IRFR430A, IRFU430A, SiHFR430A, SiHFU430A Power MOSFET FEATURES PRODUCT SUMMARY VDS (V) • Low Gate Charge Qg Results in Simple Drive Requirement 500 RDS(on) (Ω) VGS = 10 V 1.7 Qg (Max.) (nC) 24 Qgs (nC) 6.5 Qgd (nC) Ruggedness • Fully Characterized Capacitance and Avalanche Voltage and Current 13 Configuration Available • Improved Gate, Avalanche and Dynamic dV/dt RoHS* COMPLIANT Single • Effective Coss Specified D • Lead (Pb)-free Available DPAK (TO-252) IPAK (TO-251) APPLICATIONS G • Switch Mode Power Supply (SMPS) • Uninterruptible Power Supply • High Speed Power Switching S N-Channel MOSFET ORDERING INFORMATION Package DPAK (TO-252) IRFR430APbF SiHFR430A-E3 IRFR430A SiHFR430A Lead (Pb)-free SnPb DPAK (TO-252) IRFR430ATRPbFa SiHFR430AT-E3a IRFR430ATRa SiHFR430ATa DPAK (TO-252) IRFR430ATRLPbFa SiHFR430ATL-E3a IRFR430ATRLa SiHFR430ATLa DPAK (TO-252) IRFR430ATRRPbFa SiHFR430ATR-E3a IRFR430ATRRa SiHFR430ATRa IPAK (TO-251) IRFU430APbF SiHFU430A-E3 IRFU430A SiHFU430A Note a. See device orientation. ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted PARAMETER SYMBOL LIMIT Drain-Source Voltage VDS 500 Gate-Source Voltage VGS ± 30 Continuous Drain Current VGS at 10 V TC = 25 °C TC = 100 °C Pulsed Drain Currenta ID IDM Linear Derating Factor UNIT V 5.0 3.2 A 20 0.91 W/°C EAS 130 mJ Currenta IAR 5.0 A Repetitive Avalanche Energya EAR 11 mJ PD 110 W dV/dt 3.0 V/ns TJ, Tstg - 55 to + 150 Single Pulse Avalanche Energyb Repetitive Avalanche Maximum Power Dissipation Peak Diode Recovery TC = 25 °C dV/dtc Operating Junction and Storage Temperature Range Soldering Recommendations (Peak Temperature) for 10 s 300d °C Notes a. b. c. d. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). Starting TJ = 25 °C, L = 11 mH, RG = 25 Ω, IAS = 5.0 A (see fig. 12). ISD ≤ 5.0 A, dI/dt ≤ 320 A/µs, VDD ≤ VDS, TJ ≤ 150 °C. 1.6 mm from case. www.kersemi.com 1 IRFR430A, IRFU430A, SiHFR430A, SiHFU430A THERMAL RESISTANCE RATINGS PARAMETER SYMBOL TYP. MAX. Maximum Junction-to-Ambient RthJA - 62 Case-to-Sink, Flat, Greased Surface RthCS 0.50 - Maximum Junction-to-Case (Drain) RthJC - 1.1 UNIT °C/W SPECIFICATIONS TJ = 25 °C, unless otherwise noted PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT VDS VGS = 0 V, ID = 250 µA 500 - - V ΔVDS/TJ Reference to 25 °C, ID = 1 mA - 0.60 - V/°C VGS(th) VDS = VGS, ID = 250 µA 2.0 - 4.5 V nA Static Drain-Source Breakdown Voltage VDS Temperature Coefficient Gate-Source Threshold Voltage Gate-Source Leakage Zero Gate Voltage Drain Current Drain-Source On-State Resistance Forward Transconductance IGSS IDSS RDS(on) gfs VGS = ± 30 V - - ± 100 VDS = 500 V, VGS = 0 V - - 25 VDS = 400 V, VGS = 0 V, TJ = 125 °C - - 250 - - 1.7 Ω VDS = 50 V, ID = 3.0 A 2.3 - - S VGS = 0 V, VDS = 25 V, f = 1.0 MHz, see fig. 5 - 490 - - 75 - - 4.5 - VDS = 1.0 V, f = 1.0 MHz - 750 - VDS = 400 V, f = 1.0 MHz - 25 - - 51 - - - 24 ID = 3.0 Ab VGS = 10 V µA Dynamic Input Capacitance Ciss Output Capacitance Coss Reverse Transfer Capacitance Crss Output Capacitance Coss Effective Output Capacitance VGS = 10 V Coss eff. VDS = 0 V to 400 Vc Total Gate Charge Qg Gate-Source Charge Qgs - - 6.5 Gate-Drain Charge Qgd - - 13 Turn-On Delay Time td(on) - 8.7 - tr - 27 - - 17 - - 16 - - - 5.0 - - 20 Rise Time Turn-Off Delay Time Fall Time td(off) VGS = 10 V ID = 5.0 A, VDS = 400 V, see fig. 6 and 13b VDD = 250 V, ID = 5.0 A, RG = 15 Ω, RD = 50 Ω, see fig. 10b tf pF pF nC ns Drain-Source Body Diode Characteristics Continuous Source-Drain Diode Current Pulsed Diode Forward Currenta Body Diode Voltage IS ISM VSD Body Diode Reverse Recovery Time trr Body Diode Reverse Recovery Charge Qrr Forward Turn-On Time ton MOSFET symbol showing the integral reverse p - n junction diode D A G TJ = 25 °C, IS = 5.0 A, VGS = 0 S Vb TJ = 25 °C, IF = 5.0 A, dI/dt = 100 A/µsb - - 1.5 V - 410 620 ns - 1.4 2.1 µC Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD) Notes a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11). b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %. c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS. www.kersemi.com 2 IRFR430A, IRFU430A, SiHFR430A, SiHFU430A TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted 100 100.00 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 10 ID, Drain-to-Source Current (Α ) ID, Drain-to-Source Current (A) TOP 1 0.1 4.5V 0.01 10.00 T J = 150°C 1.00 T J = 25°C 0.10 20μs PULSE WIDTH Tj = 25°C VDS = 100V 20μs PULSE WIDTH 0.01 0.001 0.1 1 10 100 4.0 100 3.0 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 10.0 12.0 14.0 16.0 I D = 5.0A 4.5V 0.1 20μs PULSE WIDTH Tj = 150°C 0.01 1 10 VDS, Drain-to-Source Voltage (V) Fig. 2 - Typical Output Characteristics 100 2.0 (Normalized) 1 0.1 8.0 2.5 RDS(on) , Drain-to-Source On Resistance ID, Drain-to-Source Current (A) TOP 10 6.0 VGS, Gate-to-Source Voltage (V) Fig. 3 - Typical Transfer Characteristics VDS, Drain-to-Source Voltage (V) Fig. 1 - Typical Output Characteristics 1.5 1.0 0.5 V GS = 10V 0.0 -60 -40 -20 0 20 40 60 TJ , Junction Temperature 80 100 120 140 160 ( ° C) Fig. 4 - Normalized On-Resistance vs. Temperature www.kersemi.com 3 IRFR430A, IRFU430A, SiHFR430A, SiHFU430A 100 10000 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd C, Capacitance(pF) I SD , Reverse Drain Current (A) Coss = Cds + Cgd 1000 Ciss 100 Coss 10 Crss 10 TJ = 25 ° C TJ = 150 ° C 1 1 V GS= 0 V 1 10 100 0.1 1000 0.2 0.5 VDS, Drain-to-Source Voltage (V) Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage OPERATION IN THIS AREA LIMITED BY R DS(on) VDS = 400V VDS = 250V VDS = 100V VGS , Gate-to-Source Voltage (V) 10 7 5 2 10 100μsec 1 1msec 0.1 0 4 8 12 16 20 QG , Total Gate Charge (nC) Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage www.keremi.com 4 1.4 100 I D = 5.0A 0 1.1 Fig. 7 - Typical Source-Drain Diode Forward Voltage ID , Drain-to-Source Current (A) 12 0.8 V SD,Source-to-Drain Voltage (V) Tc = 25°C Tj = 150°C Single Pulse 10 10msec 100 1000 VDS , Drain-toSource Voltage (V) Fig. 8 - Maximum Safe Operating Area 10000 IRFR430A, IRFU430A, SiHFR430A, SiHFU430A 5.5 RD VDS VGS D.U.T. RG 4.4 + - VDD Fig. 10a - Switching Time Test Circuit 2.2 VDS 1.1 90 % 0.0 25 50 75 100 125 150 10 % VGS ( ° C) TC , Case Temperature td(on) Fig. 9 - Maximum Drain Current vs. Case Temperature td(off) tf tr Fig. 10b - Switching Time Waveforms (Z thJC ) 10 1 D = 0.50 Thermal Response ID , Drain Current (A) 10 V Pulse width ≤ 1 µs Duty factor ≤ 0.1 % 3.3 0.20 P DM 0.10 0.1 0.05 t1 SINGLE PULSE (THERMAL RESPONSE) 0.02 0.01 t2 Notes: 1. Duty factor D = 2. Peak T 0.01 0.00001 0.0001 0.001 0.01 t1/ t 2 J = P DM x Z thJC +TC 0.1 1 t1, Rectangular Pulse Duration (sec) Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case VDS 15 V tp L VDS D.U.T RG IAS 20 V tp Driver + A - VDD IAS 0.01 Ω Fig. 12a - Unclamped Inductive Test Circuit Fig. 12b - Unclamped Inductive Waveforms www.kersemi.com 5 IRFR430A, IRFU430A, SiHFR430A, SiHFU430A 5.0 250 EAS , Single Pulse Avalanche Energy (mJ) 200 TOP 2.2A 3.2A BOTTOM 5.0A VGS(th) Gate threshold Voltage (V) ID 150 100 50 4.5 ID = 250μA 4.0 3.5 3.0 2.5 -75 0 25 50 75 100 Starting Tj, Junction Temperature 125 -50 -25 0 25 50 75 100 125 ( ° C) Fig. 12c - Maximum Avalanche Energy vs. Drain Current T J , Temperature ( °C ) Fig. 12d - Threshold Voltage vs. Temperature Current regulator Same type as D.U.T. 50 kΩ QG VGS 12 V 0.2 µF 0.3 µF QGS QGD + D.U.T. VG - VDS VGS 3 mA Charge IG ID Current sampling resistors Fig. 13a - Basic Gate Charge Waveform www.kersemi.com 6 150 150 Fig. 13b - Gate Charge Test Circuit IRFR430A, IRFU430A, SiHFR430A, SiHFU430A Peak Diode Recovery dV/dt Test Circuit + D.U.T Circuit layout considerations • Low stray inductance • Ground plane • Low leakage inductance current transformer + - - RG • • • • dV/dt controlled by RG Driver same type as D.U.T. ISD controlled by duty factor "D" D.U.T. - device under test Driver gate drive P.W. + Period D= + - VDD P.W. Period VGS = 10 V* D.U.T. ISD waveform Reverse recovery current Body diode forward current dI/dt D.U.T. VDS waveform Diode recovery dV/dt Re-applied voltage VDD Body diode forward drop Inductor current Ripple ≤ 5 % ISD * VGS = 5 V for logic level devices Fig. 14 - For N-Channel www.kersemi.com 7