Freescale Semiconductor Data Sheet: Technical Data Document Number: KL26P64M48SF5 Rev. 2, 10/2013 KL26P64M48SF5 KL26 Sub-Family Data Sheet Supports the following: MKL26Z32VFM4, MKL26Z64VFM4, MKL26Z128VFM4, MKL26Z32VFT4, MKL26Z64VFT4, MKL26Z128VFT4, MKL26Z32VLH4, MKL26Z64VLH4, MKL26Z128VLH4 Features • Operating Characteristics – Voltage range: 1.71 to 3.6 V – Flash write voltage range: 1.71 to 3.6 V – Temperature range (ambient): -40 to 105°C • Performance – Up to 48 MHz ARM® Cortex-M0+ core • Memories and memory interfaces – 128 KB program flash memory – 16 KB RAM • Clocks – 32 kHz to 40 kHz or 3 MHz to 32 MHz crystal oscillator – Multi-purpose clock source • System peripherals – Nine low-power modes to provide power optimization based on application requirements – 4-channel DMA controller, supporting up to 63 request sources – COP Software watchdog – Low-leakage wakeup unit – SWD interface and Micro Trace buffer – Bit Manipulation Engine (BME) • Human-machine interface – Low-power hardware touch sensor interface (TSI) – General-purpose input/output • Analog modules – 16-bit SAR ADC – 12-bit DAC – Analog comparator (CMP) containing a 6-bit DAC and programmable reference input • Timers – Six channel Timer/PWM (TPM) – Two 2-channel Timer/PWM (TPM) – Periodic interrupt timers – 16-bit low-power timer (LPTMR) – Real-time clock • Communication interfaces – USB full-/low-speed On-the-Go controller with onchip transceiver and 5 V to 3.3 V regulator – Two 16-bit SPI modules – Two I2C modules – I2S (SAI) module – One low power UART module – Two UART modules • Security and integrity modules – 80-bit unique identification (ID) number per chip Freescale reserves the right to change the detail specifications as may be required to permit improvements in the design of its products. © 2013 Freescale Semiconductor, Inc. Table of Contents 1 Ordering parts...........................................................................3 5.3.1 Device clock specifications...................................20 1.1 Determining valid orderable parts......................................3 5.3.2 General switching specifications...........................21 2 Part identification......................................................................3 5.4 Thermal specifications.......................................................21 2.1 Description.........................................................................3 5.4.1 Thermal operating requirements...........................21 2.2 Format...............................................................................3 5.4.2 Thermal attributes.................................................21 2.3 Fields.................................................................................3 6 Peripheral operating requirements and behaviors....................22 2.4 Example............................................................................4 6.1 Core modules....................................................................22 3 Terminology and guidelines......................................................4 6.1.1 SWD electricals ....................................................22 3.1 Definition: Operating requirement......................................4 6.2 System modules................................................................23 3.2 Definition: Operating behavior...........................................4 6.3 Clock modules...................................................................24 3.3 Definition: Attribute............................................................5 6.3.1 MCG specifications...............................................24 3.4 Definition: Rating...............................................................5 6.3.2 Oscillator electrical specifications.........................25 3.5 Result of exceeding a rating..............................................6 3.6 Relationship between ratings and operating 6.4 Memories and memory interfaces.....................................28 6.4.1 Flash electrical specifications................................28 requirements......................................................................6 6.5 Security and integrity modules..........................................29 3.7 Guidelines for ratings and operating requirements............6 6.6 Analog...............................................................................29 3.8 Definition: Typical value.....................................................7 6.6.1 ADC electrical specifications.................................29 3.9 Typical value conditions....................................................8 6.6.2 CMP and 6-bit DAC electrical specifications.........34 4 Ratings......................................................................................8 6.6.3 12-bit DAC electrical characteristics.....................36 4.1 Thermal handling ratings...................................................8 6.7 Timers................................................................................39 4.2 Moisture handling ratings..................................................8 6.8 Communication interfaces.................................................39 4.3 ESD handling ratings.........................................................8 6.8.1 USB electrical specifications.................................39 4.4 Voltage and current operating ratings...............................9 6.8.2 USB VREG electrical specifications......................39 5 General.....................................................................................9 6.8.3 SPI switching specifications..................................40 5.1 AC electrical characteristics..............................................9 6.8.4 Inter-Integrated Circuit Interface (I2C) timing........44 5.2 Nonswitching electrical specifications...............................10 6.8.5 UART....................................................................45 6.8.6 I2S/SAI switching specifications............................46 5.2.1 Voltage and current operating requirements.........10 5.2.2 LVD and POR operating requirements.................11 5.2.3 Voltage and current operating behaviors..............11 5.2.4 Power mode transition operating behaviors..........12 7 Dimensions...............................................................................50 5.2.5 Power consumption operating behaviors..............13 7.1 Obtaining package dimensions.........................................50 5.2.6 EMC radiated emissions operating behaviors.......19 8 Pinout........................................................................................51 5.2.7 Designing with radiated emissions in mind...........20 8.1 KL26 Signal Multiplexing and Pin Assignments................51 5.2.8 Capacitance attributes..........................................20 8.2 KL26 pinouts.....................................................................53 6.9 Human-machine interfaces (HMI)......................................50 6.9.1 TSI electrical specifications...................................50 5.3 Switching specifications.....................................................20 KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. 2 Freescale Semiconductor, Inc. Ordering parts 1 Ordering parts 1.1 Determining valid orderable parts Valid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to freescale.com and perform a part number search for the following device numbers: PKL26 and MKL26 2 Part identification 2.1 Description Part numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received. 2.2 Format Part numbers for this device have the following format: Q KL## A FFF R T PP CC N 2.3 Fields This table lists the possible values for each field in the part number (not all combinations are valid): Field Description Values Q Qualification status • M = Fully qualified, general market flow • P = Prequalification KL## Kinetis family • KL26 A Key attribute • Z = Cortex-M0+ FFF Program flash memory size • 32 = 32 KB • 64 = 64 KB • 128 = 128 KB R Silicon revision • (Blank) = Main • A = Revision after main Table continues on the next page... KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. Freescale Semiconductor, Inc. 3 Terminology and guidelines Field Description Values T Temperature range (°C) • V = –40 to 105 PP Package identifier • FM = 32 QFN (5 mm x 5 mm) • FT = 48 QFN (7 mm x 7 mm) • LH = 64 LQFP (10 mm x 10 mm) CC Maximum CPU frequency (MHz) • 4 = 48 MHz N Packaging type • R = Tape and reel 2.4 Example This is an example part number: MKL26Z128VFM4 3 Terminology and guidelines 3.1 Definition: Operating requirement An operating requirement is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip. 3.1.1 Example This is an example of an operating requirement: Symbol VDD Description 1.0 V core supply voltage Min. 0.9 Max. Unit 1.1 V 3.2 Definition: Operating behavior An operating behavior is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions. KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. 4 Freescale Semiconductor, Inc. Terminology and guidelines 3.2.1 Example This is an example of an operating behavior: Symbol IWP Description Min. Digital I/O weak pullup/ 10 pulldown current Max. 130 Unit µA 3.3 Definition: Attribute An attribute is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements. 3.3.1 Example This is an example of an attribute: Symbol CIN_D Description Input capacitance: digital pins Min. — Max. 7 Unit pF 3.4 Definition: Rating A rating is a minimum or maximum value of a technical characteristic that, if exceeded, may cause permanent chip failure: • Operating ratings apply during operation of the chip. • Handling ratings apply when the chip is not powered. 3.4.1 Example This is an example of an operating rating: Symbol VDD Description 1.0 V core supply voltage Min. –0.3 Max. 1.2 Unit V KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. Freescale Semiconductor, Inc. 5 Terminology and guidelines 3.5 Result of exceeding a rating 40 Failures in time (ppm) 30 The likelihood of permanent chip failure increases rapidly as soon as a characteristic begins to exceed one of its operating ratings. 20 10 0 Operating rating Measured characteristic 3.6 Relationship between ratings and operating requirements g( Op era tin g in rat ) in. m m ire g tin era Op u req t en in. (m ) m ire Op g tin era u req t en (m ax .) x.) ma g( Op g tin era in rat Fatal range Degraded operating range Normal operating range Degraded operating range Fatal range Expected permanent failure - No permanent failure - Possible decreased life - Possible incorrect operation - No permanent failure - Correct operation - No permanent failure - Possible decreased life - Possible incorrect operation Expected permanent failure –∞ ∞ Operating (power on) n Ha ng dli rat n.) x.) ma mi ( ing nd Ha g lin ( ing rat Fatal range Handling range Fatal range Expected permanent failure No permanent failure Expected permanent failure –∞ ∞ Handling (power off) 3.7 Guidelines for ratings and operating requirements Follow these guidelines for ratings and operating requirements: • Never exceed any of the chip’s ratings. • During normal operation, don’t exceed any of the chip’s operating requirements. • If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible. KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. 6 Freescale Semiconductor, Inc. Terminology and guidelines 3.8 Definition: Typical value A typical value is a specified value for a technical characteristic that: • Lies within the range of values specified by the operating behavior • Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions Typical values are provided as design guidelines and are neither tested nor guaranteed. 3.8.1 Example 1 This is an example of an operating behavior that includes a typical value: Symbol Description IWP Digital I/O weak pullup/pulldown current Min. 10 Typ. 70 Max. 130 Unit µA 3.8.2 Example 2 This is an example of a chart that shows typical values for various voltage and temperature conditions: 5000 4500 4000 TJ IDD_STOP (μA) 3500 150 °C 3000 105 °C 2500 25 °C 2000 –40 °C 1500 1000 500 0 0.95 0.90 1.00 1.05 1.10 VDD (V) KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. Freescale Semiconductor, Inc. 7 Ratings 3.9 Typical value conditions Typical values assume you meet the following conditions (or other conditions as specified): Table 1. Typical value conditions Symbol Description Value Unit TA Ambient temperature 25 °C VDD 3.3 V supply voltage 3.3 V 4 Ratings 4.1 Thermal handling ratings Table 2. Thermal handling ratings Symbol Description Min. Max. Unit Notes TSTG Storage temperature –55 150 °C 1 TSDR Solder temperature, lead-free — 260 °C 2 1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life. 2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. 4.2 Moisture handling ratings Table 3. Moisture handling ratings Symbol MSL Description Moisture sensitivity level Min. Max. Unit Notes — 3 — 1 1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices. KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. 8 Freescale Semiconductor, Inc. General 4.3 ESD handling ratings Table 4. ESD handling ratings Symbol Description Min. Max. Unit Notes VHBM Electrostatic discharge voltage, human body model –2000 +2000 V 1 VCDM Electrostatic discharge voltage, charged-device model –500 +500 V 2 Latch-up current at ambient temperature of 105 °C –100 +100 mA 3 ILAT 1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body Model (HBM). 2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components. 3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test. 4.4 Voltage and current operating ratings Table 5. Voltage and current operating ratings Symbol Description Min. Max. Unit VDD Digital supply voltage –0.3 3.8 V IDD Digital supply current — 120 mA VIO IO pin input voltage –0.3 VDD + 0.3 V Instantaneous maximum current single pin limit (applies to all port pins) –25 25 mA ID VDDA Analog supply voltage VDD – 0.3 VDD + 0.3 V VUSB_DP USB_DP input voltage –0.3 3.63 V VUSB_DM USB_DM input voltage –0.3 3.63 V USB regulator input –0.3 6.0 V VREGIN 5 General 5.1 AC electrical characteristics Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure. KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. Freescale Semiconductor, Inc. 9 General Figure 1. Input signal measurement reference All digital I/O switching characteristics, unless otherwise specified, assume the output pins have the following characteristics. • CL=30 pF loads • Slew rate disabled • Normal drive strength 5.2 Nonswitching electrical specifications 5.2.1 Voltage and current operating requirements Table 6. Voltage and current operating requirements Symbol Description Min. Max. Unit VDD Supply voltage 1.71 3.6 V VDDA Analog supply voltage 1.71 3.6 V VDD – VDDA VDD-to-VDDA differential voltage –0.1 0.1 V VSS – VSSA VSS-to-VSSA differential voltage –0.1 0.1 V • 2.7 V ≤ VDD ≤ 3.6 V 0.7 × VDD — V • 1.7 V ≤ VDD ≤ 2.7 V 0.75 × VDD — V • 2.7 V ≤ VDD ≤ 3.6 V — 0.35 × VDD V • 1.7 V ≤ VDD ≤ 2.7 V — 0.3 × VDD V 0.06 × VDD — V -3 — mA -25 — mA VIH VIL Input high voltage Input low voltage VHYS Input hysteresis IICIO IO pin negative DC injection current — single pin • VIN < VSS-0.3V IICcont Notes Contiguous pin DC injection current —regional limit, includes sum of negative injection currents of 16 contiguous pins • Negative current injection 1 Table continues on the next page... KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. 10 Freescale Semiconductor, Inc. General Table 6. Voltage and current operating requirements (continued) Symbol Description Min. Max. Unit Notes VODPU Open drain pullup voltage level VDD VDD V 2 VRAM VDD voltage required to retain RAM 1.2 — V 1. All I/O pins are internally clamped to VSS through a ESD protection diode. There is no diode connection to VDD. If VIN greater than VIO_MIN (= VSS-0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R = (VIO_MIN - VIN)/|IICIO|. 2. Open drain outputs must be pulled to VDD. 5.2.2 LVD and POR operating requirements Table 7. VDD supply LVD and POR operating requirements Symbol Description Min. Typ. Max. Unit Notes VPOR Falling VDD POR detect voltage 0.8 1.1 1.5 V — VLVDH Falling low-voltage detect threshold — high range (LVDV = 01) 2.48 2.56 2.64 V — Low-voltage warning thresholds — high range 1 VLVW1H • Level 1 falling (LVWV = 00) 2.62 2.70 2.78 V VLVW2H • Level 2 falling (LVWV = 01) 2.72 2.80 2.88 V VLVW3H • Level 3 falling (LVWV = 10) 2.82 2.90 2.98 V VLVW4H • Level 4 falling (LVWV = 11) 2.92 3.00 3.08 V — ±60 — mV — 1.54 1.60 1.66 V — VHYSH Low-voltage inhibit reset/recover hysteresis — high range VLVDL Falling low-voltage detect threshold — low range (LVDV=00) Low-voltage warning thresholds — low range 1 VLVW1L • Level 1 falling (LVWV = 00) 1.74 1.80 1.86 V VLVW2L • Level 2 falling (LVWV = 01) 1.84 1.90 1.96 V VLVW3L • Level 3 falling (LVWV = 10) 1.94 2.00 2.06 V VLVW4L • Level 4 falling (LVWV = 11) 2.04 2.10 2.16 V — ±40 — mV — VHYSL Low-voltage inhibit reset/recover hysteresis — low range VBG Bandgap voltage reference 0.97 1.00 1.03 V — tLPO Internal low power oscillator period — factory trimmed 900 1000 1100 μs — 1. Rising thresholds are falling threshold + hysteresis voltage KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. Freescale Semiconductor, Inc. 11 General 5.2.3 Voltage and current operating behaviors Table 8. Voltage and current operating behaviors Symbol VOH Description Min. Output high voltage — Normal drive pad (except RESET_b) • 2.7 V ≤ VDD ≤ 3.6 V, IOH = -5 mA • 1.71 V ≤ VDD ≤ 2.7 V, IOH = -2.5 mA VOH Output high voltage — High drive pad (except RESET_b) • 2.7 V ≤ VDD ≤ 3.6 V, IOH = -20 mA • 1.71 V ≤ VDD ≤ 2.7 V, IOH = -10 mA IOHT Output high current total for all ports VOL Output low voltage — Normal drive pad VOL Max. Unit Notes 1, 2 VDD – 0.5 — V VDD – 0.5 — V 1,2 VDD – 0.5 — V VDD – 0.5 — V — 100 mA 1 • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 5 mA — 0.5 V • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 2.5 mA — 0.5 V Output low voltage — High drive pad 1 • 2.7 V ≤ VDD ≤ 3.6 V, IOL = 20 mA — 0.5 V • 1.71 V ≤ VDD ≤ 2.7 V, IOL = 10 mA — 0.5 V Output low current total for all ports — 100 mA IIN Input leakage current (per pin) for full temperature range — 1 μA 3 IIN Input leakage current (per pin) at 25 °C — 0.025 μA 3 IIN Input leakage current (total all pins) for full temperature range — 65 μA 3 IOZ Hi-Z (off-state) leakage current (per pin) — 1 μA RPU Internal pullup resistors 20 50 kΩ IOLT 4 1. The reset pin only contains an active pull down device when configured as the RESET signal or as a GPIO. When configured as a GPIO output, it acts as a pseudo open drain output. 2. PTB0, PTB1, PTD6, and PTD7 I/O have both high drive and normal drive capability selected by the associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only. 3. Measured at VDD = 3.6 V 4. Measured at VDD supply voltage = VDD min and Vinput = VSS 5.2.4 Power mode transition operating behaviors All specifications except tPOR and VLLSx→RUN recovery times in the following table assume this clock configuration: • CPU and system clocks = 48 MHz • Bus and flash clock = 24 MHz • FEI clock mode KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. 12 Freescale Semiconductor, Inc. General POR and VLLSx→RUN recovery use FEI clock mode at the default CPU and system frequency of 21 MHz, and a bus and flash clock frequency of 10.5 MHz. Table 9. Power mode transition operating behaviors Symbol tPOR Description After a POR event, amount of time from the point VDD reaches 1.8 V to execution of the first instruction across the operating temperature range of the chip. Min. Typ. Max. Unit Notes — — 300 μs 1 — 106 120 μs — 105 117 μs — 47 54 μs — 4.5 5.0 μs — 4.5 5.0 μs — 4.5 5.0 μs • VLLS0 → RUN • VLLS1 → RUN • VLLS3 → RUN • LLS → RUN • VLPS → RUN • STOP → RUN 1. Normal boot (FTFA_FOPT[LPBOOT]=11). 5.2.5 Power consumption operating behaviors Table 10. Power consumption operating behaviors Symbol IDDA Description Analog supply current IDD_RUNCO_ Run mode current in compute operation - 48 MHz core / 24 MHz flash / bus disabled, LPTMR CM running using 4 MHz internal reference clock, CoreMark benchmark code executing from flash Min. Typ. Max. Unit Notes — — See note mA 1 2 — 6.1 — mA • at 3.0 V IDD_RUNCO Run mode current in compute operation - 48 MHz core / 24 MHz flash / bus clock disabled, code of while(1) loop executing from flash — • at 3.0 V IDD_RUN 3 3.8 5.9 mA Run mode current - 48 MHz core / 24 MHz bus and flash, all peripheral clocks disabled, code of while(1) loop executing from flash 3 — • at 3.0 V 4.6 6.1 mA Table continues on the next page... KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. Freescale Semiconductor, Inc. 13 General Table 10. Power consumption operating behaviors (continued) Symbol Description Min. IDD_RUN Run mode current - 48 MHz core / 24 MHz bus and flash, all peripheral clocks enabled, code of while(1) loop executing from flash Typ. Max. Unit Notes 3, 4 • at 3.0 V • at 25 °C • at 70 °C • at 125 °C IDD_WAIT Wait mode current - core disabled / 48 MHz system / 24 MHz bus / flash disabled (flash doze enabled), all peripheral clocks disabled • at 3.0 V IDD_WAIT Wait mode current - core disabled / 24 MHz system / 24 MHz bus / flash disabled (flash doze enabled), all peripheral clocks disabled • at 3.0 V IDD_PSTOP2 Stop mode current with partial stop 2 clocking option - core and system disabled / 10.5 MHz bus • at 3.0 V IDD_VLPRCO Very-low-power run mode current in compute operation - 4 MHz core / 0.8 MHz flash / bus _CM clock disabled, LPTMR running with 4 MHz internal reference clock, CoreMark benchmark code executing from flash • at 3.0 V IDD_VLPRCO Very-low-power run mode current in compute operation - 4 MHz core / 0.8 MHz flash / bus clock disabled, code of while(1) loop executing from flash • at 3.0 V IDD_VLPR Very-low-power run mode current - 4 MHz core / 0.8 MHz bus and flash, all peripheral clocks disabled, code of while(1) loop executing from flash • at 3.0 V IDD_VLPR Very-low-power run mode current - 4 MHz core / 0.8 MHz bus and flash, all peripheral clocks enabled, code of while(1) loop executing from flash • at 3.0 V IDD_VLPW Very-low-power wait mode current - core disabled / 4 MHz system / 0.8 MHz bus / flash disabled (flash doze enabled), all peripheral clocks disabled • at 3.0 V — 6.0 6.5 mA — 6.2 6.8 mA — 6.3 7.1 mA — 2.7 5.7 mA — 2.1 5.5 mA — 2.2 4.1 mA — 732 — μA — 161 367 μA — 185 372 μA — 256 420 μA — 110 355 μA 3 3 3 5 6 6 4, 6 6 Table continues on the next page... KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. 14 Freescale Semiconductor, Inc. General Table 10. Power consumption operating behaviors (continued) Symbol Description IDD_STOP Stop mode current at 3.0 V IDD_VLPS IDD_LLS IDD_VLLS3 IDD_VLLS1 IDD_VLLS0 Min. Typ. Max. at 25 °C — 301 428 at 50 °C — 311 722 at 70 °C — 342 758 at 85 °C — 382 809 at 105 °C — 481 929 at 25 °C — 2.3 8.4 at 50 °C — 5.2 18.3 at 70 °C — 10.5 26.1 at 85 °C — 19.3 58.5 at 105 °C — 42.3 105.1 at 25 °C — 1.7 3.3 at 50 °C — 3.2 34.9 at 70 °C — 5.8 38.5 at 85 °C — 11.6 43.8 at 105 °C — 26.8 61.7 at 25 °C — 1.3 3.0 at 50 °C — 2.3 17.6 at 70 °C — 4.7 19.5 at 85 °C — 8.5 24.1 at 105 °C — 19.5 35.3 at 25°C — 0.7 1.3 at 50°C — 1.2 11.7 at 70°C — 2.2 12.6 at 85°C — 4.8 15.3 at 105°C — 12.4 22.6 Unit Notes μA Very-low-power stop mode current at 3.0 V μA Low-leakage stop mode current at 3.0 V μA Very-low-leakage stop mode 3 current at 3.0 V μA Very-low-leakage stop mode 1 current at 3.0V Very-low-leakage stop mode 0 current (SMC_STOPCTRL[PORPO] = 0) at 3.0 V at 25 °C at 50 °C at 70 °C at 85 °C at 105 °C μA nA — 310 844 — 778 3861 — 1928 13055 — 3906 15457 — 10097 23116 Table continues on the next page... KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. Freescale Semiconductor, Inc. 15 General Table 10. Power consumption operating behaviors (continued) Symbol IDD_VLLS0 Description Min. Typ. Max. Unit Notes Very-low-leakage stop mode 0 current (SMC_STOPCTRL[PORPO] = 1) at 3.0 V at 25 °C at 50 °C at 70 °C at 85 °C at 105 °C 7 — 139 747 — 600 3418 — 1674 11143 — 3554 13683 — 9580 20463 nA 1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See each module's specification for its supply current. 2. MCG configured for PEE mode. CoreMark benchmark compiled using IAR 6.40 with optimization level high, optimized for balanced. 3. MCG configured for FEI mode. 4. Incremental current consumption from peripheral activity is not included. 5. MCG configured for BLPI mode. CoreMark benchmark compiled using IAR 6.40 with optimization level high, optimized for balanced. 6. MCG configured for BLPI mode. 7. No brownout Table 11. Low power mode peripheral adders — typical value Symbol Description Temperature (°C) Unit -40 25 50 70 85 105 IIREFSTEN4MHz 4 MHz internal reference clock (IRC) adder. Measured by entering STOP or VLPS mode with 4 MHz IRC enabled. 56 56 56 56 56 56 µA IIREFSTEN32KHz 32 kHz internal reference clock (IRC) adder. Measured by entering STOP mode with the 32 kHz IRC enabled. 52 52 52 52 52 52 µA IEREFSTEN4MHz External 4 MHz crystal clock adder. Measured by entering STOP or VLPS mode with the crystal enabled. 250 262 266 268 272 274 uA IEREFSTEN32KHz External 32 kHz crystal clock adder by means of the OSC0_CR[EREFSTEN and EREFSTEN] bits. Measured by entering all modes with the crystal enabled. 440 490 540 560 570 580 440 490 540 560 570 580 490 490 540 560 570 680 510 560 560 560 610 680 510 560 560 560 610 680 22 22 22 22 22 22 VLLS1 VLLS3 LLS VLPS nA STOP ICMP CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption. µA Table continues on the next page... KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. 16 Freescale Semiconductor, Inc. General Table 11. Low power mode peripheral adders — typical value (continued) Symbol Description IRTC RTC peripheral adder measured by placing the device in VLLS1 mode with external 32 kHz crystal enabled by means of the RTC_CR[OSCE] bit and the RTC ALARM set for 1 minute. Includes ERCLK32K (32 kHz external crystal) power consumption. IUART UART peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption. MCGIRCLK (4 MHz internal reference clock) Temperature (°C) Unit -40 25 50 70 85 105 432 357 388 475 532 810 nA 66 66 66 66 66 66 µA 259 271 275 277 281 283 OSCERCLK (4 MHz external crystal) ITPM TPM peripheral adder measured by placing the device in STOP or VLPS mode with selected clock source configured for output compare generating 100 Hz clock signal. No load is placed on the I/O generating the clock signal. Includes selected clock source and I/O switching currents. MCGIRCLK (4 MHz internal reference clock) OSCERCLK (4 MHz external crystal) µA 86 86 86 86 86 86 275 288 290 295 300 306 IBG Bandgap adder when BGEN bit is set and device is placed in VLPx, LLS, or VLLSx mode. 45 45 45 45 45 45 µA IADC ADC peripheral adder combining the measured values at VDD and VDDA by placing the device in STOP or VLPS mode. ADC is configured for low-power mode using the internal clock and continuous conversions. 366 366 366 366 366 366 µA 5.2.5.1 Diagram: Typical IDD_RUN operating behavior The following data was measured under these conditions: • • • • • MCG in FBE for run mode, and BLPE for VLPR mode USB regulator disabled No GPIOs toggled Code execution from flash with cache enabled For the ALLOFF curve, all peripheral clocks are disabled except FTFA KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. Freescale Semiconductor, Inc. 17 General Figure 2. Run mode supply current vs. core frequency KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. 18 Freescale Semiconductor, Inc. General Figure 3. VLPR mode current vs. core frequency 5.2.6 EMC radiated emissions operating behaviors Table 12. EMC radiated emissions operating behaviors Symbol Description Frequency band (MHz) Typ. Unit Notes 0.15–50 16 dBμV 1, 2 VRE1 Radiated emissions voltage, band 1 VRE2 Radiated emissions voltage, band 2 50–150 18 dBμV VRE3 Radiated emissions voltage, band 3 150–500 11 dBμV VRE4 Radiated emissions voltage, band 4 500–1000 13 dBμV IEC level 0.15–1000 M — VRE_IEC 2, 3 1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. Freescale Semiconductor, Inc. 19 General emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range. 2. VDD = 3.3 V, TA = 25 °C, fOSC = 8 MHz (crystal), fSYS = 48 MHz, fBUS = 24 MHz 3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method 5.2.7 Designing with radiated emissions in mind To find application notes that provide guidance on designing your system to minimize interference from radiated emissions: 1. Go to www.freescale.com. 2. Perform a keyword search for “EMC design.” 5.2.8 Capacitance attributes Table 13. Capacitance attributes Symbol CIN Description Input capacitance Min. Max. Unit — 7 pF Min. Max. Unit 5.3 Switching specifications 5.3.1 Device clock specifications Table 14. Device clock specifications Symbol Description Normal run mode fSYS System and core clock — 48 MHz fBUS Bus clock — 24 MHz Flash clock — 24 MHz System and core clock when Full Speed USB in operation 20 — MHz LPTMR clock — 24 MHz fFLASH fSYS_USB fLPTMR VLPR and VLPS modes1 fSYS System and core clock — 4 MHz fBUS Bus clock — 1 MHz fFLASH Flash clock — 1 MHz fLPTMR LPTMR clock2 — 24 MHz fERCLK External reference clock — 16 MHz — 16 MHz fLPTMR_ERCLK LPTMR external reference clock Table continues on the next page... KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. 20 Freescale Semiconductor, Inc. General Table 14. Device clock specifications (continued) Symbol Description fosc_hi_2 fTPM fUART0 Min. Max. Unit Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x) — 16 MHz TPM asynchronous clock — 8 MHz UART0 asynchronous clock — 8 MHz 1. The frequency limitations in VLPR and VLPS modes here override any frequency specification listed in the timing specification for any other module. These same frequency limits apply to VLPS, whether VLPS was entered from RUN or from VLPR. 2. The LPTMR can be clocked at this speed in VLPR or VLPS only when the source is an external pin. 5.3.2 General switching specifications These general-purpose specifications apply to all signals configured for GPIO and UART signals. Table 15. General switching specifications Description Min. Max. Unit Notes GPIO pin interrupt pulse width (digital glitch filter disabled) — Synchronous path 1.5 — Bus clock cycles 1 External RESET and NMI pin interrupt pulse width — Asynchronous path 100 — ns 2 GPIO pin interrupt pulse width — Asynchronous path 16 — ns 2 Port rise and fall time — 36 ns 3 1. The greater synchronous and asynchronous timing must be met. 2. This is the shortest pulse that is guaranteed to be recognized. 3. 75 pF load 5.4 Thermal specifications 5.4.1 Thermal operating requirements Table 16. Thermal operating requirements Symbol Description Min. Max. Unit TJ Die junction temperature –40 125 °C TA Ambient temperature –40 105 °C KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. Freescale Semiconductor, Inc. 21 Peripheral operating requirements and behaviors 5.4.2 Thermal attributes Table 17. Thermal attributes Board type Symbol Single-layer (1S) RθJA Four-layer (2s2p) Description 64 LQFP 48 QFN 32 QFN Unit Notes Thermal resistance, junction to ambient (natural convection) 71 83 98 °C/W 1 RθJA Thermal resistance, junction to ambient (natural convection) 53 30 34 °C/W Single-layer (1S) RθJMA Thermal resistance, junction to ambient (200 ft./min. air speed) 59 68 82 °C/W Four-layer (2s2p) RθJMA Thermal resistance, junction to ambient (200 ft./min. air speed) 46 24 28 °C/W — RθJB Thermal resistance, junction to board 35 12 13 °C/W 2 — RθJC Thermal resistance, junction to case 21 2.3 2.3 °C/W 3 — ΨJT Thermal characterization parameter, junction to package top outside center (natural convection) 6 5 8 °C/W 4 1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions —Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air). 2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions —Junction-to-Board. 3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate. 4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions —Natural Convection (Still Air). 6 Peripheral operating requirements and behaviors 6.1 Core modules 6.1.1 SWD electricals Table 18. SWD full voltage range electricals Symbol J1 Description Min. Max. Unit Operating voltage 1.71 3.6 V 0 25 MHz 1/J1 — ns SWD_CLK frequency of operation • Serial wire debug J2 SWD_CLK cycle period Table continues on the next page... KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. 22 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 18. SWD full voltage range electricals (continued) Symbol J3 Description Min. Max. Unit 20 — ns SWD_CLK clock pulse width • Serial wire debug J4 SWD_CLK rise and fall times — 3 ns J9 SWD_DIO input data setup time to SWD_CLK rise 10 — ns J10 SWD_DIO input data hold time after SWD_CLK rise 0 — ns J11 SWD_CLK high to SWD_DIO data valid — 32 ns J12 SWD_CLK high to SWD_DIO high-Z 5 — ns J2 J3 J3 SWD_CLK (input) J4 J4 Figure 4. Serial wire clock input timing SWD_CLK J9 SWD_DIO J10 Input data valid J11 SWD_DIO Output data valid J12 SWD_DIO J11 SWD_DIO Output data valid Figure 5. Serial wire data timing KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. Freescale Semiconductor, Inc. 23 Peripheral operating requirements and behaviors 6.2 System modules There are no specifications necessary for the device's system modules. 6.3 Clock modules 6.3.1 MCG specifications Table 19. MCG specifications Symbol Description fints_ft Internal reference frequency (slow clock) — factory trimmed at nominal VDD and 25 °C fints_t Internal reference frequency (slow clock) — user trimmed Δfdco_res_t Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using C3[SCTRIM] and C4[SCFTRIM] Min. Typ. Max. Unit Notes — 32.768 — kHz 31.25 — 39.0625 kHz — ± 0.3 ± 0.6 %fdco 1 Δfdco_t Total deviation of trimmed average DCO output frequency over voltage and temperature — +0.5/-0.7 ±3 %fdco 1, 2 Δfdco_t Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0–70 °C — ± 0.4 ± 1.5 %fdco 1, 2 Internal reference frequency (fast clock) — factory trimmed at nominal VDD and 25 °C — 4 — MHz Δfintf_ft Frequency deviation of internal reference clock (fast clock) over temperature and voltage — factory trimmed at nominal VDD and 25 °C — +1/-2 ±3 %fintf_ft fintf_t Internal reference frequency (fast clock) — user trimmed at nominal VDD and 25 °C 3 — 5 MHz fintf_ft floc_low Loss of external clock minimum frequency — RANGE = 00 (3/5) x fints_t — — kHz floc_high Loss of external clock minimum frequency — RANGE = 01, 10, or 11 (16/5) x fints_t — — kHz 31.25 — 39.0625 kHz 20 20.97 25 MHz 40 41.94 48 MHz — 23.99 — MHz — 47.97 — MHz 2 FLL ffll_ref fdco FLL reference frequency range DCO output frequency range Low range (DRS = 00) 3, 4 640 × ffll_ref Mid range (DRS = 01) 1280 × ffll_ref fdco_t_DMX32 DCO output frequency Low range (DRS = 00) 5, 6 732 × ffll_ref Mid range (DRS = 01) 1464 × ffll_ref Table continues on the next page... KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. 24 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 19. MCG specifications (continued) Symbol Jcyc_fll Description FLL period jitter Min. Typ. Max. Unit Notes — 180 — ps 7 — — 1 ms 8 48.0 — 100 MHz — 1060 — µA — 600 — µA 2.0 — 4.0 MHz • fVCO = 48 MHz tfll_acquire FLL target frequency acquisition time PLL fvco VCO operating frequency Ipll PLL operating current • PLL at 96 MHz (fosc_hi_1 = 8 MHz, fpll_ref = 2 MHz, VDIV multiplier = 48) Ipll PLL operating current • PLL at 48 MHz (fosc_hi_1 = 8 MHz, fpll_ref = 2 MHz, VDIV multiplier = 24) fpll_ref PLL reference frequency range Jcyc_pll PLL period jitter (RMS) Jacc_pll 9 9 10 • fvco = 48 MHz — 120 — ps • fvco = 100 MHz — 50 — ps PLL accumulated jitter over 1µs (RMS) 10 • fvco = 48 MHz — 1350 — ps • fvco = 100 MHz — 600 — ps Dlock Lock entry frequency tolerance ± 1.49 — ± 2.98 % Dunl Lock exit frequency tolerance ± 4.47 — ± 5.97 % tpll_lock Lock detector detection time — — 150 × 10-6 + 1075(1/ fpll_ref) s 11 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode). 2. The deviation is relative to the factory trimmed frequency at nominal VDD and 25 °C, fints_ft. 3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 0. 4. The resulting system clock frequencies must not exceed their maximum specified values. The DCO frequency deviation (Δfdco_t) over voltage and temperature must be considered. 5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 1. 6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device. 7. This specification is based on standard deviation (RMS) of period or frequency. 8. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 9. Excludes any oscillator currents that are also consuming power while PLL is in operation. 10. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary. 11. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running. 6.3.2 Oscillator electrical specifications KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. Freescale Semiconductor, Inc. 25 Peripheral operating requirements and behaviors 6.3.2.1 Oscillator DC electrical specifications Table 20. Oscillator DC electrical specifications Symbol Description Min. Typ. Max. Unit VDD Supply voltage 1.71 — 3.6 V IDDOSC IDDOSC Supply current — low-power mode (HGO=0) Notes 1 • 32 kHz — 500 — nA • 4 MHz — 200 — μA • 8 MHz (RANGE=01) — 300 — μA • 16 MHz — 950 — μA • 24 MHz — 1.2 — mA • 32 MHz — 1.5 — mA Supply current — high gain mode (HGO=1) 1 • 32 kHz — 25 — μA • 4 MHz — 400 — μA • 8 MHz (RANGE=01) — 500 — μA • 16 MHz — 2.5 — mA • 24 MHz — 3 — mA • 32 MHz — 4 — mA Cx EXTAL load capacitance — — — 2, 3 Cy XTAL load capacitance — — — 2, 3 RF Feedback resistor — low-frequency, low-power mode (HGO=0) — — — MΩ Feedback resistor — low-frequency, high-gain mode (HGO=1) — 10 — MΩ Feedback resistor — high-frequency, low-power mode (HGO=0) — — — MΩ Feedback resistor — high-frequency, high-gain mode (HGO=1) — 1 — MΩ Series resistor — low-frequency, low-power mode (HGO=0) — — — kΩ Series resistor — low-frequency, high-gain mode (HGO=1) — 200 — kΩ Series resistor — high-frequency, low-power mode (HGO=0) — — — kΩ — 0 — kΩ RS 2, 4 Series resistor — high-frequency, high-gain mode (HGO=1) Table continues on the next page... KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. 26 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 20. Oscillator DC electrical specifications (continued) Symbol Vpp5 Description Min. Typ. Max. Unit Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0) — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1) — VDD — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0) — 0.6 — V Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1) — VDD — V Notes 1. VDD=3.3 V, Temperature =25 °C 2. See crystal or resonator manufacturer's recommendation 3. Cx,Cy can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For all other cases external capacitors must be used. 4. When low power mode is selected, RF is integrated and must not be attached externally. 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other devices. 6.3.2.2 Symbol Oscillator frequency specifications Table 21. Oscillator frequency specifications Description Min. Typ. Max. Unit fosc_lo Oscillator crystal or resonator frequency — lowfrequency mode (MCG_C2[RANGE]=00) 32 — 40 kHz fosc_hi_1 Oscillator crystal or resonator frequency — highfrequency mode (low range) (MCG_C2[RANGE]=01) 3 — 8 MHz fosc_hi_2 Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x) 8 — 32 MHz fec_extal Input clock frequency (external clock mode) — — 48 MHz tdc_extal Input clock duty cycle (external clock mode) 40 50 60 % Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0) — 750 — ms Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1) — 250 — ms Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0) — 0.6 — ms Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1) — 1 — ms tcst Notes 1, 2 3, 4 1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL. 2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency. KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. Freescale Semiconductor, Inc. 27 Peripheral operating requirements and behaviors 3. Proper PC board layout procedures must be followed to achieve specifications. 4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set. 6.4 Memories and memory interfaces 6.4.1 Flash electrical specifications This section describes the electrical characteristics of the flash memory module. 6.4.1.1 Flash timing specifications — program and erase The following specifications represent the amount of time the internal charge pumps are active and do not include command overhead. Table 22. NVM program/erase timing specifications Symbol Description Min. Typ. Max. Unit thvpgm4 Notes Longword Program high-voltage time — 7.5 18 μs thversscr Sector Erase high-voltage time — 13 113 ms 1 thversall Erase All high-voltage time — 52 452 ms 1 1. Maximum time based on expectations at cycling end-of-life. 6.4.1.2 Flash timing specifications — commands Table 23. Flash command timing specifications Symbol Description Min. Typ. Max. Unit Notes trd1sec1k Read 1s Section execution time (flash sector) — — 60 μs 1 tpgmchk Program Check execution time — — 45 μs 1 trdrsrc Read Resource execution time — — 30 μs 1 tpgm4 Program Longword execution time — 65 145 μs tersscr Erase Flash Sector execution time — 14 114 ms trd1all Read 1s All Blocks execution time — — 1.8 ms trdonce Read Once execution time — — 25 μs tpgmonce 2 1 Program Once execution time — 65 — μs tersall Erase All Blocks execution time — 88 650 ms 2 tvfykey Verify Backdoor Access Key execution time — — 30 μs 1 1. Assumes 25 MHz flash clock frequency. 2. Maximum times for erase parameters based on expectations at cycling end-of-life. KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. 28 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 6.4.1.3 Flash high voltage current behaviors Table 24. Flash high voltage current behaviors Symbol Description IDD_PGM IDD_ERS 6.4.1.4 Symbol Min. Typ. Max. Unit Average current adder during high voltage flash programming operation — 2.5 6.0 mA Average current adder during high voltage flash erase operation — 1.5 4.0 mA Reliability specifications Table 25. NVM reliability specifications Description Min. Typ.1 Max. Unit Notes Program Flash tnvmretp10k Data retention after up to 10 K cycles 5 50 — years tnvmretp1k Data retention after up to 1 K cycles 20 100 — years nnvmcycp Cycling endurance 10 K 50 K — cycles 2 1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619. 2. Cycling endurance represents number of program/erase cycles at -40 °C ≤ Tj ≤ 125 °C. 6.5 Security and integrity modules There are no specifications necessary for the device's security and integrity modules. 6.6 Analog 6.6.1 ADC electrical specifications The 16-bit accuracy specifications listed in Table 26 and Table 27 are achievable on the differential pins ADCx_DP0, ADCx_DM0. All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications. KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. Freescale Semiconductor, Inc. 29 Peripheral operating requirements and behaviors 6.6.1.1 16-bit ADC operating conditions Table 26. 16-bit ADC operating conditions Symbol Description Conditions Min. Typ.1 Max. Unit VDDA Supply voltage Absolute 1.71 — 3.6 V ΔVDDA Supply voltage Delta to VDD (VDD – VDDA) -100 0 +100 mV 2 ΔVSSA Ground voltage Delta to VSS (VSS – VSSA) -100 0 +100 mV 2 VREFH ADC reference voltage high 1.13 VDDA VDDA V 3 VREFL ADC reference voltage low VSSA VSSA VSSA V 3 VADIN Input voltage • 16-bit differential mode VREFL — 31/32 * VREFH V • All other modes VREFL — • 16-bit mode — 8 10 • 8-bit / 10-bit / 12-bit modes — 4 5 — 2 5 CADIN RADIN RAS Input capacitance Input resistance Notes VREFH pF kΩ Analog source resistance 13-bit / 12-bit modes fADCK < 4 MHz — — 5 kΩ fADCK ADC conversion clock frequency ≤ 13-bit mode 1.0 — 18.0 MHz 5 fADCK ADC conversion clock frequency 16-bit mode 2.0 — 12.0 MHz 5 Crate ADC conversion rate ≤ 13-bit modes No ADC hardware averaging 4 6 20.000 — 818.330 Ksps Continuous conversions enabled, subsequent conversion time Crate ADC conversion rate 16-bit mode No ADC hardware averaging 6 37.037 — 461.467 Ksps Continuous conversions enabled, subsequent conversion time 1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production. 2. DC potential difference. 3. For packages without dedicated VREFH and VREFL pins, VREFH is internally tied to VDDA, and VREFL is internally tied to VSSA. 4. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The RAS/CAS time constant should be kept to < 1 ns. 5. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear. 6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool. KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. 30 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors SIMPLIFIED INPUT PIN EQUIVALENT CIRCUIT Z ADIN SIMPLIFIED CHANNEL SELECT CIRCUIT Pad leakage due to input protection Z AS R AS ADC SAR ENGINE R ADIN V ADIN C AS V AS R ADIN INPUT PIN R ADIN INPUT PIN R ADIN INPUT PIN C ADIN Figure 6. ADC input impedance equivalency diagram 6.6.1.2 16-bit ADC electrical characteristics Table 27. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) Symbol Description IDDA_ADC Supply current fADACK Conditions1. ADC asynchronous clock source Sample Time TUE DNL INL Min. Typ.2 Max. Unit Notes 0.215 — 1.7 mA 3 • ADLPC = 1, ADHSC = 0 1.2 2.4 3.9 MHz • ADLPC = 1, ADHSC = 1 2.4 4.0 6.1 MHz tADACK = 1/ fADACK • ADLPC = 0, ADHSC = 0 3.0 5.2 7.3 MHz • ADLPC = 0, ADHSC = 1 4.4 6.2 9.5 MHz LSB4 5 LSB4 5 LSB4 5 See Reference Manual chapter for sample times Total unadjusted error • 12-bit modes — ±4 ±6.8 • <12-bit modes — ±1.4 ±2.1 Differential nonlinearity • 12-bit modes — ±0.7 –1.1 to +1.9 • <12-bit modes — ±0.2 • 12-bit modes — ±1.0 • <12-bit modes — ±0.5 Integral nonlinearity –0.3 to 0.5 –2.7 to +1.9 –0.7 to +0.5 Table continues on the next page... KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. Freescale Semiconductor, Inc. 31 Peripheral operating requirements and behaviors Table 27. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued) Symbol Description EFS Full-scale error EQ Quantization error ENOB Conditions1. Min. Typ.2 Max. Unit Notes • 12-bit modes — –4 –5.4 LSB4 • <12-bit modes — –1.4 –1.8 VADIN = VDDA5 • 16-bit modes — –1 to 0 — • ≤13-bit modes — — ±0.5 Effective number 16-bit differential mode of bits • Avg = 32 • Avg = 4 LSB4 6 12.8 14.5 — bits 11.9 13.8 — bits 12.2 13.9 — bits 11.4 13.1 — bits 16-bit single-ended mode • Avg = 32 • Avg = 4 SINAD THD Signal-to-noise plus distortion See ENOB Total harmonic distortion 16-bit differential mode • Avg = 32 16-bit single-ended mode • Avg = 32 SFDR Spurious free dynamic range dB 7 — -94 — dB — -85 — dB 16-bit differential mode • Avg = 32 16-bit single-ended mode • Avg = 32 EIL 6.02 × ENOB + 1.76 7 82 95 — dB 78 90 — dB Input leakage error IIn × RAS mV IIn = leakage current (refer to the MCU's voltage and current operating ratings) VTEMP25 Temp sensor slope Across the full temperature range of the device 1.55 1.62 1.69 mV/°C 8 Temp sensor voltage 25 °C 706 716 726 mV 8 1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA 2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production. 3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed. 4. 1 LSB = (VREFH - VREFL)/2N KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. 32 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 5. 6. 7. 8. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11) Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz. ADC conversion clock < 3 MHz Figure 7. Typical ENOB vs. ADC_CLK for 16-bit differential mode Figure 8. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. Freescale Semiconductor, Inc. 33 Peripheral operating requirements and behaviors 6.6.2 CMP and 6-bit DAC electrical specifications Table 28. Comparator and 6-bit DAC electrical specifications Symbol Description Min. Typ. Max. Unit VDD Supply voltage 1.71 — 3.6 V IDDHS Supply current, High-speed mode (EN=1, PMODE=1) — — 200 μA IDDLS Supply current, low-speed mode (EN=1, PMODE=0) — — 20 μA VAIN Analog input voltage VSS – 0.3 — VDD V VAIO Analog input offset voltage — — 20 mV • CR0[HYSTCTR] = 00 — 5 — mV • CR0[HYSTCTR] = 01 — 10 — mV • CR0[HYSTCTR] = 10 — 20 — mV • CR0[HYSTCTR] = 11 — 30 — mV VH Analog comparator hysteresis1 VCMPOh Output high VDD – 0.5 — — V VCMPOl Output low — — 0.5 V tDHS Propagation delay, high-speed mode (EN=1, PMODE=1) 20 50 200 ns tDLS Propagation delay, low-speed mode (EN=1, PMODE=0) 80 250 600 ns Analog comparator initialization delay2 — — 40 μs 6-bit DAC current adder (enabled) — 7 — μA IDAC6b INL 6-bit DAC integral non-linearity –0.5 — 0.5 LSB3 DNL 6-bit DAC differential non-linearity –0.3 — 0.3 LSB 1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V. 2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and CMP_MUXCR[MSEL]) and the comparator output settling to a stable level. 3. 1 LSB = Vreference/64 KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. 34 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 0.08 0.07 0.06 HYSTCTR Setting CM P Hystereris (V) 0.05 00 0.04 01 10 11 0.03 0.02 0.01 0 0.1 0.4 0.7 1 1.3 1.6 1.9 Vin level (V) 2.2 2.5 2.8 3.1 Figure 9. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0) KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. Freescale Semiconductor, Inc. 35 Peripheral operating requirements and behaviors 0.18 0.16 0.14 CMP P Hystereris (V) 0.12 HYSTCTR Setting 0.1 00 01 0 08 0.08 10 11 0.06 0.04 0.02 0 0.1 0.4 0.7 1 1.3 1.6 Vin level (V) 1.9 2.2 2.5 2.8 3.1 Figure 10. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1) 6.6.3 12-bit DAC electrical characteristics 6.6.3.1 Symbol 12-bit DAC operating requirements Table 29. 12-bit DAC operating requirements Desciption Min. Max. Unit VDDA Supply voltage 1.71 3.6 V VDACR Reference voltage 1.13 3.6 V 1 2 CL Output load capacitance — 100 pF IL Output load current — 1 mA Notes 1. The DAC reference can be selected to be VDDA or VREFH. 2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. 36 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors 6.6.3.2 Symbol 12-bit DAC operating behaviors Table 30. 12-bit DAC operating behaviors Description IDDA_DACL Supply current — low-power mode Min. Typ. Max. Unit — — 250 μA — — 900 μA Notes P IDDA_DACH Supply current — high-speed mode P tDACLP Full-scale settling time (0x080 to 0xF7F) — low-power mode — 100 200 μs 1 tDACHP Full-scale settling time (0x080 to 0xF7F) — high-power mode — 15 30 μs 1 — 0.7 1 μs 1 — — 100 mV tCCDACLP Code-to-code settling time (0xBF8 to 0xC08) — low-power mode and high-speed mode Vdacoutl DAC output voltage range low — high-speed mode, no load, DAC set to 0x000 Vdacouth DAC output voltage range high — highspeed mode, no load, DAC set to 0xFFF VDACR −100 — VDACR mV INL Integral non-linearity error — high speed mode — — ±8 LSB 2 DNL Differential non-linearity error — VDACR > 2 V — — ±1 LSB 3 DNL Differential non-linearity error — VDACR = VREF_OUT — — ±1 LSB 4 — ±0.4 %FSR 5 Gain error — ±0.1 %FSR 5 Power supply rejection ratio, VDDA ≥ 2.4 V 60 — 90 dB TCO Temperature coefficient offset voltage — 3.7 — μV/C TGE Temperature coefficient gain error — 0.000421 — %FSR/C Rop Output resistance (load = 3 kΩ) — — 250 Ω SR Slew rate -80h→ F7Fh→ 80h VOFFSET Offset error EG PSRR BW 1. 2. 3. 4. 5. 6. 6 V/μs • High power (SPHP) 1.2 1.7 — • Low power (SPLP) 0.05 0.12 — 3dB bandwidth kHz • High power (SPHP) 550 — — • Low power (SPLP) 40 — — Settling within ±1 LSB The INL is measured for 0 + 100 mV to VDACR −100 mV The DNL is measured for 0 + 100 mV to VDACR −100 mV The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set to 0x800, temperature range is across the full range of the device KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. Freescale Semiconductor, Inc. 37 Peripheral operating requirements and behaviors Figure 11. Typical INL error vs. digital code KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. 38 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Figure 12. Offset at half scale vs. temperature 6.7 Timers See General switching specifications. 6.8 Communication interfaces 6.8.1 USB electrical specifications The USB electricals for the USB On-the-Go module conform to the standards documented by the Universal Serial Bus Implementers Forum. For the most up-to-date standards, visit usb.org. KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. Freescale Semiconductor, Inc. 39 Peripheral operating requirements and behaviors 6.8.2 USB VREG electrical specifications Table 31. USB VREG electrical specifications Symbol Description Min. Typ.1 Max. Unit VREGIN Input supply voltage 2.7 — 5.5 V IDDon Quiescent current — Run mode, load current equal zero, input supply (VREGIN) > 3.6 V — 125 186 μA IDDstby Quiescent current — Standby mode, load current equal zero — 1.1 10 μA IDDoff Quiescent current — Shutdown mode — 650 — nA — — 4 μA • VREGIN = 5.0 V and temperature=25 °C • Across operating voltage and temperature ILOADrun Maximum load current — Run mode — — 120 mA ILOADstby Maximum load current — Standby mode — — 1 mA VReg33out Regulator output voltage — Input supply (VREGIN) > 3.6 V 3 3.3 3.6 V • Run mode • Standby mode 2.1 2.8 3.6 V Regulator output voltage — Input supply (VREGIN) < 3.6 V, pass-through mode 2.1 — 3.6 V COUT External output capacitor 1.76 2.2 8.16 μF ESR External output capacitor equivalent series resistance 1 — 100 mΩ ILIM Short circuit current — 290 — mA VReg33out Notes 2 1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated. 2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad. 6.8.3 SPI switching specifications The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The following tables provide timing characteristics for classic SPI timing modes. See the SPI chapter of the chip's Reference Manual for information about the modified transfer formats used for communicating with slower peripheral devices. All timing is shown with respect to 20% VDD and 80% VDD thresholds, unless noted, as well as input signal transitions of 3 ns and a 30 pF maximum load on all SPI pins. Table 32. SPI master mode timing on slew rate disabled pads Num. Symbol 1 fop Description Frequency of operation Min. Max. Unit Note fperiph/2048 fperiph/2 Hz 1 Table continues on the next page... KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. 40 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 32. SPI master mode timing on slew rate disabled pads (continued) Num. Symbol Description Min. Max. Unit Note 2 tSPSCK SPSCK period 2 x tperiph 2048 x tperiph ns 2 3 tLead Enable lead time 1/2 — tSPSCK — 4 tLag Enable lag time 1/2 — tSPSCK — 5 tWSPSCK tperiph - 30 1024 x tperiph ns — 6 tSU Data setup time (inputs) 18 — ns — 7 tHI Data hold time (inputs) 0 — ns — 8 tv Data valid (after SPSCK edge) — 15 ns — 9 tHO Data hold time (outputs) 0 — ns — 10 tRI Rise time input — tperiph - 25 ns — tFI Fall time input tRO Rise time output — 25 ns — tFO Fall time output 11 Clock (SPSCK) high or low time 1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS). 2. tperiph = 1/fperiph Table 33. SPI master mode timing on slew rate enabled pads Num. Symbol 1 fop 2 tSPSCK 3 tLead 4 tLag 5 tWSPSCK 6 tSU 7 tHI 8 tv 9 10 11 Description Min. Max. Unit Note fperiph/2048 fperiph/2 Hz 1 2 x tperiph 2048 x tperiph ns 2 Enable lead time 1/2 — tSPSCK — Enable lag time 1/2 — tSPSCK — tperiph - 30 1024 x tperiph ns — Data setup time (inputs) 96 — ns — Data hold time (inputs) 0 — ns — Data valid (after SPSCK edge) — 52 ns — tHO Data hold time (outputs) 0 — ns — tRI Rise time input — tperiph - 25 ns — tFI Fall time input tRO Rise time output — 36 ns — tFO Fall time output Frequency of operation SPSCK period Clock (SPSCK) high or low time 1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS). 2. tperiph = 1/fperiph KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. Freescale Semiconductor, Inc. 41 Peripheral operating requirements and behaviors SS1 (OUTPUT) 3 2 SPSCK (CPOL = 0) (OUTPUT) 10 11 10 11 4 5 5 SPSCK (CPOL = 1) (OUTPUT) 6 7 MISO (INPUT) MSB IN2 BIT 6 . . . 1 LSB IN 8 MOSI (OUTPUT) MSB OUT2 9 BIT 6 . . . 1 LSB OUT 1. If configured as an output. 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 13. SPI master mode timing (CPHA = 0) SS1 (OUTPUT) 2 3 SPSCK (CPOL = 0) (OUTPUT) 5 SPSCK (CPOL = 1) (OUTPUT) 5 6 MISO (INPUT) 10 11 10 11 4 7 MSB IN2 BIT 6 . . . 1 8 MOSI 2 (OUTPUT)PORT DATA MASTER MSB OUT LSB IN 9 BIT 6 . . . 1 MASTER LSB OUT PORT DATA 1.If configured as output 2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB. Figure 14. SPI master mode timing (CPHA = 1) Table 34. SPI slave mode timing on slew rate disabled pads Num. Symbol 1 fop 2 tSPSCK 3 tLead 4 tLag 5 tWSPSCK Description Frequency of operation Min. Max. Unit Note 0 fperiph/4 Hz 1 4 x tperiph — ns 2 Enable lead time 1 — tperiph — Enable lag time 1 — tperiph — tperiph - 30 — ns — SPSCK period Clock (SPSCK) high or low time Table continues on the next page... KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. 42 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 34. SPI slave mode timing on slew rate disabled pads (continued) 1. 2. 3. 4. Num. Symbol Description Min. Max. Unit Note 6 tSU Data setup time (inputs) 2.5 — ns — 7 tHI Data hold time (inputs) 3.5 — ns — 8 ta Slave access time — tperiph ns 3 9 tdis Slave MISO disable time — tperiph ns 4 10 tv Data valid (after SPSCK edge) — 31 ns — 11 tHO Data hold time (outputs) 0 — ns — 12 tRI Rise time input — tperiph - 25 ns — tFI Fall time input 13 tRO Rise time output — 25 ns — tFO Fall time output For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS). tperiph = 1/fperiph Time to data active from high-impedance state Hold time to high-impedance state Table 35. SPI slave mode timing on slew rate enabled pads Num. Symbol 1 fop 2 tSPSCK 3 tLead Enable lead time 4 tLag Enable lag time 5 tWSPSCK 6 tSU 7 Min. Max. Unit Note 0 fperiph/4 Hz 1 4 x tperiph — ns 2 1 — tperiph — Frequency of operation SPSCK period 1 — tperiph — tperiph - 30 — ns — Data setup time (inputs) 2 — ns — tHI Data hold time (inputs) 7 — ns — 8 ta Slave access time — tperiph ns 3 9 tdis Slave MISO disable time — tperiph ns 4 10 tv Data valid (after SPSCK edge) — 122 ns — 11 tHO Data hold time (outputs) 0 — ns — 12 tRI Rise time input — tperiph - 25 ns — tFI Fall time input tRO Rise time output — 36 ns — tFO Fall time output 13 1. 2. 3. 4. Description Clock (SPSCK) high or low time For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS). tperiph = 1/fperiph Time to data active from high-impedance state Hold time to high-impedance state KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. Freescale Semiconductor, Inc. 43 Peripheral operating requirements and behaviors SS (INPUT) 2 SPSCK (CPOL = 0) (INPUT) 5 3 SPSCK (CPOL = 1) (INPUT) 5 13 4 12 13 9 8 MISO (OUTPUT) 12 10 see note 6 11 BIT 6 . . . 1 SLAVE MSB 11 SEE NOTE SLAVE LSB OUT 7 MOSI (INPUT) BIT 6 . . . 1 MSB IN LSB IN NOTE: Not defined Figure 15. SPI slave mode timing (CPHA = 0) SS (INPUT) 4 2 3 SPSCK (CPOL = 0) (INPUT) 5 SPSCK (CPOL = 1) (INPUT) 5 see note SLAVE 8 MSB OUT 6 MOSI (INPUT) 13 12 13 9 11 10 MISO (OUTPUT) 12 BIT 6 . . . 1 SLAVE LSB OUT 7 MSB IN LSB IN BIT 6 . . . 1 NOTE: Not defined Figure 16. SPI slave mode timing (CPHA = 1) 6.8.4 Inter-Integrated Circuit Interface (I2C) timing Table 36. I 2C timing Characteristic Symbol SCL Clock Frequency fSCL Standard Mode Fast Mode Minimum Maximum Minimum Maximum 0 100 0 400 Unit kHz Table continues on the next page... KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. 44 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors Table 36. I 2C timing (continued) Characteristic Symbol Standard Mode Fast Mode Unit Minimum Maximum Minimum Maximum Hold time (repeated) START condition. After this period, the first clock pulse is generated. tHD; STA 4 — 0.6 — µs LOW period of the SCL clock tLOW 4.7 — 1.3 — µs HIGH period of the SCL clock tHIGH 4 — 0.6 — µs Set-up time for a repeated START condition tSU; STA 4.7 — 0.6 — µs Data hold time for I2C bus devices tHD; DAT 01 3.452 03 0.91 µs tSU; DAT 2504 — 1002, 5 Data set-up time Rise time of SDA and SCL signals tr — 1000 — 20 +0.1Cb 6 5 300 ns ns Fall time of SDA and SCL signals tf — 300 20 +0.1Cb 300 ns Set-up time for STOP condition tSU; STO 4 — 0.6 — µs Bus free time between STOP and START condition tBUF 4.7 — 1.3 — µs Pulse width of spikes that must be suppressed by the input filter tSP N/A N/A 0 50 ns 1. The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL lines. 2. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal. 3. Input signal Slew = 10 ns and Output Load = 50 pF 4. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty. 5. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tSU; DAT ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax + tSU; DAT = 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification) before the SCL line is released. 6. Cb = total capacitance of the one bus line in pF. SDA tf tLOW tSU; DAT tr tf tHD; STA tSP tr tBUF SCL S tHD; STA tHD; DAT tHIGH tSU; STA SR tSU; STO P S Figure 17. Timing definition for fast and standard mode devices on the I2C bus 6.8.5 UART See General switching specifications. KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. Freescale Semiconductor, Inc. 45 Peripheral operating requirements and behaviors 6.8.6 I2S/SAI switching specifications This section provides the AC timing for the I2S/SAI module in master mode (clocks are driven) and slave mode (clocks are input). All timing is given for noninverted serial clock polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync (TCR4[FSP] is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the bit clock signal (BCLK) and/or the frame sync (FS) signal shown in the following figures. 6.8.6.1 Normal Run, Wait and Stop mode performance over the full operating voltage range This section provides the operating performance over the full operating voltage for the device in Normal Run, Wait and Stop modes. Table 37. I2S/SAI master mode timing Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S1 I2S_MCLK cycle time 40 — ns S2 I2S_MCLK (as an input) pulse width high/low 45% 55% MCLK period S3 I2S_TX_BCLK/I2S_RX_BCLK cycle time (output) 80 — ns S4 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% BCLK period S5 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid — 15.5 ns S6 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid 0 — ns S7 I2S_TX_BCLK to I2S_TXD valid — 19 ns S8 I2S_TX_BCLK to I2S_TXD invalid 0 — ns S9 I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK 26 — ns S10 I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK 0 — ns KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. 46 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors S1 S2 S2 I2S_MCLK (output) S3 I2S_TX_BCLK/ I2S_RX_BCLK (output) S4 S4 S6 S5 I2S_TX_FS/ I2S_RX_FS (output) S10 S9 I2S_TX_FS/ I2S_RX_FS (input) S7 S8 S7 S8 I2S_TXD S9 S10 I2S_RXD Figure 18. I2S/SAI timing — master modes Table 38. I2S/SAI slave mode timing Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S11 I2S_TX_BCLK/I2S_RX_BCLK cycle time (input) 80 — ns S12 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input) 45% 55% MCLK period S13 I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK 10 — ns S14 I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK 2 — ns S15 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid — 33 ns S16 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0 — ns S17 I2S_RXD setup before I2S_RX_BCLK 10 — ns S18 I2S_RXD hold after I2S_RX_BCLK 2 — ns — 28 ns S19 I2S_TX_FS input assertion to I2S_TXD output valid1 1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. Freescale Semiconductor, Inc. 47 Peripheral operating requirements and behaviors S11 S12 I2S_TX_BCLK/ I2S_RX_BCLK (input) S12 S15 S16 I2S_TX_FS/ I2S_RX_FS (output) S13 I2S_TX_FS/ I2S_RX_FS (input) S19 S14 S15 S16 S15 S16 I2S_TXD S17 S18 I2S_RXD Figure 19. I2S/SAI timing — slave modes 6.8.6.2 VLPR, VLPW, and VLPS mode performance over the full operating voltage range This section provides the operating performance over the full operating voltage for the device in VLPR, VLPW, and VLPS modes. Table 39. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range) Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S1 I2S_MCLK cycle time 62.5 — ns S2 I2S_MCLK pulse width high/low 45% 55% MCLK period S3 I2S_TX_BCLK/I2S_RX_BCLK cycle time (output) 250 — ns S4 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45% 55% BCLK period S5 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid — 45 ns S6 I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid 0 — ns S7 I2S_TX_BCLK to I2S_TXD valid — 45 ns S8 I2S_TX_BCLK to I2S_TXD invalid — ns S9 I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK — ns S10 I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK — ns 0 KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. 48 Freescale Semiconductor, Inc. Peripheral operating requirements and behaviors S1 S2 S2 I2S_MCLK (output) S3 I2S_TX_BCLK/ I2S_RX_BCLK (output) S4 S4 S6 S5 I2S_TX_FS/ I2S_RX_FS (output) S10 S9 I2S_TX_FS/ I2S_RX_FS (input) S7 S8 S7 S8 I2S_TXD S9 S10 I2S_RXD Figure 20. I2S/SAI timing — master modes Table 40. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range) Num. Characteristic Min. Max. Unit Operating voltage 1.71 3.6 V S11 I2S_TX_BCLK/I2S_RX_BCLK cycle time (input) 250 — ns S12 I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input) 45% 55% MCLK period S13 I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK 30 — ns S14 I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK — ns S15 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid — S16 I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid 0 — ns S17 I2S_RXD setup before I2S_RX_BCLK 30 — ns S18 I2S_RXD hold after I2S_RX_BCLK 2 — ns — 72 ns S19 I2S_TX_FS input assertion to I2S_TXD output valid1 ns 1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. Freescale Semiconductor, Inc. 49 Dimensions S11 S12 I2S_TX_BCLK/ I2S_RX_BCLK (input) S12 S15 S16 I2S_TX_FS/ I2S_RX_FS (output) S13 I2S_TX_FS/ I2S_RX_FS (input) S19 S14 S15 S16 S15 S16 I2S_TXD S17 S18 I2S_RXD Figure 21. I2S/SAI timing — slave modes 6.9 Human-machine interfaces (HMI) 6.9.1 TSI electrical specifications Table 41. TSI electrical specifications Symbol Description Min. Typ. Max. Unit TSI_RUNF Fixed power consumption in run mode — 100 — µA TSI_RUNV Variable power consumption in run mode (depends on oscillator's current selection) 1.0 — 128 µA TSI_EN Power consumption in enable mode — 100 — µA TSI_DIS Power consumption in disable mode — 1.2 — µA TSI_TEN TSI analog enable time — 66 — µs TSI_CREF TSI reference capacitor — 1.0 — pF TSI_DVOLT Voltage variation of VP & VM around nominal values 0.19 — 1.03 V 7 Dimensions 7.1 Obtaining package dimensions Package dimensions are provided in package drawings. KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. 50 Freescale Semiconductor, Inc. Pinout To find a package drawing, go to freescale.com and perform a keyword search for the drawing’s document number: If you want the drawing for this package Then use this document number 32-pin QFN 98ASA00473D 48-pin QFN 98ASA00466D 64-pin LQFP 98ASS23234W 8 Pinout 8.1 KL26 Signal Multiplexing and Pin Assignments The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin. 64 LQFP 48 QFN 32 QFN Pin Name Default ALT0 1 — 1 PTE0 DISABLED 2 — — PTE1 DISABLED 3 1 — VDD VDD VDD 4 2 2 VSS VSS VSS 5 3 3 USB0_DP USB0_DP USB0_DP 6 4 4 USB0_DM USB0_DM USB0_DM 7 5 5 VOUT33 VOUT33 VOUT33 8 6 6 VREGIN VREGIN VREGIN 9 7 — PTE20 ADC0_DP0/ ADC0_SE0 ADC0_DP0/ ADC0_SE0 PTE20 TPM1_CH0 UART0_TX 10 8 — PTE21 ADC0_DM0/ ADC0_SE4a ADC0_DM0/ ADC0_SE4a PTE21 TPM1_CH1 UART0_RX 11 — — PTE22 ADC0_DP3/ ADC0_SE3 ADC0_DP3/ ADC0_SE3 PTE22 TPM2_CH0 UART2_TX 12 — — PTE23 ADC0_DM3/ ADC0_SE7a ADC0_DM3/ ADC0_SE7a PTE23 TPM2_CH1 UART2_RX PTE29 TPM0_CH2 TPM_CLKIN0 13 9 7 VDDA VDDA VDDA 14 10 — VREFH VREFH VREFH 15 11 — VREFL VREFL VREFL 16 12 8 VSSA VSSA VSSA 17 13 — PTE29 CMP0_IN5/ ADC0_SE4b CMP0_IN5/ ADC0_SE4b ALT1 ALT2 ALT3 PTE0 SPI1_MISO UART1_TX PTE1 SPI1_MOSI UART1_RX ALT4 RTC_CLKOUT ALT5 ALT6 CMP0_OUT I2C1_SDA SPI1_MISO I2C1_SCL ALT7 KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. Freescale Semiconductor, Inc. 51 Pinout 64 LQFP 48 QFN 32 QFN Pin Name Default 18 14 9 PTE30 DAC0_OUT/ ADC0_SE23/ CMP0_IN4 19 — — PTE31 20 15 — PTE24 21 16 — 22 17 23 ALT0 DAC0_OUT/ ADC0_SE23/ CMP0_IN4 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7 PTE30 TPM0_CH3 TPM_CLKIN1 DISABLED PTE31 TPM0_CH4 DISABLED PTE24 TPM0_CH0 I2C0_SCL PTE25 DISABLED PTE25 TPM0_CH1 I2C0_SDA 10 PTA0 SWD_CLK TSI0_CH1 PTA0 TPM0_CH5 18 11 PTA1 DISABLED TSI0_CH2 PTA1 UART0_RX TPM2_CH0 24 19 12 PTA2 DISABLED TSI0_CH3 PTA2 UART0_TX TPM2_CH1 25 20 13 PTA3 SWD_DIO TSI0_CH4 PTA3 I2C1_SCL TPM0_CH0 SWD_DIO 26 21 14 PTA4 NMI_b TSI0_CH5 PTA4 I2C1_SDA TPM0_CH1 NMI_b 27 — — PTA5 DISABLED PTA5 USB_CLKIN TPM0_CH2 I2S0_TX_BCLK 28 — — PTA12 DISABLED PTA12 TPM1_CH0 I2S0_TXD0 29 — — PTA13 DISABLED PTA13 TPM1_CH1 I2S0_TX_FS 30 22 15 VDD VDD VDD 31 23 16 VSS VSS VSS 32 24 17 PTA18 EXTAL0 EXTAL0 PTA18 UART1_RX TPM_CLKIN0 33 25 18 PTA19 XTAL0 XTAL0 PTA19 UART1_TX TPM_CLKIN1 34 26 19 PTA20 RESET_b 35 27 20 PTB0/ LLWU_P5 ADC0_SE8/ TSI0_CH0 ADC0_SE8/ TSI0_CH0 PTB0/ LLWU_P5 I2C0_SCL TPM1_CH0 36 28 21 PTB1 ADC0_SE9/ TSI0_CH6 ADC0_SE9/ TSI0_CH6 PTB1 I2C0_SDA TPM1_CH1 37 29 — PTB2 ADC0_SE12/ TSI0_CH7 ADC0_SE12/ TSI0_CH7 PTB2 I2C0_SCL TPM2_CH0 38 30 — PTB3 ADC0_SE13/ TSI0_CH8 ADC0_SE13/ TSI0_CH8 PTB3 I2C0_SDA TPM2_CH1 39 31 — PTB16 TSI0_CH9 TSI0_CH9 PTB16 SPI1_MOSI UART0_RX TPM_CLKIN0 SPI1_MISO 40 32 — PTB17 TSI0_CH10 TSI0_CH10 PTB17 SPI1_MISO UART0_TX TPM_CLKIN1 SPI1_MOSI 41 — — PTB18 TSI0_CH11 TSI0_CH11 PTB18 TPM2_CH0 I2S0_TX_BCLK 42 — — PTB19 TSI0_CH12 TSI0_CH12 PTB19 TPM2_CH1 I2S0_TX_FS 43 33 — PTC0 ADC0_SE14/ TSI0_CH13 ADC0_SE14/ TSI0_CH13 PTC0 EXTRG_IN audioUSB_ SOF_OUT 44 34 22 PTC1/ LLWU_P6/ RTC_CLKIN ADC0_SE15/ TSI0_CH14 ADC0_SE15/ TSI0_CH14 PTC1/ LLWU_P6/ RTC_CLKIN I2C1_SCL TPM0_CH0 I2S0_TXD0 45 35 23 PTC2 ADC0_SE11/ TSI0_CH15 ADC0_SE11/ TSI0_CH15 PTC2 I2C1_SDA TPM0_CH1 I2S0_TX_FS 46 36 24 PTC3/ LLWU_P7 DISABLED 47 — — VSS VSS VSS 48 — — VDD VDD VDD 49 37 25 PTC4/ LLWU_P8 DISABLED SWD_CLK LPTMR0_ALT1 PTA20 RESET_b PTC3/ LLWU_P7 PTC4/ LLWU_P8 SPI0_PCS0 CMP0_OUT UART1_RX TPM0_CH2 CLKOUT UART1_TX TPM0_CH3 I2S0_MCLK I2S0_TXD0 I2S0_TX_BCLK KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. 52 Freescale Semiconductor, Inc. Pinout 64 LQFP 48 QFN 32 QFN Pin Name Default 50 38 26 PTC5/ LLWU_P9 DISABLED 51 39 27 PTC6/ LLWU_P10 CMP0_IN0 52 40 28 PTC7 53 — — 54 — 55 ALT0 ALT1 ALT2 PTC5/ LLWU_P9 SPI0_SCK LPTMR0_ALT2 I2S0_RXD0 CMP0_OUT CMP0_IN0 PTC6/ LLWU_P10 SPI0_MOSI EXTRG_IN I2S0_RX_BCLK SPI0_MISO I2S0_MCLK CMP0_IN1 CMP0_IN1 PTC7 SPI0_MISO audioUSB_ SOF_OUT I2S0_RX_FS PTC8 CMP0_IN2 CMP0_IN2 PTC8 I2C0_SCL TPM0_CH4 I2S0_MCLK — PTC9 CMP0_IN3 CMP0_IN3 PTC9 I2C0_SDA TPM0_CH5 I2S0_RX_BCLK — — PTC10 DISABLED PTC10 I2C1_SCL I2S0_RX_FS 56 — — PTC11 DISABLED PTC11 I2C1_SDA I2S0_RXD0 57 41 — PTD0 DISABLED PTD0 SPI0_PCS0 TPM0_CH0 58 42 — PTD1 ADC0_SE5b PTD1 SPI0_SCK TPM0_CH1 59 43 — PTD2 DISABLED PTD2 SPI0_MOSI UART2_RX TPM0_CH2 SPI0_MISO 60 44 — PTD3 DISABLED PTD3 SPI0_MISO UART2_TX TPM0_CH3 SPI0_MOSI 61 45 29 PTD4/ LLWU_P14 DISABLED PTD4/ LLWU_P14 SPI1_PCS0 UART2_RX TPM0_CH4 62 46 30 PTD5 ADC0_SE6b ADC0_SE6b PTD5 SPI1_SCK UART2_TX TPM0_CH5 63 47 31 PTD6/ LLWU_P15 ADC0_SE7b ADC0_SE7b PTD6/ LLWU_P15 SPI1_MOSI UART0_RX SPI1_MISO 64 48 32 PTD7 DISABLED PTD7 SPI1_MISO UART0_TX SPI1_MOSI ADC0_SE5b ALT3 ALT4 ALT5 ALT6 ALT7 SPI0_MOSI 8.2 KL26 pinouts The following figures show the pinout diagrams for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see KL26 Signal Multiplexing and Pin Assignments. KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. Freescale Semiconductor, Inc. 53 PTD7 PTD6/LLWU_P15 PTD5 PTD4/LLWU_P14 PTD3 PTD2 PTD1 PTD0 PTC11 PTC10 PTC9 PTC8 PTC7 PTC6/LLWU_P10 PTC5/LLWU_P9 PTC4/LLWU_P8 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 Pinout PTE20 9 40 PTB17 PTE21 10 39 PTB16 PTE22 11 38 PTB3 PTE23 12 37 PTB2 VDDA 13 36 PTB1 VREFH 14 35 PTB0/LLWU_P5 VREFL 15 34 PTA20 VSSA 16 33 PTA19 32 PTB18 PTA18 41 31 8 VSS VREGIN 30 PTB19 VDD 42 29 7 PTA13 VOUT33 28 PTC0 PTA12 43 27 6 PTA5 USB0_DM 26 PTC1/LLWU_P6/RTC_CLKIN PTA4 44 25 5 PTA3 USB0_DP 24 PTC2 PTA2 45 23 4 PTA1 VSS 22 PTC3/LLWU_P7 PTA0 46 21 3 PTE25 VDD 20 VSS PTE24 47 19 2 PTE31 PTE1 18 VDD PTE30 48 17 1 PTE29 PTE0 Figure 22. KL26 64-pin LQFP pinout diagram KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. 54 Freescale Semiconductor, Inc. PTD7 PTD6/LLWU_P15 PTD5 PTD4/LLWU_P14 PTD3 PTD2 PTD1 PTD0 PTC7 PTC6/LLWU_P10 PTC5/LLWU_P9 PTC4/LLWU_P8 48 47 46 45 44 43 42 41 40 39 38 37 Pinout PTE20 7 30 PTB3 PTE21 8 29 PTB2 VDDA 9 28 PTB1 VREFH 10 27 PTB0/LLWU_P5 VREFL 11 26 PTA20 VSSA 12 25 PTA19 24 PTB16 PTA18 31 23 6 VSS VREGIN 22 PTB17 VDD 32 21 5 PTA4 VOUT33 20 PTC0 PTA3 33 19 4 PTA2 USB0_DM 18 PTC1/LLWU_P6/RTC_CLKIN PTA1 34 17 3 PTA0 USB0_DP 16 PTC2 PTE25 35 15 2 PTE24 VSS 14 PTC3/LLWU_P7 PTE30 36 13 1 PTE29 VDD Figure 23. KL26 48-pin QFN pinout diagram KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. Freescale Semiconductor, Inc. 55 PTD7 PTD6/LLWU_P15 PTD5 PTD4/LLWU_P14 PTC7 PTC6/LLWU_P10 PTC5/LLWU_P9 PTC4/LLWU_P8 32 31 30 29 28 27 26 25 Pinout 21 PTB1 VOUT33 5 20 PTB0/LLWU_P5 VREGIN 6 19 PTA20 VDDA 7 18 PTA19 VSSA 8 17 PTA18 PTA0 PTE30 16 4 VSS USB0_DM 15 PTC1/LLWU_P6/RTC_CLKIN VDD 22 14 3 PTA4 USB0_DP 13 PTC2 PTA3 23 12 2 PTA2 VSS 11 PTC3/LLWU_P7 PTA1 24 10 1 9 PTE0 Figure 24. KL26 32-pin QFN pinout diagram KL26 Sub-Family Data Sheet Data Sheet, Rev. 2, 10/2013. 56 Freescale Semiconductor, Inc. How to Reach Us: Information in this document is provided solely to enable system and software Home Page: freescale.com implementers to use Freescale products. There are no express or implied copyright Web Support: freescale.com/support information in this document. licenses granted hereunder to design or fabricate any integrated circuits based on the Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others. Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address: freescale.com/SalesTermsandConditions. Freescale, the Freescale logo, Energy Efficient Solutions logo, and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners. ARM and Cortex are the registered trademarks of ARM Limited. © 2013 Freescale Semiconductor, Inc. Document Number: KL26P64M48SF5 Rev. 2 10/2013