0
CAS1
DQ8-DQ15
D4
CAS5
DQ40-DQ47
I/O1-I/O8
I/O1-I/O8
D1
CAS6
CAS2
DQ16-DQ23
D5
DQ48-DQ55
I/O1-I/O8
I/O1-I/O8
D6
D2
CAS7
CAS3
DQ24-DQ31
DQ56-DQ63
I/O1-I/O8
I/O1-I/O8
D7
D3
A0-A11,(A12)
E2PROM (256wordx8bit)
D0-D7
VCC
SA0
SA1
SA2
C0-C7
VSS
8M x 64 DIMM Module Block Diagram
Semiconductor Group
5
SCL
SDA
HYM 64(72)V8005/45GU-50/-60
8M x 64/72 DRAM Module
RAS2
RAS0
WE0
OE0
WE2
OE2
CAS0
CAS4
DQ0-DQ7
DQ32-DQ39
I/O1-I/O8
I/O1-I/O8
D0
CAS1
DQ8-DQ15
D4
CAS5
I/O1-I/O8
DQ40-DQ47
I/O1-I/O8
D1
D5
CAS6
CB0-CB7
I/O1-I/O8
DQ48-DQ55
I/O1-I/O8
D8
CAS2
DQ16-DQ23
D6
CAS7
I/O1-I/O8
DQ56-DQ63
I/O1-I/O8
D2
D7
CAS3
DQ24-DQ31
I/O1-I/O8
D3
A0-A11,(A12)
E2PROM (256wordx8bit)
D0-D7
VCC
SA0
SA1
SA2
C0-C8
VSS
8M x 72 DIMM Module Block Diagram
Semiconductor Group
6
SCL
SDA
HYM 64(72)V8005/45GU-50/-60
8M x 64/72 DRAM Module
TRUTH TABLE
FUNCTION
RAS
CAS
WRITE
OE
ROW
ADDR
COL
ADDR
DQ0-DQ63
Standby
H
X
X
X
X
X
High Impedance
Read
L
L
H
L
ROW
COL
Data Out
Early-Write
L
L
L
X
ROW
COL
Data In
Late-Write
L
L
H-L
H
ROW
COL
Data In
Read-Modify-Write
(RMW)
L
L
H-L
L-H
ROW
COL
Data Out, Data In
1st Cycle
L
H-L
H
L
ROW
COL
Data Out
2nd Cycle
L
H-L
H
L
n/a
COL
Data Out
1st Cycle
L
H-L
L
X
ROW
COL
Data In
2nd Cycle
L
H-L
L
X
n/a
COL
Data In
1st Cycle
L
H-L
H-L
L-H
ROW
COL
Data Out, Data In
2st Cycle
L
H-L
H-L
L-H
n/a
COL
Data Out, Data In
L
H
X
X
ROW
n/a
High Impedance
H-L
L
H
X
X
n/a
High Impedance
READ
L-H-L
L
H
L
ROW
COL
Data Out
WRITE
L-H-L
L
L
X
ROW
COL
Data In
H-L
L
H
X
X
X
High Impedance
EDO Page Mode Read
EDO Page Mode Write
EDO Page Mode RMW
RAS only refresh
CAS-before-RAS refresh
Hidden Refresh
Self Refresh
Semiconductor Group
7
HYM 64(72)V8005/45GU-50/-60
8M x 64/72 DRAM Module
Absolute Maximum Ratings
Operating temperature range ......................................................................................... 0 to + 70 °C
Storage temperature range...................................................................................... – 55 to + 125 °C
Input/output voltage .............................................................................. –0.5 to min (Vcc+0.5, 4.6) V
Power supply voltage.................................................................................................... –0.5 to 4.6 V
Power dissipation.................................................................................................................. 4.97 W
Data out current (short circuit) ................................................................................................ 50 mA
Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent
damage to the device. Exposure to absolute maximum rating conditions for extended periods
may affect device reliability.
DC Characteristics
TA = 0 to 70 °C; VCC = 3.3 V ± 0.3 V
Parameter
Symbol
x 64/ x72
min.
Unit Notes
max.
Input high voltage
VIH
2.0
Input low voltage
VIL
– 0.5
0.8
V
1)
Output high voltage (LVTTL)
Output „H“level voltage ( IOUT = – 2 mA)
VOH
2.4
–
V
1)
Output low voltage (LVTTL)
Output „L“ level voltage ( IOUT = + 2 mA)
VOL
–
0.4
V
1)
Output high voltage (LVCMOS)
Output „H“level voltage ( IOUT =– 100µA)
VOH
Vcc-0.2
–
V
1)
Output low voltage (LVCMOS)
Output „L“ level voltage ( IOUT =+100 µA)
VOL
–
0.4
V
1)
Input leakage current
(0 V < VIN < Vcc, all other pins = 0 V)
II(L)
– 10
10
µA
1)
Output leakage current
(DO is disabled, 0 V < VOUT < Vcc)
IO(L)
– 10
+10
µA
1)
Semiconductor Group
8
Vcc + 0.5 V
1)
HYM 64(72)V8005/45GU-50/-60
8M x 64/72 DRAM Module
DC Characteristics for HYM64/72V8005
TA = 0 to 70 °C; VCC = 3.3 V ± 0.3 V
Parameter
Symbol
x 64
min.
Average VCC supply current:
x 72
max.
min.
max.
Unit Note
s
ICC1
-50 version
-60 version
–
–
1120
960
–
–
1260
1080
mA
mA
2) 3)
–
8
–
9
mA
–
4)
(RAS, CAS, address cycling, tRC = tRC min.)
Standby VCC supply current
ICC2
(RAS = CAS = VIH, one address change)
Average VCC supply current during RAS ICC3
only refresh cycles:
-50 version
-60 version
2) 4)
–
–
1120
960
–
–
1260
1080
mA
mA
–
–
840
640
–
–
945
720
mA
mA
2) 3)
ICC5
–
4
–
4,5
mA
–
ICC6
Average VCC supply current during
CAS-before-RAS refresh mode:
-50 version
-60 version
–
–
1120
920
–
–
1280
1035
mA
mA
2) 4)
(RAS cycling, CAS = VIH , t RC = tRC min.)
Average VCC supply current during
ICC4
hyper page mode (EDO):
-50 version
-60 version
4)
(RAS = VIL, CAS, address cycling
tPC = tPC min.)
Standby VCC supply current
(RAS = CAS = VCC – 0.2 V, one address
change)
(RAS, CAS cycling, tRC = tRC min.)
Semiconductor Group
9
HYM 64(72)V8005/45GU-50/-60
8M x 64/72 DRAM Module
DC Characteristics for HYM64/72V8045
TA = 0 to 70 °C; VCC = 3.3 V ± 0.3 V
Parameter
Symbol
Average VCC supply current:
x 64
x 72
Unit Note
s
min.
max.
min.
max.
–
–
800
720
–
–
900
810
mA
mA
2) 3)
–
8
–
9
mA
–
ICC1
-50 version
-60 version
4)
(RAS, CAS, address cycling, tRC = tRC min.)
Standby VCC supply current
ICC2
(RAS = CAS = VIH, one address change)
Average VCC supply current during RAS ICC3
only refresh cycles:
-50 version
-60 version
2) 4)
–
–
800
720
–
–
900
810
mA
mA
–
–
840
640
–
–
945
720
mA
mA
2) 3)
ICC5
–
4
–
4,5
mA
–
ICC6
Average VCC supply current during
CAS-before-RAS refresh mode:
-50 version
-60 version
–
–
1120
920
–
–
(RAS cycling, CAS = VIH , t RC = tRC min.)
Average VCC supply current during
ICC4
hyper page mode (EDO):
-50 version
-60 version
4)
(RAS = VIL, CAS, address cycling
tPC = tPC min.)
Standby VCC supply current
(RAS = CAS = VCC – 0.2 V, one address
change)
(RAS, CAS cycling, tRC = tRC min.)
Semiconductor Group
10
12601 mA
035 mA
2) 4)
HYM 64(72)V8005/45GU-50/-60
8M x 64/72 DRAM Module
AC Characteristics 5)6)
TA = 0 to 70 °C,VCC = 3.3 V ± 0.3 V, tT = 2 ns
Parameter
16E
Limit Values
Symbol
-50
min.
Unit
Note
-60
max.
min.
max.
common parameters
Random read or write cycle time
tRC
84
–
104
–
ns
RAS precharge time
tRP
30
–
40
–
ns
RAS pulse width
tRAS
50
10k
60
10k
ns
CAS pulse width
tCAS
8
10k
10
10k
ns
Row address setup time
tASR
0
–
0
–
ns
Row address hold time
tRAH
8
–
10
–
ns
Column address setup time
tASC
0
–
0
–
ns
Column address hold time
tCAH
8
–
10
–
ns
RAS to CAS delay time
tRCD
12
37
14
45
ns
RAS to column address delay
tRAD
10
25
12
30
ns
RAS hold time
tRSH
13
15
–
ns
CAS hold time
tCSH
40
50
–
ns
CAS to RAS precharge time
tCRP
5
–
5
–
ns
Transition time (rise and fall)
tT
1
50
1
50
ns
Refresh period for 4k-refresh
tREF
–
64
–
64
ms
Refresh period for 8k-refresh
tREF
–
128
–
128
ms
Access time from RAS
tRAC
–
50
–
60
ns
8, 9
Access time from CAS
tCAC
–
13
–
15
ns
8, 9
Access time from column address
tAA
–
25
–
30
ns
8,10
OE access time
tOEA
–
13
–
15
ns
Column address to RAS lead time
tRAL
25
–
30
–
ns
Read command setup time
tRCS
0
–
0
–
ns
Read command hold time
tRCH
0
–
0
–
ns
11
Read command hold time referenced to tRRH
RAS
0
–
0
–
ns
11
CAS to output in low-Z
tCLZ
0
–
0
–
ns
8
Output buffer turn-off delay
tOFF
0
13
0
15
ns
12
7
Read Cycle
Semiconductor Group
11
HYM 64(72)V8005/45GU-50/-60
8M x 64/72 DRAM Module
AC Characteristics (cont’d) 5)6)
TA = 0 to 70 °C,VCC = 3.3 V ± 0.3 V, tT = 2 ns
Parameter
16E
Limit Values
Symbol
-50
Unit
Note
-60
min.
max.
min.
max.
Output turn-off delay from OE
tOEZ
0
13
0
15
ns
12
Data to CAS low delay
tDZC
0
–
0
–
ns
13
Data to OE low delay
tDZO
0
–
0
–
ns
13
CAS high to data delay
tCDD
10
–
13
–
ns
14
OE high to data delay
tODD
10
–
13
–
ns
14
Write command hold time
tWCH
8
–
10
–
ns
Write command pulse width
tWP
8
–
10
–
ns
Write command setup time
tWCS
0
–
0
–
ns
Write command to RAS lead time
tRWL
13
–
15
–
ns
Write command to CAS lead time
tCWL
13
–
15
–
ns
Data setup time
tDS
0
–
0
–
ns
16
Data hold time
tDH
8
–
10
–
ns
16
Read-write cycle time
tRWC
113
–
138
–
ns
RAS to WE delay time
tRWD
64
–
77
–
ns
15
CAS to WE delay time
tCWD
27
–
32
–
ns
15
Column address to WE delay time
tAWD
39
–
47
–
ns
15
OE command hold time
tOEH
10
–
13
–
ns
EDO cycle time
tHPC
20
–
25
–
ns
CAS precharge time
tCP
8
–
10
–
ns
Access time from CAS precharge
tCPA
–
27
–
32
ns
Output data hold time
tCOH
5
–
5
–
ns
RAS pulse width in EDO mode
tRAS
50
200k
60
200k
ns
CAS precharge to RAS Delay
tRHPC
27
–
32
–
ns
OE setup time prior to CAS
tOES
5
–
5
–
ns
Write Cycle
15
Read-modify-Write Cycle
Hyper Page Mode (EDO) Cycle
Semiconductor Group
12
7
HYM 64(72)V8005/45GU-50/-60
8M x 64/72 DRAM Module
AC Characteristics (cont’d) 5)6)
TA = 0 to 70 °C,VCC = 3.3 V ± 0.3 V, tT = 2 ns
Parameter
16E
Limit Values
Symbol
-50
min.
Unit
Note
-60
max.
min.
max.
Hyper Page Mode (EDO) Read-modify-Write Cycle
Hyper page mode (EDO) read-write
cycle time
tPRWC
58
–
68
–
ns
CAS precharge to WE
tCPWD
41
–
49
–
ns
CAS setup time
tCSR
10
–
10
–
ns
CAS hold time
tCHR
10
–
10
–
ns
RAS to CAS precharge time
tRPC
5
–
5
–
ns
Write to RAS precharge time
tWRP
10
–
10
–
ns
Write hold time referenced to RAS
tWRH
10
–
10
–
ns
CAS-before-RAS Refresh Cycle
Capacitance
TA = 0 to 70 °C; VCC = 3.3 V ± 0.3 V; f = 1 MHz
Parameter
Symbol
Limit Values
min.
max.
Unit
Input Capacitance (A0 to A11,(A12))
CI1
–
55
pF
Input Capacitance (RAS0, RAS2)
CI2
–
50
pF
Input Capacitance (CAS0-CAS7)
CI3
–
10
pF
Input Capacitance (WE0,WE2,OE0,OE2)
CI4
–
50
pF
I/O Capacitance (DQ0-DQ63,CB0-CB8)
CIO1
–
11
pF
Input Capacitance (SCL, SA0-2)
Cs
–
8
pF
Input/Output Capacitance (SDA)
Cs
–
10
pF
Semiconductor Group
13
HYM 64(72)V8005/45GU-50/-60
8M x 64/72 DRAM Module
Notes:
1) All voltages are referenced to VSS.
2) ICC1, ICC3, ICC4 and ICC6 depend on cycle rate.
3) ICC1 and ICC4 depend on output loading. Specified values are obtained with the output open.
4) Address can be changed once or less while RAS = Vil. In case of ICC4 it can be changed once or less during
a hyper page mode (EDO) cycle
5) An initial pause of 200 µs is required after power-up followed by 8 RAS cycles of which at least one cycle has
to be a refresh cycle, before proper device operation is achieved. In case of using the internal refresh counter,
a minimum of 8 CAS-before-RAS initialization cycles instead of 8 RAS cycles are required.
6) AC measurements assume
tT = 2 ns.
7) VIH (min.) and VIL (max.) are reference levels for measuring timing of input signals. Transition times are also
measured between VIH and VIL.
8) Measured with the specified current load and 100 pF at Vol = 0.8 V and Voh = 2.0 V. Access time is determined
by the latter of t RAC, tCAC, tAA,tCPA ,tOEA. t CAC is measured from tristate.
9) Operation within the tRCD (max.) limit ensures that tRAC (max.) can be met. tRCD (max.) is specified as a reference point
only. If tRCD is greater than the specified tRCD (max.) limit, then access time is controlled by tCAC.
10) Operation within the tRAD (max.) limit ensures that tRAC (max.) can be met. tRAD (max.) is specified as a reference point
only. If tRAD is greater than the specified tRAD (max.) limit, then access time is controlled by tAA.
11) Either tRCH or tRRH must be satisfied for a read cycle.
12) tOFF (max.), tOEZ (max.) define the time at which the output achieves the open-circuit conditions and are not
referenced to output voltage levels. tOFF is referenced from the rising edge of RAS or CAS, whichever occurs
last.
13) Either tDZC or tDZO must be satisfied.
14) Either tCDD or tODD must be satisfied.
15) tWCS , tRWD , tCWD and tAWD are not restrictive operating parameters. They are included in the data sheet as
electrical characteristics only. If tWCS > tWCS (min.) , the cycle is an early write cycle and data out pin will remain
open-circuit (high impedance) through the entire cycle; if tRWD > tRWD (min.) , tCWD > tCWD (min.) and tAWD > tAWD (min.) ,
the cycle is a read-write cycle and I/O will contain data read from the selected cells. If neither of the above
sets of conditions is satisfied, the condition of I/O (at access time) is indeterminate.
16) These parameters are referenced to the CAS leading edge in early write cycles and to the WE leading edge
in read-write cycles.
Semiconductor Group
14
HYM 64(72)V8005/45GU-50/-60
8M x 64/72 DRAM Module
Serial Presence Detects:
A serial presence detect storage device -- EEPROM 24C02 -- is assembled on to the module.
Information about the modul confuguration, speed, etc. is written into the EEPROM device during
module production using a serial presence detect protocol ( I 2C synchronous 2-wire bus).
Hex
HYM
Byte#
Description
SPD Entry Value
64
V8005
GU-50
0
Number of SPD bytes
128
80
1
Total bytes in Serial PD
256
08
2
Memory Type
EDO
02
3
Number of Row Addresses
12
0C
4
Number of Column Addresses
11
0B
5
Number of DIMM Banks
1
01
6
Module Data Width
x64 / x72
40
7
Module Data Width (cont’d)
0
00
8
Module Interface Levels
LVTTL
01
9
RAS access time
50 / 600 ns
32
10
CAS access time
13 / 15 ns
0D
11
Dimm Config (Error Det/Corr.)
none / ECC
00
12
Refresh Rate/Type
normal
00
15.6µs
13
Primary DRAM data width
x8
08
14
Error checking DRAM data width
none / x8
00
15-31 reserved for future offerings
FF
32
Superset Memory Type
NA
FF
33-61 Superset information (may be used in
NA
FF
future)
62
SPD Revision Designator
Rev. 1.0
01
63
Checksum for bytes 0-62
XX
64-127 Manufacturer Information (optional)
FF
128- Unused Storage Locations
FF
255
Semiconductor Group
15
64
V8005
GU-60
80
08
02
0C
0B
01
40
00
01
3C
0F
00
00
72
V8005
GU-50
80
08
02
0C
0B
01
48
00
01
32
0D
02
00
72
V8005
GU-60
80
08
02
0C
0B
01
48
00
01
3C
0F
02
00
08
00
FF
FF
FF
08
08
FF
FF
FF
08
08
FF
FF
FF
01
XX
FF
FF
01
XX
FF
FF
01
XX
FF
FF
HYM 64(72)V8005/45GU-50/-60
8M x 64/72 DRAM Module
Serial Presence Detects (cont’d):
Hex
HYM
Byte#
Description
SPD Entry Value
64
V4045
GU-50
0
Number of SPD bytes
128
80
1
Total bytes in Serial PD
256
08
2
Memory Type
EDO
02
3
Number of Row Addresses
13
0D
4
Number of Column Addresses
10
0A
5
Number of DIMM Banks
1
01
6
Module Data Width
x64 / x72
40
7
Module Data Width (cont’d)
0
00
8
Module Interface Levels
LVTTL
01
9
RAS access time
50 / 60 ns
32
10
CAS access time
13 / 15 ns
0D
11
Dimm Config (Error Det/Corr.)
none / ECC
00
12
Refresh Rate/Type
normal
00
15.6µs
13
Primary DRAM data width
x8
08
14
Error checking DRAM data width
none / x8
00
15-31 reserved for future offerings
FF
32
Superset Memory Type
NA
FF
33-61 Superset information (may be used in
NA
FF
future)
62
SPD Revision Designator
Rev. 1.0
01
63
Checksum for bytes 0-62
XX
64-127 Manufacturer Information (optional)
FF
128- Unused Storage Locations
FF
255
Semiconductor Group
16
64
V4045
GU-60
80
08
02
0D
0A
01
40
00
01
3C
0F
00
00
72
V4045
GU-50
80
08
02
0D
0A
01
48
00
01
32
0D
02
00
72
V4045
GU-60
80
08
02
0D
0A
01
48
00
01
3C
0F
02
00
08
00
FF
FF
FF
08
08
FF
FF
FF
08
08
FF
FF
FF
01
XX
FF
FF
01
XX
FF
FF
01
XX
FF
FF
HYM 64(72)V8005/45GU-50/-60
8M x 64/72 DRAM Module
L-DIM-168-13
Module package
(168 pin, dual read-out, single in-line memory module)
133,35
3,0
1
10 11
40
84
41
25,40
17,78
*)
127,35
A
85
B
124
94 95
C
125
168
*) 4.00 max for modules assembled with TSOPII-packages
9.00 max for modules assembled with SOJ-packages
6,35
6,35
2,0
Detail A
1,0 +
- 0.5
2,54 min.
3,125
3,125
1,27
2,0
0,2 +- 0,15
Detail C
Detail B
DM168-13.WMF
preliminary drawing
Semiconductor Group
17
Similar pages