TI1 MSP430F2410TRGCT Mixed signal microcontroller Datasheet

MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
MIXED SIGNAL MICROCONTROLLER
FEATURES
1
•
•
2
•
•
•
•
•
•
•
Low Supply-Voltage Range, 1.8 V to 3.6 V
Ultra-Low Power Consumption
– Active Mode: 270 µA at 1 MHz, 2.2 V
– Standby Mode (VLO): 0.3 µA
– Off Mode (RAM Retention): 0.1 µA
Ultra-Fast Wake-Up From Standby Mode in
Less Than 1 µs
16-Bit RISC Architecture, 62.5-ns Instruction
Cycle Time
Basic Clock Module Configurations:
– Internal Frequencies up to 16 MHz
– Internal Very Low-Power LF Oscillator
– 32-kHz Crystal
– Internal Frequencies up to 16 MHz With
Four Calibrated Frequencies to ±1%
– Resonator
– External Digital Clock Source
– External Resistor
12-Bit Analog-to-Digital (A/D) Converter With
Internal Reference, Sample-and-Hold, and
Autoscan Feature
16-Bit Timer_A With Three Capture/Compare
Registers
16-Bit Timer_B With Seven Capture/Compare
With Shadow Registers
Four Universal Serial Communication
Interfaces (USCI)
– USCI_A0 and USCI_A1
– Enhanced UART Supporting Auto-Baudrate
Detection
– IrDA Encoder and Decoder
– Synchronous SPI
– USCI_B0 and USCI_B1
– I2C
– Synchronous SPI
•
•
•
•
•
•
•
•
(1)
On-Chip Comparator
Supply Voltage Supervisor/Monitor With
Programmable Level Detection
Brownout Detector
Bootstrap Loader
Serial Onboard Programming, No External
Programming Voltage Needed, Programmable
Code Protection by Security Fuse
Family Members Include:
– MSP430F233
– 8KB+256B Flash Memory,
– 1KB RAM
– MSP430F235
– 16KB+256B Flash Memory
– 2KB RAM
– MSP430F247, MSP430F2471 (1)
– 32KB+256B Flash Memory
– 4KB RAM
– MSP430F248, MSP430F2481
– 48KB+256B Flash Memory
– 4KB RAM
– MSP430F249, MSP430F2491
– 60KB+256B Flash Memory
– 2KB RAM
– MSP430F2410
– 56KB+256B Flash Memory
– 4KB RAM
Available in 64-Pin QFP and 64-Pin QFN
Packages (See Available Options)
For Complete Module Descriptions, See
MSP430x2xx Family User’s Guide, Literature
Number SLAU144
The MSP430F24x1 devices are identical to the MSP430F24x
devices, with the exception that the ADC12 module is not
implemented on the MSP430F24x1.
1
2
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
MSP430 is a trademark of Texas Instruments.
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.
DESCRIPTION
The Texas Instruments MSP430™ family of ultra-low power microcontrollers consists of several devices featuring
different sets of peripherals targeted for various applications. The architecture, combined with five low-power
modes, is optimized to achieve extended battery life in portable measurement applications. The device features a
powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency.
The calibrated digitally controlled oscillator (DCO) allows wake-up from low-power modes to active mode in less
than 1 µs.
The MSP430F23x/24x(1)/2410 series are microcontroller configurations with two built-in 16-bit timers, a fast
12-bit A/D converter (not MSP430F24x1), a comparator, four (two in MSP430F23x) universal serial
communication interface (USCI) modules, and up to 48 I/O pins. The MSP430F24x1 devices are identical to the
MSP430F24x devices, with the exception that the ADC12 module is not implemented. The MSP430F23x devices
are identical to the MSP430F24x devices, with the exception that a reduced Timer_B, one USCI module, and
less RAM are integrated.
Typical applications include sensor systems, industrial control applications, hand-held meters, etc.
Table 1. Available Options
TA
-40°C to 105°C
(1)
(2)
PACKAGED DEVICES (1) (2)
PLASTIC 64-PIN QFP (PM)
PLASTIC 64-PIN QFN (RGC)
MSP430F233TPM
MSP430F233TRGC
MSP430F235TPM
MSP430F235TRGC
MSP430F247TPM
MSP430F247TRGC
MSP430F2471TPM
MSP430F2471TRGC
MSP430F248TPM
MSP430F248TRGC
MSP430F2481TPM
MSP430F2481TRGC
MSP430F249TPM
MSP430F249TRGC
MSP430F2491TPM
MSP430F2491TRGC
MSP430F2410TPM
MSP430F2410TRGC
For the most current package and ordering information, see the Package Option Addendum at the end
of this document, or see the TI web site at www.ti.com.
Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.
Development Tool Support
All MSP430 microcontrollers include an Embedded Emulation Module (EEM) allowing advanced debugging and
programming through easy to use development tools. Recommended hardware options include the following:
• Debugging and Programming Interface
– MSP-FET430UIF (USB)
– MSP-FET430PIF (Parallel Port)
• Debugging and Programming Interface with Target Board
– MSP-FET430U64 (PM package)
• Standalone Target Board
– MSP-TS430PM64 (PM package)
• Production Programmer
– MSP-GANG430
2
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
AVCC
DVSS
AVSS
P6.2/A2
P6.1/A1
P6.0/A0
RST/NMI
TCK
TMS
TDI/TCLK
TDO/TDI
XT2IN
XT2OUT
P5.7/TBOUTH/SVSOUT
P5.6/ACLK
P5.5/SMCLK
Device Pinout, MSP430F23x
PM OR RGC PACKAGE
(TOP VIEW)
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
1
2
47
3
46
4
5
45
6
43
7
42
44
8
41
MSP430F23x
9
40
10
39
11
38
12
37
13
36
14
35
15
34
16
33
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
P5.4/MCLK
P5.3
P5.2
P5.1
P5.0
P4.7/TBCLK
P4.6
P4.5
P4.4
P4.3
P4.2/TB2
P4.1/TB1
P4.0/TB0
P3.7
P3.6
P3.5/UCA0RXD/UCA0SOMI
P1.5/TA0
P1.6/TA1
P1.7/TA2
P2.0/ACLK/CA2
P2.1/TAINCLK/CA3
P2.2/CAOUT/TA0/CA4
P2.3/CA0/TA1
P2.4/CA1/TA2
P2.5/ROSC/CA5
P2.6/ADC12CLK/CA6
P2.7/TA0/CA7
P3.0/UCB0STE/UCA0CLK
P3.1/UCB0SIMO/UCB0SDA
P3.2/UCB0SOMI/UCB0SCL
P3.3/UCB0CLK/UCA0STE
P3.4/UCA0TXD/UCA0SIMO
DVCC
P6.3/A3
P6.4/A4
P6.5/A5
P6.6/A6
P6.7/A7/SVSIN
VREF+
XIN
XOUT
VeREF+
VREF-/VeREFP1.0/TACLK/CAOUT
P1.1/TA0
P1.2/TA1
P1.3/TA2
P1.4/SMCLK
Copyright © 2007–2011, Texas Instruments Incorporated
3
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
AVCC
DVSS
AVSS
P6.2/A2
P6.1/A1
P6.0/A0
RST/NMI
TCK
TMS
TDI/TCLK
TDO/TDI
XT2IN
XT2OUT
P5.7/TBOUTH/SVSOUT
P5.6/ACLK
P5.5/SMCLK
Device Pinout, MSP430F24x, MSP430F2410
PM OR RGC PACKAGE
(TOP VIEW)
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
1
2
47
3
46
4
5
45
6
43
44
7
42
8
MSP430F2410,
MSP430F24x
9
41
40
10
39
11
38
12
37
13
36
14
35
15
34
16
33
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
P5.4/MCLK
P5.3/UCB1CLK/UCA1STE
P5.2/UCB1SOMI/UCB1SCL
P5.1/UCB1SIMO/UCB1SDA
P5.0/UCB1STE/UCA1CLK
P4.7/TBCLK
P4.6/TB6
P4.5/TB5
P4.4/TB4
P4.3/TB3
P4.2/TB2
P4.1/TB1
P4.0/TB0
P3.7/UCA1RXD/UCA1SOMI
P3.6/UCA1TXD/UCA1SIMO
P3.5/UCA0RXD/UCA0SOMI
P1.5/TA0
P1.6/TA1
P1.7/TA2
P2.0/ACLK/CA2
P2.1/TAINCLK/CA3
P2.2/CAOUT/TA0/CA4
P2.3/CA0/TA1
P2.4/CA1/TA2
P2.5/ROSC/CA5
P2.6/ADC12CLK/CA6
P2.7/TA0/CA7
P3.0/UCB0STE/UCA0CLK
P3.1/UCB0SIMO/UCB0SDA
P3.2/UCB0SOMI/UCB0SCL
P3.3/UCB0CLK/UCA0STE
P3.4/UCA0TXD/UCA0SIMO
DVCC
P6.3/A3
P6.4/A4
P6.5/A5
P6.6/A6
P6.7/A7/SVSIN
VREF+
XIN
XOUT
VeREF+
VREF-/VeREFP1.0/TACLK/CAOUT
P1.1/TA0
P1.2/TA1
P1.3/TA2
P1.4/SMCLK
4
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
AVCC
DVSS
AVSS
P6.2
P6.1
P6.0
RST/NMI
TCK
TMS
TDI/TCLK
TDO/TDI
XT2IN
XT2OUT
P5.7/TBOUTH/SVSOUT
P5.6/ACLK
P5.5/SMCLK
Device Pinout, MSP430F24x1
PM OR RGC PACKAGE
(TOP VIEW)
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
1
2
47
3
46
4
5
45
6
43
7
42
44
8
41
MSP430F24x1
9
40
10
39
11
38
12
37
13
36
14
35
15
34
16
33
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
P5.4/MCLK
P5.3/UCB1CLK/UCA1STE
P5.2/UCB1SOMI/UCB1SCL
P5.1/UCB1SIMO/UCB1SDA
P5.0/UCB1STE/UCA1CLK
P4.7/TBCLK
P4.6/TB6
P4.5/TB5
P4.4/TB4
P4.3/TB3
P4.2/TB2
P4.1/TB1
P4.0/TB0
P3.7/UCA1RXD/UCA1SOMI
P3.6/UCA1TXD/UCA1SIMO
P3.5/UCA0RXD/UCA0SOMI
P1.5/TA0
P1.6/TA1
P1.7/TA2
P2.0/ACLK/CA2
P2.1/TAINCLK/CA3
P2.2/CAOUT/TA0/CA4
P2.3/CA0/TA1
P2.4/CA1/TA2
P2.5/ROSC/CA5
P2.6/ADC12CLK/CA6
P2.7/TA0/CA7
P3.0/UCB0STE/UCA0CLK
P3.1/UCB0SIMO/UCB0SDA
P3.2/UCB0SOMI/UCB0SCL
P3.3/UCB0CLK/UCA0STE
P3.4/UCA0TXD/UCA0SIMO
DVCC
P6.3
P6.4
P6.5
P6.6
P6.7/A7/SVSIN
VREF+
XIN
XOUT
DVSS
DVSS
P1.0/TACLK/CAOUT
P1.1/TA0
P1.2/TA1
P1.3/TA2
P1.4/SMCLK
Copyright © 2007–2011, Texas Instruments Incorporated
5
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Functional Block Diagram, MSP430F23x
XIN/
XT2IN
XOUT/
XT2OUT
2
DVCC
DVSS
AVCC
AVSS
2
P1.x/P2.x
P3.x/P4.x
P5.x/P6.x
2x8
4x8
ACLK
Oscillators
Basic Clock SMCLK
System+
Flash
RAM
16kB
8kB
2kB
1kB
MCLK
16MHz
CPU
incl. 16
Registers
8
Channels
Ports
P1/P2
Ports
P3/P4
P5/P6
2x8 I/O
Interrupt
capability
4x8 I/O
MAB
MDB
Emulation
JTAG
Interface
ADC12
12-Bit
Hardware
Multiplier
BOR
SVS/SVM
MPY,
MPYS,
MAC,
MACS
Timer_B3
Watchdog
WDT+
15/16-Bit
Timer_A3
3 CC
Registers
3 CC
Registers,
Shadow
Reg
USCI A0
UART/LIN,
IrDA, SPI
Comp_A+
USCI B0
SPI, I2C
RST/NMI
6
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Functional Block Diagram, MSP430F24x, MSP430F2410
XIN/
XT2IN
XOUT/
XT2OUT
2
DVCC
DVSS
AVCC
AVSS
2
P1.x/P2.x
P3.x/P4.x
P5.x/P6.x
2x8
4x8
ACLK
Oscillators
Basic Clock SMCLK
System+
MCLK
16MHz
CPU
incl. 16
Registers
Flash
RAM
60kB
56kB
48kB
32kB
2kB
4kB
4kB
4kB
2x8 I/O
Interrupt
capability
8
Channels
Ports
P3/P4
P5/P6
4x8 I/O
MAB
MDB
Emulation
JTAG
Interface
Ports
P1/P2
ADC12
12-Bit
Hardware
Multiplier
BOR
SVS/SVM
MPY,
MPYS,
MAC,
MACS
Timer_B7
Watchdog
WDT+
15/16-Bit
Timer_A3
3 CC
Registers
7 CC
Registers,
Shadow
Reg
USCI A0
UART/LIN,
IrDA, SPI
USCI A1
UART/LIN,
IrDA, SPI
USCI B0
SPI, I2C
USCI B1
SPI, I2C
Comp_A+
RST/NMI
Copyright © 2007–2011, Texas Instruments Incorporated
7
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Functional Block Diagram, MSP430F24x1
XIN/
XT2IN
XOUT/
XT2OUT
2
DVCC
DVSS
AVCC
AVSS
2
P1.x/P2.x
P3.x/P4.x
P5.x/P6.x
2x8
4x8
ACLK
Oscillators
Basic Clock SMCLK
System+
MCLK
16MHz
CPU
incl. 16
Registers
Flash
RAM
60kB
48kB
32kB
2kB
4kB
4kB
Ports
P3/P4
P5/P6
2x8 I/O
Interrupt
capability
4x8 I/O
MAB
MDB
Emulation
JTAG
Interface
Ports
P1/P2
Hardware
Multiplier
BOR
SVS/SVM
MPY,
MPYS,
MAC,
MACS
Timer_B7
Watchdog
WDT+
15/16-Bit
Timer_A3
3 CC
Registers
7 CC
Registers,
Shadow
Reg
USCI A0
UART/LIN,
IrDA, SPI
USCI A1
UART/LIN,
IrDA, SPI
USCI B0
SPI, I2C
USCI B1
SPI, I2C
Comp_A+
RST/NMI
8
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Table 2. Terminal Functions, MSP430F23x
TERMINAL
NAME
NO.
I/O
DESCRIPTION
AVCC
64
Analog supply voltage, positive. Supplies only the analog portion of ADC12.
AVSS
62
Analog supply voltage, negative. Supplies only the analog portion of ADC12.
DVCC
1
Digital supply voltage, positive. Supplies all digital parts.
DVSS
63
P1.0/TACLK/CAOUT
12
I/O
General-purpose digital I/O / Timer_A, clock signal TACLK input/Comparator_A output
P1.1/TA0
13
I/O
General-purpose digital I/O / Timer_A, capture: CCI0A input, compare: Out0 output/BSL transmit
P1.2/TA1
14
I/O
General-purpose digital I/O / Timer_A, capture: CCI1A input, compare: Out1 output
P1.3/TA2
15
I/O
General-purpose digital I/O / Timer_A, capture: CCI2A input, compare: Out2 output
P1.4/SMCLK
16
I/O
General-purpose digital I/O / SMCLK signal output
P1.5/TA0
17
I/O
General-purpose digital I/O / Timer_A, compare: Out0 output
P1.6/TA1
18
I/O
General-purpose digital I/O / Timer_A, compare: Out1 output
P1.7/TA2
19
I/O
General-purpose digital I/O / Timer_A, compare: Out2 output
P2.0/ACLK/CA2
20
I/O
General-purpose digital I/O / ACLK output/Comparator_A input
P2.1/TAINCLK/CA3
21
I/O
General-purpose digital I/O / Timer_A, clock signal at INCLK
P2.2/CAOUT/TA0/CA4
22
I/O
General-purpose digital I/O / Timer_A, capture: CCI0B input/Comparator_A output/BSL
receive/Comparator_A input
P2.3/CA0/TA1
23
I/O
General-purpose digital I/O / Timer_A, compare: Out1 output/Comparator_A input
P2.4/CA1/TA2
24
I/O
General-purpose digital I/O / Timer_A, compare: Out2 output/Comparator_A input
P2.5/ROSC/CA5
25
I/O
General-purpose digital I/O / input for external resistor defining the DCO nominal frequency/Comparator_A
input
P2.6/ADC12CLK/CA6
26
I/O
General-purpose digital I/O / conversion clock - 12-bit ADC/Comparator_A input
P2.7/TA0/CA7
27
I/O
General-purpose digital I/O / Timer_A, compare: Out0 output/Comparator_A input
P3.0/UCB0STE/ UCA0CLK
28
I/O
General-purpose digital I/O / USCI_B0 slave transmit enable/USCI A0 clock input/output
P3.1/UCB0SIMO/UCB0SDA
29
I/O
General-purpose digital I/O / USCI_B0 slave in/master out in SPI mode, SDA I2C data in I2C mode
P3.2/UCB0SOMI/ UCB0SCL
30
I/O
General-purpose digital I/O / USCI_B0 slave out/master in in SPI mode, SCL I2C clock in I2C mode
P3.3/UCB0CLK/UCA0STE
31
I/O
General-purpose digital I/O / USCI_B0 clock input/output, USCI A0 slave transmit enable
P3.4/UCA0TXD/ UCA0SIMO
32
I/O
General-purpose digital I/O / USCI_A0 transmit data output in UART mode, slave data in/master out in SPI
mode
P3.5/UCA0RXD/
UCA0SOMI
33
I/O
General-purpose digital I/O / USCI_A0 receive data input in UART mode, slave data out/master in in SPI
mode
P3.6
34
I/O
General-purpose digital I/O
P3.7
35
I/O
General-purpose digital I/O
P4.0/TB0
36
I/O
General-purpose digital I/O / Timer_B, capture: CCI0A/B input, compare: Out0 output
P4.1/TB1
37
I/O
General-purpose digital I/O / Timer_B, capture: CCI1A/B input, compare: Out1 output
P4.2/TB2
38
I/O
General-purpose digital I/O / Timer_B, capture: CCI2A/B input, compare: Out2 output
P4.3
39
I/O
General-purpose digital I/O
P4.4
40
I/O
General-purpose digital I/O
P4.5
41
I/O
General-purpose digital I/O
P4.6
42
I/O
General-purpose digital I/O
P4.7/TBCLK
43
I/O
General-purpose digital I/O / Timer_B, clock signal TBCLK input
P5.0
44
I/O
General-purpose digital I/O
P5.1
45
I/O
General-purpose digital I/O
P5.2
46
I/O
General-purpose digital I/O
P5.3
47
I/O
General-purpose digital I/O
P5.4/MCLK
48
I/O
General-purpose digital I/O / main system clock MCLK output
P5.5/SMCLK
49
I/O
General-purpose digital I/O / submain system clock SMCLK output
P5.6/ACLK
50
I/O
General-purpose digital I/O / auxiliary clock ACLK output
P5.7/TBOUTH/SVSOUT
51
I/O
General-purpose digital I/O / switch all PWM digital output ports to high impedance - Timer_B TB0 to
TB6/SVS comparator output
P6.0/A0
59
I/O
General-purpose digital I/O / analog input A0 - 12-bit ADC
P6.1/A1
60
I/O
General-purpose digital I/O / analog input A1 - 12-bit ADC
P6.2/A2
61
I/O
General-purpose digital I/O / analog input A2 - 12-bit ADC
Digital supply voltage, negative. Supplies all digital parts.
Copyright © 2007–2011, Texas Instruments Incorporated
9
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Table 2. Terminal Functions, MSP430F23x (continued)
TERMINAL
NAME
NO.
I/O
DESCRIPTION
P6.3/A3
2
I/O
General-purpose digital I/O / analog input A3 - 12-bit ADC
P6.4/A4
3
I/O
General-purpose digital I/O / analog input A4 - 12-bit ADC
P6.5/A5
4
I/O
General-purpose digital I/O / analog input A5 - 12-bit ADC
P6.6/A6
5
I/O
General-purpose digital I/O / analog input A6 - 12-bit ADC
P6.7/A7/SVSIN
6
I/O
General-purpose digital I/O / analog input A7 - 12-bit ADC/SVS input
XT2OUT
52
O
Output terminal of crystal oscillator XT2
XT2IN
53
I
Input port for crystal oscillator XT2
RST/NMI
58
I
Reset input, nonmaskable interrupt input, or bootstrap loader start (in flash devices)
TCK
57
I
Test clock (JTAG). TCK is the clock input port for device programming test and bootstrap loader start.
TDI/TCLK
55
I
Test data input or test clock input. The device protection fuse is connected to TDI/TCLK.
TDO/TDI
54
I/O
TMS
56
I
Test mode select. TMS is used as an input port for device programming and test.
VeREF+
10
I
Input for an external reference voltage
VREF+
7
O
Output of positive terminal of the reference voltage in the ADC12
VREF-/VeREF-
11
I
Negative terminal for the reference voltage for both sources, the internal reference voltage, or an external
applied reference voltage
XIN
8
I
Input for crystal oscillator XT1. Standard or watch crystals can be connected.
XOUT
9
O
Output for crystal oscillator XT1. Standard or watch crystals can be connected.
NA
NA
QFN Pad
10
Test data output. TDO/TDI data output or programming data input terminal.
QFN package pad connection to DVSS recommended
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Table 3. Terminal Functions, MSP430F24x, MSP430F2410
TERMINAL
NAME
NO.
I/O
DESCRIPTION
AVCC
64
Analog supply voltage, positive terminal. Supplies only the analog portion of ADC12.
AVSS
62
Analog supply voltage, negative terminal. Supplies only the analog portion of ADC12.
DVCC
1
Digital supply voltage, positive terminal. Supplies all digital parts.
DVSS
63
P1.0/TACLK/CAOUT
12
I/O
General-purpose digital I/O / Timer_A, clock signal TACLK input/Comparator_A output
P1.1/TA0
13
I/O
General-purpose digital I/O / Timer_A, capture: CCI0A input, compare: Out0 output/BSL transmit
P1.2/TA1
14
I/O
General-purpose digital I/O / Timer_A, capture: CCI1A input, compare: Out1 output
P1.3/TA2
15
I/O
General-purpose digital I/O / Timer_A, capture: CCI2A input, compare: Out2 output
P1.4/SMCLK
16
I/O
General-purpose digital I/O / SMCLK signal output
P1.5/TA0
17
I/O
General-purpose digital I/O / Timer_A, compare: Out0 output
P1.6/TA1
18
I/O
General-purpose digital I/O / Timer_A, compare: Out1 output
P1.7/TA2
19
I/O
General-purpose digital I/O / Timer_A, compare: Out2 output
P2.0/ACLK/CA2
20
I/O
General-purpose digital I/O / ACLK output/Comparator_A input
P2.1/TAINCLK/CA3
21
I/O
General-purpose digital I/O / Timer_A, clock signal at INCLK
P2.2/CAOUT/TA0/CA4
22
I/O
General-purpose digital I/O / Timer_A, capture: CCI0B input / Comparator_A output/BSL
receive/Comparator_A input
P2.3/CA0/TA1
23
I/O
General-purpose digital I/O / Timer_A, compare: Out1 output / Comparator_A input
P2.4/CA1/TA2
24
I/O
General-purpose digital I/O / Timer_A, compare: Out2 output / Comparator_A input
P2.5/ROSC/CA5
25
I/O
General-purpose digital I/O / Input for external resistor defining the DCO nominal frequency / Comparator_A
input
P2.6/ADC12CLK/CA6
26
I/O
General-purpose digital I/O / Conversion clock - 12-bit ADC / Comparator_A input
P2.7/TA0/CA7
27
I/O
General-purpose digital I/O / Timer_A, compare: Out0 output / Comparator_A input
P3.0/UCB0STE/ UCA0CLK
28
I/O
General-purpose digital I/O / USCI_B0 slave transmit enable / USCI A0 clock input/output
P3.1/UCB0SIMO/UCB0SDA
29
I/O
General-purpose digital I/O / USCI_B0 slave in/master out in SPI mode, SDA I2C data in I2C mode
P3.2/UCB0SOMI/ UCB0SCL
30
I/O
General-purpose digital I/O / USCI_B0 slave out/master in in SPI mode, SCL I2C clock in I2C mode
P3.3/UCB0CLK/UCA0STE
31
I/O
General-purpose digital I/O / USCI_B0 clock input/output, USCI A0 slave transmit enable
P3.4/UCA0TXD/UCA0SIMO
32
I/O
General-purpose digital I/O / USCI_A- transmit data output in UART mode, slave data in/master out in SPI
mode
P3.5/UCA0RXD/
UCA0SOMI
33
I/O
General-purpose digital I/O / USCI_A0 receive data input in UART mode, slave data out/master in in SPI
mode
P3.6/UCA1TXD/UCA1SIMO
34
I/O
General-purpose digital I/O / USCI_A1 transmit data output in UART mode, slave data in/master out in SPI
mode
P3.7/UCA1RXD/
UCA1SOMI
35
I/O
General-purpose digital I/O / USCI_A1 receive data input in UART mode, slave data out/master in in SPI
mode
P4.0/TB0
36
I/O
General-purpose digital I/O / Timer_B, capture: CCI0A/B input, compare: Out0 output
P4.1/TB1
37
I/O
General-purpose digital I/O / Timer_B, capture: CCI1A/B input, compare: Out1 output
P4.2/TB2
38
I/O
General-purpose digital I/O / Timer_B, capture: CCI2A/B input, compare: Out2 output
P4.3/TB3
39
I/O
General-purpose digital I/O / Timer_B, capture: CCI3A/B input, compare: Out3 output
P4.4/TB4
40
I/O
General-purpose digital I/O / Timer_B, capture: CCI4A/B input, compare: Out4 output
P4.5/TB5
41
I/O
General-purpose digital I/O / Timer_B, capture: CCI5A/B input, compare: Out5 output
P4.6/TB6
42
I/O
General-purpose digital I/O / Timer_B, capture: CCI6A input, compare: Out6 output
P4.7/TBCLK
43
I/O
General-purpose digital I/O / Timer_B, clock signal TBCLK input
P5.0/UCB1STE/UCA1CLK
44
I/O
General-purpose digital I/O / USCI_B1 slave transmit enable / USCI_A1 clock input/output
P5.1/UCB1SIMO/UCB1SDA
45
I/O
General-purpose digital I/O / USCI_B1 slave in/master out in SPI mode, SDA I2C data in I2C mode
P5.2/UCB1SOMI/UCB1SCL
46
I/O
General-purpose digital I/O / USCI_B1 slave out/master in in SPI mode, SCL I2C clock in I2C mode
P5.3/UCB1CLK/UCA1STE
47
I/O
General-purpose digital I/O / USCI_B1 clock input/output, USCI_A1 slave transmit enable
P5.4/MCLK
48
I/O
General-purpose digital I/O / main system clock MCLK output
P5.5/SMCLK
49
I/O
General-purpose digital I/O / submain system clock SMCLK output
P5.6/ACLK
50
I/O
General-purpose digital I/O / auxiliary clock ACLK output
P5.7/TBOUTH/SVSOUT
51
I/O
General-purpose digital I/O / switch all PWM digital output ports to high impedance - Timer_B TB0 to
TB6/SVS comparator output
P6.0/A0
59
I/O
General-purpose digital I/O / analog input A0 - 12-bit ADC
Digital supply voltage, negative terminal. Supplies all digital parts.
Copyright © 2007–2011, Texas Instruments Incorporated
11
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Table 3. Terminal Functions, MSP430F24x, MSP430F2410 (continued)
TERMINAL
NAME
NO.
I/O
DESCRIPTION
P6.1/A1
60
I/O
General-purpose digital I/O / analog input A1 - 12-bit ADC
P6.2/A2
61
I/O
General-purpose digital I/O / analog input A2 - 12-bit ADC
P6.3/A3
2
I/O
General-purpose digital I/O / analog input A3 - 12-bit ADC
P6.4/A4
3
I/O
General-purpose digital I/O / analog input A4 - 12-bit ADC
P6.5/A5
4
I/O
General-purpose digital I/O / analog input A5 - 12-bit ADC
P6.6/A6
5
I/O
General-purpose digital I/O / analog input A6 - 12-bit ADC
P6.7/A7/SVSIN
6
I/O
General-purpose digital I/O / analog input A7 - 12-bit ADC/SVS input
XT2OUT
52
O
Output of crystal oscillator XT2
XT2IN
53
I
Input for crystal oscillator XT2
RST/NMI
58
I
Reset input, nonmaskable interrupt input, or bootstrap loader start (in flash devices)
TCK
57
I
Test clock (JTAG). TCK is the clock input port for device programming test and bootstrap loader start.
TDI/TCLK
55
I
Test data input or test clock input. The device protection fuse is connected to TDI/TCLK.
TDO/TDI
54
I/O
TMS
56
I
Test mode select. TMS is used as an input port for device programming and test.
VeREF+
10
I
Input for an external reference voltage
VREF+
7
O
Positive output of the reference voltage in the ADC12
VREF-/VeREF-
11
I
Negative input for the reference voltage for both sources, the internal reference voltage, or an external
applied reference voltage
XIN
8
I
Input for crystal oscillator XT1. Standard or watch crystals can be connected.
XOUT
9
O
Output for crystal oscillator XT1. Standard or watch crystals can be connected.
NA
NA
QFN Pad
12
Test data output. TDO/TDI data output or programming data input terminal.
QFN package pad connection to DVSS recommended (RGC package only)
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Table 4. Terminal Functions, MSP430F24x1
TERMINAL
NAME
NO.
I/O
DESCRIPTION
AVCC
64
Analog supply voltage, positive. Supplies only the analog portion of ADC12.
AVSS
62
Analog supply voltage, negative. Supplies only the analog portion of ADC12.
DVCC
1
Digital supply voltage, positive. Supplies all digital parts.
DVSS
63
P1.0/TACLK/CAOUT
12
I/O
General-purpose digital I/O / Timer_A, clock signal TACLK input / Comparator_A output
P1.1/TA0
13
I/O
General-purpose digital I/O / Timer_A, capture: CCI0A input, compare: Out0 output / BSL transmit
P1.2/TA1
14
I/O
General-purpose digital I/O / Timer_A, capture: CCI1A input, compare: Out1 output
P1.3/TA2
15
I/O
General-purpose digital I/O / Timer_A, capture: CCI2A input, compare: Out2 output
P1.4/SMCLK
16
I/O
General-purpose digital I/O / SMCLK signal output
P1.5/TA0
17
I/O
General-purpose digital I/O / Timer_A, compare: Out0 output
P1.6/TA1
18
I/O
General-purpose digital I/O / Timer_A, compare: Out1 output
P1.7/TA2
19
I/O
General-purpose digital I/O / Timer_A, compare: Out2 output
P2.0/ACLK/CA2
20
I/O
General-purpose digital I/O / ACLK output/Comparator_A input
P2.1/TAINCLK/CA3
21
I/O
General-purpose digital I/O / Timer_A, clock signal at INCLK
P2.2/CAOUT/TA0/CA4
22
I/O
General-purpose digital I/O / Timer_A, capture: CCI0B input / Comparator_A output/BSL
receive/Comparator_A input
P2.3/CA0/TA1
23
I/O
General-purpose digital I/O / Timer_A, compare: Out1 output / Comparator_A input
P2.4/CA1/TA2
24
I/O
General-purpose digital I/O / Timer_A, compare: Out2 output / Comparator_A input
P2.5/ROSC/CA5
25
I/O
General-purpose digital I/O / input for external resistor defining the DCO nominal frequency / Comparator_A
input
P2.6/ADC12CLK/CA6
26
I/O
General-purpose digital I/O / conversion clock - 12-bit ADC / Comparator_A input
P2.7/TA0/CA7
27
I/O
General-purpose digital I/O / Timer_A, compare: Out0 output/Comparator_A input
P3.0/UCB0STE/ UCA0CLK
28
I/O
General-purpose digital I/O / USCI_B0 slave transmit enable/USCI A0 clock input/output
P3.1/UCB0SIMO/UCB0SDA
29
I/O
General-purpose digital I/O / USCI_B0 slave in/master out in SPI mode, SDA I2C data in I2C mode
P3.2/UCB0SOMI/ UCB0SCL
30
I/O
General-purpose digital I/O / USCI_B0 slave out/master in in SPI mode, SCL I2C clock in I2C mode
P3.3/UCB0CLK/UCA0STE
31
I/O
General-purpose digital I/O / USCI_B0 clock input/output, USCI A0 slave transmit enable
P3.4/UCA0TXD/UCA0SIMO
32
I/O
General-purpose digital I/O / USCI_A0 transmit data output in UART mode, slave data in/master out in SPI
mode
P3.5/UCA0RXD/
UCA0SOMI
33
I/O
General-purpose digital I/O / USCI_A0 receive data input in UART mode, slave data out/master in in SPI
mode
P3.6/UCA1TXD/UCA1SIMO
34
I/O
General-purpose digital I/O / USCI_A1 transmit data output in UART mode, slave data in/master out in SPI
mode
P3.7/UCA1RXD/
UCA1SOMI
35
I/O
General-purpose digital I/O / USCI_A1 receive data input in UART mode, slave data out/master in in SPI
mode
P4.0/TB0
36
I/O
General-purpose digital I/O / Timer_B, capture: CCI0A/B input, compare: Out0 output
P4.1/TB1
37
I/O
General-purpose digital I/O / Timer_B, capture: CCI1A/B input, compare: Out1 output
P4.2/TB2
38
I/O
General-purpose digital I/O / Timer_B, capture: CCI2A/B input, compare: Out2 output
P4.3/TB3
39
I/O
General-purpose digital I/O / Timer_B, capture: CCI3A/B input, compare: Out3 output
P4.4/TB4
40
I/O
General-purpose digital I/O / Timer_B, capture: CCI4A/B input, compare: Out4 output
P4.5/TB5
41
I/O
General-purpose digital I/O / Timer_B, capture: CCI5A/B input, compare: Out5 output
P4.6/TB6
42
I/O
General-purpose digital I/O / Timer_B, capture: CCI6A input, compare: Out6 output
P4.7/TBCLK
43
I/O
General-purpose digital I/O / Timer_B, clock signal TBCLK input
P5.0/UCB1STE/UCA1CLK
44
I/O
General-purpose digital I/O / USCI_B1 slave transmit enable/USCI_A1 clock input/output
P5.1/UCB1SIMO/UCB1SDA
45
I/O
General-purpose digital I/O / USCI_B1 slave in/master out in SPI mode, SDA I2C data in I2C mode
P5.2/UCB1SOMI/UCB1SCL
46
I/O
General-purpose digital I/O / USCI_B1 slave out/master in in SPI mode, SCL I2C clock in I2C mode
P5.3/UCB1CLK/UCA1STE
47
I/O
General-purpose digital I/O / USCI_B1 clock input/output, USCI_A1 slave transmit enable
P5.4/MCLK
48
I/O
General-purpose digital I/O / main system clock MCLK output
P5.5/SMCLK
49
I/O
General-purpose digital I/O / submain system clock SMCLK output
P5.6/ACLK
50
I/O
General-purpose digital I/O / auxiliary clock ACLK output
P5.7/TBOUTH/SVSOUT
51
I/O
General-purpose digital I/O / switch all PWM digital output ports to high impedance - Timer_B TB0 to
TB6/SVS comparator output
P6.0
59
I/O
General-purpose digital I/O
Digital supply voltage, negative. Supplies all digital parts.
Copyright © 2007–2011, Texas Instruments Incorporated
13
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Table 4. Terminal Functions, MSP430F24x1 (continued)
TERMINAL
NAME
NO.
I/O
DESCRIPTION
P6.1
60
I/O
General-purpose digital I/O
P6.2
61
I/O
General-purpose digital I/O
P6.3
2
I/O
General-purpose digital I/O
P6.4
3
I/O
General-purpose digital I/O
P6.5
4
I/O
General-purpose digital I/O
P6.6
5
I/O
General-purpose digital I/O
P6.7/SVSIN
6
I/O
General-purpose digital I/O / SVS input
XT2OUT
52
O
Output terminal of crystal oscillator XT2
XT2IN
53
I
Input port for crystal oscillator XT2
RST/NMI
58
I
Reset input, nonmaskable interrupt input, or bootstrap loader start (in flash devices).
TCK
57
I
Test clock (JTAG). TCK is the clock input for device programming test and bootstrap loader start.
TDI/TCLK
55
I
Test data input or test clock input. The device protection fuse is connected to TDI/TCLK.
TDO/TDI
54
I/O
TMS
56
I
Test mode select. TMS is used as an input port for device programming and test.
DVSS
10
I
Connected to DVSS
Reserved
7
O
Reserved, do not connect externally
DVSS
11
I
Connected to DVSS
XIN
8
I
Input for crystal oscillator XT1. Standard or watch crystals can be connected.
XOUT
9
O
Output for crystal oscillator XT1. Standard or watch crystals can be connected.
NA
NA
QFN Pad
14
Test data output. TDO/TDI data output or programming data input terminal.
QFN package pad connection to DVSS recommended (RGC package only)
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
SHORT-FORM DESCRIPTION
CPU
The MSP430 CPU has a 16-bit RISC architecture
that is highly transparent to the application. All
operations, other than program-flow instructions, are
performed as register operations in conjunction with
seven addressing modes for source operand and four
addressing modes for destination operand.
Program Counter
PC/R0
Stack Pointer
SP/R1
SR/CG1/R2
Status Register
Constant Generator
CG2/R3
General-Purpose Register
R4
General-Purpose Register
R5
General-Purpose Register
R6
General-Purpose Register
R7
General-Purpose Register
R8
General-Purpose Register
R9
General-Purpose Register
R10
Instruction Set
General-Purpose Register
R11
The instruction set consists of 51 instructions with
three formats and seven address modes. Each
instruction can operate on word and byte data.
Table 5 shows examples of the three types of
instruction formats; Table 6 shows the address
modes.
General-Purpose Register
R12
General-Purpose Register
R13
General-Purpose Register
R14
General-Purpose Register
R15
The CPU is integrated with 16 registers that provide
reduced
instruction
execution
time.
The
register-to-register operation execution time is one
cycle of the CPU clock.
Four of the registers, R0 to R3, are dedicated as
program counter, stack pointer, status register, and
constant generator, respectively. The remaining
registers are general-purpose registers.
Peripherals are connected to the CPU using data,
address, and control buses, and can be handled with
all instructions.
Table 5. Instruction Word Formats
EXAMPLE
OPERATION
Dual operands, source-destination
INSTRUCTION FORMAT
ADD R4,R5
R4 + R5 → R5
Single operands, destination only
CALL R8
PC → (TOS), R8 → PC
JNE
Jump-on-equal bit = 0
Relative jump, unconditional/conditional
Table 6. Address Mode Descriptions
ADDRESS MODE
D
(2)
SYNTAX
EXAMPLE
OPERATION
Register
✓
✓
MOV Rs,Rd
MOV R10,R11
R10 → R11
Indexed
✓
✓
MOV X(Rn),Y(Rm)
MOV 2(R5),6(R6)
M(2+R5) → M(6+R6)
Symbolic (PC relative)
✓
✓
MOV EDE,TONI
M(EDE) → M(TONI)
Absolute
✓
✓
MOV &MEM,&TCDAT
M(MEM) → M(TCDAT)
Indirect
✓
MOV @Rn,Y(Rm)
MOV @R10,Tab(R6)
M(R10) → M(Tab+R6)
Indirect autoincrement
✓
MOV @Rn+,Rm
MOV @R10+,R11
M(R10) → R11
R10 + 2 → R10
Immediate
✓
MOV #X,TONI
MOV #45,TONI
#45 → M(TONI)
(1)
(2)
S
(1)
S = source
D = destination
Copyright © 2007–2011, Texas Instruments Incorporated
15
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Operating Modes
The MSP430 has one active mode and five software-selectable low-power modes of operation. An interrupt
event can wake up the device from any of the five low-power modes, service the request, and restore back to the
low-power mode on return from the interrupt program.
The following six operating modes can be configured by software:
• Active mode (AM)
– All clocks are active.
• Low-power mode 0 (LPM0)
– CPU is disabled.
– ACLK and SMCLK remain active. MCLK is disabled.
• Low-power mode 1 (LPM1)
– CPU is disabled ACLK and SMCLK remain active. MCLK is disabled.
– DCO dc-generator is disabled if DCO not used in active mode.
• Low-power mode 2 (LPM2)
– CPU is disabled.
– MCLK and SMCLK are disabled.
– DCO dc-generator remains enabled.
– ACLK remains active.
• Low-power mode 3 (LPM3)
– CPU is disabled.
– MCLK and SMCLK are disabled.
– DCO dc-generator is disabled.
– ACLK remains active.
• Low-power mode 4 (LPM4)
– CPU is disabled.
– ACLK is disabled.
– MCLK and SMCLK are disabled.
– DCO dc-generator is disabled.
– Crystal oscillator is stopped.
16
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Interrupt Vector Addresses
The interrupt vectors and the power-up starting address are located in the address range 0xFFFF to 0xFFC0.
The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. If the reset
vector (0xFFFE) contains 0xFFFF (for example, if flash is not programmed) the CPU enters LPM4 after
power-up.
Table 7. Interrupt Vector Addresses
INTERRUPT SOURCE
INTERRUPT FLAG
SYSTEM INTERRUPT
WORD ADDRESS
PRIORITY
Power-up
External reset
Watchdog
Flash key violation
PC out of range (1)
PORIFG
WDTIFG
RSTIFG
KEYV
(see (2))
Reset
0xFFFE
31, highest
NMI
Oscillator fault
Flash memory access violation
NMIIFG
OFIFG
ACCVIFG (2) (3)
(Non)maskable
(Non)maskable
(Non)maskable
0xFFFC
30
Timer_B7 (4)
TBCCR0 CCIFG (5)
Maskable
0xFFFA
29
TBCCR1 to TBCCR6 CCIFGs,
TBIFG (2) (5)
Maskable
0xFFF8
28
CAIFG
Maskable
0xFFF6
27
Watchdog timer+
WDTIFG
Maskable
0xFFF4
26
Timer_A3
TACCR0 CCIFG (5)
Maskable
0xFFF2
25
Timer_A3
TACCR1 CCIFG
TACCR2 CCIFG TAIFG (2) (5)
Maskable
0xFFF0
24
USCI_A0/USCI_B0 receive
USCI_B0 I2C status
UCA0RXIFG, UCB0RXIFG (2) (6)
Maskable
0xFFEE
23
USCI_A0/USCI_B0 transmit
USCI_B0 I2C receive / transmit
UCA0TXIFG, UCB0TXIFG (2) (7)
Maskable
0xFFEC
22
Maskable
0xFFEA
21
0xFFE8
20
Timer_B7
(4)
Comparator_A+
ADC12
(8)
ADC12IFG
(2) (5)
I/O port P2 (eight flags)
P2IFG.0 to P2IFG.7
(2) (5)
Maskable
0xFFE6
19
I/O port P1 (eight flags)
P1IFG.0 to P1IFG.7 (2) (5)
Maskable
0xFFE4
18
(2) (6)
Maskable
0xFFE2
17
UCA1TXIFG, UCB1TXIFG (2) (7)
Maskable
0xFFE0
16
0xFFDE to 0xFFC0
15 to 0, lowest
USCI_A1/USCI_B1 receive
USCI_B1 I2C status
USCI_A1/USCI_B1 transmit
USCI_B1 I2C receive / transmit
Reserved
(9) (10)
UCA1RXIFG, UCB1RXIFG
Reserved
(1)
A reset is generated if the CPU tries to fetch instructions from within the module register memory address range (0x0000 to 0x01FF) or
from within unused address range.
(2) Multiple source flags
(3) (Non)maskable: The individual interrupt-enable bit can disable an interrupt event, but the general-interrupt enable cannot.
(4) Timer_B7 in MSP430F24x(1)/MSP430F2410 family has seven CCRs, Timer_B3 in MSP430F23x family has three CCRs. In Timer_B3,
there are only interrupt flags TBCCR0 CCIFG, TBCCR1 CCIFG, and TBCCR2 CCIFG, and the interrupt enable bits TBCCTL0 CCIE,
TBCCTL1 CCIE, and TBCCTL2 CCIE.
(5) Interrupt flags are located in the module.
(6) In SPI mode: UCB0RXIFG. In I2C mode: UCALIFG, UCNACKIFG, ICSTTIFG, UCSTPIFG.
(7) In UART/SPI mode: UCB0TXIFG. In I2C mode: UCB0RXIFG, UCB0TXIFG.
(8) ADC12 is not implemented in the MSP430F24x1 family.
(9) The address 0xFFDE is used as bootstrap loader security key (BSLSKEY). A 0xAA55 at this location disables the BSL completely. A
zero disables the erasure of the flash if an invalid password is supplied.
(10) The interrupt vectors at addresses 0xFFDE to 0xFFC0 are not used in this device and can be used for regular program code if
necessary.
Copyright © 2007–2011, Texas Instruments Incorporated
17
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Special Function Registers
Most interrupt enable bits are collected in the lowest address space. Special-function register bits not allocated to
a functional purpose are not physically present in the device. This arrangement provides simple software access.
Legend
rw
rw-0, 1
rw-(0), (1)
Bit can be read and written.
Bit can be read and written. It is Reset or Set by PUC.
Bit can be read and written. It is Reset or Set by POR.
SFR bit is not present in device.
Table 8. Interrupt Enable 1
Address
7
6
00h
WDTIE
OFIE
NMIIE
ACCVIE
5
4
ACCVIE
rw-0
3
2
1
0
NMIIE
OFIE
WDTIE
rw-0
rw-0
rw-0
Watchdog timer interrupt enable. Inactive if watchdog mode is selected. Active if watchdog timer is configured in interval
timer mode.
Oscillator fault interrupt enable
(Non)maskable interrupt enable
Flash access violation interrupt enable
Table 9. Interrupt Enable 2
Address
7
6
5
4
01h
UCA0RXIE
UCA0TXIE
UCB0RXIE
UCB0TXIE
3
2
1
0
UCB0TXIE
UCB0RXIE
UCA0TXIE
UCA0RXIE
rw-0
rw-0
rw-0
rw-0
USCI_A0 receive-interrupt enable
USCI_A0 transmit-interrupt enable
USCI_B0 receive-interrupt enable
USCI_B0 transmit-interrupt enable
Table 10. Interrupt Flag Register 1
Address
7
6
5
02h
WDTIFG
OFIFG
RSTIFG
PORIFG
NMIIFG
4
3
2
1
0
NMIIFG
RSTIFG
PORIFG
OFIFG
WDTIFG
rw-0
rw-(0)
rw-(1)
rw-1
rw-(0)
Set on watchdog timer overflow (in watchdog mode) or security key violation.
Reset on VCC power-up or a reset condition at RST/NMI pin in reset mode.
Flag set on oscillator fault
External reset interrupt flag. Set on a reset condition at RST/NMI pin in reset mode. Reset on VCC power up.
Power-on reset interrupt flag. Set on VCC power up.
Set via RST/NMI pin
Table 11. Interrupt Flag Register 2
Address
7
6
03h
UCA0RXIFG
UCA0TXIFG
UCB0RXIFG
UCB0TXIFG
18
5
4
3
2
1
0
UCB0TXIFG
UCB0RXIFG
UCA0TXIFG
UCA0RXIFG
rw-1
rw-0
rw-1
rw-0
USCI_A0 receive-interrupt flag
USCI_A0 transmit-interrupt flag
USCI_B0 receive-interrupt flag
USCI_B0 transmit-interrupt flag
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Memory Organization
Table 12. Memory Organization
MSP430F233
MSP430F235
MSP430F249
MSP430F2491
Size
Flash
Flash
8KB
0xFFFF to 0xFFC0
0xFFFF to 0xE000
16KB
0xFFFF to 0xFFC0
0xFFFF to 0xC000
60KB
0xFFFF to 0xFFC0
0xFFFF to 0x1100
Size
1KB
0x05FF to 0x0200
2KB
0x09FF to 0x0200
2KB
0x09FF to 0x0200
Information memory
Size
Flash
256 Byte
0x10FF to 0x1000
256 Byte
0x10FF to 0x1000
256 Byte
0x10FF to 0x1000
Boot memory
Size
ROM
1KB
0x0FFF to 0x0C00
1KB
0x0FFF to 0x0C00
1KB
0x0FFF to 0x0C00
Size
1KB
0x05FF to 0x0200
2KB
0x09FF to 0x0200
2KB
0x09FF to 0x0200
16 bit
8 bit
SFR
0x01FF to 0x0100
0x00FF to 0x0010
0x000F to 0x0000
0x01FF to 0x0100
0x00FF to 0x0010
0x000F to 0x0000
0x01FF to 0x0100
0x00FF to 0x0010
0x000F to 0x0000
MSP430F247
MSP430F2471
MSP430F248
MSP430F2481
MSP430F2410
Size
Flash
Flash
32KB
0xFFFF to 0xFFC0
0xFFFF to 0x8000
48KB
0xFFFF to 0xFFC0
0xFFFF to 0x4000
56KB
0xFFFF to 0xFFC0
0xFFFF to 0x2100
RAM (total)
Size
4KB
0x20FF to 0x1100
4KB
0x20FF to 0x1100
4KB
0x20FF to 0x1100
Extended
Size
2KB
0x20FF to 0x1900
2KB
0x20FF to 0x1900
2KB
0x20FF to 0x1900
Mirrored
Size
2KB
0x18FF to 0x1100
2KB
0x18FF to 0x1100
2KB
0x18FF to 0x1100
Information memory
Size
Flash
256 Byte
0x10FF to 0x1000
256 Byte
0x10FF to 0x1000
256 Byte
0x10FF to 0x1000
Boot memory
Size
ROM
1KB
0x0FFF to 0x0C00
1KB
0x0FFF to 0x0C00
1KB
0x0FFF to 0x0C00
Size
2KB
0x09FF to 0x0200
2KB
0x09FF to 0x0200
2KB
0x09FF to 0x0200
16 bit
8 bit
SFR
0x01FF to 0x0100
0x00FF to 0x0010
0x000F to 0x0000
0x01FF to 0x0100
0x00FF to 0x0010
0x000F to 0x0000
0x01FF to 0x0100
0x00FF to 0x0010
0x000F to 0x0000
Memory
Main: interrupt vector
Main: code memory
RAM (Total)
RAM
Peripherals
Memory
Main: interrupt vector
Main: code memory
RAM (mirrored at
0x18FF to 0x1100)
Peripherals
Bootstrap Loader (BSL)
The MSP430 bootstrap loader (BSL) enables users to program the flash memory or RAM using a UART serial
interface. Access to the MSP430 memory via the BSL is protected by user-defined password. For complete
description of the features of the BSL and its implementation, see the MSP430 Programming Via the Bootstrap
Loader User’s Guide (SLAU319).
Table 13. BSL Function Pins
BSL FUNCTION
PM, RGC PACKAGE PINS
Data transmit
13 - P1.1
Data receive
22 - P2.2
Copyright © 2007–2011, Texas Instruments Incorporated
19
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Flash Memory
The flash memory can be programmed via the JTAG port, the bootstrap loader, or in-system by the CPU. The
CPU can perform single-byte and single-word writes to the flash memory. Features of the flash memory include:
• Flash memory has n segments of main memory and four segments of information memory (A to D) of
64 bytes each. Each segment in main memory is 512 bytes in size.
• Segments 0 to n may be erased in one step, or each segment may be individually erased.
• Segments A to D can be erased individually, or as a group with segments 0 to n.
Segments A to D are also called information memory.
• Segment A contains calibration data. After reset, segment A is protected against programming and erasing. It
can be unlocked, but care should be taken not to erase this segment if the device-specific calibration data is
required.
20
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Peripherals
Peripherals are connected to the CPU through data, address, and control buses and can be handled using all
instructions. For complete module descriptions, see the MSP430x2xx Family User's Guide (SLAU144).
Oscillator and System Clock
The clock system is supported by the basic clock module that includes support for a 32768-Hz watch crystal
oscillator, an internal very-low-power low-frequency oscillator, an internal digitally-controlled oscillator (DCO), and
a high-frequency crystal oscillator. The basic clock module is designed to meet the requirements of both low
system cost and low power consumption. The internal DCO provides a fast turn-on clock source and stabilizes in
less than 1 µs. The basic clock module provides the following clock signals:
• Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal, a high-frequency crystal, or the internal
very-low-power LF oscillator.
• Main clock (MCLK), the system clock used by the CPU.
• Sub-Main clock (SMCLK), the sub-system clock used by the peripheral modules.
Calibration Data Stored in Information Memory Segment A
Calibration data is stored for the DCO and for the ADC12. It is organized in a tag-length-value (TLV) structure.
Table 14. Tags Used by the ADC Calibration Tags
NAME
ADDRESS
VALUE
TAG_DCO_30
0x10F6
0x01
DCO frequency calibration at VCC = 3 V andTA = 25°C at calibration
TAG_ADC12_1
0x10DA
0x10
ADC12_1 calibration tag
-
0xFE
Identifier for empty memory areas
TAG_EMPTY
DESCRIPTION
Table 15. Labels Used by the ADC Calibration Tags
LABEL
CONDITION AT CALIBRATION / DESCRIPTION
SIZE
ADDRESS OFFSET
CAL_ADC_25T85
INCHx = 0x1010, REF2_5 = 1, TA = 85°C
word
0x000E
CAL_ADC_25T30
INCHx = 0x1010, REF2_5 = 1, TA = 30°C
word
0x000C
CAL_ADC_25VREF_FACTOR
REF2_5 = 1, TA = 30°C, IVREF+ = 1.0 mA
word
0x000A
CAL_ADC_15T85
INCHx = 0x1010, REF2_5 = 0, TA = 85°C
word
0x0008
CAL_ADC_15T30
INCHx = 0x1010, REF2_5 = 0, TA = 30°C
word
0x0006
CAL_ADC_15VREF_FACTOR
REF2_5 = 0, TA = 30°C, IVREF+ = 0.5 mA
word
0x0004
CAL_ADC_OFFSET
External Vref = 1.5 V, fADC12CLK = 5 MHz
word
0x0002
CAL_ADC_GAIN_FACTOR
External Vref = 1.5 V, fADC12CLK = 5 MHz
word
0x0000
CAL_BC1_1MHZ
-
byte
0x0007
CAL_DCO_1MHZ
-
byte
0x0006
CAL_BC1_8MHZ
-
byte
0x0005
CAL_DCO_8MHZ
-
byte
0x0004
CAL_BC1_12MHZ
-
byte
0x0003
CAL_DCO_12MHZ
-
byte
0x0002
CAL_BC1_16MHZ
-
byte
0x0001
CAL_DCO_16MHZ
-
byte
0x0000
Brownout, Supply Voltage Supervisor (SVS)
The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and
power off. The SVS circuitry detects if the supply voltage drops below a user-selectable level and supports both
supply voltage supervision (the device is automatically reset) and supply voltage monitoring (SVM, the device is
not automatically reset).
The CPU begins code execution after the brownout circuit releases the device reset. However, VCC may not have
ramped to VCC(min) at that time. The user must ensure that the default DCO settings are not changed until VCC
reaches VCC(min). If desired, the SVS circuit can be used to determine when VCC reaches VCC(min).
Copyright © 2007–2011, Texas Instruments Incorporated
21
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Digital I/O
There are up to six 8-bit I/O ports implemented—ports P1 through P6:
• All individual I/O bits are independently programmable.
• Any combination of input, output, and interrupt condition is possible.
• Edge-selectable interrupt input capability for all eight bits of port P1 and P2.
• Read/write access to port-control registers is supported by all instructions.
• Each I/O has an individually programmable pullup/pulldown resistor.
Watchdog Timer (WDT+)
The primary function of the WDT+ module is to perform a controlled system restart after a software problem
occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed
in an application, the module can be disabled or configured as an interval timer and can generate interrupts at
selected time intervals.
Hardware Multiplier
The multiplication operation is supported by a dedicated peripheral module. The module performs 16x16, 16x8,
8x16, and 8x8 bit operations. The module is capable of supporting signed and unsigned multiplication as well as
signed and unsigned multiply and accumulate operations. The result of an operation can be accessed
immediately after the operands have been loaded into the peripheral registers. No additional clock cycles are
required.
Timer_A3
Timer_A3 is a 16-bit timer/counter with three capture/compare registers. Timer_A3 can support multiple
capture/compares, PWM outputs, and interval timing. Timer_A3 also has extensive interrupt capabilities.
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare
registers.
Table 16. Timer_A3 Signal Connections
INPUT PIN NUMBER
DEVICE INPUT
SIGNAL
MODULE INPUT
NAME
12 - P1.0
TACLK
TACLK
ACLK
ACLK
SMCLK
SMCLK
21 - P2.1
TAINCLK
INCLK
13 - P1.1
TA0
CCI0A
22 - P2.2
TA0
CCI0B
14 - P1.2
15 - P1.3
(1)
22
DVSS
GND
DVCC
VCC
TA1
CCI1A
CAOUT (internal)
CCI1B
MODULE BLOCK
MODULE OUTPUT
SIGNAL
Timer
NA
OUTPUT PIN
NUMBER
13 - P1.1
CCR0
TA0
17 - P1.5
27 - P2.7
14 - P1.2
CCR1
TA1
18 - P1.6
DVSS
GND
DVCC
VCC
ADC12 (1) (internal)
TA2
CCI2A
15 - P1.3
ACLK (internal)
CCI2B
DVSS
GND
DVCC
VCC
CCR2
TA2
23 - P2.3
19 - P1.7
24 - P2.4
Not available in the MSP430F24x1 devices.
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Timer_B7 (MSP430F24x(1) and MSP430F2410 Devices)
Timer_B7 is a 16-bit timer/counter with seven capture/compare registers. Timer_B7 can support multiple
capture/compares, PWM outputs, and interval timing. Timer_B7 also has extensive interrupt capabilities.
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare
registers.
Table 17. Timer_B7 Signal Connections
INPUT PIN NUMBER
DEVICE INPUT
SIGNAL
MODULE INPUT
NAME
43 - P4.7
TBCLK
TBCLK
MODULE OUTPUT
SIGNAL
Timer
NA
OUTPUT PIN
NUMBER
ACLK
ACLK
SMCLK
SMCLK
43 - P4.7
TBCLK
INCLK
36 - P4.0
TB0
CCI0A
36 - P4.0
36 - P4.0
TB0
CCI0B
ADC12 (1) (internal)
DVSS
GND
CCR0
TB0
DVCC
VCC
37 - P4.1
TB1
CCI1A
37 - P4.1
37 - P4.1
TB1
CCI1B
ADC12 (2) (internal)
DVSS
GND
38 - P4.2
38 - P4.2
DVCC
VCC
TB2
CCI2A
TB2
CCI2B
DVSS
GND
DVCC
VCC
39 - P4.3
TB3
CCI3A
39 - P4.3
TB3
CCI3B
DVSS
GND
DVCC
VCC
40 - P4.4
TB4
CCI4A
40 - P4.4
TB4
CCI4B
DVSS
GND
DVCC
VCC
41 - P4.5
TB5
CCI5A
41 - P4.5
TB5
CCI5B
DVSS
GND
42 - P4.6
(1)
(2)
MODULE BLOCK
DVCC
VCC
TB6
CCI6A
ACLK (internal)
CCI6B
DVSS
GND
DVCC
VCC
CCR1
TB1
38 - P4.2
CCR2
TB2
39 - P4.3
CCR3
TB3
40 - P4.4
CCR4
TB4
41 - P4.5
CCR5
TB5
42 - P4.6
CCR6
TB6
Not available in the MSP430F24x1 devices.
Not available in the MSP430F24x1 devices.
Copyright © 2007–2011, Texas Instruments Incorporated
23
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Timer_B3 (MSP430F23x Devices)
Timer_B3 is a 16-bit timer/counter with seven capture/compare registers. Timer_B3 can support multiple
capture/compares, PWM outputs, and interval timing. Timer_B3 also has extensive interrupt capabilities.
Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare
registers.
Table 18. Timer_B3 Signal Connections
INPUT PIN NUMBER
DEVICE INPUT
SIGNAL
MODULE INPUT
NAME
43 - P4.7
TBCLK
TBCLK
MODULE BLOCK
MODULE OUTPUT
SIGNAL
Timer
NA
OUTPUT PIN
NUMBER
ACLK
ACLK
SMCLK
SMCLK
43 - P4.7
TBCLK
INCLK
36 - P4.0
TB0
CCI0A
36 - P4.0
36 - P4.0
TB0
CCI0B
ADC12 (internal)
DVSS
GND
CCR0
TB0
DVCC
VCC
37 - P4.1
TB1
CCI1A
37 - P4.1
37 - P4.1
TB1
CCI1B
ADC12 (internal)
DVSS
GND
38 - P4.2
38 - P4.2
DVCC
VCC
TB2
CCI2A
TB2
CCI2B
DVSS
GND
DVCC
VCC
CCR1
TB1
38 - P4.2
CCR2
TB2
Universal Serial Communications Interface (USCI)
The USCI modules are used for serial data communication. The USCI module supports synchronous
communication protocols, such as SPI (3 or 4 pin) or I2C, and asynchronous combination protocols, such as
UART, enhanced UART with automatic baudrate detection (LIN), and IrDA.
The USCI A module provides support for SPI (3 or 4 pin), UART, enhanced UART, and IrDA.
The USCI B module provides support for SPI (3 or 4 pin) and I2C.
Comparator_A+
The primary function of the comparator_A+ module is to support precision slope analog-to-digital conversions,
battery-voltage supervision, and monitoring of external analog signals.
ADC12 (MSP430F23x, MSP430F24x, and MSP430F2410 Devices)
The ADC12 module supports fast, 12-bit analog-to-digital conversions. The module implements a 12-bit SAR
core, sample select control, reference generator, and a 16-word conversion-and-control buffer. The
conversion-and-control buffer allows up to 16 independent ADC samples to be converted and stored without any
CPU intervention.
24
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Peripheral File Map
Table 19. Peripheral File Map
MODULE
ADC12
(MSP430F24x,
MSP430F2410, and
MSP430F23x)
REGISTER NAME
SHORT FORM
ADDRESS
Interrupt-vector-word register
ADC12IV
0x01A8
Interrupt-enable register
ADC12IE
0x01A6
Interrupt-flag register
ADC12IFG
0x01A4
Control register 1
ADC12CTL1
0x01A2
Control register 0
ADC12CTL0
0x01A0
Conversion memory 15
ADC12MEM15
0x015E
Conversion memory 14
ADC12MEM14
0x015C
Conversion memory 13
ADC12MEM13
0x015A
Conversion memory 12
ADC12MEM12
0x0158
Conversion memory 11
ADC12MEM11
0x0156
Conversion memory 10
ADC12MEM10
0x0154
Conversion memory 9
ADC12MEM9
0x0152
Conversion memory 8
ADC12MEM8
0x0150
Conversion memory 7
ADC12MEM7
0x014E
Conversion memory 6
ADC12MEM6
0x014C
Conversion memory 5
ADC12MEM5
0x014A
Conversion memory 4
ADC12MEM4
0x0148
Conversion memory 3
ADC12MEM3
0x0146
Conversion memory 2
ADC12MEM2
0x0144
Conversion memory 1
ADC12MEM1
0x0142
Conversion memory 0
ADC12MEM0
0x0140
ADC memory-control register15
ADC12MCTL15
0x008F
ADC memory-control register14
ADC12MCTL14
0x008E
ADC memory-control register13
ADC12MCTL13
0x008D
ADC memory-control register12
ADC12MCTL12
0x008C
ADC memory-control register11
ADC12MCTL11
0x008B
ADC memory-control register10
ADC12MCTL10
0x008A
ADC memory-control register9
ADC12MCTL9
0x0089
ADC memory-control register8
ADC12MCTL8
0x0088
ADC memory-control register7
ADC12MCTL7
0x0087
ADC memory-control register6
ADC12MCTL6
0x0086
ADC memory-control register5
ADC12MCTL5
0x0085
ADC memory-control register4
ADC12MCTL4
0x0084
ADC memory-control register3
ADC12MCTL3
0x0083
ADC memory-control register2
ADC12MCTL2
0x0082
ADC memory-control register1
ADC12MCTL1
0x0081
ADC memory-control register0
ADC12MCTL0
0x0080
Copyright © 2007–2011, Texas Instruments Incorporated
25
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Table 19. Peripheral File Map (continued)
MODULE
Timer_B7
(MSP430F24x(1) and
MSP430F2410)
Timer_B3
(MSP430F23x)
Timer_A3
Hardware Multiplier
26
REGISTER NAME
SHORT FORM
ADDRESS
Capture/compare register 6
TBCCR6
0x019E
Capture/compare register 5
TBCCR5
0x019C
Capture/compare register 4
TBCCR4
0x019A
Capture/compare register 3
TBCCR3
0x0198
Capture/compare register 2
TBCCR2
0x0196
Capture/compare register 1
TBCCR1
0x0194
Capture/compare register 0
TBCCR0
0x0192
Timer_B register
TBR
0x0190
Capture/compare control 6
TBCCTL6
0x018E
Capture/compare control 5
TBCCTL5
0x018C
Capture/compare control 4
TBCCTL4
0x018A
Capture/compare control 3
TBCCTL3
0x0188
Capture/compare control 2
TBCCTL2
0x0186
Capture/compare control 1
TBCCTL1
0x0184
Capture/compare control 0
TBCCTL0
0x0182
Timer_B control
TBCTL
0x0180
Timer_B interrupt vector
TBIV
0x011E
Capture/compare register 2
TBCCR2
0x0196
Capture/compare register 1
TBCCR1
0x0194
Capture/compare register 0
TBCCR0
0x0192
Timer_B register
TBR
0x0190
Capture/compare control 2
TBCCTL2
0x0186
Capture/compare control 1
TBCCTL1
0x0184
Capture/compare control 0
TBCCTL0
0x0182
Timer_B control
TBCTL
0x0180
Timer_B interrupt vector
TBIV
0x011E
Capture/compare register 2
TACCR2
0x0176
Capture/compare register 1
TACCR1
0x0174
Capture/compare register 0
TACCR0
0x0172
Timer_A register
TAR
0x0170
Reserved
0x016E
Reserved
0x016C
Reserved
0x016A
Reserved
0x0168
Capture/compare control 2
TACCTL2
0x0166
Capture/compare control 1
TACCTL1
0x0164
Capture/compare control 0
TACCTL0
0x0162
Timer_A control
TACTL
0x0160
Timer_A interrupt vector
TAIV
0x012E
Sum extend
SUMEXT
0x013E
Result high word
RESHI
0x013C
Result low word
RESLO
0x013A
Second operand
OP2
0x0138
Multiply signed + accumulate/operand1
MACS
0x0136
Multiply + accumulate/operand1
MAC
0x0134
Multiply signed/operand1
MPYS
0x0132
Multiply unsigned/operand1
MPY
0x0130
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Table 19. Peripheral File Map (continued)
MODULE
Flash
REGISTER NAME
SHORT FORM
ADDRESS
Flash control 4
FCTL4
0x01BE
Flash control 3
FCTL3
0x012C
Flash control 2
FCTL2
0x012A
Flash control 1
FCTL1
0x0128
Watchdog
Watchdog Timer control
WDTCTL
0x0120
USCI A0/B0
USCI A0 auto baud rate control
UCA0ABCTL
0x005D
USCI A0 transmit buffer
UCA0TXBUF
0x0067
USCI A0 receive buffer
UCA0RXBUF
0x0066
USCI A0 status
UCA0STAT
0x0065
USCI A0 modulation control
UCA0MCTL
0x0064
USCI A0 baud rate control 1
UCA0BR1
0x0063
USCI A0 baud rate control 0
UCA0BR0
0x0062
USCI A0 control 1
UCA0CTL1
0x0061
USCI A0 control 0
UCA0CTL0
0x0060
USCI A0 IrDA receive control
UCA0IRRCTL
0x005F
USCI A0 IrDA transmit control
UCA0IRTCLT
0x005E
USCI B0 transmit buffer
UCB0TXBUF
0x006F
USCI B0 receive buffer
UCB0RXBUF
0x006E
USCI B0 status
UCB0STAT
0x006D
USCI B0 I2C Interrupt enable
UCB0CIE
0x006C
USCI B0 baud rate control 1
UCB0BR1
0x006B
USCI B0 baud rate control 0
UCB0BR0
0x006A
USCI B0 control 1
UCB0CTL1
0x0069
USCI B0 control 0
UCB0CTL0
0x0068
USCI B0 I2C slave address
UCB0SA
0x011A
USCI B0 I2C own address
UCB0OA
0x0118
Copyright © 2007–2011, Texas Instruments Incorporated
27
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Table 19. Peripheral File Map (continued)
MODULE
USCI A1/B1
(MSP430F24x(1) and
MSP430F2410)
REGISTER NAME
SHORT FORM
ADDRESS
USCI A1 auto baud rate control
UCA1ABCTL
0x00CD
USCI A1 transmit buffer
UCA1TXBUF
0x00D7
USCI A1 receive buffer
UCA1RXBUF
0x00D6
USCI A1 status
UCA1STAT
0x00D5
USCI A1 modulation control
UCA1MCTL
0x00D4
USCI A1 baud rate control 1
UCA1BR1
0x00D3
USCI A1 baud rate control 0
UCA1BR0
0x00D2
USCI A1 control 1
UCA1CTL1
0x00D1
USCI A1 control 0
UCA1CTL0
0x00D0
USCI A1 IrDA receive control
UCA1IRRCTL
0x00CF
USCI A1 IrDA transmit control
UCA1IRTCLT
0x00CE
USCI B1 transmit buffer
UCB1TXBUF
0x00DF
USCI B1 receive buffer
UCB1RXBUF
0x00DE
USCI B1 status
UCB1STAT
0x00DD
USCI B1 I2C Interrupt enable
UCB1CIE
0x00DC
USCI B1 baud rate control 1
UCB1BR1
0x00DB
USCI B1 baud rate control 0
UCB1BR0
0x00DA
USCI B1 control 1
UCB1CTL1
0x00D9
USCI B1 control 0
UCB1CTL0
0x00D8
USCI B1 I2C slave address
UCB1SA
0x017E
USCI B1 I2C own address
UCB1OA
0x017C
USCI A1/B1 interrupt enable
UC1IE
0x0006
USCI A1/B1 interrupt flag
UC1IFG
0x0007
Comparator_A port disable
CAPD
0x005B
Comparator_A control2
CACTL2
0x005A
Comparator_A control1
CACTL1
0x0059
Basic clock system control3
BCSCTL3
0x0053
Basic clock system control2
BCSCTL2
0x0058
Basic clock system control1
BCSCTL1
0x0057
DCO clock frequency control
DCOCTL
0x0056
Brownout, SVS
SVS control register (reset by brownout signal)
SVSCTL
0x0055
Port P6
Port P6 resistor enable
P6REN
0x0013
Port P6 selection
P6SEL
0x0037
Port P6 direction
P6DIR
0x0036
Port P6 output
P6OUT
0x0035
Port P6 input
P6IN
0x0034
Port P5 resistor enable
P5REN
0x0012
Port P5 selection
P5SEL
0x0033
Port P5 direction
P5DIR
0x0032
Port P5 output
P5OUT
0x0031
Port P5 input
P5IN
0x0030
Port P4 resistor enable
P4REN
0x0011
Port P4 selection
P4SEL
0x001F
Port P4 direction
P4DIR
0x001E
Port P4 output
P4OUT
0x001D
Port P4 input
P4IN
0x001C
Comparator_A+
Basic Clock
Port P5
Port P4
28
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Table 19. Peripheral File Map (continued)
MODULE
Port P3
Port P2
Port P1
Special Functions
REGISTER NAME
SHORT FORM
ADDRESS
Port P3 resistor enable
P3REN
0x0010
Port P3 selection
P3SEL
0x001B
Port P3 direction
P3DIR
0x001A
Port P3 output
P3OUT
0x0019
Port P3 input
P3IN
0x0018
Port P2 resistor enable
P2REN
0x002F
Port P2 selection
P2SEL
0x002E
Port P2 interrupt enable
P2IE
0x002D
Port P2 interrupt-edge select
P2IES
0x002C
Port P2 interrupt flag
P2IFG
0x002B
Port P2 direction
P2DIR
0x002A
Port P2 output
P2OUT
0x0029
Port P2 input
P2IN
0x0028
Port P1 resistor enable
P1REN
0x0027
Port P1 selection
P1SEL
0x0026
Port P1 interrupt enable
P1IE
0x0025
Port P1 interrupt-edge select
P1IES
0x0024
Port P1 interrupt flag
P1IFG
0x0023
Port P1 direction
P1DIR
0x0022
Port P1 output
P1OUT
0x0021
Port P1 input
P1IN
0x0020
SFR interrupt flag2
IFG2
0x0003
SFR interrupt flag1
IFG1
0x0002
SFR interrupt enable2
IE2
0x0001
SFR interrupt enable1
IE1
0x0000
Copyright © 2007–2011, Texas Instruments Incorporated
29
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Absolute Maximum Ratings (1)
Voltage applied at VCC to VSS
Voltage applied to any pin
-0.3 V to 4.1 V
(2)
-0.3 V to VCC + 0.3 V
±2 mA
Diode current at any device terminal
Storage temperature, Tstg
(1)
(3)
Unprogrammed device
-55°C to 150°C
Programmed device
-55°C to 150°C
Stresses beyond those listed under absolute maximum ratingsmay cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating
conditionsis not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltages referenced to VSS. The JTAG fuse-blow voltage, VFB, is allowed to exceed the absolute maximum rating. The voltage is
applied to the TEST pin when blowing the JTAG fuse.
Higher temperature may be applied during board soldering process according to the current JEDEC J-STD-020 specification with peak
reflow temperatures not higher than classified on the device label on the shipping boxes or reels.
(2)
(3)
Recommended Operating Conditions (1) (2)
MIN
VCC
Supply voltage
VSS
(3)
Operating free-air temperature
fSYSTEM
Processor frequency
(maximum MCLK frequency) (1) (2)
(see Figure 1)
(1)
(2)
(3)
UNIT
1.8
3.6
V
During program/erase
flash memory
2.2
3.6
V
I version
-40
85
T version
-40
105
VCC = 1.8 V, Duty cycle = 50% ±10%
dc
4.15
VCC = 2.7 V, Duty cycle = 50% ±10%
dc
12
VCC ≥ 3.3 V, Duty cycle = 50% ±10%
dc
16
AVSS = DVSS = VSS
TA
MAX
During program
execution
AVCC = DVCC = VCC
Supply voltage
NOM
0
V
°C
MHz
The MSP430 CPU is clocked directly with MCLK. Both the high and low phase of MCLK must not exceed the pulse width of the
specified maximum frequency.
Modules might have a different maximum input clock specification. See the specification of the respective module in this data sheet.
It is recommended to power AVCC and DVCC from the same source. A maximum difference of 0.3 V between AVCC and DVCC can be
tolerated during power-up.
Legend :
System Frequency −MHz
16 MHz
Supply voltage range
during flash memory
programming
12 MHz
Supply voltage range
during program execution
7.5 MHz
4.15 MHz
1.8 V
2.2 V
2.7 V
3.3 V 3.6 V
Supply Voltage −V
NOTE: Minimum processor frequency is defined by system clock. Flash program or erase operations require a minimum VCC
of 2.2 V.
Figure 1. Operating Area
30
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Active Mode Supply Current (Into DVCC + AVCC) Excluding External Current (1) (2)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
IAM,1MHz
IAM,1MHz
IAM,4kHz
IAM,100kHz
(1)
(2)
Active mode (AM)
current (1 MHz)
Active mode (AM)
current (1 MHz)
Active mode (AM)
current (4 kHz)
Active mode (AM)
current (100 kHz)
TEST CONDITIONS
TA
fDCO = fMCLK = fSMCLK = 1 MHz,
fACLK = 32768 Hz,
Program executes in flash,
BCSCTL1 = CALBC1_1MHZ,
DCOCTL = CALDCO_1MHZ,
CPUOFF = 0, SCG0 = 0, SCG1 = 0,
OSCOFF = 0
-40°C to 85°C
fDCO = fMCLK = fSMCLK = 1 MHz,
fACLK = 32768 Hz,
Program executes in RAM,
BCSCTL1 = CALBC1_1MHZ,
DCOCTL = CALDCO_1MHZ,
CPUOFF = 0, SCG0 = 0, SCG1 = 0,
OSCOFF = 0
-40°C to 85°C
fMCLK = fSMCLK = fACLK =
32768 Hz/8 = 4096 Hz,
fDCO = 0 Hz,
Program executes in flash,
SELMx = 11, SELS = 1,
DIVMx = DIVSx = DIVAx = 11,
CPUOFF = 0, SCG0 = 1, SCG1 = 0,
OSCOFF = 0
-40°C to 85°C
fMCLK = fSMCLK = fDCO(0, 0) ≈ 100 kHz,
fACLK = 0 Hz,
Program executes in flash,
RSELx = 0, DCOx = 0, CPUOFF = 0,
SCG0 = 0, SCG1 = 0, OSCOFF = 1
-40°C to 85°C
105°C
VCC
2.2 V
-40°C to 85°C
105°C
105°C
3V
2.2 V
-40°C to 85°C
105°C
105°C
3.3 V
2.2 V
-40°C to 85°C
105°C
105°C
-40°C to 85°C
105°C
3V
2.2 V
3V
MIN
TYP
MAX
275
312
295
318
386
445
417
449
230
261
248
267
321
366
344
370
1.5
3.8
6
10.5
2
4.7
7
12.2
55
72
70
81
67
89
84
100
UNIT
µA
µA
µA
µA
All inputs are tied to 0 V or VCC. Outputs do not source or sink any current.
The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external
load capacitance is chosen to closely match the required 9 pF.
Copyright © 2007–2011, Texas Instruments Incorporated
31
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Typical Characteristics - Active-Mode Supply Current (Into DVCC + AVCC )
ACTIVE-MODE CURRENT
vs
SUPPLY VOLTAGE
TA = 25°C
ACTIVE-MODE CURRENT
vs
DCO FREQUENCY
5.0
8.0
f DCO = 16 MHz
7.0
TA = 85 °C
Active Mode Current − mA
Active Mode Current − mA
4.0
6.0
f DCO = 12 MHz
5.0
f DCO = 8 MHz
4.0
3.0
2.0
TA = 25 °C
3.0
VCC = 3 V
2.0
TA = 85 °C
TA = 25 °C
1.0
0.0
1.5
2.0
2.5
3.0
VCC − Supply Voltage − V
Figure 2.
32
VCC = 2.2 V
f DCO = 1 MHz
1.0
3.5
4.0
0.0
0.0
4.0
8.0
12.0
16.0
f DCO − DCO Frequency − MHz
Figure 3.
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Low-Power-Mode Supply Currents (Into VCC) Excluding External Current (1) (2)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
ILPM0,1MHz
ILPM0,100kHz
ILPM2
ILPM3,LFXT1
Low-power mode 0
(LPM0) current (3)
Low-power mode 0
(LPM0) current (3)
Low-power mode 2
(LPM2) current (4)
Low-power mode 3
(LPM3) current (4)
TEST CONDITIONS
TA
TYP
MAX
60
65
63
72
75
90
80
95
33
38
36
43
36
42
40
47
20
25
25
30
23
30
28
35
-40°C
0.8
1.2
25°C
0.9
1.3
2.4
3
fMCLK = 0 MHz,
fSMCLK = fDCO = 1 MHz,
fACLK = 32768 Hz,
BCSCTL1 = CALBC1_1MHZ,
DCOCTL = CALDCO_1MHZ,
CPUOFF = 1, SCG0 = 0, SCG1 = 0,
OSCOFF = 0
-40°C to 85°C
fMCLK = 0 MHz,
fSMCLK = fDCO(0, 0) ≈ 100 kHz,
fACLK = 0 Hz,
RSELx = 0, DCOx = 0,
CPUOFF = 1, SCG0 = 0, SCG1 = 0,
OSCOFF = 1
-40°C to 85°C
fMCLK = fSMCLK = 0 MHz,
fDCO = 1 MHz,
fACLK = 32768 Hz,
BCSCTL1 = CALBC1_1MHZ,
DCOCTL = CALDCO_1MHZ,
CPUOFF = 1, SCG0 = 0, SCG1 = 1,
OSCOFF = 0
-40°C to 85°C
fDCO = fMCLK = fSMCLK = 0 MHz,
fACLK = 32768 Hz,
CPUOFF = 1, SCG0 = 1, SCG1 = 1,
OSCOFF = 0
105°C
105°C
105°C
ILPM3,VLO
105°C
105°C
ILPM4
(1)
(2)
(3)
(4)
(5)
Low-power mode 4
(LPM4) current (5)
2.2 V
3V
2.2 V
-40°C to 85°C
105°C
85°C
3V
2.2 V
MIN
105°C
6
13
-40°C
0.9
1.3
1
1.4
3.9
4.3
25°C
3V
105°C
10
15
-40°C
0.3
0.9
0.3
0.9
85°C
2.2 V
1.8
2.4
105°C
5.5
13
-40°C
0.4
1
0.4
1
25°C
85°C
fDCO = fMCLK = fSMCLK = 0 MHz,
fACLK = 0 Hz,
CPUOFF = 1, SCG0 = 1, SCG1 = 1,
OSCOFF = 1
3V
-40°C to 85°C
25°C
fDCO = fMCLK = fSMCLK = 0 MHz,
fACLK from internal LF oscillator
(VLO),
CPUOFF = 1, SCG0 = 1, SCG1 = 1,
OSCOFF = 0
2.2 V
-40°C to 85°C
85°C
Low-power mode 3
current, (LPM3) (4)
VCC
3V
2
3
105°C
9
15
-40°C
0.1
0.5
0.1
0.5
1.6
2.5
6.5
13
25°C
85°C
105°C
2.2 V/3 V
UNIT
µA
µA
µA
µA
µA
µA
All inputs are tied to 0 V or VCC . Outputs do not source or sink any current.
The currents are characterized with a Micro Crystal CC4V-T1A SMD crystal with a load capacitance of 9 pF. The internal and external
load capacitance is chosen to closely match the required 9 pF.
Current for Brownout and WDT+ is included. The WDT+ is clocked by SMCLK.
Current for Brownout and WDT+ is included. The WDT+ is clocked by ACLK.
Current for Brownout is included.
Copyright © 2007–2011, Texas Instruments Incorporated
33
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Typical Characteristics - LPM4 Current
LPM4 CURRENT
vs
TEMPERATURE
ILPM4 − Low−power mode current − µA
10.0
9.0
8.0
7.0
6.0
5.0
VCC = 3.6 V
4.0
VCC = 3 V
3.0
Vcc = 2.2V
2.0
1.0
0.0
−40.0 −20.0 0.0
Vcc = 1.8 V
20.0 40.0 60.0 80.0 100.0 120.0
TA − Temperature − °C
Figure 4.
34
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Schmitt-Trigger Inputs (Ports P1, P2, P3, P4, P5, P6, RST/NMI, JTAG, XIN, XT2IN)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
VIT+
TEST CONDITIONS
Positive-going input threshold voltage
VCC
MIN
Negative-going input threshold voltage
Vhys
Input voltage hysteresis (VIT+ - VIT- )
RPull
Pullup/pulldown resistor
For pullup: VIN = VSS,
For pulldown: VIN = VCC
CI
Input capacitance
VIN = VSS or VCC
MAX
0.45 VCC
0.75 VCC
1
1.65
1.35
2.25
0.25 VCC
0.55 VCC
2.2 V
0.55
1.20
3V
0.75
1.65
2.2 V
0.2
1
3V
0.3
1
3V
20
2.2 V
3V
VIT-
TYP
35
50
5
UNIT
V
V
V
kΩ
pF
Inputs (Ports P1, P2)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
t(int)
External interrupt timing
tcap
Timer_A Timer_B capture timing
fTAext,
fTBext
Timer_A, Timer_B clock frequency
externally applied to pin
TACLK, TBCLK, INCLK: t(H) = t(L)
fTAint,
fTBint
Timer_A, Timer_B clock frequency
SMCLK or ACLK signal selected
(1)
VCC
Port P1, P2: P1.x to P2.x, External trigger
pulse width to set interrupt flag (1)
MIN
2.2 V/3 V
20
2.2 V
62
3V
50
TA0, TA1, TA2
TB0, TB1, TB2, TB3, TB4, TB5, TB6
MAX
UNIT
ns
ns
2.2 V
8
3V
10
2.2 V
8
3V
10
MHz
MHz
An external signal sets the interrupt flag every time the minimum interrupt pulse width t(int) is met. It may be set even with trigger signals
shorter than t(int) .
Leakage Current (Ports P1, P2, P3, P4, P5, P6)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
Ilkg(Px.y)
(1)
(2)
High-impedance leakage current
TEST CONDITIONS
See
VCC
(1) (2)
MIN
2.2 V/3 V
MAX
UNIT
±50
nA
The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.
The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup/pulldown resistor is
disabled.
Standard Inputs (RST/NMI)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
VCC
MIN
MAX
VIL
Low-level input voltage
PARAMETER
2.2 V/3 V
VSS
VSS + 0.6
V
VIH
High-level input voltage
2.2 V/3 V
0.8 VCC
VCC
V
Copyright © 2007–2011, Texas Instruments Incorporated
TEST CONDITIONS
UNIT
35
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Outputs (Ports P1, P2, P3, P4, P5, P6)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
IOH(max) = -1.5 mA
VOH
High-level output voltage
IOH(max) = -6 mA
VCC
(1)
2.2 V
(2)
IOH(max) = -1.5 mA (1)
3V
IOH(max) = -6 mA (2)
IOL(max) = 1.5 mA
VOL
Low-level output voltage
(2)
MAX
VCC - 0.25
VCC
VCC - 0.6
VCC
VCC - 0.25
VCC
VCC - 0.6
VCC
VSS
VSS + 0.25
(1)
2.2 V
IOL(max) = 6 mA (2)
IOL(max) = 1.5 mA (1)
3V
IOL(max) = 6 mA (2)
(1)
MIN
VSS
VSS + 0.6
VSS
VSS + 0.25
VSS
VSS + 0.6
UNIT
V
V
The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±12 mA to hold the maximum voltage drop
specified.
The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop
specified.
Output Frequency (Ports P1, P2, P3, P4, P5, P6)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
fPx.y
Port output
frequency with
load
P1.4/SMCLK, CL = 20 pF, RL = 1 kΩ (1) (2)
fPort°CLK
Clock output
frequency
P2.0/ACLK/CA2, P1.4/SMCLK, CL = 20 pF (2)
t(Xdc)
Duty cycle of
output frequency
36
TYP
MAX
2.2 V
DC
10
3V
DC
12
2.2 V
DC
12
3V
DC
16
30%
50%
70%
P1.0/TACLK/CAOUT, CL = 20 pF, XT1 mode
40%
50%
60%
P1.1/TA0, CL = 20 pF, XT1 mode
P1.1/TA0, CL = 20 pF, DCO
P1.4/SMCLK, CL = 20 pF, DCO
(2)
MIN
P1.0/TACLK/CAOUT, CL = 20 pF, LF mode
P1.4/SMCLK, CL = 20 pF, XT2 mode
(1)
VCC
40%
60%
50% – 15 ns
50% 50% + 15 ns
40%
60%
50% – 15 ns
50% + 15 ns
UNIT
MHz
MHz
A resistive divider with two 0.5-kΩ resistors between VCC and VSS is used as load. The output is connected to the center tap of the
divider.
The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency.
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Typical Characteristics - Outputs
One output loaded at a time.
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
TYPICAL LOW-LEVEL OUTPUT CURRENT
vs
LOW-LEVEL OUTPUT VOLTAGE
50.0
VCC = 2.2 V
P4.5
TA = 25°C
20.0
I OL − Typical Low-Level Output Current − mA
I OL − Typical Low-Level Output Current − mA
25.0
TA = 85°C
15.0
10.0
5.0
0.0
0.0
0.5
1.0
1.5
2.0
VCC = 3 V
P4.5
40.0
TA = 85°C
30.0
20.0
10.0
0.0
0.0
2.5
0.5
1.0
1.5
2.0
2.5
3.0
Figure 5.
Figure 6.
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
TYPICAL HIGH-LEVEL OUTPUT CURRENT
vs
HIGH-LEVEL OUTPUT VOLTAGE
0.0
0.0
I OH − Typical High-Level Output Current − mA
VCC = 2.2 V
P4.5
−5.0
−10.0
−15.0
TA = 85°C
−20.0
−25.0
0.0
3.5
VOL − Low-Level Output Voltage − V
VOL − Low-Level Output Voltage − V
I OH − Typical High-Level Output Current − mA
TA = 25°C
TA = 25°C
0.5
1.0
1.5
2.0
VOH − High-Level Output Voltage − V
Figure 7.
Copyright © 2007–2011, Texas Instruments Incorporated
2.5
VCC = 3 V
P4.5
−10.0
−20.0
−30.0
TA = 85°C
−40.0
−50.0
0.0
TA = 25°C
0.5
1.0
1.5
2.0
2.5
3.0
3.5
VOH − High-Level Output Voltage − V
Figure 8.
37
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
POR/Brownout Reset (BOR)
www.ti.com
(1) (2)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
MIN
TYP
MAX
UNIT
VCC(start)
Operating voltage
dVCC /dt ≤ 3 V/s
0.7 × V(B_IT-)
V(B_IT-)
Negative going VCC reset threshold voltage
dVCC /dt ≤ 3 V/s
1.71
V
Vhys(B_IT-)
VCC reset threshold hysteresis
dVCC /dt ≤ 3 V/s
210
mV
td(BOR)
BOR reset release delay time
2000
µs
t(reset)
Pulse length needed at RST/NMI pin to
accepted reset internally
(1)
(2)
70
2.2 V/3 V
2
130
V
µs
The current consumption of the brownout module is already included in the ICC current consumption data.
The voltage level V(B_IT-) + Vhys(B_IT-) is ≤ 1.8 V.
During power up, the CPU begins code execution following a period of td(BOR) after VCC = V(B_IT-) + Vhys(B_IT-) . The default DCO settings
must not be changed until VCC ≥ VCC(min), where VCC(min) is the minimum supply voltage for the desired operating frequency.
VCC
Vhys(B_IT−)
V(B_IT−)
VCC(start)
1
0
t d(BOR)
Figure 9. POR/Brownout Reset (BOR) vs Supply Voltage
38
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Typical Characteristics - POR/Brownout Reset (BOR)
VCC
3V
2
VCC(drop) − V
VCC = 3 V
Typical Conditions
t pw
1.5
1
VCC(drop)
0.5
0
0.001
1
1000
1 ns
t pw − Pulse Width − µs
1 ns
t pw − Pulse Width − µs
Figure 10. VCC(drop) Level With a Square Voltage Drop to Generate a POR/Brownout Signal
VCC
2
t pw
3V
VCC(drop) − V
VCC = 3 V
1.5
Typical Conditions
1
VCC(drop)
0.5
0
0.001
t f = tr
1
t pw − Pulse Width − µs
1000
tf
tr
t pw − Pulse Width − µs
Figure 11. VCC(drop) Level With a Triangle Voltage Drop to Generate a POR/Brownout Signal
Copyright © 2007–2011, Texas Instruments Incorporated
39
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
SVS (Supply Voltage Supervisor/Monitor)
over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
dVCC/dt > 30 V/ms (see Figure 12)
t(SVSR)
TYP
1
150
dVCC/dt ≤ 30 V/ms
td(SVSon)
SVSon, switch from VLD = 0 to VLD ≠ 0, VCC = 3 V
tsettle
VLD ≠ 0 (1)
V(SVSstart)
VLD ≠ 0, VCC/dt ≤ 3 V/s (see Figure 12)
2000
150
VLD = 1
VCC/dt ≤ 3 V/s (see Figure 12)
Vhys(SVS_IT-)
VCC/dt ≤ 3 V/s (see Figure 12), external voltage
applied on A7
V(SVS_IT-)
VCC/dt ≤ 3V/s (see Figure 12 and Figure 13)
VCC/dt ≤ 3 V/s (see Figure 12 and Figure 13),
external voltage applied on A7
ICC(SVS)
(1)
(2)
(3)
40
(3)
VLD ≠ 0, VCC = 2.2 V/3 V
MAX
70
µs
300
µs
12
µs
1.55
1.7
V
120
155
mV
0.001 ×
V(SVS_IT-)
0.016 ×
V(SVS_IT-)
VLD = 15
4.4
20
VLD = 1
1.8
1.9
2.05
VLD = 2
1.94
2.1
2.25
VLD = 3
2.05
2.2
2.37
VLD = 4
2.14
2.3
2.48
VLD = 5
2.24
2.4
2.6
VLD = 6
2.33
2.5
2.71
VLD = 7
2.46
2.65
2.86
VLD = 8
2.58
2.8
3
VLD = 9
2.69
2.9
3.13
VLD = 10
2.83
3.05
3.29
VLD = 11
2.94
3.2
3.42
VLD = 12
3.11
3.35
3.61 (2)
VLD = 13
3.24
3.5
3.76 (2)
VLD = 14
3.43
3.7 (2)
3.99 (2)
VLD = 15
1.1
1.2
1.3
10
15
VLD = 2 to 14
UNIT
mV
V
µA
tsettle is the settling time that the comparator output needs to have a stable level after VLD is switched from VLD ≠ 0 to a different VLD
value somewhere between 2 and 15. The overdrive is assumed to be > 50 mV.
The recommended operating voltage range is limited to 3.6 V.
The current consumption of the SVS module is not included in the ICC current consumption data.
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Software sets VLD >0:
SVS is active
AVCC
V(SVS_IT−)
V(SVSstart)
Vhys(SVS_IT−)
Vhys(B_IT−)
V(B_IT−)
VCC(start)
Brownout
Region
Brownout
Region
Brownout
1
0
SVS out
t d(BOR)
t d(BOR)
SVS Circuit is Active From VLD > to V CC < V( B_IT−)
1
0
td(SVSon)
Set POR
1
td(SVSR)
undefined
0
Figure 12. SVS Reset (SVSR) vs Supply Voltage
VCC
3V
t pw
2
Rectangular Drop
VCC(min)
VCC(min) − V
1.5
Triangular Drop
1
1 ns
1 ns
VCC
0.5
t pw
3V
0
1
10
100
1000
t pw − Pulse Width − µs
VCC(min)
t f = tr
tf
tr
t − Pulse Width − µs
Figure 13. VCC(min): Square Voltage Drop and Triangle Voltage Drop to Generate an SVS Signal (VLD = 1)
Copyright © 2007–2011, Texas Instruments Incorporated
41
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Main DCO Characteristics
•
•
•
All ranges selected by RSELx overlap with RSELx + 1: RSELx = 0 overlaps RSELx = 1, ... RSELx = 14
overlaps RSELx = 15.
DCO control bits DCOx have a step size as defined by parameter SDCO .
Modulation control bits MODx select how often fDCO(RSEL,DCO+1) is used within the period of 32 DCOCLK
cycles. The frequency fDCO(RSEL,DCO) is used for the remaining cycles. The frequency is an average equal to:
faverage =
32 × fDCO(RSEL,DCO) × fDCO(RSEL,DCO+1)
MOD × fDCO(RSEL,DCO) + (32 – MOD) × fDCO(RSEL,DCO+1)
DCO Frequency
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
MIN
TYP
MAX
RSELx < 14
1.8
3.6
RSELx = 14
2.2
3.6
UNIT
VCC
Supply voltage range
3.0
3.6
fDCO(0,0)
DCO frequency (0, 0)
RSELx = 0, DCOx = 0, MODx = 0
2.2 V/3 V
0.06
0.14
MHz
fDCO(0,3)
DCO frequency (0, 3)
RSELx = 0, DCOx = 3, MODx = 0
2.2 V/3 V
0.07
0.17
MHz
fDCO(1,3)
DCO frequency (1, 3)
RSELx = 1, DCOx = 3, MODx = 0
2.2 V/3 V
0.10
0.20
MHz
fDCO(2,3)
DCO frequency (2, 3)
RSELx = 2, DCOx = 3, MODx = 0
2.2 V/3 V
0.14
0.28
MHz
fDCO(3,3)
DCO frequency (3, 3)
RSELx = 3, DCOx = 3, MODx = 0
2.2 V/3 V
0.20
0.40
MHz
fDCO(4,3)
DCO frequency (4, 3)
RSELx = 4, DCOx = 3, MODx = 0
2.2 V/3 V
0.28
0.54
MHz
fDCO(5,3)
DCO frequency (5, 3)
RSELx = 5, DCOx = 3, MODx = 0
2.2 V/3 V
0.39
0.77
MHz
fDCO(6,3)
DCO frequency (6, 3)
RSELx = 6, DCOx = 3, MODx = 0
2.2 V/3 V
0.54
1.06
MHz
fDCO(7,3)
DCO frequency (7, 3)
RSELx = 7, DCOx = 3, MODx = 0
2.2 V/3 V
0.80
1.50
MHz
fDCO(8,3)
DCO frequency (8, 3)
RSELx = 8, DCOx = 3, MODx = 0
2.2 V/3 V
1.10
2.10
MHz
fDCO(9,3)
DCO frequency (9, 3)
RSELx = 9, DCOx = 3, MODx = 0
2.2 V/3 V
1.60
3.00
MHz
fDCO(10,3)
DCO frequency (10, 3)
RSELx = 10, DCOx = 3, MODx = 0
2.2 V/3 V
2.50
4.30
MHz
fDCO(11,3)
DCO frequency (11, 3)
RSELx = 11, DCOx = 3, MODx = 0
2.2 V/3 V
3.00
5.50
MHz
fDCO(12,3)
DCO frequency (12, 3)
RSELx = 12, DCOx = 3, MODx = 0
2.2 V/3 V
4.30
7.30
MHz
fDCO(13,3)
DCO frequency (13, 3)
RSELx = 13, DCOx = 3, MODx = 0
2.2 V/3 V
6.00
9.60
MHz
fDCO(14,3)
DCO frequency (14, 3)
RSELx = 14, DCOx = 3, MODx = 0
2.2 V/3 V
8.60
13.9
MHz
fDCO(15,3)
DCO frequency (15, 3)
RSELx = 15, DCOx = 3, MODx = 0
3V
12.0
18.5
MHz
fDCO(15,7)
DCO frequency (15, 7)
RSELx = 15, DCOx = 7, MODx = 0
3V
16.0
26.0
MHz
SRSEL
Frequency step between range
RSEL and RSEL+1
SRSEL = fDCO(RSEL+1,DCO) /fDCO(RSEL,DCO)
2.2 V/3 V
1.55
ratio
SDCO
Frequency step between tap DCO
SDCO = fDCO(RSEL,DCO+1) /fDCO(RSEL,DCO)
and DCO+1
2.2 V/3 V
1.05
1.08
1.12
ratio
Duty cycle
2.2 V/3 V
40
50
60
RSELx = 15
42
Measured at P1.4/SMCLK
V
%
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Calibrated DCO Frequencies - Tolerance at Calibration
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
Frequency tolerance at calibration
TA
VCC
MIN
TYP
MAX
UNIT
25°C
3V
-1
±0.2
+1
25°C
3V
0.990
1
1.010
MHz
%
fCAL(1MHz)
1-MHz calibration value
BCSCTL1 = CALBC1_1MHZ,
DCOCTL = CALDCO_1MHZ,
Gating time: 5 ms
fCAL(8MHz)
8-MHz calibration value
BCSCTL1 = CALBC1_8MHZ,
DCOCTL = CALDCO_8MHZ,
Gating time: 5 ms
25°C
3V
7.920
8
8.080
MHz
fCAL(12MHz)
12-MHz calibration value
BCSCTL1 = CALBC1_12MHZ,
DCOCTL = CALDCO_12MHZ,
Gating time: 5 ms
25°C
3V
11.88
12
12.12
MHz
fCAL(16MHz)
16-MHz calibration value
BCSCTL1 = CALBC1_16MHZ,
DCOCTL = CALDCO_16MHZ,
Gating time: 2 ms
25°C
3V
15.84
16
16.16
MHz
MAX
UNIT
Calibrated DCO Frequencies - Tolerance Over Temperature 0°C to 85°C
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
fCAL(1MHz)
fCAL(8MHz)
fCAL(12MHz)
fCAL(16MHz)
TA
VCC
1-MHz tolerance over
temperature
0°C to 85°C
3V
-2.5
±0.5
2.5
%
8-MHz tolerance over
temperature
0°C to 85°C
3V
-2.5
±1.0
2.5
%
12-MHz tolerance over
temperature
0°C to 85°C
3V
-2.5
±1.0
2.5
%
16-MHz tolerance over
temperature
0°C to 85°C
3V
-3
±2.0
3
%
2.2 V
0.97
1
1.03
3V
0.975
1
1.025
3.6 V
0.97
1
1.03
2.2 V
7.76
8
8.4
3V
7.8
8
8.2
3.6 V
7.6
8
8.24
2.2 V
11.64
12
12.36
3V
11.64
12
12.36
3.6 V
11.64
12
12.36
3V
15.52
16
16.48
15
16
16.48
1-MHz calibration value
8-MHz calibration value
12-MHz calibration value
16-MHz calibration value
TEST CONDITIONS
BCSCTL1 = CALBC1_1MHZ,
DCOCTL = CALDCO_1MHZ,
Gating time: 5 ms
0°C to 85°C
BCSCTL1 = CALBC1_8MHZ,
DCOCTL = CALDCO_8MHZ,
Gating time: 5 ms
0°C to 85°C
BCSCTL1 = CALBC1_12MHZ,
DCOCTL = CALDCO_12MHZ,
Gating time: 5 ms
0°C to 85°C
BCSCTL1 = CALBC1_16MHZ,
DCOCTL = CALDCO_16MHZ,
Gating time: 2 ms
0°C to 85°C
Copyright © 2007–2011, Texas Instruments Incorporated
3.6 V
MIN
TYP
MHz
MHz
MHz
MHz
43
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Calibrated DCO Frequencies - Tolerance Over Supply Voltage VCC
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA
VCC
MIN
TYP
MAX
1-MHz tolerance over VCC
25°C
8-MHz tolerance over VCC
25°C
12-MHz tolerance over VCC
16-MHz tolerance over VCC
UNIT
1.8 V to 3.6 V
-3
±2
+3
%
1.8 V to 3.6 V
-3
±2
+3
%
25°C
2.2 V to 3.6 V
-3
±2
+3
%
25°C
3 V to 3.6 V
-6
±2
+3
%
fCAL(1MHz)
1-MHz calibration value
BCSCTL1 = CALBC1_1MHZ,
DCOCTL = CALDCO_1MHZ,
Gating time: 5 ms
25°C
1.8 V to 3.6 V
0.97
1
1.03
MHz
fCAL(8MHz)
8-MHz calibration value
BCSCTL1 = CALBC1_8MHZ,
DCOCTL = CALDCO_8MHZ,
Gating time: 5 ms
25°C
1.8 V to 3.6 V
7.76
8
8.24
MHz
fCAL(12MHz)
12-MHz calibration value
BCSCTL1 = CALBC1_12MHZ,
DCOCTL = CALDCO_12MHZ,
Gating time: 5 ms
25°C
2.2 V to 3.6 V
11.64
12
12.36
MHz
fCAL(16MHz)
16-MHz calibration value
BCSCTL1 = CALBC1_16MHZ,
DCOCTL = CALDCO_16MHZ,
Gating time: 2 ms
25°C
3 V to 3.6 V
15
16
16.48
MHz
MIN
TYP
MAX
UNIT
Calibrated DCO Frequencies - Overall Tolerance
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TA
VCC
1-MHz tolerance
overall
-40°C to 105°C
1.8 V to 3.6 V
-5
±2
+5
%
8-MHz tolerance
overall
-40°C to 105°C
1.8 V to 3.6 V
-5
±2
+5
%
12-MHz
tolerance overall
-40°C to 105°C
2.2 V to 3.6 V
-5
±2
+5
%
16-MHz
tolerance overall
-40°C to 105°C
3 V to 3.6 V
-6
±3
+6
%
fCAL(1MHz)
BCSCTL1 = CALBC1_1MHZ,
1-MHz
DCOCTL = CALDCO_1MHZ,
calibration value
Gating time: 5 ms
-40°C to 105°C
1.8 V to 3.6 V
0.95
1
1.05
MHz
fCAL(8MHz)
BCSCTL1 = CALBC1_8MHZ,
8-MHz
DCOCTL = CALDCO_8MHZ,
calibration value
Gating time: 5 ms
-40°C to 105°C
1.8 V to 3.6 V
7.6
8
8.4
MHz
fCAL(12MHz)
BCSCTL1 = CALBC1_12MHZ,
12-MHz
DCOCTL = CALDCO_12MHZ,
calibration value
Gating time: 5 ms
-40°C to 105°C
2.2 V to 3.6 V
11.4
12
12.6
MHz
fCAL(16MHz)
BCSCTL1 = CALBC1_16MHZ,
16-MHz
DCOCTL = CALDCO_16MHZ,
calibration value
Gating time: 2 ms
-40°C to 105°C
3 V to 3.6 V
15
16
17
MHz
44
TEST CONDITIONS
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Typical Characteristics - Calibrated DCO Frequency
CALIBRATED 1-MHz FREQUENCY
vs
SUPPLY VOLTAGE
CALIBRATED 8-MHz FREQUENCY
vs
SUPPLY VOLTAGE
8.20
1.04
8.15
1.03
Frequency − MHz
Frequency − MHz
8.10
1.02
TA = −40 °C
1.01
TA = 25 °C
TA = −40 °C
TA = 85 °C
8.05
8.00
TA = 25 °C
7.95
7.90
1.00
TA = 85 °C
7.85
TA = 105 °C
0.99
1.5
2.0
2.5
3.0
3.5
7.80
1.5
4.0
TA = 105 °C
2.0
CALIBRATED 12-MHz FREQUENCY
vs
SUPPLY VOLTAGE
CALIBRATED 16-MHz FREQUENCY
vs
SUPPLY VOLTAGE
16.0
TA = −40 °C
TA = 25 °C
Frequency − MHz
Frequency − MHz
4.0
16.1
TA = −40 °C
TA = 25 °C
TA = 85 °C
TA = 105 °C
11.7
11.5
1.5
3.5
Figure 15.
12.3
11.9
3.0
Figure 14.
12.5
12.1
2.5
VCC − Supply Voltage − V
VCC − Supply Voltage − V
15.9
15.8
TA = 85 °C
15.7
TA = 105 °C
15.6
2.0
2.5
3.0
VCC − Supply Voltage − V
Figure 16.
Copyright © 2007–2011, Texas Instruments Incorporated
3.5
4.0
15.5
1.5
2.0
2.5
3.0
3.5
4.0
VCC − Supply Voltage − V
Figure 17.
45
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Wake-Up From Lower-Power Modes (LPM3/4)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
MIN
TYP
BCSCTL1 = CALBC1_1MHZ,
DCOCTL = CALDCO_1MHZ
tDCO,LPM3/4
BCSCTL1 = CALBC1_8MHZ,
DCO clock wake-up time DCOCTL = CALDCO_8MHZ
from LPM3/4 (1)
BCSCTL1 = CALBC1_12MHZ,
DCOCTL = CALDCO_12MHZ
(1)
(2)
UNIT
2
2.2 V/3 V
1.5
µs
1
BCSCTL1 = CALBC1_16MHZ,
DCOCTL = CALDCO_16MHZ
tCPU,LPM3/4
MAX
3V
CPU wake-up time from
LPM3/4 (2)
1
1 / fMCLK +
tClock,LPM3/4
The DCO clock wake-up time is measured from the edge of an external wake-up signal (for example, a port interrupt) to the first clock
edge observable externally on a clock pin (MCLK or SMCLK).
Parameter applicable only if DCOCLK is used for MCLK.
Typical Characteristics - DCO Clock Wake-Up Time From LPM3/4
CLOCK WAKE-UP TIME FROM LPM3
vs
DCO FREQUENCY
DCO Wake Time − µs
10.00
RSELx = 0 to 11
1.00
0.10
0.10
RSELx = 12 to 15
1.00
10.00
DCO Frequency − MHz
Figure 18.
46
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
DCO With External Resistor ROSC (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
fDCO,ROSC
DCO output frequency with ROSC
DCOR = 1,
RSELx = 4, DCOx = 3, MODx = 0,
TA = 25°C
DT
Temperature drift
DV
Drift with VCC
(1)
VCC
TYP
UNIT
2.2 V
1.8
3V
1.95
DCOR = 1,
RSELx = 4, DCOx = 3, MODx = 0
2.2 V/3 V
±0.1
%/°C
DCOR = 1,
RSELx = 4, DCOx = 3, MODx = 0
2.2 V/3 V
10
%/V
MHz
ROSC = 100 kΩ. Metal film resistor, type 0257, 0.6 W with 1% tolerance and TK = ±50 ppm/°C.
Typical Characteristics - DCO With External Resistor ROSC
DCO FREQUENCY
vs
ROSC
VCC = 2.2 V, TA = 25°C
DCO FREQUENCY
vs
ROSC
VCC = 3 V, TA = 25°C
10.00
DCO Frequency − MHz
DCO Frequency − MHz
10.00
1.00
RSELx = 4
0.10
0.01
10.00
100.00
1000.00
1.00
RSELx = 4
0.10
0.01
10.00
10000.00
ROSC − External Resistor − kW
10000.00
ROSC − External Resistor − kW
Figure 20.
DCO FREQUENCY
vs
TEMPERATURE
VCC = 3 V
DCO FREQUENCY
vs
SUPPLY VOLTAGE
TA = 25°C
2.50
2.25
ROSC = 100k
2.00
1.75
1.50
1.25
1.00
ROSC = 270k
0.75
DCO Frequency − MHz
2.25
DCO Frequency − MHz
1000.00
Figure 19.
2.50
ROSC = 100k
2.00
1.75
1.50
1.25
1.00
ROSC = 270k
0.75
0.50
0.50
ROSC = 1M
0.25
0.00
−50.0 −25.0
100.00
0.0
25.0
50.0
75.0
TA − Temperature − C
Figure 21.
Copyright © 2007–2011, Texas Instruments Incorporated
100.0
ROSC = 1M
0.25
0.00
2.0
2.5
3.0
3.5
4.0
VCC − Supply Voltage − V
Figure 22.
47
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Crystal Oscillator LFXT1, Low-Frequency Mode (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
fLFXT1,LF
LFXT1 oscillator crystal
frequency, LF mode 0, 1
fLFXT1,LF,logic
LFXT1 oscillator logic level
square wave input frequency, XTS = 0, LFXT1Sx = 3, XCAPx = 0
LF mode
OALF
Oscillation allowance for
LF crystals
CL,eff
fFault,LF
(1)
(2)
(3)
(4)
Integrated effective load
capacitance, LF mode (2)
XTS = 0, LFXT1Sx = 0 or 1
VCC
MIN
TYP
1.8 V to 3.6 V
1.8 V to 3.6 V
MAX
32768
10000
32768
XTS = 0, LFXT1Sx = 0,
fLFXT1,LF = 32768 Hz, CL,eff = 6 pF
500
XTS = 0, LFXT1Sx = 0,
fLFXT1,LF = 32768 Hz, CL,eff = 12 pF
200
UNIT
Hz
50000
Hz
kΩ
XTS = 0, XCAPx = 0
1
XTS = 0, XCAPx = 1
5.5
XTS = 0, XCAPx = 2
8.5
XTS = 0, XCAPx = 3
11
Duty cycle, LF mode
XTS = 0, Measured at P2.0/ACLK,
fLFXT1,LF = 32768 Hz
2.2 V/3 V
30
Oscillator fault frequency,
LF mode (3)
XTS = 0, LFXT1Sx = 3, XCAPx = 0 (4)
2.2 V/3 V
10
50
pF
70
%
10000
Hz
To improve EMI on the XT1 oscillator, the following guidelines should be observed.
(a) Keep the trace between the device and the crystal as short as possible.
(b) Design a good ground plane around the oscillator pins.
(c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
(d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
(e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.
(f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
(g) Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This
signal is no longer required for the serial programming adapter.
Includes parasitic bond and package capacitance (approximately 2 pF per pin).
Because the PCB adds additional capacitance, it is recommended to verify the correct load by measuring the ACLK frequency. For a
correct setup, the effective load capacitance should always match the specification of the crystal that is used.
Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag.
Frequencies in between might set the flag.
Measured with logic-level input frequency but also applies to operation with crystals.
Internal Very-Low-Power Low-Frequency Oscillator (VLO)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
VCC
fVLO
VLO frequency
dfVLO/dT
VLO frequency temperature drift
dfVLO/dVCC
VLO frequency supply voltage drift
(1)
(2)
48
2.2 V/3 V
(1)
2.2 V/3 V
(2)
1.8 V to 3.6 V
MIN
TYP
MAX
4
12
20
UNIT
kHz
0.5
%/°C
4
%/V
Calculated using the box method:
I version: (MAX(-40 to 85°C) - MIN(-40 to 85°C))/MIN(-40 to 85°C)/(85°C - (-40°C))
T version: (MAX(-40 to 105°C) - MIN(-40 to 105°C))/MIN(-40 to 105°C)/(105°C - (-40°C))
Calculated using the box method: (MAX(1.8 to 3.6 V) - MIN(1.8 to 3.6 V))/MIN(1.8 to 3.6 V)/(3.6 V - 1.8 V)
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Crystal Oscillator LFXT1, High-Frequency Mode (1)
PARAMETER
VCC
MIN
XTS = 1, LFXT1Sx = 0, XCAPx = 0
1.8 V to 3.6 V
LFXT1 oscillator crystal
frequency, HF mode 1
XTS = 1, LFXT1Sx = 1, XCAPx = 0
LFXT1 oscillator crystal
frequency, HF mode 2
XTS = 1, LFXT1Sx = 2, XCAPx = 0
fLFXT1,HF0
LFXT1 oscillator crystal
frequency, HF mode 0
fLFXT1,HF1
fLFXT1,HF2
TEST CONDITIONS
MAX
UNIT
0.4
1
MHz
1.8 V to 3.6 V
1
4
MHz
1.8 V to 3.6 V
2
10
2.2 V to 3.6 V
2
12
3 V to 3.6 V
fLFXT1,HF,logic
OAHF
CL,eff
LFXT1 oscillator logic-level
square-wave input
frequency, HF mode
Oscillation allowance for HF
crystals (see Figure 23 and
Figure 24)
Integrated effective load
capacitance, HF mode (2)
(1)
(2)
(3)
(4)
(5)
Oscillator fault frequency
2
16
1.8 V to 3.6 V
0.4
10
2.2 V to 3.6 V
0.4
12
3 V to 3.6 V
0.4
16
XTS = 1, XCAPx = 0, LFXT1Sx = 0,
fLFXT1,HF = 1 MHz, CL,eff = 15 pF
2700
XTS = 1, XCAPx = 0, LFXT1Sx = 1,
fLFXT1,HF = 4 MHz, CL,eff = 15 pF
800
XTS = 1, XCAPx = 0, LFXT1Sx = 2,
fLFXT1,HF = 16 MHz, CL,eff = 15 pF
300
XTS = 1, XCAPx = 0 (3)
XTS = 1, XCAPx = 0,
Measured at P1.4/SMCLK,
fLFXT1,HF = 10 MHz
Duty cycle, HF mode
fFault,HF
XTS = 1, LFXT1Sx = 3, XCAPx = 0
XTS = 1, XCAPx = 0,
Measured at P1.4/SMCLK,
fLFXT1,HF = 16 MHz
(4)
TYP
XTS = 1, LFXT1Sx = 3, XCAPx = 0 (5)
50
pF
60
2.2 V/3 V
%
40
2.2 V/3 V
MHz
Ω
1
40
MHz
30
50
60
300
kHz
To improve EMI on the XT2 oscillator the following guidelines should be observed:
(a) Keep the trace between the device and the crystal as short as possible.
(b) Design a good ground plane around the oscillator pins.
(c) Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT.
(d) Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins.
(e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XIN and XOUT pins.
(f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
(g) Do not route the XOUT line to the JTAG header to support the serial programming adapter as shown in other documentation. This
signal is no longer required for the serial programming adapter.
Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, it is
recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should
always match the specification of the used crystal.
Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag, and
frequencies in between might set the flag.
Measured with logic-level input frequency, but also applies to operation with crystals.
Copyright © 2007–2011, Texas Instruments Incorporated
49
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Typical Characteristics - LFXT1 Oscillator in HF Mode (XTS = 1)
OSCILLATION ALLOWANCE
vs
CRYSTAL FREQUENCY
CL,eff = 15 pF, TA = 25°C
Oscillation Allowance − W
100000.00
10000.00
1000.00
LFXT1Sx = 2
100.00
LFXT1Sx = 0
10.00
0.10
1.00
LFXT1Sx = 1
10.00
100.00
Crystal Frequency − MHz
Figure 23.
XT Oscillator Supply Current − µA
OSCILLATOR SUPPLY CURRENT
vs
CRYSTAL FREQUENCY
CL,eff = 15 pF, TA = 25°C
1600.0
1500.0
1400.0
1300.0
1200.0
1100.0
1000.0
900.0
800.0
700.0
600.0
500.0
400.0
300.0
200.0
100.0
0.0
0.0
LFXT1Sx = 2
LFXT1Sx = 1
LFXT1Sx = 0
4.0
8.0
12.0
16.0
20.0
Crystal Frequency − MHz
Figure 24.
50
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Crystal Oscillator XT2 (1)
PARAMETER
VCC
MIN
XT2Sx = 0
1.8 V to 3.6 V
XT2 oscillator crystal frequency,
mode 1
XT2Sx = 1
XT2 oscillator crystal frequency,
mode 2
XT2Sx = 2
fXT2
XT2 oscillator crystal frequency,
mode 0
fXT2
fXT2
XT2 oscillator logic-level square-wave
XT2Sx = 3
input frequency
fXT2
Oscillation allowance (see Figure 25
and Figure 26)
OA
CL,eff
Integrated effective load capacitance,
HF mode (2)
Duty cycle
fFault
(1)
(2)
(3)
(4)
(5)
TEST CONDITIONS
TYP
MAX
UNIT
0.4
1
MHz
1.8 V to 3.6 V
1
4
MHz
1.8 V to 2.2 V
2
10
2.2 V to 3.0 V
2
12
3.0 V to 3.6 V
2
16
1.8 V to 2.2 V
0.4
10
2.2 V to 3.0 V
0.4
12
3.0 V to 3.6 V
0.4
16
XT2Sx = 0, fXT2 = 1 MHz,
CL,eff = 15 pF
2700
XT2Sx = 1, fXT2 = 4 MHz,
CL,eff = 15 pF
800
XT2Sx = 2, fXT2 = 16 MHz,
CL,eff = 15 pF
300
See
(3)
Measured at P1.4/SMCLK,
fXT2 = 10 MHz
Measured at P1.4/SMCLK,
fXT2 = 16 MHz
Oscillator fault frequency, HF mode (4) XT2Sx = 3 (5)
MHz
Ω
1
pF
40
50
60
40
50
60
2.2 V/3 V
2.2 V/3 V
MHz
%
30
300
kHz
To improve EMI on the XT2 oscillator the following guidelines should be observed:
(a) Keep the trace between the device and the crystal as short as possible.
(b) Design a good ground plane around the oscillator pins.
(c) Prevent crosstalk from other clock or data lines into oscillator pins XT2IN and XT2OUT.
(d) Avoid running PCB traces underneath or adjacent to the XT2IN and XT2OUT pins.
(e) Use assembly materials and praxis to avoid any parasitic load on the oscillator XT2IN and XT2OUT pins.
(f) If conformal coating is used, ensure that it does not induce capacitive/resistive leakage between the oscillator pins.
Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, it is
recommended to verify the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should
always match the specification of the used crystal.
Requires external capacitors at both terminals. Values are specified by crystal manufacturers.
Frequencies below the MIN specification set the fault flag, frequencies above the MAX specification do not set the fault flag, and
frequencies in between might set the flag.
Measured with logic-level input frequency, but also applies to operation with crystals.
Copyright © 2007–2011, Texas Instruments Incorporated
51
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Typical Characteristics - XT2 Oscillator
OSCILLATION ALLOWANCE
vs
CRYSTAL FREQUENCY
CL,eff = 15 pF, TA = 25°C
Oscillation Allowance − W
100000.00
10000.00
1000.00
XT2Sx = 2
100.00
XT2Sx = 1
XT2Sx = 0
10.00
0.10
1.00
10.00
100.00
Crystal Frequency − MHz
Figure 25.
XT Oscillator Supply Current − µA
OSCILLATOR SUPPLY CURRENT
vs
CRYSTAL FREQUENCY
CL,eff = 15 pF, TA = 25°C
1600.0
1500.0
1400.0
1300.0
1200.0
1100.0
1000.0
900.0
800.0
700.0
600.0
500.0
400.0
300.0
200.0
100.0
0.0
0.0
XT2Sx = 2
XT2Sx = 1
XT2Sx = 0
4.0
8.0
12.0
16.0
20.0
Crystal Frequency − MHz
Figure 26.
52
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Timer_A
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
fTA
Timer_A clock frequency
Internal: SMCLK, ACLK
External: TACLK, INCLK
Duty cycle = 50% ± 10%
tTA,cap
Timer_A capture timing
TA0, TA1, TA2
VCC
MIN
TYP
MAX
2.2 V
10
3V
16
2.2 V/3 V
20
UNIT
MHz
ns
Timer_B
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
fTB
Timer_B clock frequency
Internal: SMCLK, ACLK
External: TACLK, INCLK
Duty cycle = 50% ± 10%
tTB,cap
Timer_B capture timing
TB0, TB1, TB2
Copyright © 2007–2011, Texas Instruments Incorporated
VCC
MIN
TYP
MAX
2.2 V
10
3V
16
2.2 V/3 V
20
UNIT
MHz
ns
53
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
USCI (UART Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
fUSCI
USCI input clock frequency
fBITCLK
BITCLK clock frequency
(equals baud rate in MBaud) (1)
tτ
UART receive deglitch time (2)
(1)
(2)
CONDITIONS
VCC
MIN
TYP
Internal: SMCLK, ACLK
External: UCLK
Duty cycle = 50% ± 10%
2.2 V/3 V
2.2 V
50
150
3V
50
100
MAX
UNIT
fSYSTEM
MHz
1
MHz
ns
The DCO wake-up time must be considered in LPM3/4 for baudrates above 1 MHz.
Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed.
USCI (SPI Master Mode) (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
(see Figure 27 and Figure 28)
PARAMETER
fUSCI
USCI input clock frequency
tSU,MI
SOMI input data setup time
tHD,MI
SOMI input data hold time
tVALID,MO
SIMO output data valid time
(1)
TEST CONDITIONS
VCC
MIN
TYP
SMCLK, ACLK
Duty cycle = 50% ± 10%
UCLK edge to SIMO valid,
CL = 20 pF
2.2 V
110
3V
75
2.2 V
0
3V
0
MAX
UNIT
fSYSTEM
MHz
ns
ns
2.2 V
30
3V
20
ns
fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(USCI) + tSU,SI(Slave), tSU,MI(USCI) + tVALID,SO(Slave)).
For the slave's parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave.
USCI (SPI Slave Mode) (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
(see Figure 29 and Figure 30)
PARAMETER
TEST CONDITIONS
VCC
MIN
TYP
MAX
tSTE,LEAD
STE lead time, STE low to clock
2.2 V/3 V
tSTE,LAG
STE lag time, Last clock to STE high
2.2 V/3 V
tSTE,ACC
STE access time, STE low to SOMI data out
2.2 V/3 V
50
ns
tSTE,DIS
STE disable time, STE high to SOMI high
impedance
2.2 V/3 V
50
ns
tSU,SI
SIMO input data setup time
tHD,SI
SIMO input data hold time
tVALID,SO
SOMI output data valid time
(1)
54
UCLK edge to SOMI valid,
CL = 20 pF
50
UNIT
ns
10
2.2 V
20
3V
15
2.2 V
10
3V
10
ns
ns
ns
2.2 V
75
110
3V
50
75
ns
fUCxCLK = 1/2tLO/HI with tLO/HI ≥ max(tVALID,MO(Master) + tSU,SI(USCI), tSU,MI(Master) + tVALID,SO(USCI)).
For the master's parameters tSU,MI(Master) and tVALID,MO(Master) see the SPI parameters of the attached slave.
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
1/fUCxCLK
CKPL=0
UCLK
CKPL=1
tLO/HI
tLO/HI
tSU,MI
tHD,MI
SOMI
tVALID,MO
SIMO
Figure 27. SPI Master Mode, CKPH = 0
1/fUCxCLK
CKPL=0
UCLK
CKPL=1
tLO/HI
tLO/HI
tSU,MI
tHD,MI
SOMI
tVALID,MO
SIMO
Figure 28. SPI Master Mode, CKPH = 1
Copyright © 2007–2011, Texas Instruments Incorporated
55
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
tSTE,LEAD
tSTE,LAG
STE
1/fUCxCLK
CKPL=0
UCLK
CKPL=1
tLO/HI
tLO/HI
tSU,SI
tHD,SI
SIMO
tSTE,ACC
tVALID,SO
tSTE,DIS
SOMI
Figure 29. SPI Slave Mode, CKPH = 0
tSTE,LEAD
tSTE,LAG
STE
1/fUCxCLK
CKPL=0
UCLK
CKPL=1
tLO/HI
tLO/HI
tHD,SI
tSU,SI
SIMO
tSTE,ACC
tVALID,SO
tSTE,DIS
SOMI
Figure 30. SPI Slave Mode, CKPH = 1
56
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
USCI (I2C Mode)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 31)
PARAMETER
TEST CONDITIONS
VCC
MIN
TYP
Internal: SMCLK, ACLK
External: UCLK
Duty cycle = 50% ± 10%
MAX
UNIT
fSYSTEM
MHz
400
kHz
fUSCI
USCI input clock frequency
fSCL
SCL clock frequency
tHD,STA
Hold time (repeated) START
tSU,STA
Setup time for a repeated START
tHD,DAT
Data hold time
2.2 V/3 V
0
tSU,DAT
Data setup time
2.2 V/3 V
250
ns
tSU,STO
Setup time for STOP
2.2 V/3 V
4
µs
tSP
Pulse width of spikes suppressed by input filter
2.2 V
50
150
600
3V
50
100
600
2.2 V/3 V
fSCL ≤ 100 kHz
fSCL > 100 kHz
fSCL ≤ 100 kHz
fSCL > 100 kHz
tHD,STA
2.2 V/3 V
2.2 V/3 V
0
4
µs
0.6
4.7
µs
0.6
ns
ns
tSU,STA tHD,STA
SDA
1/fSCL
tSP
SCL
tSU,DAT
tSU,STO
tHD,DAT
Figure 31. I2C Mode Timing
Copyright © 2007–2011, Texas Instruments Incorporated
57
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Comparator_A+ (1)
over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
I(DD)
CAON = 1, CARSEL = 0, CAREF = 0
I(Refladder/RefDiode)
CAON = 1, CARSEL = 0, CAREF = 1/2/3,
No load at P2.3/CA0/TA1 and P2.4/CA1/TA2
VCC
MIN
TYP
MAX
2.2 V
25
40
3V
45
60
2.2 V
30
50
3V
45
71
UNIT
µA
µA
VIC
Common-mode input
voltage range
CAON = 1
2.2 V/3 V
0
V(Ref025)
Voltage at 0.25 VCC
node / VCC
PCA0 = 1, CARSEL = 1, CAREF = 1,
No load at P2.3/CA0/TA1 and P2.4/CA1/TA2
2.2 V/3 V
0.23
0.24
0.25
V(Ref050)
Voltage at 0.5 VCC node / PCA0 = 1, CARSEL = 1, CAREF = 2,
VCC
No load at P2.3/CA0/TA1 and P2.4/CA1/TA2
2.2 V/3 V
0.47
0.48
0.5
See Figure 36 and
Figure 37
2.2 V
390
480
540
V(RefVT)
3V
400
490
550
V(offset)
Offset voltage (2)
2.2 V/3 V
-30
30
mV
Vhys
Input hysteresis
2.2 V/3 V
0
0.7
1.4
mV
TA = 25°C, Overdrive 10 mV,
Without filter: CAF = 0 (3)
(see Figure 32 and Figure 33)
2.2 V
80
165
300
3V
70
120
240
TA = 25°C, Overdrive 10 mV,
Without filter: CAF = 1 (3)
(see Figure 32 and Figure 33)
2.2 V
1.4
1.9
2.8
3V
0.9
1.5
2.2
t(response)
(1)
(2)
(3)
58
Response time
(low-to-high and
high-to-low)
PCA0 = 1, CARSEL = 1, CAREF = 3,
No load at P2.3/CA0/TA1 and P2.4/CA1/TA2,
TA = 85°C
CAON = 1
VCC - 1
V
mV
ns
µs
The leakage current for the Comparator_A+ terminals is identical to Ilkg(Px.y) specification.
The input offset voltage can be cancelled by using the CAEX bit to invert the Comparator_A+ inputs on successive measurements. The
two successive measurements are then summed together.
The response time is measured at P2.2/CAOUT/TA0/CA4 with an input voltage step, with Comparator_A+ already enabled (CAON = 1).
If CAON is set at the same time, a settling time of up to 300 ns is added to the response time.
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
0V
VCC
0
1
CAF
CAON
To Internal
Modules
Low Pass Filter
+
_
V+
V−
0
0
1
1
CAOUT
Set CAIFG
Flag
τ ≈ 2.0 µs
Figure 32. Comparator_A+ Block Diagram
VCAOUT
Overdrive
V−
400 mV
t (response)
V+
Figure 33. Comparator_A+ Overdrive Definition
Figure 34. Comparator_A+ Short Resistance Test Condition
CASHORT
CA0
CA1
1
VIN
+
−
Comparator_A+
CASHORT = 1
IOUT = 10µA
Figure 35. Comparator_A+ Short Resistance Test Condition
Copyright © 2007–2011, Texas Instruments Incorporated
59
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Typical Characteristics, Comparator_A+
V(RefVT)
vs
TEMPERATURE
(VCC = 3 V)
V(RefVT)
vs
TEMPERATURE
(VCC = 2.2 V)
650
650
VCC = 2.2 V
600
V(REFVT) − Reference Volts −mV
V(REFVT) − Reference Volts −mV
VCC = 3 V
Typical
550
500
450
400
−45
−25
−5
15
35
55
75
600
Typical
550
500
450
400
−45
95
−25
TA − Free-Air Temperature − °C
−5
15
35
55
75
95
TA − Free-Air Temperature − °C
Figure 1. V(RefVT) vs Temperature, V CC = 3 V
Figure 36.
Figure 37.
SHORT RESISTANCE
vs
VIN/VCC
Short Resistance − kW
100.00
VCC = 1.8 V
VCC = 2.2V
10.00
VCC = 3 V
VCC = 3.6 V
1.00
0.0
0.2
0.4
0.6
0.8
1.0
VIN/VCC − Normalized Input Voltage − V/V
Figure 38.
60
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
12-bit ADC, Power Supply and Input Range Conditions (1)
over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
AVCC
Analog supply voltage
AVCC and DVCC are connected together
AVSS and DVSS are connected together
V(AVSS) = V(DVSS) = 0 V
V(P6.x/Ax)
Analog input voltage
range (2)
All P6.0/A0 to P6.7/A7 terminals, Analog inputs
selected in ADC12MCTLx register,
P6Sel.x = 1, 0 ≤ × ≤ 7,
V(AVSS) ≤ VP6.x/Ax ≤ V(AVCC)
IADC12
Operating supply current
into AVCC terminal (3)
fADC12CLK = 5 MHz,
ADC12ON = 1, REFON = 0,
SHT0 = 0, SHT1 = 0, ADC12DIV = 0
IREF+
Operating supply current
into AVCC terminal (4)
CI
Input capacitance (5)
Only one terminal can be selected at one time,
P6.x/Ax
RI
Input MUX ON
resistance (5)
0 V ≤ VAx ≤ VAVCC
(1)
(2)
(3)
(4)
(5)
TYP
MAX
UNIT
2.2
3.6
V
0
VAVCC
V
2.2 V
0.65
0.8
3V
0.8
1
3V
0.5
0.7
2.2 V
0.5
0.7
3V
0.5
0.7
fADC12CLK = 5 MHz,
ADC12ON = 0, REFON = 1, REF2_5V = 1
fADC12CLK = 5 MHz,
ADC12ON = 0, REFON = 1, REF2_5V = 0
MIN
2.2 V
3V
mA
mA
mA
40
pF
2000
Ω
The leakage current is defined in the leakage current table with P6.x/Ax parameter.
The analog input voltage range must be within the selected reference voltage range VR+ to VR– for valid conversion results.
The internal reference supply current is not included in current consumption parameter IADC12.
The internal reference current is supplied via terminal AVCC. Consumption is independent of the ADC12ON control bit, unless a
conversion is active. The REFON bit enables settling of the built-in reference before starting an A/D conversion.
Not production tested, limits verified by design.
12-Bit ADC, External Reference (1)
over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VeREF+
Positive external reference voltage input
VeREF+ > VREF–/VeREF–
(2)
VREF–/VeREF–
Negative external reference voltage input
VeREF+ > VREF–/VeREF–
(3)
(4)
VCC
MIN
MAX
1.4 VAVCC
0
UNIT
V
1.2
V
1.4 VAVCC
V
(VeREF+ –
VREF–/VeREF–)
Differential external reference voltage input
VeREF+ > VREF–/VeREF–
IVeREF+
Static leakage current
0 V ≤ VeREF+ ≤ VAVCC
2.2 V/3 V
±1
µA
IVREF–/VeREF–
Static leakage current
0 V ≤ VeREF– ≤ VAVCC
2.2 V/3 V
±1
µA
(1)
(2)
(3)
(4)
The external reference is used during conversion to charge and discharge the capacitance array. The input capacitance, CI, is also the
dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the
recommendations on analog-source impedance to allow the charge to settle for 12-bit accuracy.
The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced
accuracy requirements.
The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced
accuracy requirements.
The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with
reduced accuracy requirements.
Copyright © 2007–2011, Texas Instruments Incorporated
61
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
12-Bit ADC, Built-In Reference
over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
Positive built-in
reference voltage
output
VREF+
AVCC(min)
AVCC minimum
voltage, positive
built-in reference
active
TA
REF2_5V = 1 for 2.5 V,
IVREF+max ≤ IVREF+ ≤ IVREF+min
-40°C to 85°C
REF2_5V = 0 for 1.5 V,
IVREF+max ≤ IVREF+ ≤ IVREF+min
-40°C to 85°C
105°C
105°C
Load-current
regulation, VREF+
terminal (1)
IL(VREF)+
3V
2.2 V/3 V
2.4
2.5
2.6
2.5
2.64
1.44
1.5
1.56
1.42
1.5
1.57
2.8
REF2_5V = 1,
-1 mA ≤ IVREF+ ≤ IVREF+min
2.9
IVREF+ = 500 µA ± 100 µA,
Analog input voltage ≈ 0.75 V,
REF2_5V = 0
MAX
2.37
REF2_5V = 1,
-0.5 mA ≤ IVREF+ ≤ IVREF+min
UNIT
V
V
2.2 V
0.01
-0.5
3V
0.01
-1
mA
2.2 V
±2
3V
±2
IVREF+ = 500 µA ± 100 µA,
Analog input voltage ≈ 1.25 V,
REF2_5V = 1
3V
±2
LSB
3V
20
ns
Load current
regulation, VREF+
terminal (2)
IVREF+ = 100 µA → 900 µA,
CVREF+ = 5 µF, ax ≈ 0.5 × VREF+,
Error of conversion result ≤ 1 LSB
CVREF+
Capacitance at pin
VREF+ (3)
REFON = 1,
0 mA ≤ IVREF+ ≤ IVREF+max
2.2 V/3 V
TREF+
Temperature
coefficient of built-in
reference (2)
IVREF+ is a constant in the range of
0 mA ≤ IVREF+ ≤ 1 mA
2.2 V/3 V
tREFON
Settle time of
internal reference
voltage (see
Figure 39 ) (4) (2)
IVREF+ = 0.5 mA, CVREF+ = 10 µF,
VREF+ = 1.5 V, VAVCC = 2.2 V
2.2 V
(4)
NOM
2.2
IDL(VREF) +
(1)
(2)
(3)
MIN
REF2_5V = 0,
IVREF+max ≤ IVREF+ ≤ IVREF+min
Load current out of
VREF+ terminal
IVREF+
VCC
5
LSB
µF
10
±100
17
ppm/°C
ms
Not production tested, limits characterized.
Not production tested, limits verified by design.
The internal buffer operational amplifier and the accuracy specifications require an external capacitor. All INL and DNL tests uses two
capacitors between pins VREF+ and AVSS and VREF-–/VeREF– and AVSS: 10 µF tantalum and 100 nF ceramic.
The condition is that the error in a conversion started after tREFON is less than ±0.5 LSB. The settling time depends on the external
capacitive load.
CVREF+
100 µF
t REFON ≈ .66 x CVREF+ [ms] with C VREF+ in µF
10 µF
1 µF
0
1 ms
10 ms
100 ms
t REFON
Figure 39. Typical Settling Time of Internal Reference tREFON vs External Capacitor on VREF+
62
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
From Power Supply
DVCC
+
−
DVSS
10 µ F
100 nF
AVCC
+
−
AVSS
Apply External Reference [VeREF+]
or Use Internal Reference [VREF+]
10 µ F
100 nF
VREF+ or V eREF+
+
−
10 µ F
100 nF
Apply External Reference
VREF−/VeREF−
+
−
10 µ F
100 nF
Figure 40. Supply Voltage and Reference Voltage Design VREF–/VeREF– External Supply
DVCC
From Power Supply
+
−
DVSS
10 µ F
100 nF
AVCC
+
−
AVSS
10 µ F
Apply External Reference [VeREF+]
or Use Internal Reference [VREF+]
VREF+ or V eREF+
+
−
10 µ F
Reference Is Internally
Switched to AVSS
100 nF
100 nF
VREF−/VeREF−
Figure 41. Supply Voltage and Reference Voltage Design VREF–/VeREF– = AVSS, Internally Connected
Copyright © 2007–2011, Texas Instruments Incorporated
63
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
12-Bit ADC, Timing Parameters
over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
fADC12CLK
fADC12OSC
tCONVERT
Internal ADC12 oscillator
Conversion time
VCC
MIN
For specified performance of ADC12
linearity parameters
2.2 V/3 V
0.45
5
6.3 MHz
ADC12DIV = 0,
fADC12CLK = fADC12OSC
2.2 V/3 V
3.7
5
6.3 MHz
CVREF+ ≥ 5 µF, Internal oscillator,
fADC12OSC = 3.7 MHz to 6.3 MHz
2.2 V/3 V
2.06
Turn-on settling time of the
ADC (1)
See
tSample
Sampling time (1)
RS = 400 Ω,RI = 1000 Ω, CI = 30 pF,
τ = [RS +RI] × CI (3)
(1)
(2)
(3)
3.51
13 ×
ADC12DIV ×
1/fADC12CLK
External fADC12CLK from ACLK, MCLK,
or SMCLK,
ADC12SSEL ≉ 0
tADC12ON
NOM MAX UNIT
(2)
µs
100
3V
1220
2.2 V
1400
µs
ns
ns
Limits verified by design
The condition is that the error in a conversion started after tADC12ON is less than ±0.5 LSB. The reference and input signal are already
settled.
Approximately ten Tau (τ) are needed to get an error of less than ±0.5 LSB:
tSample = ln(2n+1) × (RS + RI) × CI + 800 ns, where n = ADC resolution = 12, RS = external source resistance
12-Bit ADC, Linearity Parameters
over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
1.4 V ≤ (VeREF+ – VREF–/VeREF–) min ≤ 1.6 V
VCC
EI
Integral linearity
error
ED
Differential linearity (VeREF+ – VREF–/VeREF–) min ≤ (VeREF+ – VREF–/VeREF–),
error
CVREF+ = 10 µF (tantalum) and 100 nF (ceramic)
2.2 V/3 V
EO
Offset error
(VeREF+ – VREF–/VeREF–) min ≤ (VeREF+ – VREF–/VeREF–),
Internal impedance of source RS < 100 Ω,
CVREF+ = 10 µF (tantalum) and 100 nF (ceramic)
2.2 V/3 V
EG
Gain error
(VeREF+ – VREF–/VeREF–)min ≤ (VeREF+ – VREF–/VeREF–),
CVREF+ = 10 µF (tantalum) and 100 nF (ceramic)
ET
Total unadjusted
error
(VeREF+ -– VREF–/VeREF– )min ≤ (VeREF+ –VREF–/VeREF–),
CVREF+ = 10 µF (tantalum) and 100 nF (ceramic)
64
1.6 V < (VeREF+ – VREF–/VeREF–) min ≤ VAVCC
MIN
NOM
MAX
±2
2.2 V/3 V
±1.7
UNIT
LSB
±1
LSB
±2
±4
LSB
2.2 V/3 V
±1.1
±2
LSB
2.2 V/3 V
±2
±5
LSB
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
12-Bit ADC, Temperature Sensor and Built-In VMID
over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER
ISENSOR
Operating supply
current into AVCC
terminal (1)
TEST CONDITIONS
REFON = 0, INCH = 0Ah,
ADC12ON = 1, TA = 25°C
VSENSOR (2) (3)
ADC12ON = 1, INCH = 0Ah, TA = 0°C
TCSENSOR (3)
ADC12ON = 1, INCH = 0Ah
VCC
MIN
TYP
MAX
2.2 V
40
120
3V
60
160
2.2 V
986
3V
986
2.2 V
3.55
3.55 ± 3%
3V
3.55
3.55 ± 3%
Sample time
required if channel
10 is selected (4)
IVMID
Current into divider
ADC12ON = 1, INCH = 0Bh
at channel 11 (5)
2.2 V
NA
3V
NA
VMID
AVCC divider at
channel 11
ADC12ON = 1, INCH = 0Bh,
VMID is ~0.5 × VAVCC
2.2 V
1.1
1.1 ± 0.04
3V
1.5
1.5 ± 0.04
tVMID(sample)
Sample time
required if channel
11 is selected (6)
ADC12ON = 1, INCH = 0Bh,
Error of conversion result ≤ 1 LSB
(1)
(2)
(3)
(4)
(5)
(6)
2.2 V
30
3V
30
2.2 V
1400
3V
1220
µA
mV
tSENSOR(sample) (3)
ADC12ON = 1, INCH = 0Ah,
Error of conversion result ≤ 1 LSB
UNIT
mV/°C
µs
µA
V
ns
The sensor current ISENSOR is consumed if (ADC12ON = 1 and REFON = 1), or (ADC12ON = 1 AND INCH = 0Ah and sample signal is
high). Therefore it includes the constant current through the sensor and the reference.
The temperature sensor offset can be as much as ±20°C. A single-point calibration is recommended to minimize the offset error of the
built-in temperature sensor.
Limits characterized
The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on)
No additional current is needed. The VMID is used during sampling.
The on-time tVMID(on) is included in the sampling time tVMID(sample), no additional on time is needed.
Copyright © 2007–2011, Texas Instruments Incorporated
65
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Flash Memory
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VCC
MIN
TYP
MAX
UNIT
VCC (PGM/ERASE)
Program and erase supply voltage
2.2
3.6
V
fFTG
Flash timing generator frequency
257
476
kHz
IPGM
Supply current from VCC during program
2.2 V/3.6 V
1
5
mA
IERASE
Supply current from VCC during erase
2.2 V/3.6 V
1
7
mA
10
ms
(1)
tCPT
Cumulative program time
tCMErase
Cumulative mass erase time
2.2 V/3.6 V
2.2 V/3.6 V
20
ms
104
Program/Erase endurance
105
cycles
tRetention
Data retention duration
TJ = 25°C
tWord
Word or byte program time
(2)
30
tFTG
tBlock,
0
Block program time for first byte or word
(2)
25
tFTG
tBlock,
1-63
Block program time for each additional
byte or word
(2)
18
tFTG
Block program end-sequence wait time
(2)
6
tFTG
Mass erase time
(2)
10593
tFTG
Segment erase time
(2)
4819
tFTG
tBlock,
End
tMass Erase
tSeg Erase
(1)
(2)
100
years
The cumulative program time must not be exceeded when writing to a 64-byte flash block. This parameter applies to all programming
methods: individual word/byte write and block write modes.
These values are hardwired into the flash controller's state machine (tFTG = 1/fFTG).
RAM
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
V(RAMh)
(1)
RAM retention supply voltage
TEST CONDITIONS
(1)
MIN
CPU halted
MAX
UNIT
1.6
V
This parameter defines the minimum supply voltage VCC when the data in RAM remains unchanged. No program execution should
happen during this supply voltage condition.
JTAG Interface
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
TEST CONDITIONS
fTCK
TCK input frequency
See
(1)
RInternal
Internal pulldown resistance on TEST
See
(2)
(1)
(2)
VCC
MIN
TYP
MAX
2.2 V
0
5
3V
0
10
2.2 V/3 V
25
60
90
MIN
MAX
UNIT
MHz
kΩ
fTCK may be restricted to meet the timing requirements of the module selected.
TMS, TDI/TCLK, and TCK pullup resistors are implemented in all versions.
JTAG Fuse (1)
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)
PARAMETER
VCC(FB)
Supply voltage during fuse-blow condition
VFB
Voltage level on TEST for fuse blow
IFB
Supply current into TEST during fuse blow
tFB
Time to blow fuse
(1)
66
TEST CONDITIONS
TA = 25°C
2.5
6
UNIT
V
7
V
100
mA
1
ms
Once the fuse is blown, no further access to the JTAG/Test, Spy-Bi-Wire, and emulation feature is possible, and JTAG is switched to
bypass mode.
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
APPLICATION INFORMATION
Port P1 Pin Schematic: P1.0 to P1.7, Input/Output With Schmitt Trigger
P1REN.x
P1DIR.x
Pad Logic
0
0
Module X OUT
1
0
DVCC
1
1
Direction
0: Input
1: Output
1
P1OUT.x
DVSS
P1.0/TACLK
P1.1/TA0
P1.2/TA1
P1.3/TA2
P1.4/SMCLK
P1.5/TA0
P1.6/TA1
P1.7/TA2
P1SEL.x
P1IN.x
EN
Module X IN
D
P1IE.x
P1IRQ.x
EN
Q
Set
P1IFG.x
P1SEL.x
P1IES.x
Interrupt
Edge
Select
Copyright © 2007–2011, Texas Instruments Incorporated
67
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Table 20. Port P1.0 to P1.7 Pin Functions
PIN NAME (P1.x)
x
FUNCTION
P1.0 (I/O)
P1.0/TACLK
0
1
2
0
0
1
CAOUT
1
1
I: 0; O: 1
0
Timer_A3.CCI0A
0
1
Timer_A3.TA0
1
1
I: 0; O: 1
0
Timer_A3.CCI1A
0
1
Timer_A3.TA1
1
1
I: 0; O: 1
0
Timer_A3.CCI2A
0
1
Timer_A3.TA2
1
1
I: 0; O: 1
0
1
1
P1.3 (I/O)
P1.3/TA2
3
P1.4/SMCLK
4
P1.5/TA0
5
P1.4 (I/O)
SMCLK
P1.5 (I/O)
I: 0; O: 1
0
Timer_A3.CCI0A
0
1
Timer_A3.TA0
1
1
P1.6 (I/O)
P1.6/TA1
6
I: 0; O: 1
0
Timer_A3.CCI1A
0
1
Timer_A3.TA1
1
1
P1.7 (I/O)
P1.7/TA2
68
7
P1SEL.x
I: 0; O: 1
P1.2 (I/O)
P1.2/TA1
P1DIR.x
Timer_A3.TACLK
P1.1 (I/O)
P1.1/TA0
CONTROL BITS / SIGNALS
I: 0; O: 1
0
Timer_A3.CCI2A
0
1
Timer_A3.TA2
1
1
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Port P2 Pin Schematic: P2.0 to P2.4, P2.6, and P2.7, Input/Output With Schmitt Trigger
Pad Logic
To
Comparator_A
From
Comparator_A
CAPD.x
P2REN.x
P2DIR.x
0
0
Module X OUT
1
0
DVCC
1
1
Direction
0: Input
1: Output
1
P2OUT.x
DVSS
Bus
Keeper
EN
P2SEL.x
P2IN.x
EN
Module X IN
P2.0/ACLK/CA2
P2.1/TAINCLK/CA3
P2.2/CAOUT/TA0/CA4
P2.3/CA0/TA1
P2.4/CA1/TA2
P2.6/ADC12CLK/CA6
P2.7/TA0/CA7
D
P2IE.x
P2IRQ.x
EN
Q
P2IFG.x
P2SEL.x
P2IES.x
Set
Interrupt
Edge
Select
Copyright © 2007–2011, Texas Instruments Incorporated
69
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Table 21. Port P2.0 to P2.4, P2.6, and P2.7 Pin Functions
PIN NAME (P2.x)
x
0
P2.0/ACLK/CA2
1
P2.1/TAINCLK/CA3
2
P2.2/CAOUT/TA0/CA4
3
P2.3/CA0/TA1
4
P2.4/CA1/TA2
6
P2.6/ADC12CLK (2)/CA6
7
P2.7/TA0/CA7
(1)
(2)
70
FUNCTION
CONTROL BITS / SIGNALS (1)
CAPD.x
P2DIR.x
P2SEL.x
P2.0 (I/O)
0
I: 0; O: 1
0
ACLK
0
1
1
CA2
1
X
X
P2.1 (I/O)
0
I: 0; O: 1
0
Timer_A3.INCLK
0
0
1
DVSS
0
1
1
CA3
1
X
X
P2.2 (I/O)
0
I: 0; O: 1
0
CAOUT
0
1
1
TA0
0
0
1
CA4
1
X
X
P2.3 (I/O)
0
I: 0; O: 1
0
Timer_A3.TA1
0
1
1
CA0
1
X
X
P2.4 (I/O)
0
I: 0; O: 1
0
Timer_A3.TA2
0
1
X
CA1
1
X
1
P2.6 (I/O)
0
I: 0; O: 1
0
ADC12CLK (2)
0
1
1
CA6
1
X
X
P2.7 (I/O)
0
I: 0; O: 1
0
Timer_A3.TA0
0
1
1
CA7
1
X
X
X = Don't care
MSP430F24x and MSP430F23x devices only
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Port P2 Pin Schematic: P2.5, Input/Output With Schmitt Trigger
Pad Logic
To Comparator
From Comparator
CAPD.5
To DCO
DCOR
in DCO
P2REN.5
P2DIR.5
0
0
Module X OUT
1
0
DVCC
1
1
Direction
0: Input
1: Output
1
P2OUT.5
DVSS
P2.5/ROSC/CA5
Bus
Keeper
EN
P2SEL.5
P2IN.5
EN
Module X IN
D
P2IE.5
P2IRQ.5
EN
Q
Set
P2IFG.5
P2SEL.5
P2IES.5
Interrupt
Edge
Select
Table 22. Port P2.5 Pin Functions
PIN NAME (P2.x)
P2.5/ROSC/CA5
(1)
x
5
FUNCTION
CONTROL BITS / SIGNALS (1)
CAPD
DCOR
P2DIR.5
P2SEL.5
P2.5 (I/O)
0
0
I: 0; O: 1
0
ROSC
0
1
X
X
DVSS
0
0
1
1
CA5
1 or selected
0
X
X
X = Don't care
Copyright © 2007–2011, Texas Instruments Incorporated
71
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Port P3 Pin Schematic: P3.0 to P3.7, Input/Output With Schmitt Trigger
Pad Logic
P3REN.x
P3DIR.x
Module direction
P3OUT.x
Module X OUT
0
DVSS
0
DVCC
1
1
Direction
0: Input
1: Output
1
0
1
P3.0/UCB0STE/UCA0CLK
P3.1/UCB0SIMO/UCB0SDA
P3.2/UCB0SOMI/UCB0SCL
P3.3/UCB0CLK/UCA0STE
P3.4/UCA0TXD/UCA0SIMO
P3.5/UCA0RXD/UCA0SOMI
P3.6/UCA1TXD/UCA1SIMO
P3.7/UCA1RXD/UCA1SOMI
P3SEL.x
P3IN.x
EN
Module X IN
D
Table 23. Port P3.0 to P3.7 Pin Functions
PIN NAME (P3.x)
P3.0/UCB0STE/UCA0CLK
x
0
P3.1/UCB0SIMO/UCB0SDA
1
P3.2/UCB0SOMI/UCB0SCL
2
P3.3/UCB0CLK/UCA0STE
3
P3.4/UCA0TXD/UCA0SIMO
4
P3.5/UCA0RXD/UCA0SOMI
5
P3.6/UCA1TXD (5)/UCA1SIMO (5)
6
P3.7/UCA1RXD (5)/UCA1SOMI (5)
7
(1)
(2)
(3)
FUNCTION
P3.0 (I/O)
UCB0STE/UCA0CLK (2) (3)
P3.1 (I/O)
UCB0SIMO/UCB0SDA (2) (4)
P3.2 (I/O)
UCB0SOMI/UCB0SCL (2) (4)
P3.3 (I/O)
UCB0CLK/UCA0STE
(2)
P3.4 (I/O)
UCA0TXD/UCA0SIMO (2)
P3.5 (I/O)
UCA0RXD/UCA0SOMI (2)
P3.6 (I/O)
UCA1TXD (5)/UCA1SIMO (5) (2)
P3.7 (I/O)
UCA1RXD (5)/UCA1SOMI (5) (2)
CONTROL BITS /
SIGNALS (1)
P3DIR.x
P3SEL.x
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
(4)
(5)
X = Don't care
The pin direction is controlled by the USCI module.
UCA0CLK function takes precedence over UCB0STE function. If the pin is required as UCA0CLK input or output, USCI A/B0 is forced to
3-wire SPI mode if 4-wire SPI mode is selected.
If I2C functionality is selected, the output drives only the logical 0 to VSS level.
MSP430F24x and MSP430F24x1 devices only
72
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Port P4 Pin Schematic: P4.0 to P4.7, Input/Output With Schmitt Trigger
Pad Logic
P4REN.x
0
P4DIR.x
0
Module X OUT
1
0
DVCC
1
P4.0/TB0
P4.1/TB1
P4.2/TB2
P4.3/TB3
P4.4/TB4
P4.5/TB5
P4.6/TB6
P4.7/TBCLK
P4SEL.x
P4IN.x
EN
Module X IN
1
Direction
0: Input
1: Output
1
P4OUT.x
DVSS
D
Table 24. Port P4.0 to P4.7 Pin Functions
PIN NAME (P4.x)
x
FUNCTION
P4.0 (I/O)
P4.0/TB0
0
1
2
0
0
1
Timer_B7.TB0
1
1
I: 0; O: 1
0
Timer_B7.CCI1A and Timer_B7.CCI1B
0
1
Timer_B7.TB1
1
1
I: 0; O: 1
0
Timer_B7.CCI2A and Timer_B7.CCI2B
0
1
Timer_B7.TB2
1
1
I: 0; O: 1
0
0
1
1
1
I: 0; O: 1
0
0
1
1
1
I: 0; O: 1
0
0
1
1
1
I: 0; O: 1
0
0
1
P4.3 (I/O)
P4.3/TB3
(1)
3
Timer_B7.CCI3A and Timer_B7.CCI3B
(1)
Timer_B7.TB3 (1)
P4.4 (I/O)
P4.4/TB4
(1)
4
Timer_B7.CCI4A and Timer_B7.CCI4B
(1)
Timer_B7.TB4 (1)
P4.5 (I/O)
P4.5/TB5
(1)
5
Timer_B7.CCI5A and Timer_B7.CCI5B
(1)
Timer_B7.TB5 (1)
P4.6 (I/O)
P4.6/TB6 (1)
6
Timer_B7.CCI6A and Timer_B7.CCI6B (1)
Timer_B7.TB6
P4.7/TBCLK
(1)
7
P4SEL.x
I: 0; O: 1
P4.2 (I/O)
P4.2/TB2
P4DIR.x
Timer_B7.CCI0A and Timer_B7.CCI0B
P4.1 (I/O)
P4.1/TB1
CONTROL BITS / SIGNALS
(1)
P4.7 (I/O)
Timer_B7.TBCLK
1
1
I: 0; O: 1
0
0
1
MSP430F24x and MSP430F24x1 devices only
Copyright © 2007–2011, Texas Instruments Incorporated
73
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Port P5 Pin Schematic: P5.0 to P5.3, Input/Output With Schmitt Trigger
Pad Logic
P5REN.x
P5DIR.x
0
Module Direction
1
P5OUT.x
0
Module X OUT
DVSS
0
DVCC
1
1
Direction
0: Input
1: Output
1
P5.0/UCB1STE/UCA1CLK
P5.1/UCB1SIMO/UCB1SDA
P5.2/UCB1SOMI/UCB1SCL
P5.3/UCB1CLK/UCA1STE
P5SEL.x
P5IN.x
EN
Module X IN
D
Table 25. Port P5.0 to P5.3 Pin Functions
PIN NAME (P5.x)
P5.0/UCB1STE (2)/UCA1CLK (2)
P5.1/UCB1SIMO (2)/UCB1SDA (2)
P5.2/UCB1SOMI (2)/UCB1SCL (2)
P5.3/UCB1CLK (2)/UCA1STE (2)
(1)
(2)
(3)
(4)
x
0
FUNCTION
P5.0 (I/O)
UCB1STE (2)/UCA1CLK (2) (3) (4)
1
P5.1 (I/O)
UCB1SIMO (2)/UCB1SDA (2) (3) (5)
2
P5.2 (I/O)
(2)
UCB1SOMI /UCB1SCL
3
(2) (3) (5)
P5.3 (I/O)
UCB1CLK (2)/UCA1STE (2) (3)
CONTROL BITS /
SIGNALS (1)
P5DIR.x
P5SEL.x
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
(5)
X = Don't care
MSP430F24x and MSP430F24x1 devices only
The pin direction is controlled by the USCI module.
UCA0CLK function takes precedence over UCB0STE function. If the pin is required as UCA0CLK input or output, USCI A/B0 is forced to
3-wire SPI mode if 4-wire SPI mode is selected.
If I2C functionality is selected, the output drives only the logical 0 to VSS level.
74
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Port P5 Pin Schematic: P5.4 to P5.7, Input/Output With Schmitt Trigger
Pad Logic
P5REN.x
P5DIR.x
0
0
Module X OUT
1
0
DVCC
1
1
Direction
0: Input
1: Output
1
P5OUT.x
DVSS
P5.4/MCLK
P5.5/SMCLK
P5.6/ACLK
P5.7/TBOUTH/SVSOUT
P5SEL.x
P5IN.x
EN
D
Module X IN
Table 26. Port P5.4 to P5.7 Pin Functions
PIN NAME (P5.x)
P5.4/MCLK
P5.5/SMCLK
x
4
5
P5.6/ACLK
6
P5.7/TBOUTH/SVSOUT
7
FUNCTION
P5.4 (I/O)
MCLK
P5.5 (I/O)
SMCLK
P5.6 (I/O)
ACLK
P5.7 (I/O)
CONTROL BITS / SIGNALS
P5DIR.x
P5SEL.x
I: 0; O: 1
0
1
1
I: 0; O: 1
0
1
1
I: 0; O: 1
0
1
1
I: 0; O: 1
0
Timer_B7.TBOUTH
0
1
SVSOUT
1
1
Copyright © 2007–2011, Texas Instruments Incorporated
75
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Port P6 Pin Schematic: P6.0 to P6.6, Input/Output With Schmitt Trigger
Pad Logic
ADC12 Ax
From ADC12
P6REN.x
P6DIR.x
0
0
Module X OUT
1
0
DVCC
1
1
Direction
0: Input
1: Output
1
P6OUT.x
DVSS
P6.0/A0
P6.1/A1
P6.2/A2
P6.3/A3
P6.4/A4
P6.5/A5
P6.6/A6
Bus
Keeper
EN
P6SEL.x
P6IN.x
EN
Module X IN
D
Table 27. Port P6.0 to P6.6 Pin Functions
PIN NAME (P6.x)
P6.0/A0 (2)
P6.1/A1 (2)
P6.2/A2 (2)
x
0
1
2
P6.3/A3 (2)
3
P6.4/A4 (2)
4
P6.5/A5 (2)
P6.6/A6 (2)
(1)
(2)
76
5
6
FUNCTION
P5.0 (I/O)
A0
(2)
P5.1 (I/O)
A1 (2)
P5.2 (I/O)
A2
(2)
P5.3 (I/O)
A3 (2)
P5.4 (I/O)
A4 (2)
P5.5 (I/O)
A5
(2)
P6.6 (I/O)
A6 (2)
CONTROL BITS /
SIGNALS (1)
P6DIR.x
P6SEL.x
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
I: 0; O: 1
0
X
1
X = Don't care
MSP430F24x and MSP430F23x devices only
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
Port P6 Pin Schematic: P6.7, Input/Output With Schmitt Trigger
Pad Logic
To SVS Mux
VLD = 15
ADC12 A7
From ADC12
P6REN.7
P6DIR.7
0
P6OUT.7
0
1
0
DVCC
1
1
Direction
0: Input
1: Output
1
Module X OUT
DVSS
P6.7/A7/SVSIN
Bus
Keeper
EN
P6SEL.7
P6IN.7
EN
Module X IN
D
Table 28. Port P6.7 Pin Functions
PIN NAME (P6.x)
x
FUNCTION
P6.7 (I/O)
P6.7/A7/SVSIN
(1)
(2)
7
CONTROL BITS / SIGNALS (1)
P6DIR.x
P6SEL.x
INCHy
I: 0; O: 1
0
0
DVSS
1
1
0
A7 (2)
X
X
1 (y = 7)
SVSIN (VLD = 15)
X
X
1
X = Don't care
MSP430F24x and MSP430F23x devices only
Copyright © 2007–2011, Texas Instruments Incorporated
77
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
JTAG Pins (TMS, TCK, TDI/TCLK, TDO/TDI), Input/Output With Schmitt Trigger
TDO
Controlled by JTAG
Controlled by JTAG
JTAG
TDO/TDI
Controlled
by JTAG
DVCC
DVCC
TDI
Fuse
Burn & T est
Fuse
Test
TDI/TCLK
and
Emulation
Module
DVCC
TMS
TMS
DVCC
During Programming Activity and
During Blowing of the Fuse, Pin
TDO/TDI Is Used to Apply the Test
Input Data for JTAG Circuitry
TCK
TCK
78
Copyright © 2007–2011, Texas Instruments Incorporated
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
JTAG Fuse Check Mode
MSP430 devices that have the fuse on the TEST terminal have a fuse check mode that tests the continuity of the
fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check
current, ITF , of 1 mA at 3 V, 2.5 mA at 5 V can flow from the TEST pin to ground if the fuse is not burned. Care
must be taken to avoid accidentally activating the fuse check mode and increasing overall system power
consumption.
When the TEST pin is again taken low after a test or programming session, the fuse check mode and sense
currents are terminated.
Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if TMS is
being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode.
After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse
check mode has the potential to be activated.
The fuse check current flows only when the fuse check mode is active and the TMS pin is in a low state (see
Figure 42). Therefore, the additional current flow can be prevented by holding the TMS pin high (default
condition).
Time TMS Goes Low After POR
TMS
ITF
ITDI/TCLK
Figure 42. Fuse Check Mode Current
NOTE
The CODE and RAM data protection is ensured if the JTAG fuse is blown and the 256-bit
bootloader access key is used. Also, see the Bootstrap Loader section for more
information.
Copyright © 2007–2011, Texas Instruments Incorporated
79
MSP430F23x
MSP430F24x(1)
MSP430F2410
SLAS547H – JUNE 2007 – REVISED AUGUST 2011
www.ti.com
REVISION HISTORY
LITERATURE
NUMBER
SUMMARY
SLAS547
Product Preview release
SLAS547A
Production Data release
SLAS547B
Corrected terminal names and descriptions for pins 34 and 35 in "Terminal Functions - MSP430F23x" (page 9)
Corrected terminal names for pins 13, 14, and 15 in "Terminal Functions - MSP430F24x1" (page 13)
Corrected interrupt source and flag entries for USCI_A1/USCI_B1 in "interrupt vector addresses" table (page 17)
Changed index values from 1-3 to 0-2 in Figures 23 to 26 (pages 52 and 54)
Changed fmax,BITCLK and tτ parameters in "USCI (UART mode)" table (page 56)
Corrected "Port P1.0 to P1.7 pin functions" table (page 72)
Removed incorrect CAPD.x column in "Port P6.0 to P6.6 pin functions" table (page 80)
SLAS547C
Added Development Tool Support section (page 2)
Updated parametric values in "low-power mode supply current into VCC excluding external current" table (page 34)
SLAS547D
Updated notes and tCMErase MIN value "flash memory" table (page 34)
SLAS547E
Changed limits on td(SVSon) parameter (page 41)
SLAS547F
Changed "Port 6.0 to 6.6 Pin Functions" table (page 77)
Changed "Port 6.7 Pin Functions" table (page 78)
SLAS547G
Changed Tstg, Programmed device, to -55°C to 150°C in Absolute Maximum Ratings
SLAS547H
Corrected formatting error of TA column in Active Mode Supply Current (both IAM,1MHz parameters) and in
Low-Power-Mode Supply Currents (ILPM0,1MHz and ILPM0,100kHz parameters)
80
Copyright © 2007–2011, Texas Instruments Incorporated
PACKAGE OPTION ADDENDUM
www.ti.com
2-Apr-2012
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package
Drawing
Pins
Package Qty
Eco Plan
(2)
Lead/
Ball Finish
MSL Peak Temp
(3)
(Requires Login)
MSP430F233TPM
ACTIVE
LQFP
PM
64
160
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430F233TPMR
ACTIVE
LQFP
PM
64
1000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
TBD
MSP430F233TRGC
OBSOLETE
VQFN
RGC
64
MSP430F233TRGCR
ACTIVE
VQFN
RGC
64
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430F233TRGCT
ACTIVE
VQFN
RGC
64
250
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430F235TPM
ACTIVE
LQFP
PM
64
160
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430F235TPMR
ACTIVE
LQFP
PM
64
1000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
TBD
Call TI
Call TI
MSP430F235TRGC
OBSOLETE
VQFN
RGC
64
MSP430F235TRGCR
ACTIVE
VQFN
RGC
64
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430F235TRGCT
ACTIVE
VQFN
RGC
64
250
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430F2410TPM
ACTIVE
LQFP
PM
64
160
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430F2410TPMR
ACTIVE
LQFP
PM
64
1000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430F2410TRGC
OBSOLETE
VQFN
RGC
64
MSP430F2410TRGCR
ACTIVE
VQFN
RGC
64
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430F2410TRGCT
ACTIVE
VQFN
RGC
64
250
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430F2471TPM
ACTIVE
LQFP
PM
64
160
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430F2471TPMR
ACTIVE
LQFP
PM
64
1000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430F2471TRGC
OBSOLETE
VQFN
RGC
64
TBD
TBD
Addendum-Page 1
Call TI
Call TI
Call TI
Samples
Call TI
Call TI
Call TI
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
2-Apr-2012
Status
(1)
Package Type Package
Drawing
Pins
Package Qty
Eco Plan
(2)
Lead/
Ball Finish
MSL Peak Temp
(3)
MSP430F2471TRGCR
ACTIVE
VQFN
RGC
64
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430F2471TRGCT
ACTIVE
VQFN
RGC
64
250
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430F247TPM
ACTIVE
LQFP
PM
64
160
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430F247TPMR
ACTIVE
LQFP
PM
64
1000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
TBD
MSP430F247TRGC
OBSOLETE
VQFN
RGC
64
MSP430F247TRGCR
ACTIVE
VQFN
RGC
64
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430F247TRGCT
ACTIVE
VQFN
RGC
64
250
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430F2481TPM
ACTIVE
LQFP
PM
64
160
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430F2481TPMR
ACTIVE
LQFP
PM
64
1000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
TBD
Call TI
Call TI
MSP430F2481TRGC
OBSOLETE
VQFN
RGC
64
MSP430F2481TRGCR
ACTIVE
VQFN
RGC
64
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430F2481TRGCT
ACTIVE
VQFN
RGC
64
250
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430F248TPM
ACTIVE
LQFP
PM
64
160
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430F248TPMR
ACTIVE
LQFP
PM
64
1000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
TBD
Call TI
Call TI
MSP430F248TRGC
OBSOLETE
VQFN
RGC
64
MSP430F248TRGCR
ACTIVE
VQFN
RGC
64
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430F248TRGCT
ACTIVE
VQFN
RGC
64
250
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430F2491TPM
ACTIVE
LQFP
PM
64
160
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430F2491TPMR
ACTIVE
LQFP
PM
64
1000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
Addendum-Page 2
Call TI
Samples
(Requires Login)
Call TI
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
2-Apr-2012
Status
(1)
Package Type Package
Drawing
Pins
Package Qty
Eco Plan
(2)
TBD
Lead/
Ball Finish
(3)
OBSOLETE
VQFN
RGC
64
MSP430F2491TRGCR
ACTIVE
VQFN
RGC
64
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430F2491TRGCT
ACTIVE
VQFN
RGC
64
250
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430F249TPM
ACTIVE
LQFP
PM
64
160
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430F249TPMR
ACTIVE
LQFP
PM
64
1000
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430F249TRGC
OBSOLETE
VQFN
RGC
64
MSP430F249TRGCR
ACTIVE
VQFN
RGC
64
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
MSP430F249TRGCT
ACTIVE
VQFN
RGC
64
250
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-3-260C-168 HR
Call TI
Samples
(Requires Login)
MSP430F2491TRGC
TBD
Call TI
MSL Peak Temp
Call TI
Call TI
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
Addendum-Page 3
PACKAGE OPTION ADDENDUM
www.ti.com
2-Apr-2012
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF MSP430F249 :
• Enhanced Product: MSP430F249-EP
NOTE: Qualified Version Definitions:
• Enhanced Product - Supports Defense, Aerospace and Medical Applications
Addendum-Page 4
PACKAGE MATERIALS INFORMATION
www.ti.com
14-Jul-2012
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
MSP430F233TPMR
LQFP
PM
64
1000
330.0
24.4
13.0
13.0
2.1
16.0
24.0
Q2
MSP430F233TPMR
LQFP
PM
64
1000
330.0
24.4
13.0
13.0
2.1
16.0
24.0
Q2
MSP430F235TPMR
LQFP
PM
64
1000
330.0
24.4
13.0
13.0
2.1
16.0
24.0
Q2
MSP430F235TPMR
LQFP
PM
64
1000
330.0
24.4
13.0
13.0
2.1
16.0
24.0
Q2
MSP430F2410TPMR
LQFP
PM
64
1000
330.0
24.4
13.0
13.0
2.1
16.0
24.0
Q2
MSP430F2410TPMR
LQFP
PM
64
1000
330.0
24.4
13.0
13.0
2.1
16.0
24.0
Q2
MSP430F2471TPMR
LQFP
PM
64
1000
330.0
24.4
13.0
13.0
2.1
16.0
24.0
Q2
MSP430F2471TPMR
LQFP
PM
64
1000
330.0
24.4
13.0
13.0
2.1
16.0
24.0
Q2
MSP430F247TPMR
LQFP
PM
64
1000
330.0
24.4
13.0
13.0
2.1
16.0
24.0
Q2
MSP430F247TPMR
LQFP
PM
64
1000
330.0
24.4
13.0
13.0
2.1
16.0
24.0
Q2
MSP430F2481TPMR
LQFP
PM
64
1000
330.0
24.4
13.0
13.0
2.1
16.0
24.0
Q2
MSP430F2481TPMR
LQFP
PM
64
1000
330.0
24.4
13.0
13.0
2.1
16.0
24.0
Q2
MSP430F248TPMR
LQFP
PM
64
1000
330.0
24.4
13.0
13.0
2.1
16.0
24.0
Q2
MSP430F248TPMR
LQFP
PM
64
1000
330.0
24.4
13.0
13.0
2.1
16.0
24.0
Q2
MSP430F2491TPMR
LQFP
PM
64
1000
330.0
24.4
13.0
13.0
2.1
16.0
24.0
Q2
MSP430F2491TPMR
LQFP
PM
64
1000
330.0
24.4
13.0
13.0
2.1
16.0
24.0
Q2
MSP430F249TPMR
LQFP
PM
64
1000
330.0
24.4
13.0
13.0
2.1
16.0
24.0
Q2
MSP430F249TPMR
LQFP
PM
64
1000
330.0
24.4
13.0
13.0
2.1
16.0
24.0
Q2
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
14-Jul-2012
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
MSP430F233TPMR
LQFP
PM
64
1000
367.0
367.0
45.0
MSP430F233TPMR
LQFP
PM
64
1000
336.6
336.6
41.3
MSP430F235TPMR
LQFP
PM
64
1000
367.0
367.0
45.0
MSP430F235TPMR
LQFP
PM
64
1000
336.6
336.6
41.3
MSP430F2410TPMR
LQFP
PM
64
1000
367.0
367.0
45.0
MSP430F2410TPMR
LQFP
PM
64
1000
336.6
336.6
41.3
MSP430F2471TPMR
LQFP
PM
64
1000
367.0
367.0
45.0
MSP430F2471TPMR
LQFP
PM
64
1000
336.6
336.6
41.3
MSP430F247TPMR
LQFP
PM
64
1000
336.6
336.6
41.3
MSP430F247TPMR
LQFP
PM
64
1000
367.0
367.0
45.0
MSP430F2481TPMR
LQFP
PM
64
1000
336.6
336.6
41.3
MSP430F2481TPMR
LQFP
PM
64
1000
367.0
367.0
45.0
MSP430F248TPMR
LQFP
PM
64
1000
336.6
336.6
41.3
MSP430F248TPMR
LQFP
PM
64
1000
367.0
367.0
45.0
MSP430F2491TPMR
LQFP
PM
64
1000
367.0
367.0
45.0
MSP430F2491TPMR
LQFP
PM
64
1000
336.6
336.6
41.3
MSP430F249TPMR
LQFP
PM
64
1000
367.0
367.0
45.0
MSP430F249TPMR
LQFP
PM
64
1000
336.6
336.6
41.3
Pack Materials-Page 2
MECHANICAL DATA
MTQF008A – JANUARY 1995 – REVISED DECEMBER 1996
PM (S-PQFP-G64)
PLASTIC QUAD FLATPACK
0,27
0,17
0,50
0,08 M
33
48
49
32
64
17
0,13 NOM
1
16
7,50 TYP
Gage Plane
10,20
SQ
9,80
12,20
SQ
11,80
0,25
0,05 MIN
0°– 7°
0,75
0,45
1,45
1,35
Seating Plane
0,08
1,60 MAX
4040152 / C 11/96
NOTES: A.
B.
C.
D.
All linear dimensions are in millimeters.
This drawing is subject to change without notice.
Falls within JEDEC MS-026
May also be thermally enhanced plastic with leads connected to the die pads.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time
of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Mobile Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated
Similar pages