Microchip HV7321 4-ch. 5-level â±80v high-voltage ultrasound pulser with t/r switch Datasheet

HV7321
4-Ch. 5-Level ±80V High-Voltage Ultrasound Pulser with T/R Switches
Features
General Description
• Power Sequencing Free 5 Output Levels
including RTZ (Return-to-Zero)
• -44 dB Single-Cycle Pulse-Inversion Second
Harmonic Distortion (HD2) at 5 MHz
• Output Voltage up to ±80V
• ±2.5A Peak Output Current
• ±300 mA Current from VPP1/VNN1 in CW Mode-0
• Integrated T/R Switch & RX Damper Switch
• Bleeder Switches Achieve True Zero during RTZ
• Supports Both Transparent and Re-Timing Mode
• Re-Timing Clock Frequency Supports up to
220 MHz
• Built-In Output Protection Diodes and Clamp
Diodes
• +2.5/+3.3V Input Logic
• Built-In CW Switches to Pair with External CW
Transmitters (CW Mode-1)
• 9 mm x 9 mm 64-Lead VQFN Package
The HV7321 is a 4-channel, 5-level, ultrasound
transmitter with built-in T/R switches, output protection
diodes and clamp diodes. The HV7321 can provide up
to ±2.5A and the output voltage swing can be up to
±80V. The HV7321 supports both Transparent and
Re-Timing mode. The re-timing clock frequency can
support up to 220 MHz. The re-timing feature helps
reduce the output jitter introduced by the driving the
field-programmable gate array (FPGA).
Applications
The HV7321 has two different modes
CW transmission, CW-Mode 0 and CW-Mode 1.
for
In CW-Mode 0 (Mode = 0, PWS = 0), the VPP1 and
VNN1 rails are used for CW transmission. The output
current is reduced in CW Mode-0.
In CW-Mode 1, the HV7321 accepts the output of an
external CW beamformer as CW source.
The HV7321 is LVCMOS 2.5V/3.3V input compatible,
which can be interfaced with the FPGA directly.
The HV7321 is available in a 9 mm x 9 mm 64-Lead
VQFN package.
• Medical Ultrasound Imaging Systems
• NDT Ultrasound
• Piezoelectric or Capacitive Transducer Drivers
 2016 Microchip Technology Inc.
DS20005639A-page 1
HV7321
POS0
NEG0
SEL0
MODE
VDD
GND
VGN
VPP0
VPP0
CPF0
CNF0
VNN0
VNN0
VNN2
VNN1
CNF1
Package Types
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
CWIN0
1
48
CPF1
SEL1
2
47
VPP1
NEG1
3
46
TX0
POS1
4
45
RX0
CWIN1
5
44
RGND
OEN
6
43
RX1
PWS
7
42
TX1
CLK
8
41
CPOS
GND
9
40
CNEG
65
VSUB
POS2
14
35
TX3
CWIN2
15
34
VPP1
SEL3
16
33
CPF1
17
18
19
20
21
22
23
24
25
26
27
28
29
DS20005639A-page 2
30
31
32
CNF1
RX3
VNN1
36
VNN2
13
VNN0
NEG2
VNN0
RGND
CNF0
37
CPF0
12
VPP0
SEL2
VPP0
RX2
VGP
38
GND
11
VDD
REN
OTPN
TX2
CWIN3
39
POS3
10
NEG3
VLL
 2016 Microchip Technology Inc.
 2016 Microchip Technology Inc.
HV7321 – Block Diagram
+2.5V/3V
2 µF
VLL
+5V
2 µF
VDD
0 to +80V
2 µF 100V
2 µF
+10V
2 µF
1 µF
CPOS
CPF0
VGP
LR
VPOS
VPOS GND
CWIN0-3
MODE
REN
OEN
VPP0
0 to +80V
2 µF 2 µF 100V
CPF1
VPP1
LR
VPF0
LR
VPF1
VPF0 VGN VPP0
VPF1 VGN VPP1
VPP1
VPP0
to
CWSW1-3
CWSW0
PWS
OTPN
POS0
NEG0
SEL0
Logic
and
Retiming
VPF0
VPF0
VNEG
VNF0
VNF1
VPOS
TX0
X0
TRSW0
Rb
RX0
RX0
VNN0
VNN1
RTZSW0
RXDMP0
To Ch.
1-3
POS3
Rb R
GND
1 of 4 channels
RGND
NEG3
TX1,2,3
SEL3
VNEG GND VGN
VNN2
GND
VGN
SUB
VSUB CNEG
2 µF
1 µF
-10V
VNN2
1 µF
100V
VNF1 VGP VNN1
LR
VNF0
LR
VNF1
CNF0
VNN0
2 µF
1 µF
100V
0 to -80V
CNF1
RX1,2,3
VNN1
2 µF
2 µF
100V
0 to -80V
HV7321
DS20005639A-page 3
LR
VNEG
CLK
VNF0 VGP VNN0
HV7321
HV7321 – Typical Application Circuit
+2.5V +5V
+10V
CDD = 2µF 10V
CLL= 2 µF 10V
CCPOS = 1µF 10V CGP = 2 µF 16V
CTRN[3:0]
OEN
VLL
VDD
CPOS VGP
1 of 4 Channels
REN
+80V
MODE
CPF0
PWS
TXFPGA I/Os
OTPN
CPP0 = 2 µF 100V
VPP0
CCPF1 = 2 µF 10V
VPF0
VNF0
OTPN
VNN2
VNN0
DT[63:0]
-80V
CNN0 = 2 µF 100V
CNF0
CCNF0 = 2 µF 10V
SEL0
+60V
NEG0
CPP1 = 2 µF 100V
VPP1
POS0
CPF1
Decode
&
Level
Shift
SEL3
VPF1
VNF1
CCPF1 = 2 µF 10V
-60V
CNN1 = 2 µF 100V
VNN1
NEG3
CNF1
POS3
CCNF1 = 2 µF 10V
TX0
X0
RTZSW
to other ICs
TRSW
RX0
TRSW
RX0
CLK
For CW Mode-1
Connect to a low-voltage
CW source
(such as the MD1730)
RXDMP
CWIN0
CWIN1
CWIN2
CWIN3
CWSW
RGND
RGND
TX1-3
RX1-3
SUB
GND
CNEG
VGN
VSUB
CGN = 2 µF 16V
CCNEG = 1 µF 10V
-10V
DS20005639A-page 4
 2016 Microchip Technology Inc.
HV7321
1.0
ELECTRICAL CHARACTERISTICS
Absolute Maximum Ratings †
Positive logic supply (VLL).......................................................................................................................... -0.5V to +5.5V
All I/O & CLK pin voltage (VIO)................................................................................................................... -0.5V to +5.5V
Positive voltage supply (VDD)..................................................................................................................... -0.5V to +5.5V
Positive gate driver supply (VGP) ............................................................................................................. -0.5V to +13.5V
Negative gate driver supply (VGN) ........................................................................................................... -13.5V to +0.5V
High voltage positive supply (VPP0,1) .......................................................................................................... -1.0V to +85V
High voltage negative supply (VNN0,1,2)...................................................................................................... -85V to +1.0V
CW input voltage (VCWIN) .......................................................................................................................... -7.5V to +7.5V
TX pin voltage (VTX)..................................................................................................................................... -85V to +85V
RX pin to GND voltage (VRX) ....................................................................................................................... ±0.7 to ±1.4V
Operating temperature ................................................................................................................................ 0°C to +85°C
Storage temperature ............................................................................................................................... -55°C to +150°C
Maximum junction temperature............................................................................................................................ +130°C
Maximum not-latch-up current ........................................................................................................................... +100 mA
ESD Rating CWIN,TX, VPP, VNN pins ......................................................................................................................±500V
ESD Rating – all other pins ....................................................................................................................................... ±2kV
† Notice: Stresses above those listed under “Maximum Ratings” may cause permanent damage to the device. This is a
stress rating only and functional operation of the device at those or any other conditions above those indicated in the
operational sections of this specification is not intended. Exposure to maximum rating conditions for extended periods
may affect device reliability.
ELECTRICAL CHARACTERISTICS
Electrical specifications: VLL = +2.5V, VDD = +5.0V, VPP0,1 = +80V, VNN0,1,2 = -80V, VGP = +10V, VGN = -10V,
VSUB = 0V, PWS = OEN = REN = 1, TA = 25°C, unless otherwise specified. Parameters in Bold apply over the
operating temperature range of TA = TJ = 0 to +85°C.
Parameter
Sym.
Min.
Typ.
Max.
Unit
Conditions
VLL
2.25
2.50
3.60
V
Note 1
Positive Voltage Supply
VDD
4.75
5.0
5.25
V
Note 1
Positive Gate Driver Supply
VGP
8.0
10
12
Negative Gate Driver Supply
VGN
-12
-10
-8.0
V
Note 1
See Table 3-1.
VPP0
0
—
80
VPP1
0
—
80
V
Note 1
Must be VPP0 ≥ VPP1
VNN0
-80
—
0
VNN1
-80
—
0
V
Note 1
Must be VNN0  VNN1
VLL Quiescent Current
ILLQ
—
0.06
0.7
μA
VDD Quiescent Current
IDDQ
—
30
80
µA
VPP0 Quiescent Current
IPP0Q
—
0.37
6
µA
VNN0 Quiescent Current
INN0Q
-9
-0.78
—
µA
Operating Supply Voltages
Positive Logic Supply
High Voltage Positive Supply
High Voltage Negative Supply
Operating Supply Current
VPP1 Quiescent Current
IPP1Q
—
0.44
10
µA
VNN1 Quiescent Current
INN1Q
-10
-1.46
—
µA
VNN2 Quiescent Current
INN2Q
-7
-3.84
—
µA
Note 1:
2:
OEN = REN = 0
Characterized only; not 100% tested in production.
Design guidance only.
 2016 Microchip Technology Inc.
DS20005639A-page 5
HV7321
ELECTRICAL CHARACTERISTICS (CONTINUED)
Electrical specifications: VLL = +2.5V, VDD = +5.0V, VPP0,1 = +80V, VNN0,1,2 = -80V, VGP = +10V, VGN = -10V,
VSUB = 0V, PWS = OEN = REN = 1, TA = 25°C, unless otherwise specified. Parameters in Bold apply over the
operating temperature range of TA = TJ = 0 to +85°C.
Parameter
VDD Current
Sym.
Min.
Typ.
Max.
Unit
IDDEN
—
0.9
1.0
mA
VPP0 Current
IPP0EN
—
0.1
0.13
mA
VNN0 Current
INN0EN
-0.12
-0.1
—
mA
VPP1 Current
IPP1EN
—
0.1
0.13
mA
VNN1 Current
INN1EN
-0.12
-0.1
—
mA
VNN2 Current
INN2EN
-0.05
-0.03
—
mA
VLL Current with Re-Timing
ILLRT
—
0.11
0.3
mA
VDD Current with Re-Timing
IDDRT
—
7.08
8
mA
VLL Max. Current of SEL = 0/1
ILL5
—
23
40
μA
VDD Max. Current of SEL = 0/1
IDD5
—
1.5
1.7
mA
VGP Max. Current of SEL = 0/1
IGP5
—
2.6
4
mA
VGN Max. Current of SEL = 0/1
IGN5
-14
-9
—
mA
VPP0 Current of SEL = 0 (1)
IPP05
—
136
146
mA
VNN0 Current of SEL = 0 (1)
INN05
-132
-125
—
mA
VPP1 Current of SEL = 1 (1)
IPP15
—
148
158
mA
VNN1 Current of SEL = 1
(1)
Conditions
f = 0 MHz
fCLK = 0 MHz
MODE = 0 or 1
fCLK = 80 MHz
TX one-channel output, no load,
continuous, Note 1
CLK = 0
PWS = 1
MODE = 0
IPP05/INN05 and IPP15/INN15 are
calculated using TX one channel
output continuous, no load, at
5 MHz.
INN15
-150
-143
—
mA
IGPCW
—
1.0
2.0
mA
VGN Current of SEL = 1
IGNCW
-8.0
-5.0
—
mA
VPP1 Current of SEL = 1
IPP1CW
—
17
26
mA
VNN1 Current of SEL = 1
INN1CW
-20
-15
—
mA
VCWIN0–3
-7.0
—
+7.0
V
CWSW Analog Switch
On-Resistance (1)
RCWSW
—
26.5
35
Ω
ICWSW = ±100 mA
TRSW Off Withstand Voltage
VCWSW
-80
—
+80
V
ISW = ±1.0 μA
—
5.0
—
—
60
—
pF
MODE = 1, 1 MHz, 0 dBm,
DC 0V, Note 1
—
800
1100
—
66
90
ns
50% MODE rise to CWSW on/off
Note 1
—
8.5
19
VGP Current of SEL = 1
TX one-channel output 5 MHz,
continuous, no load
VPP1/VNN1 = ±5V
PWS = MODE = 0
CW Mode-0, Note 1
CWSW High-Voltage Analog Switch
CW Switch Input Voltage
CWSW Off Capacitance to GND
CWSW On Capacitance to GND
CWSW Switching On Time
CWSW Switching Off Time
CCWSW
tCWSW
TX Output P-Channel MOSFET on VPP0
On-Resistance
Peak Output Current
Note 1:
2:
RON_P0
Ω
ISD = 100 mA
1
1.5
—
A
VPP0 = +25V, RL = 1.0Ω to GND
Note 1
2.0
2.8
—
A
VPP0 = +80V, RL = 1.0Ω to GND
Note 1
IOUT_P0
Characterized only; not 100% tested in production.
Design guidance only.
DS20005639A-page 6
 2016 Microchip Technology Inc.
HV7321
ELECTRICAL CHARACTERISTICS (CONTINUED)
Electrical specifications: VLL = +2.5V, VDD = +5.0V, VPP0,1 = +80V, VNN0,1,2 = -80V, VGP = +10V, VGN = -10V,
VSUB = 0V, PWS = OEN = REN = 1, TA = 25°C, unless otherwise specified. Parameters in Bold apply over the
operating temperature range of TA = TJ = 0 to +85°C.
Parameter
Sym.
Min.
Typ.
Max.
Unit
Conditions
TX Output P-Channel MOSFET on VPP1
On-Resistance at PWS = 1
RON_P1
On-Resistance at PWS = 0
Peak Output Current at PWS = 1 (1)
IOUT_P1
Peak Output Current at PWS = 0
(1)
—
16
21
—
33
43
Ω
ISD = 100 mA
0.8
1.0
—
VPP0,1 = +25V, RL = 1.0Ω to GND
1.5
1.75
—
VPP0,1= +80V, RL = 1.0Ω to GND
0.4
0.5
—
0.8
0.95
—
—
8
10
Ω
ISD = 100 mA
-1.4
-1.7
—
A
VNN0 = -25V, RL = 1.0Ω to GND
-2.0
-2.3
—
A
VNN0 = -80V, RL = 1.0Ω to GND
—
11
13
—
36
45
Ω
ISD = 100 mA
—
-1.2
-1.0
A
VPP0,1 = +25V, RL = 1.0Ω to GND
VPP0,1 = +80V, RL = 1.0Ω to GND
TX Output N-Channel MOSFET on VNN0
On-Resistance
RON_N0
Peak Output Current (1)
IOUT_N0
TX Output N-Channel MOSFET on VNN1
On-Resistance at PWS = 1
On-Resistance at PWS = 0
RON_N1
Peak Output Current at PWS = 1 (1)
IOUT_N1
Peak Output Current at PWS = 0 (1)
VNN0,1 = -25V, RL = 1.0Ω to GND
—
-1.6
-1.3
—
-0.4
-0.3
—
-0.55
-0.4
—
7.0
16
Ω
ISD = 100 mA
2.3
2.7
—
A
RL = 1.0Ω from -25V to TX
2.3
2.8
—
A
RL = 1.0Ω from -80V to TX
—
7.0
16
Ω
ISD = 100 mA
—
-2.0
-1.8
A
RL = 1.0Ω from +25V to TX
—
-2.3
-2.0
A
RL = 1.0Ω from +80V to TX
A
VNN0,1 = -80V, RL = 1.0Ω to GND
VNN0,1 = -25V, RL = 1.0Ω to GND
VNN0,1= -80V, RL = 1.0Ω to GND
TX Damping P-Channel MOSFET on GND
On-Resistance
RON_PDMP
Peak Output Current (1)
IOUT_PDMP
TX Damping N-Channel MOSFET on GND
On-Resistance
RON_NDMP
Peak Output Current (1)
IOUT_NDMP
RTZSW Auto Bleed High-Voltage Analog Switch
RTZSW On-Resistance (1)
RRTZSW
—
238
270
Ω
ISD = ±1.0 mA
RTZSW Off Withstand Voltage (1)
VRTZSW
-80
—
+80
V
ISW = ±100 μA
IFM = 300 mA, Note 1
TX OUTPUT Isolation Diodes and Bleed Resistor
Diode Forward Voltage
VF
—
0.96
1.9
V
Forward Continuous Current
IFM
—
300
—
mA
Peak Forward Pulse Current
IFSM
—
3.0
—
A
PW = 50 ns, Note 2
Total Capacitance of 2-diode
CT
—
3.5
—
pF
at 1 MHz, 1 dBm, 0V DC, Note 2
TX/RX Bleed Resistor to GND
Rb
11
15
20
kΩ
Note 1
Note 1:
2:
Note 2
Characterized only; not 100% tested in production.
Design guidance only.
 2016 Microchip Technology Inc.
DS20005639A-page 7
HV7321
ELECTRICAL CHARACTERISTICS (CONTINUED)
Electrical specifications: VLL = +2.5V, VDD = +5.0V, VPP0,1 = +80V, VNN0,1,2 = -80V, VGP = +10V, VGN = -10V,
VSUB = 0V, PWS = OEN = REN = 1, TA = 25°C, unless otherwise specified. Parameters in Bold apply over the
operating temperature range of TA = TJ = 0 to +85°C.
Parameter
Sym.
Min.
Typ.
Max.
Unit
Conditions
TRSW Analog Switch
On-Resistor
RTRSW
—
18
22
Ω
ITRSW = ±1.0 mA
Note 1
TRSW Off Withstand Voltage
VTRSW
-80
—
+80
V
ISW = ±100 μA, Note 1
RX to GND Protection Diode
VF
—
1.5
2.2
V
IF = ±100 mA, Note 1
RRXDMP
—
17
21
Ω
ISD = ±1.0 mA, Note 1
CRXG
—
—
7.0
pF
1 MHz, 1 dBm, 0V DC, Note 2
TRSW and RXDMP Switches
RXDMP Switch On-Resistance
RX Pin to GND Capacitance
Built-In Gate Drive Voltage Linear Regulators
Output P-Channel Gate Drive
Voltage Referenced to VPP0
VPF0
-5.2
-4.6
-3.8
V
VGN - VPP0 < -10V
Output P-Channel Gate Drive
Voltage Referenced to VPP1
VPF1
-5.2
-4.6
-3.8
V
VGN - VPP1 < -10V
Output N-Channel Gate Drive
Voltage Referenced to VNN0
VNF0
3.3
4.2
5.2
V
VGP - VNN0 > 10V
Output N-Channel Gate Drive
Voltage Referenced to VNN1
VNF1
3.3
4.2
5.2
V
VGP - VNN1 > 10V
Output N-Channel Gate Drive
Voltage Referenced to GND
VPOS
3.2
4.2
5.2
V
Output P-Channel Gate Drive
Voltage Referenced to GND
VNEG
-5.2
-4.5
-3.8
V
Dropout Voltage of (VPP0 - VGN)
VDOPF0
-2.9
-2.6
-2.4
V
Dropout Voltage of (VPP1 - VGN)
VDOPF1
-2.9
-2.6
-2.4
V
Dropout Voltage of (VGP - VNN0)
VDONF0
3.0
3.3
3.6
V
Dropout Voltage of (VGP - VNN1)
VDONF1
3.0
3.3
3.6
V
Dropout Voltage of (VNEG - VGN)
VDONEG
2.9
3.3
3.5
V
Dropout Voltage of (VGP - VPOS)
VDOPOS
-2.8
-2.6
-2.4
V
—
0.2 VLL
V
Logic & Clock Input Characteristics
Input Logic Low Voltage
VIL
0
Input Logic High Voltage
VIH
0.8 VLL
—
VLL
V
Input Logic Low Current
IIL
-1.0
—
—
μA
Note 1
Input Logic High Current
IIH
—
—
1.0
μA
Note 1
Input Capacitance
CIN
—
2.0
3.0
pF
Note 2
—
200
—
µs
50% OEN rise to TX ready,
Note 2
—
20
—
ns
50% OEN fall to TX all output
FETs on HV rails are off, Note 1
—
—
5.25
V
—
—
0.1
V
at 100 μA
—
—
0.4
V
at 4.0 mA
—
—
15
μA
25°C, at 5.25V pull-up, Note 1
OEN Switching On Time
tOEN
OEN Switching Off Time
Thermal protection OTPN & UVLO
OTPN Output Max. Pull-Up
VOH
OTPN Output Low Max. Voltage
VOL
OTPN Output High Current
IOFF
Note 1:
2:
Characterized only; not 100% tested in production.
Design guidance only.
DS20005639A-page 8
 2016 Microchip Technology Inc.
HV7321
ELECTRICAL CHARACTERISTICS (CONTINUED)
Electrical specifications: VLL = +2.5V, VDD = +5.0V, VPP0,1 = +80V, VNN0,1,2 = -80V, VGP = +10V, VGN = -10V,
VSUB = 0V, PWS = OEN = REN = 1, TA = 25°C, unless otherwise specified. Parameters in Bold apply over the
operating temperature range of TA = TJ = 0 to +85°C.
Parameter
Thermal Shutdown Trip Point
Sym.
Min.
Typ.
Max.
Unit
TTRIP
125
138
160
°C
°C
OTPN = LO when thermal shutdown occurs, Note 1
V
Note 1
THYS
—
38
—
VDD OK On Voltage
VDDUVON
3.45
3.7
4.05
VDD UVLO Trip Voltage
Thermal Shutdown Hysteresis
VDDUVOFF
3.05
3.4
3.85
VLL OK On Voltage
VLLUVON
1.59
1.7
1.81
VLL UVLO Trip Voltage
VLLUVOFF
1.39
1.6
1.71
Conditions
TX Output HD2 & Timing Characteristics
Second Harmonic Distortion
HD2
—
-44
-40
Output Rise Time from 0V to VPP0
tr1
—
10
12
Output Fall Time from 0V to VNN0
tf1
—
10
12
Output Rise Time from VNN0 to VPP0
tr2
—
17
19
Output Fall Time from VPP0 to VNN0
tf2
—
17
19
Output Rise Time from VNN0 to 0V
tr3
—
10
13.5
Output Fall Time from VPP0 to 0V
tf3
—
10
13.5
Propagation Delay Rise Time 1
tdr1
—
16
18
Propagation Delay Fall Time 1
tdf1
—
16
18
Propagation Delay Rise Time 2
tdr2
—
17.5
19
Propagation Delay Fall Time 2
tdf2
—
17.5
19
Propagation Delay Rise Time 3
tdr3
—
14
16
Propagation Delay Fall Time 3
tdf3
—
14
16
Output Rise Time from 0V to
VPP1
tr4
—
15
17
Output Fall Time from 0V to
VNN1
tf4
—
15
17
Output Rise Time from VNN1 to
VPP1
tr5
—
24
27
Output Fall Time from VPP1 to
VNN1
tf5
—
24
27
Output Rise Time from VNN1 to
0V
tr6
—
10
13
Output Fall Time from VPP1 to 0V
tf6
—
10
13
Propagation Delay Rise Time 4
tdr4
—
15
17
Propagation Delay Fall Time 4
tdf4
—
15
17
Propagation Delay Rise Time 5
tdr5
—
16
18
Propagation Delay Fall Time 5
tdf5
—
16
18
Propagation Delay Rise Time 6
tdr6
—
15
17
Propagation Delay Fall Time 6
tdf6
—
15
17
Delay Time Matching with
SEL = L
∆td1
—
1.5
2.0
ns
Delay Time Matching with
SEL = H
∆td2
—
1.5
2.0
ns
Note 1:
2:
dB
ns
ns
VPP0/VNN0 = ±70V launched in
100 µs apart, with load of
220 pF//1k (Second Harmonic
Distortion).
HD2, single-cycle inverting
5.0 MHz
Note 1
All these tr,tf,td values, at
VPP0,1/VNN0,1 = ±70V, 220 pF//1k
Note 1
ns
All these tr,tf,td values at
VPP0,1/VNN0,1 = ±70V, 220 pF//1k
Note 1
ns
P to N, ch.-to-ch. matching in IC,
typ. at VPP0,1/VNN0,1,2 = ±70V,
220 pF//1k, Note 1
Characterized only; not 100% tested in production.
Design guidance only.
 2016 Microchip Technology Inc.
DS20005639A-page 9
HV7321
ELECTRICAL CHARACTERISTICS (CONTINUED)
Electrical specifications: VLL = +2.5V, VDD = +5.0V, VPP0,1 = +80V, VNN0,1,2 = -80V, VGP = +10V, VGN = -10V,
VSUB = 0V, PWS = OEN = REN = 1, TA = 25°C, unless otherwise specified. Parameters in Bold apply over the
operating temperature range of TA = TJ = 0 to +85°C.
Parameter
Sym.
TRSW Switch On Delay Time
TRSW Switch Off Delay Time
RTZSW Switch On Delay Time
RTZSW Switch Off Delay Time
RXDMP Damp Switch On Delay
Time
RXDMP Damp Switch Off Delay
Time
Min.
Typ.
Max.
Unit
Conditions
130
180
230
ns
From POS = 0 & NEG = 0, Note 1
tTRSW
8
12
16
ns
From POS = 1 or NEG = 1, Note 1
130
180
240
ns
From POS = 0 & NEG = 0, Note 1
11
21
31
ns
From POS = 1 or NEG = 1, Note 1
3
10
15
ns
From POS = 1 or NEG = 1, Note 1
0.55
1.4
2.35
us
From POS = 0 & NEG = 0, Note 1
Note 2
tRTZSW
tRXDMP
PWS = 0 to 1 Mode Change
Time
tMC
—
220
—
ns
Output Max. Frequency Range
fOUT
—
20
—
MHz
100Ω resistor load, Note 2
Re-Timing Clock Frequency
fCLK
10
—
220
MHz
Note 2
Re-Timing Clock Rise & Fall
Times
tRC,tFC
—
0.5
5.0
ns
Note 2
Set-Up Time, POS/NEG to CLK
tsu
2.0
—
—
ns
Note 2
Hold Time, CLK to POS/NEG
tH
1.0
—
—
ns
Note 2
tCLK_LO
2.0
—
100
tCLK_HI
2.0
—
100
tCLK_REC
—
2.0
—
ns
tCLK_RLS
150
330
500
CLK input must be activated
before POS and NEG inputs are
high. CLK input must be deactivated after POS and NEG inputs
are low.
Clock Time Low
(2)
Clock Time High
(2)
Clock Recognition Time
(1)
Clock Release Time (1)
Note 1:
2:
Characterized only; not 100% tested in production.
Design guidance only.
TEMPERATURE CHARACTERISTICS
Unless otherwise indicated, all parameters apply with VLL = +2.5V, VDD = +5.0V, VPP0,1 = +80V, VNN0,1,2 = -80V,
VGP = +10V, VGN = -10V, VSUB = 0V, OEN = REN = 1
Parameters
Sym.
Min.
Typ.
Max.
Units
Conditions
Temperature Ranges
Operating Ambient Temperature Range
TOA
0
—
+85
°C
Storage Temperature Range
TST
-55
—
+150
°C
Maximum Junction Temperature
TJ
—
—
+130
°C
Total Power Dissipation
PD
—
3.0
—
W
Thermal Package Resistances (64LD 9 mm x 9 mm VQFN)
Junction-to-Ambient Thermal Resistance
JA
—
16.3
—
°C/W
JEDEC (2S2P) 4L PCB
114.3 mm x 76.2 mm x1.6 mm
TA = 85°C
Junction-to-Board Thermal Resistance
JB
—
2.55
—
°C/W
JEDEC (2S2P) 4L PCB
114.3 mm x 76.2 mm x1.6 mm
TA = 85°C
Junction-to-Case Top Thermal Resistance
JC
—
0.2
—
°C/W
JEDEC (2S2P) 4L PCB
114.3 mm x 76.2 mm x1.6 mm
TA = 85°C
DS20005639A-page 10
 2016 Microchip Technology Inc.
HV7321
TABLE 1-1:
INPUT OUTPUT LOGIC TRUTH TABLE (TRANSPARENT, CLK = 0)
Logic Inputs
Function
OTPN
OEN MODE
PWS
CLK
SEL
NEG
POS
TX
Output
RTZSW
&
TRSW
CWSW
RXDMP
1
1
0
1
0
0
0
0
RTZ
OFF
OFF
ON
1
1
0
1
0
0
0
1
VPP0
OFF
OFF
ON
1
1
0
1
0
0
1
0
VNN0
OFF
OFF
ON
1
1
0
1
0
0
1
1
RTZ+(4)
ON
OFF
OFF
1
1
0
1
0
1
0
0
RTZ
OFF
OFF
ON
1
1
0
1
0
1
0
1
VPP1
OFF
OFF
ON
1
1
0
1
0
1
1
0
VNN1
OFF
OFF
ON
1
1
0
1
0
1
1
1
high Z
OFF
OFF
ON
1
1
0
0
0
0
0
0
RTZ
OFF
OFF
ON
1
1
0
0
0
0
0
1
VPP0
OFF
OFF
ON
1
1
0
0
0
0
1
0
VNN0
OFF
OFF
ON
1
1
0
0
0
0
1
1
RTZ+(4)
ON
OFF
OFF
1
1
0
0
0
1
0
0
RTZ
OFF
OFF
ON
1
1
0
0
0
1
0
1
VPP1
OFF
OFF
ON
1
1
0
0
0
1
1
0
VNN1
OFF
OFF
ON
1
1
0
0
0
1
1
1
high Z
OFF
OFF
ON
CW Mode-1 (3)
1
1
1
x
x
high Z
OFF
ON
ON
ON
OFF
OFF
Device
Disabled
x
0
x
x
Thermal
Protection
Activated
0
x
x
x
Pulsed-Echo
Mode (1)
CW Mode-0 (2)
Note 1:
2:
3:
4:
other than 011
(4)
0
1
1
RTZ+
x
x
x
x
high Z
OFF
OFF
ON
x
x
x
x
high Z
OFF
OFF
ON
In Pulsed-Echo mode, low duty cycle must be used due to the IC power dissipation limit.
When PWS = 0, VPP1/VNN1 output current is reduced for low-voltage CW mode-0. VPP0/VNN0 output current is
unaffected when PWS = 1, as in Pulsed-Echo mode.
In CW MODE = 1, the CWSW is turned on to use external CW waveform at CWIN, if the channel
SEL = NEG = POS = 0.
When SEL = 0, NEG = 1, POS = 1, the channel is in Receiving mode (RTZ+).
 2016 Microchip Technology Inc.
DS20005639A-page 11
HV7321
TABLE 1-2:
INPUT OUTPUT LOGIC TRUTH TABLE (WITH CLK RE-TIMING, CLK  10MHZ)
Logic Inputs
Function
OTPN
1
OEN
MODE
PWS
CLK
SEL
NEG
POS
1
0
1
↑
0
0
0
TX
Output
RTZSW
&
TRSW
CWSW
RXDMP
RTZ
OFF
OFF
ON
1
1
0
1
↑
0
0
1
VPP0
OFF
OFF
ON
1
1
0
1
↑
0
1
0
VNN0
OFF
OFF
ON
RTZ+(4)
ON
OFF
OFF
1
1
0
1
↑
0
1
1
1
1
0
1
↑
1
0
0
RTZ
OFF
OFF
ON
1
1
0
1
↑
1
0
1
VPP1
OFF
OFF
ON
1
1
0
1
↑
1
1
0
VNN1
OFF
OFF
ON
1
1
0
1
↑
1
1
1
high Z
OFF
OFF
ON
1
1
0
0
↑
0
0
0
RTZ
OFF
OFF
ON
1
1
0
0
↑
0
0
1
VPP0
OFF
OFF
ON
1
1
0
0
↑
0
1
0
VNN0
OFF
OFF
ON
1
1
0
0
↑
0
1
1
RTZ+(4)
ON
OFF
OFF
1
1
0
0
↑
1
0
0
RTZ
OFF
OFF
ON
1
1
0
0
↑
1
0
1
VPP1
OFF
OFF
ON
1
1
0
0
↑
1
1
0
VNN1
OFF
OFF
ON
1
1
0
0
↑
1
1
1
high Z
OFF
OFF
ON
CW Mode-1 (3)
1
1
1
x
x
high Z
OFF
ON
ON
ON
OFF
OFF
Device
Disabled
x
0
x
x
Thermal
Protection
Activated
0
x
x
x
Pulsed-Echo
Mode (1)
CW Mode-0 (2)
Note 1:
2:
3:
4:
other than 011
RTZ+
(4)
0
1
1
x
x
x
x
high Z
OFF
OFF
ON
x
x
x
x
high Z
OFF
OFF
ON
In Pulsed-Echo mode, low duty cycle must be used due to the IC power dissipation limit.
When PWS = 0, VPP1/VNN1 output current is reduced for low-voltage CW mode-0. VPP0/VNN0 output current is
unaffected when PWS = 1, as in Pulsed-Echo mode.
In CW MODE = 1, the CWSW is turned on to use external CW waveform at CWIN, if the channel
SEL = NEG = POS = 0.
When SEL = 0, NEG = 1, POS = 1, the channel is in Receiving mode (RTZ+).
DS20005639A-page 12
 2016 Microchip Technology Inc.
HV7321
1.1
TYPICAL TIMING DIAGRAMS
Figure 1-1 shows the timing of control inputs and RTZ,
T/R and RXDMP switches per each channel of the
HV7321.
Upon the completion of a receiving period, an RTZ
period (SEL, NEG, POS = 000) should be asserted
before transmitting again.
SEL input
NEG input
POS input
001
tdr1
TX
output
010
tdf2
000
tdr3
010
tdf1
001
tdr2
tdf3
101
tdr4
tr1
100
tdr6
110
tdf4
101
tdr5
tdf6
tf5
tr6
tf4
tr5
tf6
110
000
tr4
tr3
tf2
FIGURE 1-1:
110
tdf5
tr2
tf1
tf3
Logic Input Timing Diagram.
B-Mode
PWS input
tMC
CW-mode
SEL input
011
NEG input
POS input
000
001 010
VPP0
000
101
011
VPP1
TX output
RTZ
RTZ
RTZ+
RTZ+
011
VNN0
tRTZSW(OFF)
RTZSW switch
RTZ
VNN1 000
ON
OFF
ON
tTRSW(ON)
OFF
ON
tTRSW(OFF)
TRSW switch
ON
tRXDMP(OFF)
tRXDMP(ON)
ON
OFF
RXDMP switch
MODE
Input
SEL Input
NEG Input
POS Input
HV7321
Tx Output
RTZ
OFF
TX time
RX time
FIGURE 1-2:
tRTZSW(ON)
RX time
TX Output Timing Diagram.
MODE = 1
MODE = 0
External CW source
000
000
Per Ch CW
Delay in external CW source
External CW Source
CW end
VCW+
Hi-Z
RTZ
External CW Source
VCW-
FIGURE 1-3:
Timing Diagram of HV7321 TX Output and Switches in CW Mode-1 Driven by
External CW Source.
 2016 Microchip Technology Inc.
DS20005639A-page 13
HV7321
NOTES:
DS20005639A-page 14
 2016 Microchip Technology Inc.
HV7321
2.0
TYPICAL PERFORMANCE CURVES
The graphs and tables provided following this note are a statistical summary based on a limited number of
samples and are provided for informational purposes only. The performance characteristics listed herein
are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified
operating range (e.g., outside specified power supply range) and therefore outside the warranted range.
0.5
50
0.4
40
0.3
30
IDDQ (ȝA)
ILLQ (ȝA)
Note:
0.2
0.1
0
10
0
25
50
Temperature (°C)
75
0
100
ILLQ vs. Temperature.
4
0
3
-1
2
25
50
Temperature (°C)
75
100
IDDQ vs. Temperature.
-2
-3
1
0
0
FIGURE 2-4:
INN0Q (ȝA)
IPP0Q (ȝA)
FIGURE 2-1:
0
25
50
Temperature (°C)
75
-4
100
IPP0Q vs. Temperature.
FIGURE 2-2:
0
25
50
Temperature (°C)
75
100
INN0Q vs. Temperature.
FIGURE 2-5:
3
0
-1
2
INN1Q (ȝA)
IPP1Q (ȝA)
20
1
-2
-3
0
0
FIGURE 2-3:
25
50
Temperature (°C)
75
IPP1Q vs. Temperature.
 2016 Microchip Technology Inc.
100
-4
0
FIGURE 2-6:
25
50
Temperature (°C)
75
100
INN1Q vs. Temperature.
DS20005639A-page 15
HV7321
100
A
B
80
Voltage (V)
60
40
20
0
-20
-40
-60
-80
-100
0
0.1
0.2
Time (µs)
0.3
0.4
FIGURE 2-7:
TX Output Waveform,
1-Cycle 5 MHz with 220 pF//1K Load.
20
A+B
A-B
HD2 = -52.9 dB
Amplitude (dB)
10
0
-10
-20
-30
-40
-50
-60
0
5
10
15
20
Frequency (MHz)
25
30
FIGURE 2-8:
TX Output HD2, 1-Cycle
Inverting, 5 MHz with 220pF//1K Load.
DS20005639A-page 16
 2016 Microchip Technology Inc.
HV7321
3.0
PIN DESCRIPTIONS
The descriptions of the pins are listed in Table 3-1.
TABLE 3-1:
PIN FUNCTION TABLE
Pin
Symbol
Description
1
CWIN0
External CW input for channel 0
2
SEL1
SEL input logic pin selects transmission high-voltage rails for channel 1. If SEL = 0,
select VPP0/VNN0. If SEL = 1, select VPP1/VNN1. See Table 1-1.
3
NEG1
NEG input logic pin turns on/off corresponding output N-channel MOSFET for
channel 1. See Table 1-1.
4
POS1
POS input logic pin turns on/off corresponding output P-channel MOSFET for channel 1.
See Table 1-1.
5
CWIN1
External CW input for channel 1
6
OEN
Output enable logic input pin. When OEN = VLL, the transmitter outputs are enabled.
When OEN = 0, the transmitter outputs are disabled.
7
PWS
Logic input pin. When PWS = 0, the output FETs for VPP1 and VNN1 are scaled down to
reduce the output current for CW Mode-0.
8
CLK
Re-timing clock input pin. Connect CLK to ground for transparent mode.
9, 22, 59
GND
Ground
10
VLL
Input logic power supply pin
11
REN
Enable pin for the built-in voltage regulators.See section Section 4.3 “Operation
Modes” for details.
12
SEL2
SEL input logic pin selects transmission high-voltage rails for channel 2. If SEL = 0,
select VPP0/VNN0. If SEL = 1, select VPP1/VNN1. See Table 1-1.
13
NEG2
NEG input logic pin turns on/off corresponding output N-channel MOSFET for
channel 2. See Table 1-1.
14
POS2
POS input logic pin turns on/off corresponding output P-channel MOSFET for channel 2.
See Table 1-1.
15
CWIN2
External CW input for channel 2
16
SEL3
SEL input logic pin selects transmission high-voltage rails for channel 3. If SEL = 0,
select VPP0/VNN0. If SEL = 1, select VPP1/VNN1. See Table 1-1.
17
NEG3
NEG input logic pin turns on/off corresponding output N-channel MOSFET for
channel 3. See Table 1-1.
18
POS3
POS input logic pin turns on/off corresponding output P-channel MOSFET for channel 3.
See Table 1-1.
19
CWIN3
External CW input for channel 3
20
OTPN
Temperature sensor open drain output
21, 60
VDD
+5V supply
23
VGP
+10V supply pin for the linear regulator
24, 25, 56, 57
VPP0
Positive high-voltage supply pin. VPP0 must be equal to or greater than VPP1.
26, 55
CPF0
Internal linear regulator output pin. Connect 2 µF 10V capacitor to VPP0.
27, 54
CNF0
Internal linear regulator output pin. Connect 2 µF 10V capacitor to VNN0.
28, 29, 52, 53
VNN0
Negative high-voltage supply pin. VNN0 must be equal to or more negative than VNN1,2
30, 51
VNN2
Negative high-voltage supply pin. VNN2 connects to the most negative supply rail.
31, 50
VNN1
Negative high-voltage supply pin. VNN1 must be equal to or less negative than VNN0.
32, 49
CNF1
Internal linear regulator output pin. Connect 2 µF 10V capacitor to VNN1.
33, 48
CPF1
Internal linear regulator output pin. Connect 2 µF 10V capacitor to VPP1.
34, 47
VPP1
Positive high voltage supply VPP1. Must be equal to or lower than VPP0.
35
TX3
Channel 3 transmitter output pin
 2016 Microchip Technology Inc.
DS20005639A-page 17
HV7321
TABLE 3-1:
PIN FUNCTION TABLE (CONTINUED)
Pin
Symbol
Description
36
RX3
Channel 3 T/R switch output
37, 44
RGND
Power ground
38
RX2
Channel 2 T/R switch output
39
TX2
40
CNEG
Internal linear regulator output pin. Connect 1 µF 10V capacitor to GND.
Channel 2 transmitter output pin
41
CPOS
Internal linear regulator output pin. Connect 1 µF 10V capacitor to GND.
42
TX1
Channel 1 transmitter output pin
43
RX1
Channel 1 T/R switch output
45
RX0
Channel 0 T/R switch output
46
TX0
Channel 0 transmitter output pin
58
VGN
-10V supply pin for the linear regulator
61
MODE
CW Mode selection pin. See section Section 4.3 “Operation Modes”.
62
SEL0
SEL input logic pin selects transmission high-voltage rails for channel 0. If SEL = 0,
select VPP0/VNN0. If SEL = 1, select VPP1/VNN1. See Table 1-1.
63
NEG0
NEG input logic pin turns on/off corresponding output N-channel MOSFET for
channel 0. See Table 1-1.
64
POS0
POS input logic pin turns on/off corresponding output P-channel MOSFET for channel 0.
See Table 1-1.
Thermal Pad
VSUB
Connect to ground.
DS20005639A-page 18
 2016 Microchip Technology Inc.
HV7321
4.0
DEVICE DESCRIPTION
4.2
4.1
Overview
Powering up/down in any arbitrary sequence will not
cause any damage to the device. The powering-up
sequences in Table 4-1 are only recommended in order
to minimize possible in-rush current. Figure 4-1 shows
the timing diagram of related signals.
The HV7321 is a 4-channel, 5-level ultrasound
transmitter with built-in T/R switches, output protection
diodes and clamp diodes.
The HV7321 can provide up to 2.6A and the output
voltage swing can be up to 80V.
The HV7321 supports both Transparent and Re-Timing
mode. The re-timing clock frequency can support up
to 220 MHz. The re-timing feature helps reduce the
output jitter introduced by the driving FPGA.
Recommended Power-up
Sequence
TABLE 4-1:
POWER-UP SEQUENCE
Step
Power-Up Description
1
VLL ON with logic signal low
2
VDD, VGP and VGN ON
3
REN = 1
4
VPP0,1 and VNN0,1 ON
5
OEN = 1 & Logic control signal active
VLL input
VDD > VDDUVON
VDD input
Internal VDD Power-Good Signal
PGD internal
VGP input
|VGN|
VPP input
|VNN|
REN input
(Power Saving)
OEN input
VCPOS output
VCNEG output
VPP ࡳ VCPF
VCNF ࡳ VNN
(3V)
FIGURE 4-1:
4.3
Ready to Work
tOEN_ON
Power-On Events and Power-Saving Time Diagram.
4.3.2
Operation Modes
There are five modes of operation: Device Disabled,
Output Disabled, Pulsed-Echo Mode, CW Mode-0 and
CW Mode-1.
4.3.1
DEVICE ENABLE MODE
In Device Disabled mode, the regulators are turned off
when REN is low. The regulators are ON when
REN = VLL. All regulators are ON except VNEG and
VPOS for power saving when REN = 1. When REN is
low, OEN = X (OEN = 1 or 0) since device is disabled.
Refer to Table 4-2.
TABLE 4-2:
OUTPUT HIGH Z MODE
In Output Disabled mode, regulators are enabled
REN = 1 and OEN = 0 (Output Enable logic input) and
output pins (TX0-3) are in high Z state. OEN = 1
enables the outputs.
4.3.3
PULSED-ECHO MODE
Pulsed-Echo mode (B-mode) enables the 5-level
waveform generation. OEN = 1, MODE = 0, and PWS =
1 enable Pulsed-Echo mode after HV7321 powers on.
SEL/NEG/POS inputs of desired channel determine
the corresponding TX Output pulse.
REN & OEN LOGIC INPUTS
REN
OEN
Device
TX Output
0
X
Disabled
high Z
1
0
Enabled
high Z
1
1
Enabled
ON
 2016 Microchip Technology Inc.
DS20005639A-page 19
HV7321
4.3.4
CW MODE-0
TABLE 4-3:
CW Mode-0 enables continuous wave mode provided
solely by the HV7321. OEN = 1, MODE = 0 and
PWS = 0 activate CW Mode-0. FPGA selects VPP1 and
VNN1 amplitudes via SEL/NEG/POS inputs.
4.3.5
0
0
CW Mode-0
0
1
Pulsed-Echo
1
X
CW Mode-1
State
+5V
+2.5V
VLL
CTRN[3:0]
External CW Beamformer Option
(CW Mode-1)
The MD1730 supports both differential and
single-ended signals using CLKP and CLKN inputs.
The MD1730 enables setting the CW output phase
delay and frequency for channels via SPI. Please refer
to the MD1730 data sheet for more information.
MODE & PWS LOGIC INPUTS
PWS
State
One suggested external CW beamformer is the
MD1730, which has very low phase noise and
8-channel CW output. A pair of HV7321s can operate
with the MD1730 as an 8-channel CW waveform
generator. See Figure 4-2.
CW Mode-1 is enabled using an external CW signal
source for continuous wave mode. OEN = 1 and
MODE = 1 activate CW Mode-1. External CW signals
can connect to any of CWIN0-3. In this mode, the
CW signal source also feeds the CLK input. See
Table 4-3 for details.
Mode
PWS
The HV7321 has built-in CW switches that allow the
use of an external CW beamformer to further minimize
jitter and phase noise on CW waveforms. This mode is
called CW Mode-1.
CW MODE-1
TABLE 4-3:
Mode
4.3.5.1
In theory, VPP0 and VNN0 can be selected but this is
strongly discouraged since VPP0 and VNN0 usage
increases power consumption and causes excessive
heating in CW Mode-0.
MODE & PWS LOGIC INPUTS
+10V
VGP
VPP
OEN
0V to +80V
1 of 4 channles
REN
VPP0
MODE
TX FPGAI/Os
PWS
VPF0
VNF0
OTPN
OTPN
DT[63:0]
0V to -80V
VNN0
VPP1
SEL0
0V to +80V
NEG0
+2.5V +5V
+1V to +8V
+10V
POS0
VLL VPP
CBE0,1
CLK
CLK
SCK
SDI
SDO
CS
SPIM
EN
TXRW
VGP
VLL
CBE1
CLK
SEL3
CKB0
CBE0
VLL
VCW+
VPF
VNF
1 of 8
channels
VCW-
FIGURE 4-2:
DS20005639A-page 20
CW0
CW1
CW2
CW3
to other
ICs
TRSW
RX0
TRSW
RX0
CLK
RXDMP
CWIN0
CWIN1
CWIN2
CWIN3
CWSW
HV7321
RGND
RGND
TX1-3
RX1-3
CW4~7
MD1730
-10V
to next
HV7321
CLK
X0
RTZSW
POS3
CKB1
SPI
CW
Fre. Dvdr
& Phase
Delay
TX0
NEG3
CLK
SUB
GND DAP VGN
0V to -80V
VNN1
CPF VCW+
LVDS
CLK
other CW
channels
VPF1
VNF1
Decode
& Level
Shift
SUB
CNF VCW-
to next
HV7321
CWIN03
-1V to -8V
GND
VSUB
VGN
-10V
HV7321 + MD1730 Integration.
 2016 Microchip Technology Inc.
HV7321
4.4
High Temperature Protection
When overtemperature is detected, OTPN = 0 and all
outputs are high Z regardless of OEN and the other
logic control inputs. Table 4-4 shows the relationship
between REN, OEN inputs, OTPN output, and the
corresponding device status.
TABLE 4-4:
REN, OEN, OTPN VS.
DEVICE STATUS
OTPN
REN
OEN
Device
TX Output
0
0
X
Disabled
high Z
0
1
X
Enabled
high Z
1
0
X
Disabled
high Z
1
1
0
Enabled
high Z
1
1
1
Enabled
ON
 2016 Microchip Technology Inc.
DS20005639A-page 21
HV7321
NOTES:
DS20005639A-page 22
 2016 Microchip Technology Inc.
HV7321
5.0
PACKAGING INFORMATION
5.1
Package Marking Information
64-Lead VQFN (9 x 9 x 1.0 mm)
Example
HV7321K6 e3
1642256
Legend:XX...XProduct Code or Customer-specific information
YYear code (last digit of calendar year)
YYYear code (last 2 digits of calendar year)
WWWeek code (week of January 1 is week ‘01’)
NNNAlphanumeric traceability code
3
ePb-free
JEDEC designator for Matte Tin (Sn)
*This package is Pb-free. The Pb-free JEDEC designator (
can be found on the outer packaging for this package.
Note:
)
e3
In the event the full Microchip part number cannot be marked on one line, it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information. Package may or may not include
the corporate logo.
 2016 Microchip Technology Inc.
DS20005639A-page 23
HV7321
Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging.
DS20005639A-page 24
 2016 Microchip Technology Inc.
HV7321
APPENDIX A:
REVISION HISTORY
Revision A (October 2016)
• Original Release of this Document.
 2016 Microchip Technology Inc.
DS20000000A-page 25
HV7321
NOTES:
DS20000000A-page 26
 2016 Microchip Technology Inc.
HV7321
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.
PART NO.
XX
-X
Device
Package
Environmental
Device:
HV7321: 4-Ch. 5-Level ±80V High-Voltage Ultrasound Pulser
with T/R Switches
Package:
K6 =
Very Thin Plastic Quad Flat Pack, No Lead Package,
9.00 x9.00 x1.0 mm Body, 0.50 mm Pitch, 64-Lead
(VQFN)
Environmental:
G =
Lead (Pb)-free/ROHS-compliant package
 2016 Microchip Technology Inc.
Examples:
a)
HV7321K6-G: 4-Ch. 5-Level ±80V High-Voltage
Ultrasound Pulser with T/R Switches
64LD 9x9 mm VQFN package
DS20000000A-page 27
HV7321
NOTES:
DS20000000A-page 28
 2016 Microchip Technology Inc.
Note the following details of the code protection feature on Microchip devices:
•
Microchip products meet the specification contained in their particular Microchip Data Sheet.
•
Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.
•
There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
•
Microchip is willing to work with the customer who is concerned about the integrity of their code.
•
Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.
Trademarks
The Microchip name and logo, the Microchip logo, AnyRate,
dsPIC, FlashFlex, flexPWR, Heldo, JukeBlox, KeeLoq,
KeeLoq logo, Kleer, LANCheck, LINK MD, MediaLB, MOST,
MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC32 logo,
RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O
are registered trademarks of Microchip Technology
Incorporated in the U.S.A. and other countries.
ClockWorks, The Embedded Control Solutions Company,
ETHERSYNCH, Hyper Speed Control, HyperLight Load,
IntelliMOS, mTouch, Precision Edge, and QUIET-WIRE are
registered trademarks of Microchip Technology Incorporated
in the U.S.A.
Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut,
BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM,
dsPICDEM.net, Dynamic Average Matching, DAM, ECAN,
EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-Chip
Connectivity, JitterBlocker, KleerNet, KleerNet logo, MiWi,
motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB,
MPLINK, MultiTRAK, NetDetach, Omniscient Code
Generation, PICDEM, PICDEM.net, PICkit, PICtail,
PureSilicon, RightTouch logo, REAL ICE, Ripple Blocker,
Serial Quad I/O, SQI, SuperSwitcher, SuperSwitcher II, Total
Endurance, TSHARC, USBCheck, VariSense, ViewSpan,
WiperLock, Wireless DNA, and ZENA are trademarks of
Microchip Technology Incorporated in the U.S.A. and other
countries.
SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.
Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.
QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV
== ISO/TS 16949 ==
 2016 Microchip Technology Inc.
Silicon Storage Technology is a registered trademark of
Microchip Technology Inc. in other countries.
GestIC is a registered trademarks of Microchip Technology
Germany II GmbH & Co. KG, a subsidiary of Microchip
Technology Inc., in other countries.
All other trademarks mentioned herein are property of their
respective companies.
© 2016, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.
ISBN: 978-1-5224-1033-1
DS20000000A-page 29
Worldwide Sales and Service
AMERICAS
ASIA/PACIFIC
ASIA/PACIFIC
EUROPE
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
Germany - Dusseldorf
Tel: 49-2129-3766400
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
Austin, TX
Tel: 512-257-3370
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116
China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760
India - Pune
Tel: 91-20-3019-1500
Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310
Japan - Tokyo
Tel: 81-3-6880- 3770
Fax: 81-3-6880-3771
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Venice
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Poland - Warsaw
Tel: 48-22-3325737
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
Taiwan - Kaohsiung
Tel: 886-7-213-7828
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350
06/23/16
DS20000000A-page 30
 2016 Microchip Technology Inc.
Similar pages